JP5679283B2 - 集光光学素子、集光装置、光発電装置及び光熱変換装置 - Google Patents

集光光学素子、集光装置、光発電装置及び光熱変換装置 Download PDF

Info

Publication number
JP5679283B2
JP5679283B2 JP2010238217A JP2010238217A JP5679283B2 JP 5679283 B2 JP5679283 B2 JP 5679283B2 JP 2010238217 A JP2010238217 A JP 2010238217A JP 2010238217 A JP2010238217 A JP 2010238217A JP 5679283 B2 JP5679283 B2 JP 5679283B2
Authority
JP
Japan
Prior art keywords
optical element
condensing optical
light
axis
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010238217A
Other languages
English (en)
Other versions
JP2012094574A (ja
Inventor
達雄 丹羽
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010238217A priority Critical patent/JP5679283B2/ja
Priority to PCT/JP2011/064092 priority patent/WO2011158956A1/ja
Priority to EP11795858.7A priority patent/EP2584383A4/en
Priority to CN201180030080.XA priority patent/CN102947731B/zh
Publication of JP2012094574A publication Critical patent/JP2012094574A/ja
Priority to US13/718,510 priority patent/US9196778B2/en
Application granted granted Critical
Publication of JP5679283B2 publication Critical patent/JP5679283B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光を集光する装置に関し、なお詳細には、厚さ方向に入射する光を側面方向に集光する集光光学素子、及びこれを用いた集光装置、光発電装置並びに光熱変換装置に関する。
近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用では、旧来より太陽熱温水器等により太陽光の熱エネルギー利用が用いられてきたほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。
光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、電力への変換効率が概ね10〜20%程度である。そこで、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。
しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに入射させるレンズ集光型(例えば、特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(例えば、特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(例えば、特許文献4を参照)などが提案されている。
特表2005−142373号公報 特開2005−217224号公報 米国特許出願公開第2006/0107993号明細書 米国特許第6274860号明細書
しかしながら、上記各集光方式には一長一短がある。例えば、レンズ集光型では、光軸方向にレンズの焦点距離に応じた厚さが必要であることや、光軸を太陽の方位に一致させるための追尾装置が必要になる。一方、蛍光プレート集光型や分光集光型は、モジュールの光軸方向寸法を薄くでき、また必ずしも追尾装置を必要としないが、波長依存性や変換効率の面で改善すべき余地がある。
本発明は、上記のような事情に鑑みてなされたものであり、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することを目的とする。
上記目的を達成するため、本発明を例示する第1の態様は集光光学素子である。この集光光学素子は、光透過性を有するA部材と、A部材中に厚さ方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成される。B部材の粒子径dは、厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λである。いま、厚さ方向に延びる軸をy軸、第1方向に延びる軸をx軸、第2方向に延びる軸をz軸、x軸及びy軸を含む面をxy面とする。そして、A部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnaxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnayx、電界振幅がxy面内でy軸からx軸方向に角度φ(0<φ<90°)傾斜した軸方向に進む光の屈折率をnaxφとし、B部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnbxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnbyx、電界振幅がxy面内でy軸からx軸方向に角度φ傾斜した軸方向に進む光の屈折率をnbxφとしたときに、naxyとnbxy、及びnayxとnbyxとが異なり、naxφとnbxφとが等しく、かつsinφ>(1/naxφ)を満たすように構成される。なお、本明細書において「粒子径」は、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径(直径)で規定し、頻度分布が最大の最頻粒子径(モード径)をもって粒子径dとしている。
この場合において、前記屈折率の関係は、nbxy>nbxφ>nbyx、あるいは、nbxy<nbxφ<nbyxとなるように構成することができる。また、前記屈折率の関係は、naxy>naxφ>nayx、あるいは、naxy<naxφ<nayxとなるように構成することもできる。
また、前記z軸及び前記y軸を含む面をzy面とし、前記A部材における、電界振幅がzy面内でy軸方向に進む光の屈折率をnazy、電界振幅がzy面内でz軸方向に進む光の屈折率をnayz、電界振幅がzy面内でy軸からz軸方向に角度γ(0<γ<90°)傾斜した軸方向に進む光の屈折率をnazγとし、前記B部材における、電界振幅がzy面内でy軸方向に進む光の屈折率をnbzy、電界振幅がzy面内でz軸方向に進む光の屈折率をnbyz、電界振幅がzy面内でy軸からz軸方向に角度γ傾斜した軸方向に進む光の屈折率をnbzγとしたときに、nazyとnbzy、及びnayzとnbyzとが異なり、nazγとnbzγとが等しく、かつsinγ>(1/naxγ)を満たすように構成しても良い。
前記A部材及び前記B部材は、(π×d×naxy)/λで規定するサイズパラメータαが、1.5≦α≦40であることが好適であり、2≦α≦20とすることができる。また、B部材の粒子径dを20μm以下とすることもできる。
A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、裏面において全反射されるように設定することができる。
本発明を例示する第2の態様は集光装置である。この態様に含まれる第1の構成形態の集光装置は、請求項1〜11のいずれかに記載の集光光学素子と、この集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、集光光学素子と反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えて構成される。
本態様に含まれる第2の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(第2の集光光学素子のx軸方向)が第1の集光光学素子の第2方向(第1の集光光学素子のz軸方向)と平行になるように配設される。
本態様に含まれる第3の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(第2の集光光学素子のx軸方向)が第1の集光光学素子の第1方向(第1の集光光学素子のz軸方向)と平行になるように配設されるとともに、第1の集光光学素子と第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする
本発明を例示する第3の態様は光発電装置である。この態様に含まれる第1の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)とを備えて構成される。
本態様に含まれる第2の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)と、集光光学素子により第2方向に導かれた光(例えば、実施形態におけるz軸方向の+z側及び−z側に導かれた光)を光電変換する光電変換素子とを備えて構成される。
本態様に含まれる第3の構成形態の光発電装置は、請求項12に記載の集光装置と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子とを備えて構成される。
本態様に含まれる第4、第5構成形態の光発電装置は、請求項13または14に記載の集光装置と、第1の集光光学素子における第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子と、第2の集光光学素子における第1方向に導かれた光(同上)を光電変換する第2の光電変換素子とを備えて構成される。
本発明を例示する第4の態様は光熱変換装置である。この態様に含まれる第1の構成形態の光熱変換装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光熱変換する光熱変換素子(例えば、実施形態におけるヒートパイプ)とを備えて構成される。
本態様に含まれる第2の構成形態の光熱変換装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光熱変換する光熱変換素子(例えば、実施形態におけるヒートパイプ)と、集光光学素子により第2方向に導かれた光(例えば、実施形態におけるz軸方向の+z側及び−z側に導かれた光)を光熱変換する光熱変換素子とを備えて構成される。
本態様に含まれる第3の構成形態の光熱変換装置は、請求項12に記載の集光装置と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光熱変換する光熱変換素子とを備えて構成される。
本態様に含まれる第4、第5構成形態の光熱変換装置は、請求項13または14に記載の集光装置と、第1の集光光学素子における第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光熱変換する光熱変換素子と、第2の集光光学素子における第1方向に導かれた光(同上)を光熱変換する第2の光熱変換素子とを備えて構成される。
本発明の第1の態様の集光光学素子は、透明なA部材中に粒子状のB部材が分散されており、このB部材の粒子径は、入射光の波長をλとしたときに円相当径dが0.1λ〜10λとされる。いま、電界振幅がxy面内の光に対して、A部材及びB部材の屈折率は、y軸方向に進む光及びx軸方向に進む光について、naxyとnbxy、及びnayxとnbyxとが異なる。一方、y軸からx軸方向に角度φ(0<φ<90°)傾斜した軸方向に進む光については、naxφとnbxφとが等しく、かつsinφ>(1/naxφ)を満たすように構成される。A部材とB部材とは、y軸方向に進む光及びx軸方向に進む光について屈折率が異なることから、集光光学素子に上方から入射した光、及び素子内をx軸方向に進む光にとってB部材が粒子として見える。
このような集光光学素子では、A部材中に分散されたB部材の粒子径が入射光の波長λと同程度のオーダーであることから、ミー(Mie)の散乱理論によれば、集光光学素子にy軸方向に入射した光のうちxy面に沿った偏光成分の光は、B部材に遭遇するたびに所定角度範囲に散乱され、これを繰り返すことによってy軸からx軸方向に傾斜して進む光の割合が多くなる。傾斜した光の傾斜角度がφになると、当該角度φ傾斜した軸方向に進む光にとっては、A部材とB部材の屈折率が等しいためB部材が粒子として見えず、均質媒質中を伝播するようにA部材及びB部材を透過して集光光学素子の下面に向かう。集光光学素子の下面では、sinφ>(1/naxφ)を満たすことから下面に入射した光が全反射され、集光光学素子の内部に閉じ込められて第1方向(x軸方向)の+x側または−x側に集光される。従って、本発明によれば、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。
本発明の第2の態様の集光装置は、集光光学素子を透過した偏光成分の光を再度同一の/または第2の集光光学素子で集光するように構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを高効率で利用可能な集光装置を提供することができる。
本発明の第3の態様の光発電装置は、上記のような集光光学素子または集光装置と、集光された光を光電変換する光電変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光発電装置を提供することができる。
本発明の第4の態様の光熱変換装置は、上記のような集光光学素子または集光装置と、集光された光を光熱変換する光熱変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光熱変換装置を提供することができる。
本発明の態様を例示する光発電装置1の外観斜視図である。 図1中に付記するII−II矢視方向に見た模式的な断面図であり、散乱により光の進行方向が変化していく様子を示す説明図である。 A部材とB部材の屈折率の関係を例示する説明図である。 第1構成形態の集光光学素子10における屈折率楕円の関係を示す説明図である。図において(a)はB部材がx軸方向に正の複屈折性を有する場合、(b)はB部材がy軸方向に負の複屈折性を有する場合である。 第2構成形態の集光光学素子20における屈折率楕円の関係を示す説明図である。図において(a)はB部材がx軸方向に負の複屈折性を有する場合、(b)はB部材がy軸方向に正の複屈折性を有する場合である。 第1構成形態の集光光学素子10における光の入射角と散乱との関係を模式的に示す説明図である。 粒子径が0.15μmの場合の光の散乱分布を例示するグラフである。 粒子径が0.3μmの場合の光の散乱分布を例示するグラフである。 図7及び図8の散乱分布を異なる表示形態で示すグラフである。 サイズパラメータを変化させたときの光の散乱分布の変化を示すグラフ群である。 サイズパラメータと前方散乱に対する後方散乱の割合との関係を示すグラフである。 サイズパラメータと散乱角との関係を示すグラフである。 体積を一定としたときのサイズパラメータと散乱係数との関係を示すグラフである。 第1構成例の集光装置60の概要構成図である。 第3構成例の集光装置80の概要構成図である。 集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。
以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置1の外観斜視図を図1に、図1中に付記するII−II矢視方向に見た模式的な断面図を図2に示す。なお、説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。y軸は集光光学素子10の厚さ方向に延びる軸、x軸及びz軸は集光光学素子の面内で直交する二軸であり、図2はx軸及びy軸を含みz軸に垂直な面(xy面)で切断した模式的な断面図に相当する。なお、説明の便宜上から、図2に示す姿勢をもって上下左右ということがあるが、配設姿勢は任意である。
[光発電装置の概要]
装置全体の概要を把握するため、まず第1構成形態の集光光学素子10を利用した光発電装置1を主たる例として全体概要を説明する。光発電装置1は、厚さ方向に入射する光を集光する集光光学素子10(20)と、集光光学素子により集光されて端部に導かれた光を光電変換する光電変換素子50とを備えて構成される。図示する構成形態は、集光光学素子10(20)をプレート状に形成した構成例を示す。光電変換素子50は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。
[集光光学素子の概要]
集光光学素子10(20)は、太陽光を透過するA部材11(21)と、このA部材中に分散された光透過性を有する粒子状のB部材12(22)とを主体として構成される。B部材の粒子径は、集光光学素子に入射する光の波長をλとしたときに円相当径dが0.1λ〜10λ程度に設定される。ここで、集光光学素子において集光しようとする光の波長λが幅を有する場合には、B部材の粒子径dは、その波長帯域における最短波長λminの1/10〜最長波長λmaxの10倍とすることができる。具体的に、太陽光を集光する場合には、太陽光の放射スペクトルは概ね400nm〜1800nm程度であり、B部材の粒子径dは、40nm〜1.8μmとすることができる。
B部材は、x軸方向、y軸方向及びz軸方向に、全体として(マクロ的に見て)均一に分散されるが、図2ではB部材12による散乱の作用を説明するため、散乱された光の光路上にあるB部材12のみを模式的に示している。なお、B部材の分布密度は、A部材及びB部材の材質や形状寸法、使用条件等に応じて適宜設定される。これについては後に詳述する。
集光光学素子10(20)は、A部材11(21)とB部材12(22)の屈折率特性が異なり、かつA部材及びB部材の少なくともいずれか一方が複屈折性を有している。本明細書においては、A部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnaxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnayx、電界振幅がxy面内でy軸からx軸方向に角度φ(0<φ<90°)傾斜した軸方向に進む光の屈折率をnaxφとし、電界振幅がzy面内でy軸方向に進む光の屈折率をnazy、電界振幅がzy面内でz軸方向に進む光の屈折率をnayzとする。同様に、B部材における、電界振幅がxy面内でy軸方向に進む光の屈折率をnbxy、電界振幅がxy面内でx軸方向に進む光の屈折率をnbyx、電界振幅がxy面内でy軸からx軸方向に角度φ傾斜した軸方向に進む光の屈折率をnbxφとし、電界振幅がzy面内でy軸方向に進む光の屈折率をnbzy、電界振幅がzy面内でz軸方向に進む光の屈折率をnbyzとする。
ここで、電界振幅がxy面内の光(図2において電界振幅が紙面に平行な光)について偏光状態をp偏光、電界振幅がzy面内の光(同上、電界振幅が紙面に垂直な光)の偏光状態をs偏光とすると、電界振幅がxy面内でy軸方向に進む光はy軸方向に進むp偏光の光、電界振幅がxy面内でx軸方向に進む光はx軸方向に進むp偏光の光である。また、電界振幅がzy面内でy軸方向に進む光はy軸方向に進むs偏光の光、電界振幅がzy面内でz軸方向に進む光はz軸方向に進むs偏光の光である。
このとき、naxyとnbxy、及びnayxとnbyxとが異なり、naxφとnbxφとが等しく、かつsinφ>(1/naxφ)を満たすように、A部材及びB部材が設定される。
このような集光光学素子10(20)においては、上方から入射して素子内をy軸方向に進むp偏光の光、及び、素子内をx軸方向に進むp偏光の光には、naxyとnbxy、nayxとnbyxが異なることから、B部材12(22)が粒子として認識される。一方、素子内をy軸からx軸方向に角度φ傾斜した軸方向に進むp偏光の光には、naxφとnbxφとが等しいことから、B部材12(22)が粒子として認識されない。
このとき、y軸方向に進むp偏光の光及びx軸方向に進むp偏光の光が、B部材の存在によってどの様な影響を受けるか、その取扱いは、媒質(A部材)中を進むp偏光の光の波長(λ/naxy)と媒質中に分散された粒子(B部材)の粒子径dとによって異なったものになる。
具体的には、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分小さい場合には、レーリー散乱の理論が適用できる。一方、B部材の粒子径dが、A部材中を伝播する光の波長と同程度のオーダーの場合には、ミー散乱の理論が適用できる。また、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分に大きい場合には、幾何光学の理論が適用される。
本実施形態において、B部材12(22)の粒子径dは、円相当径で0.1λ〜10λ程度に設定されており、媒質であるA部材中を伝播する光の波長と同程度のオーダーである。そのため、集光光学素子10(20)においてA部材中を伝播する光とB部材との関係は、基本的にミー散乱の理論が適用できる。
但し、集光光学素子10(20)においては、A部材及びB部材11,12(21,22)の少なくとも一方が複屈折性を有しており、その複屈折特性や主軸の方位(光線が異常光となる進相軸または遅相軸の方位)、素子内を進む光の進行方向及び偏光成分との関係などに応じて、散乱の発生状況が変化する。
単純化のため、A部材11及びB部材12のいずれか一方が複屈折性を有し、複屈折の主軸(光学軸)が一軸の場合を考える。この場合において、naxyとnbxy、及びnayxとnbyxとが異なり、naxφとnbxφとが等しくなる構成の端的な例を図3に示す。
図3は、B部材が複屈折性を有する場合について、A部材とB部材のxy面内における屈折率特性及び両者の関係を表している。図に示すように、A部材の屈折率特性30は方向によらず屈折率が一定(naxy=naxφ=nayx)の屈折率円、B部材の屈折率特性40(41〜44)は方向によって屈折率が異なる(本例ではnbxy>naxφ>nayx)屈折率楕円になっている。図から明らかなように、naxy≠nbxy、nayx≠nbyxである。そして、A部材の屈折率円とB部材の屈折率楕円とは、y軸からx軸方向に角度φ傾斜した角度位置で交わり、naxφ=nbxφになっている。
従って、素子内をy軸方向に進むp偏光の光はnaxy≠nbxyにより、素子内をx軸方向に進むp偏光の光にはnayx≠nbyxによりB部材が粒子として認識される。一方、素子内をy軸からx軸方向に角度φ傾斜した軸(便宜的に「屈折率整合軸」という)Mの方向に進むp偏光の光には、naxφ=nbxφであることから、B部材が粒子として認識されない。
以上は、説明簡明化のため、xy面における屈折率の関係で説明した。これを三次元的に表した概念図を図4に示す。図4(a)はB部材がx軸方向に正の複屈折性(異常光の屈折率が常光の屈折率よりも高くなる複屈折性)41を有する場合、図4(b)はB部材がy軸方向に負の複屈折性(異常光の屈折率が常光の屈折率よりも低くなる複屈折性)42を有する場合の例である。
図5は、naxy≠nbxy、nayx≠nbyxであり、naxφ=nbxφになる他の構成例を示す。図5(a)はB部材がx軸方向に負の複屈折性43を有する場合、図5(b)はB部材がy軸方向に正の複屈折性44を有する場合の例である。
図4(b)及び図5(b)に示すように一軸異方性の複屈折の主軸がy軸方向に配向する構成形態においては、A部材の屈折率とB部材の屈折率が等しくなる屈折率整合軸Mがy軸を中心として軸対称(すなわち、xy面内における屈折率整合軸Mの傾斜角度φ=zy面内における屈折率整合軸Mの傾斜角度γ)に形成される。換言すれば、y軸を含む任意の平面において、y軸から水平方向に角度φ傾斜して進むp偏光の光には、B部材が粒子として認識されない。他方、y軸に沿って入射する光や水平方向に進む光には、B部材が粒子として認識される。
以上は、B部材が複屈折性を有する場合を説明したが、A部材が複屈折性を有する場合についても同様であり、A部材及びB部材の両者が複屈折性を有する場合についても同様に構成することができる。
以降では、図4(a)及び図5(a)に示すように、一軸異方性の複屈折の主軸がx軸方向に配向する場合を第1構成形態の集光光学素子10とし、図4(b)及び図5(b)に示すように、一軸異方性の複屈折の主軸がy軸方向に配向する場合を第2構成形態の集光光学素子20として説明する。
[第1構成形態の集光光学素子]
第1構成形態の集光光学素子10においては、集光光学素子の上方から素子内に入射してA部材中を進む光のうち、y軸方向に進むp偏光の光にはnaxy≠nbxyであることからB部材12が媒質(A部材11)から識別されて粒子として存在する。また、A部材中を進む光のうち、x軸方向に進むp偏光の光についてもnayx≠nbyxであることからB部材12が媒質から識別されて粒子として存在する。一方、A部材中をy軸からx軸方向に角度φ傾斜した屈折率整合軸の方向に進むp偏光の光には、naxφ=nbxφであることから、B部材12が粒子として認識されず、粒子が存在しない状態(均質媒質)と同じになる。より端的に言えば、A部材中を屈折率整合軸M以外の方向に進むp偏光の光に、B部材12が粒子として存在する。
そのため、集光光学素子10に入射してA部材中を屈折率整合軸方向に進むp偏光(p偏光成分)以外の光は、A部材とB部材の屈折率差に基づき媒質中に粒子として存在するB部材12によりミー散乱を受ける。A部材中を屈折率整合軸に沿って進むp偏光の光は、粒子と識別されないB部材12によって散乱されることなく、そのまま屈折率整合軸Mに沿って進むことになる。
本発明は、上記のような複屈折性に基づく屈折率差を利用するため、B部材12に入射する光の入射角に応じて散乱断面積が変化し、散乱効率が変化する。図6(a)〜(d)は、B部材12に入射する光の入射角と散乱との関係を模式的に示す説明図である。
図3に例示した屈折率の関係から理解されるように、y軸を基準としたB部材12への入射角θが、θ=0°のときあるいはθ=90°のときにA部材とB部材の屈折率差が極大、散乱断面積が極大となって大きな散乱を受ける(図6(a),(d))。一方、B部材12への入射角θが屈折率整合軸Mの傾斜角度(「屈折率整合角」という)φと等しいθ=±φのときには、A部材とB部材の屈折率差が無く、散乱断面積が無限小になって散乱を受けない(図6(c),(f))。
B部材12への入射角θが、0<θ<φ、φ<θ<90°のように、中間の角度範囲にあるときは、当該入射角におけるA部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する(図6(b)(e))。図6(及び図2)では、散乱により拡散する光を、入射光軸に沿って直進する光と、入射光軸から離れて左右に広がる2本の光とに代表させた3本のベクトルで表現しており、入射角θが屈折率整合角φに近いほど散乱効率が低下して左右に広がる散乱光のレートが小さくなること、θ=φでは散乱が生じないことを表している。
このような構成の集光光学素子10では、図2に示すように、素子上方から入射してy軸方向に進むp偏光の光が、A部材(媒質)11中に粒子として存在するB部材12によりミー散乱を受け、例えば表面付近のB部材12で入射光の4割が散乱される。B部材12の側方を通過した光も厚さ方向に分布する次のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。またB部材12で散乱された光が厚さ方向に分布する次のB部材により散乱され、多重散乱される。
その結果、集光光学素子10にy軸に沿って入射した光は、この素子中を進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、xy面で斜め下方に傾斜した光の割合が増加する。x軸の+方向または−方向に傾斜した光は、B部材12への入射角θが屈折率整合角φに近くなるほど散乱効率が低下して角度変化が小さくなり、屈折率整合軸に沿って進む光の割合が多くなる。傾斜角度がφになり屈折率整合軸に沿って進む光はB部材12によって散乱されず、そのまま集光光学素子10の下面に向かって進む。
ここで、集光光学素子10においては、sinφ>(1/naxφ)を満たすように、A部材11及びB部材12が設定されている。すなわち、屈折率整合角φ傾斜して下面に入射する光の入射角が、A部材11と空気との界面における全反射角より大きくなるように設定されている。例えば、A部材11と空気との界面における全反射角が38°であるとしたときに、屈折率整合角φが38°以上となるようにA部材11及びB部材12が設定される。
このため、屈折率整合角φ傾斜して集光光学素子10の下面に到達した光は下面で全反射される。下面で全反射された光は、下面側から上面側に進む過程で再びB部材12に入射するが、このときB部材12への入射角はθ=−φ(θ=180−φ)となるため、B部材12で散乱されることなく上面に向かう。上面に到達した光の入射角も下面と同様全反射角よりも大である。従って、集光光学素子10に入射した光は素子内に閉じ込められ、素子の上面及び下面で全反射されて素子内を伝播する。
これにより、集光光学素子10に上方から入射したp偏光成分の光は、略全体がx軸方向の左右いずれかに向かうこととなり、このようにして集光された光がx軸方向の端部に配設された光電変換素子50,50に集光入射される。
なお、集光光学素子10の上面から入射してy軸方向に進むs偏光成分の光は、上記と散乱過程が異なり集光光学素子10の下面から出射するが、集光光学素子の下面側に同様の集光光学素子10をy軸まわりに90度回転して配置する等により、透過した光を効率的に集光することができる。このような集光光学素子の配置構成による集光装置については後に詳述する。
[第2構成形態の集光光学素子]
第2構成形態の集光光学素子20は、一軸異方性の複屈折の主軸がy軸方向に沿うように配向して分布させた構成である(図4(b)、図5(b)を参照)。このような集光光学素子20において、集光光学素子20に入射してA部材中を進む光のうち、p偏光の光については、前述した第1構成形態の集光光学素子10と同様である。
すなわち、集光光学素子20の上方から素子内に入射してA部材中を進む光のうち、y軸方向に進むp偏光の光についてnaxy≠nbxyであり、x軸方向に進むp偏光の光についてもnayx≠nbyxであることからB部材22が媒質から識別されて粒子として存在する。また、A部材中をy軸からx軸方向に角度φ傾斜した屈折率整合軸の方向に進むp偏光の光には、naxφ=nbxφであることから、B部材22が粒子として認識されず、粒子が存在しない状態と同じになる。
集光光学素子20においては、集光光学素子20に入射してA部材中を進むs偏光の光についても、上記と同様の作用を持つ。集光光学素子20においては、一軸異方性の複屈折の主軸がy軸方向に沿って配向されており、A部材21とB部材22の屈折率の関係がy軸を中心として軸対称になっている。そのため、xy面と直交するzy面において、上記と同様の作用が生じる。
具体的には、集光光学素子20の上方から素子内に入射してA部材中を進む光のうち、電界振幅がzy面内でy軸方向に進む光(zy面においてy軸方向に進むp偏光の光)について、nazy≠nbzyであることからB部材22が媒質(A部材21)から識別されて粒子として存在する。また、A部材中を進む光のうち、電界振幅がzy面内でz軸方向に進む光(zy面においてz軸方向に進むp偏光の光)についても、nayz≠nbyzであることからB部材22が媒質(A部材21)から識別されて粒子として存在する。
そして、本構成形態の集光光学素子20において、屈折率整合軸がy軸回りに軸対称に形成されることから、電界振幅がzy面内でy軸からz軸方向に角度φ傾斜した軸方向に進む光(屈折率整合軸の方向に進むp偏光の光)についてnazφ=nbzφであり、B部材22が粒子として認識されない。なお、本構成形態においては、特許請求の範囲における角度γ=角度φとしているが、γとφは異なる角度であっても良い。
そのため、集光光学素子20に入射してA部材中を屈折率整合軸以外の方向に進むp偏光の光は、A部材とB部材の屈折率差に基づき媒質中に粒子として存在するB部材22によりミー散乱を受ける。A部材中を屈折率整合軸に沿って進むp偏光の光は、粒子と識別されないB部材22によって散乱されることなく、そのまま屈折率整合軸に沿って進む。B部材22の散乱断面積は光の入射角に応じて変化し、その変化が軸対称に生じることを除いて、図6(a)〜(d)を参照して説明した状況と同様である。
具体的には、y軸を基準としたB部材22への入射角θが、θ=0°のときあるいはθ=90°のときにA部材とB部材の屈折率差が極大、散乱断面積が極大となって大きな散乱を受ける(図3及び図6(a),(d)を参照)。一方、B部材22への入射角θが屈折率整合角φと等しいときには、A部材とB部材の屈折率差が無く、散乱断面積が無限小になって散乱を受けない(図3及び図6(c),(f)を参照)。B部材22への入射角θが、0<θ<φ、φ<θ<90°のように、中間の角度範囲にあるときは、当該入射角におけるA部材21とB部材22との屈折率差に応じた散乱断面積となり散乱効率が変化する(図3及び図6(b)(e)を参照)。
このため、集光光学素子20においては、素子上方から入射してy軸方向に進む光は、A部材21中に粒子として存在するB部材22により散乱を受け、厚さ方向に分布する複数のB部材22により多重散乱される。このうち、図2においてp偏光(p偏光成分)の光は、素子中を進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、xy面で+x側または−x側の斜め下方に傾斜した光の割合が増加する。また、図2においてs偏光(s偏光成分)の光は、素子中を進むにつれてy軸方向に進む光の割合が減少し、zy面で+z側または−z側の斜め下方に傾斜した光の割合が増加する。
これらの傾斜した光は、B部材22への入射角θが屈折率整合角φに近くなるほど散乱効率が低下して角度変化が小さくなり、屈折率整合軸に沿って進む光の割合が多くなる。傾斜角度がφになり屈折率整合軸に沿って進む光はB部材22によって散乱されず、そのまま集光光学素子20の下面に向かって進む。
集光光学素子20においては、sinφ>(1/naxφ)、sinφ>(1/nazφ)を満たすように、A部材21及びB部材22が設定されている。すなわち、屈折率整合角φ傾斜して集光光学素子の下面に入射する光の入射角が、A部材21と空気との界面における全反射角よりも大きくなるように設定されている。
このため、屈折率整合角φ傾斜して集光光学素子20の下面に到達した光は下面で全反射され、下面側から上面側に進む過程で再びB部材22に入射するが、このときB部材22への入射角はθ=−φ(θ=180−φ)となるため、B部材22で散乱されることなく上面に向かう。上面に到達した光の入射角も下面と同様全反射角以上である。従って、集光光学素子20に入射した光は素子内に閉じ込められ、素子の上面及び下面で全反射されて素子内を伝播する。
これにより、集光光学素子20にy軸方向に入射した光のうち、p偏光成分の光は略全体がx軸方向の左右いずれかに向かい、s偏光成分の光は略全体がz軸方向の前後いずれかに向うこととなる。このようにして集光された光がx軸方向の端部およびz軸方向の端部に配設された光電変換素子50,50…に集光入射される。
これにより、集光光学素子20の上面から入射した光が、A部材21とB部材22の屈折率差によってx軸方向及びz軸方向に散乱され、各方向の側端部に設けられた光電変換素子50に集光される。このような構成によれば、1枚の集光光学素子を用いた簡明な構成でx軸方向及びz軸方向に効率的に集光する集光装置を構成することができる。
[サイズパラメータ]
次に、A部材11,21及びB部材12,22の好適な構成形態について、ミーの散乱理論に基づいてより詳細に説明する。なお、ミーの散乱理論そのものについては詳細説明を省略するが、例えば、1995年発売(McGRAW-HILL, INC)の アメリカの光学学会 OSA(OPTICAL SOCIETY OF AMERICA)監修の「HANDBOOK OF OPTICS」VolumeI Chapter6 にミー理論の散乱理論について記載されている。集光光学素子10,20では、B部材の粒子径dを入射光の波長λとほぼ同じオーダーの0.1λ〜10λとすることで散乱を生じさせ、前方散乱を多重的に行わせて光を側方に導いている。このとき、後方散乱(損失)を抑制して前方散乱を支配的とし、また一定の厚さ内で効率的に集光することが望まれる。ミーの散乱理論では、その指標としてサイズパラメータαを用いる。
サイズパラメータαは、一般的に、下記(1)式で規定される。
α=(π×d)/(λ/n)=(π×d×n)/λ・・・・・・・(1)
ここで、dは粒子径(直径)であり、本明細書においては、B部材の粒子径を、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径とし、頻度分布が最大の最頻粒子径(モード径)で規定している。また(λ/n)は媒質中を進む光の波長であり、nは媒質(A部材)の屈折率である。例示する集光光学素子10,20において、A部材11は複屈折性を有しておらず、媒質の屈折率はn=naxy=nayx=nazyで一定である。
図7及び図8は、ミー散乱の理論に基づいてシュミレーションしたデータであり、円の中心に配設された粒子により左方から入射した光が散乱される様子(散乱光の分布)を、前方0度方向の大きさで規格化して示している。円の中心から右側の半円が前方、左側が後方であり、点線は30度ごとの方位角を示す。両図における粒子、媒質(媒体)、入射光の共通条件は下記のとおりである。
・粒子の屈折率nbxy:1.88
・媒質の屈折率naxy:1.64
・入射光の波長 λ:633nm
図7と図8で相違する条件は粒子径dであり、図7は粒子径d=0.15μm、図8は粒子径d=0.3μmである。これらの値を(1)式に代入してサイズパラメータαを求めると、
・図7の例のサイズパラメータα:1.22
・図8の例のサイズパラメータα:2.44
となる。図9は、図7の散乱分布と図8の散乱分布を、横軸が入射方向を0度とする左右180度の角度とし、縦軸が分布の割合として描きなおしたものである。
図7〜図9から、サイズパラメータαが1.22の場合(図7)と2.44の場合(図8)とで散乱光の分布形態が大きく異なること、サイズパラメータα=1.22の場合には散乱角度が前方及び後方に広く分布し前方散乱も分散が大きいのに対し、サイズパラメータα=2.44の場合には殆ど後方散乱が見られず前方散乱の分散も小さいことなどが分かる。
図10(a)〜(d)は、上記共通条件のもとでサイズパラメータαを変化させた場合(すなわち粒子径dを変化させた場合)の散乱光の分布を規格化せずに示したものであり、(a)α=1.0、(b)α=1.5、(c)α=2.0、(d)α=2.5である。図11は、上記共通条件のもとでサイズパラメータαを変化させたときの、前方0度方向への散乱割合に対する後方180度方向への散乱割合をプロットしたものである。
図10及び図11から、サイズパラメータαが1.5以上のときに前方散乱が略9割以上となり、前方散乱が支配的になる。またサイズパラメータαが2以上になると、前方散乱に対する後方散乱の割合がほぼ0になる。
但し、サイズパラメータαが大きくなると0度方向への前方散乱の割合が増加するが、散乱角度が小さく(狭く)なる。このことは、集光光学素子10,20を製作する際の複屈折体の配向精度や、集光光学素子の下面側に達した光が全反射条件を満たすようにするための厚さ方向寸法に影響を及ぼす。つまりサイズパラメータαは所定以上大きければ大きいほど良いわけではなく、実用上の見地から一定の範囲であることが必要となる。
図12は、前記共通条件のもとで、サイズパラメータαと散乱角との関係を示したグラフである。複屈折体(A部材またはB部材)の製作角度精度は1〜2度程度が一般的であり、粒子による散乱角はこれを超える角度であることが必要となる。図12から、現状での一般的な製作角度精度に基づくサイズパラメータαの上限は50前後である。
次に、前記共通条件のもとで、集光光学素子の体積、及び集光光学素子に占める粒子の充填率を一定(π/6)とした場合のサイズパラメータαと散乱係数との関係を図13に示す。図において、散乱係数が大きいほど集光光学素子の厚さを低減することができ、複屈折材料が少なくて済む。この点から粒子の充填率が一定の場合には、サイズパラメータα=10前後において散乱係数が最大になる。散乱係数は最大値の1/5(20%)以上であることが好ましく、この場合サイズパラメータαの上限はα=40程度となる。
また、製造精度の観点から見ると、一般的な製作精度の2倍以上となる5度を確保可能なサイズパラメータはα=20以下であることが好ましい(図12)。また総体積を一定とした場合の散乱係数の面からも散乱効率がピーク値の1/4以上であるサイズパラメータα=20以下であることが好ましい(図13)。
他方、粒子径についてみると、集光光学素子の厚さを考慮した場合、厚さは10mm程度以内にすることが望ましい。この場合において上面から入射した光が下面側に到達するまでに500回散乱されるためには粒子間隔が20μm以内である必要があり、このときの最大粒子径は20μmとなる。粒子の体積充填率を5%以内とする場合には、粒子径は10μm以内であることが好ましい。なお、前記共通条件において粒子径をd=10μmとしたときのサイズパラメータはα≒80であり、粒子径をd=10μmとし入射光の波長λを1.3μmとしたときのサイズパラメータはα≒40である。
以上を総合すると、A部材及びB部材からなる集光光学素子において、サイズパラメータは1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが好ましく、d≦10μmであることがより好ましい。
次に、集光光学素子の実施例について簡潔に説明する。集光光学素子10の構成として、下記のようなA部材11及びB部材12からなる集光光学素子が例示される。A部材11は、ナフタレート70/テレフタレート30のコポリエステル(coPEN)のモノマーを用いる。B部材12は、棒状液晶(E9:メルクジャパン製)に光重合開始剤(イルガキュア907:チバガイギー製)を添加して偏光UV光重合装置で光重合を行い、一定方向に偏光軸を有する複屈折粒子を作製する。A部材11にB部材12を混合してx軸方向に一軸延伸しシート状の集光光学素子10を作製する。B部材12の粒子径はd=1.0μm程度、B部材の分布密度は0.1個/μm3程度である。
このとき、A部材11(coPEN)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnaxy=nayx=nazy=1.64程度となる。一方、B部材12は延伸方向に配向するため、延伸方向(x軸方向)と他の方向とで屈折率が異なり、nbxy=1.73、nbyx=nbzx=1.53程度になる。なお、散乱理論からB部材は球形でなくても良く、延伸後のB部材(粒子)の円相当径が上記条件となるように調製した。
ここで、B部材12は、複屈折の主軸がx軸方向に配向した一軸異方性の複屈折体である(図4(a)に相当する)ため、B部材に入射するp偏光の光はxy面内の入射角度によってB部材12の屈折率が変化し、A部材11との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。
図3を参照して説明したように、B部材12への入射角θがθ=0°のときあるいはθ=90°のときにA部材11とB部材12の屈折率差が極大、散乱断面積が極大となって大きな散乱を受ける。一方、B部材12への入射角θが屈折率整合角φと等しいθ=±φのときには、A部材とB部材の屈折率差が無く、散乱断面積が無限小になって散乱を受けない。B部材12への入射角θが、0<θ<φ、φ<θ<90°のように、中間の角度範囲にあるときは、A部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する。
このように構成された集光光学素子10では、素子上面から垂直入射してy軸方向に進むp偏光の光が、媒質(A部材11)中に粒子として存在するB部材12によりミー散乱を受ける。B部材12の粒子径が1μm、粒子密度が0.1個/μm3では、表面付近の最初の段階で入射光の約4割が散乱され、6割は散乱されずに直進する。直進した光も厚さ方向に分布する次の段階のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。散乱を受けた光はy軸に対して傾斜した光になる。
y軸に対して傾斜した光は、次の段階では一部がより斜め(入射角が増加する方向)に曲げられ、他の一部は元に戻る方向(入射角が減少する方向)に曲げられ、残りは入射角が変化せずにそのまま進む光になる(図2を参照)。但し、斜めに傾斜した光は入射角θが屈折率整合角φに近くなるほど散乱確率が減少する。そのため、入射角θが屈折率整合角φに近い光については散乱を受ける割合が減少し、それ以上傾斜する割合も垂直方向に戻る割合も減少する。
媒質中を進む光の傾斜角度(入射角度)が屈折率整合角φになると、粒子の屈折率nbxφが媒質の屈折率naxφと同じになり、散乱確率が無視できるほど小さくなる。そのため、数多くの段階が進むことにより、光はy軸に対して角度φ方向傾斜した+x側または−x側に向かうようになる。
ここで、xy面内でy軸方向に進む光の屈折率をnxy、xy面内でx軸方向に進む光の屈折率をnyxとすると、A部材11の屈折率楕円は下記(2)式、B部材の屈折率円は下記(3)式、両者が交わる屈折率整合角φは(4)式で表される。
(nxy)2/(1.73)2+(nyx)2/(1.53)2=1・・・・・・・(2)
(nxy)2+(nyx)2=(1.64)2 ・・・・・・・・・・・・・・・・(3)
tanφ=nxy/nyx・・・・・・・・・・・・・・・・・・・・・・・・・(4)
上記(2)〜(4)式から、屈折率整合角φ=60.5°と求められる。この屈折率整合角φは、媒質であるA部材11と空気との界面における全反射角37.6度よりも大きく、媒質中の光はA部材11と空気層との界面で全反射される。全反射された光は上面側に向けて媒質中を進む過程で再びB部材12に遭遇するが、B部材への入射角は屈折率整合角であることからB部材12により散乱を受けることはなく、均質媒質中を進むように透過する。以降、上面及び下面に全反射され、x軸に沿った+側または−側に集光される(図14、図15を参照)。
このとき、最も下面側に分散されたB部材12の層を通って下面に向かう光の傾斜角が、A部材11と空気との界面における全反射角以上となるようにA部材11及びB部材12を設定することにより、全ての光が屈折率整合角φまで傾斜していなくても、集光光学素子10に入射したp偏光成分の光全てを±x方向の端部に集光することができる。このような構成によれば、素子内に閉じ込めた光を低損失で長距離伝搬することができ、広い集光面積で高効率に集光可能な集光光学素子10を得ることができる。
なお、集光光学素子の下面に、A部材11と屈折率が異なる保護膜等を形成した場合には、A部材11と膜との界面において膜の屈折率に応じた光の屈折が生じる。しかしながら、A部材11と膜との界面及び膜と空気との界面においてスネルの法則が成立するため、下面に到達した光の傾斜角がA部材と空気との界面における全反射角以上になっていれば、少なくとも膜と空気との界面において全反射条件が満たされされ、集光光学素子10に入射したp偏光成分の光全てが±x方向の端部に集光される。
また、上記の保護膜等を有する構成において、下面に到達した光の傾斜角がA部材と膜との界面における全反射角以上になっている場合は、A部材と膜との界面において全反射条件が満たされ、下面に到達した光は膜中に進入することなくA部材中へ全反射される。このため、膜の外側表面が平滑でない等の理由により膜と空気の界面で全反射条件を維持できない場合でも、集光光学素子10に入射したp偏光成分の光全てが±x方向の端部に集光される。
以上の説明では、説明簡明化のため、集光光学素子に入射する光の波長が一定の場合を例示したが、入射波長が幅を有する場合には、B部材の粒子径dを集光する光の波長帯域に応じて適宜設定することができる。具体的には、太陽光の放射スペクトルに合わせて400〜1800nmの範囲とし、あるいは放射スペクトルの強度が高い400〜800nmの範囲とし、または次述する光発電装置における光電変換素子50の変換効率が高い範囲などとすることができる。この場合において、B部材の粒子径dを波長帯域の中心や重心等に合わせて設定することができる他、波長帯域を複数に分割して各分割帯域に合わせた粒子径d1,d2,d3として(すなわち粒子径が異なる複数のB部材の混合体として)設定することも可能である。
[集光装置及び光発電装置の構成例1]
次に、以上説明したような集光光学素子を用いた集光装置について、第1構成形態の集光光学素子10を用いた場合を代表例として説明する。既述したように、集光光学素子10では、素子の上方から入射する光のうち、s偏光成分の光はx軸方向に集光されず、集光光学素子10の下面側から出射する。そこで、本発明の態様の集光装置60,70,80は、このs偏光成分の光を含めて、集光光学素子の上方から入射する光全てを集光し得るように構成される。以下、集光装置の代表的な構成例について、図面を参照して説明する。なお、各図では、電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。
第1構成例の集光装置60の概要構成を図14に示す。図示する集光装置60は、集光光学素子10と、この集光光学素子10の下面側に下面に沿って設けられた反射鏡62と、集光光学素子10と反射鏡62との間に設けられた偏光面回転素子65とを備えて構成される。偏光面回転素子65は、二回度透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回目の透過でs偏光を円偏光に変換し、二回目の透過で円偏光をp偏光に変換する、広帯域の1/4波長板が好適に用いられる。
このような構成の集光装置60では、集光光学素子10の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、A部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)が屈折率整合角φの角度方向に配向し、x軸方向の+x側または−x側の端部に集光される。一方、集光光学素子10の上面側から厚さ方向に入射した光のうち、s偏光成分の光はp偏光成分の光のような散乱を受けず、大部分が集光光学素子10の下面側から出射する。
集光光学素子10の下面側から出射したs偏光成分の光は、偏光面回転素子65を透過して反射鏡62により反射され、再び偏光面回転素子65を透過して、集光光学素子10の下面側から再び集光光学素子10に入射する。このとき、集光光学素子10に再入射する光は、偏光面回転素子65を二度透過していることから、偏光面が90度回転されてp偏光成分の光になっている。そのため、集光光学素子10の下面側から再入射して厚さ方向に進むp偏光成分の光は、下面側から上面側に向けて進む過程でB部材12により散乱され、進行方向が屈折率整合角φの角度方向に配向して、x軸方向の+x側または−x側の端部に集光される。
従って、このような構成の集光装置60によれば、1枚の集光光学素子10で、上方から入射する光全てをx軸方向の両端部に集光することができる。また、集光光学素子10の端部に集光された光を光電変換する光電変換素子50を設けることにより、集光光学素子10及び光電変換素子50がわずか1組の簡明かつローコストな構成で、集光光学素子10に入射する光全てを光電変換する光発電装置2を構成することができる。
[集光装置及び光発電装置の構成例2]
次に、第2構成例の集光装置について簡潔に説明する。この構成例の集光装置(図示を省略するが、説明の便宜上、集光装置70とする)は、既述した集光光学素子を二つ用いて構成される。ここでは、集光光学素子10を二つ(101,102)用いた場合を例示する。
集光装置70は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102とからなり、第2の集光光学素子102のx軸方向が、第1の集光光学素子101のz軸方向と平行になるように配設されて構成される。端的にいえば、第1の集光光学素子101の下側に位置する第2の集光光学素子102を、y軸まわりに90度回転して配置することにより集光装置70が構成される。
そのため、第1の集光光学素子101の座標系におけるs偏光の光は、第2の集光光学素子102の座標系ではp偏光になる。これにより、集光装置70の上方から第1の集光光学素子101に入射した光は、第1の集光光学素子101におけるp偏光成分の光が散乱されて第1の集光光学素子101のx軸方向の両端部に集光され、この集光光学素子101を透過した光が第2の集光光学素子102においてp偏光成分の光になって、第2の集光光学素子102のx軸方向の両端部に集光される。
従って、このような構成の集光装置70によれば、2枚の集光光学素子をy軸まわりに相対角度90度回転して重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置3(不図示)を構成することができる。さらに、第1の集光光学素子101に設けられる光電変換素子と、第2の集光光学素子102に設けられる光電変換素子とが上下に重複しないため、光電変換素子の構成及び配置の自由度を確保することができる。
[集光装置及び光発電装置の構成例3]
次に、第3構成例の集光装置80について、図15を参照して説明する。本構成例の集光装置80は、既述した集光光学素子二つと偏光面回転素子85により構成される。図15では集光光学素子10を二つ(101,102)用いた場合を例示する。
集光装置80は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102と、これらの集光光学素子101,102の間に設けられた偏光面回転素子85とからなり、第1の集光光学素子101のx軸方向と第2の集光光学素子102のx軸方向とが平行になるように配設される。偏光面回転素子85は、透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する、広帯域の1/2波長板が好適に用いられる。
このような構成の集光装置80では、第1の集光光学素子101の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、第1の集光光学素子101のA部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)が屈折率整合角φの角度方向に配向し、x軸方向の+x側または−x側の端部に集光される。一方、第1の集光光学素子101を透過したs偏光成分の光は第1の集光光学素子10の下面側から出射され偏光面回転素子85に入射する。
偏光面回転素子85に入射したs偏光成分の光は、この偏光面回転素子85を透過する過程で偏光面が90度回転され、p偏光成分の光となって偏光面回転素子85から出射する。そのため、第2の集光光学素子102には、偏光面が回転されてp偏光成分になった光が入射し、この第2の集光光学素子102のA部材11中に均一分散された多数のB部材12により散乱されて屈折率整合角φの角度方向に配向し、x軸方向の+x側または−x側の端部に集光される。
従って、このような構成の集光装置80によれば、2枚の集光光学素子を重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、集光光学素子101,102の各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置4を構成することができる。
この場合、第1の集光光学素子101及び第2の集光光学素子102の各+x側の端部と各−x側の端部とが上下に位置して配設される。そこで、各+x側の端部同士をつないでひとつの光電変換素子50に導くライトガイド、及び各−x側の端部同士をつないでひとつの光電変換素子50に導くライトガイドを設けて構成することもできる。このような構成によれば、比較的高額な光電変換素子の素子数を低減できる。
以上では、集光光学素子を用いた集光装置として第1構成形態の集光光学素子10を用いた場合を説明した。一方、第2構成形態の集光光学素子20を用いた場合には、集光光学素子20単体で上記のような集光装置を構成することができる。すなわち、集光光学素子20においては、集光光学素子20の上面側から厚さ方向に入射した光のうち、p偏光成分の光はA部材21中に均一分散されたB部材22により散乱されてx軸方向の+x側または−x側の端部に集光され、s偏光成分の光はB部材22により散乱されてz軸方向の+z側または−z側の端部に集光される。
従って、このような構成の集光装置(集光光学素子20)によれば、集光光学素子1枚の極めて簡明な構成で、上方から入射する光全てを集光することができる。そして、集光光学素子20のx軸方向及びz軸方向の各々の端部に光電変換素子50を設けることにより、極めて簡明な構成で上方から入射する光全てを光電変換する光発電装置5(不図示)を構成することができる。
[集光光学素子の端部における光エネルギーの取り出し手法]
次に、以上説明した集光光学素子10,20において、端部に集光された光のエネルギー取り出し手法について、幾つかの代表的な概念を例示する図16(a)〜(e)を参照しながら簡明に説明する。
(a)は、端部に集光された光を、そのまま取り出し、光として利用する構成例の概念図である。この場合において、集光光学素子の端部から出射する光をシリンドリカルレンズ91や集光ロッド92等を介して直行方向に集光し、集光された光を光ファイバー93により所望位置に導光するような構成が例示される。
(b)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第1構成例の概念図である。この図は、光電変換素子50を集光光学素子10,20の集光側の端部に結合し、電気エネルギーとして取り出す構成例を示す。なお、集光された光を熱エネルギーとして取り出す場合には、光熱変換する光吸収体付きのヒートパイプ等が好適に用いられる。
(c)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第2構成例の概念図である。本構成例では、集光光学素子10,20の端部を斜めにカットしてミラー94を配設し(あるいは傾斜面に反射膜を形成し)、集光光学素子10,20の上面側(または下面側)に設けた光電変換素子50に集光させる構成例である。これにより、集光光学素子10,20が薄いシート状の場合であっても、所定面積の光電変換素子50を安定的に取り付けることができる。なお、集光された光を熱エネルギーとして取り出す場合には、上記同様に光吸収体付きのヒートパイプ等が好適に用いられる。
(d)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第3構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてダイクロイックミラー95を配設し(あるいは傾斜面に波長選択性のある反射膜を形成し)、集光光学素子10,20の上面側(または下面側)と、集光光学素子10,20の側方とに設けた光電変換素子50,50′に分割して集光させる構成例である。このような構成によれば、分割された各波長帯域について高効率な光電変換素子を用いるこができるため、比較的低コストで変換効率の高い光発電装置を構成することが可能となる。なお、分割した光のうち一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して熱エネルギーとして利用し、他方(例えば可視領域及び紫外領域の光)を光電変換素子50に入射して電気エネルギーとして利用するような構成も好適な適用例である。
(e)は、端部に集光された光を、さらに厚さ方向に集光して取り出す構成例の概念図である。本構成の集光光学素子10,20は、集光側の端部近傍領域で厚さが徐々に薄くなるように構成されており、素子内部をx軸方向に進む光が、上面あるいは下面で全反射されて厚さ方向に集光されるようになっている。これにより、例えば光をそのまま利用する場合にシリンドリカルレンズ等を用いずに構成することができ、また光電変換素子50やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度を高めることができる。
なお、実施形態では、説明簡明化のため、集光光学素子を板状に構成した形態の例示し、また集光光学素子の作用を説明するため、A部材及びB部材に具体的な物質の屈折率を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子の形状は、薄いシート状や角柱・円柱等のロッド状であっても良く、A部材及びB部材の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。また、本発明の要旨を逸脱しない範囲で、A部材及びB部材以外の他の部材を含むものであっても良い。
以上説明したように、集光光学素子10,20は、母材ないし基材となるA部材中に、粒子径が集光対象の光の波長とほぼ同じオーダーの粒子状のB部材が分散されている。両者の屈折率の関係は、y軸方向に進むp偏光の光及びx軸方向に進むp偏光の光について異なり、y軸からx軸方向に角度φ傾斜した軸方向に進むp偏光の光について等しく、かつsinφ>(1/naxφ)を満たすように設定される。集光装置60,70,80、光発電装置1〜5及び光熱変換装置は、このような集光光学素子を用いて構成される。
従って、以上説明した集光光学素子10,20、集光装置60,70,80によれば、薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。また、これらの集光光学素子10,20、集光装置60,70,80を適用した光発電装置1〜5は、集光部の光軸方向の厚さが薄く小型軽量であり、太陽の追従装置を必ずしも必要としない、新たな太陽光発電手段として好適に適用することができる。光熱変換装置についても同様である。
1〜5 光発電装置
10(101,102) 第1構成形態の集光光学素子
11 A部材
12 B部材
20 第2構成形態の集光光学素子
21 A部材
22 B部材
50,50′ 光電変換素子
60 第1構成例の集光装置
62 反射鏡
65 偏光面回転素子
80 第3構成例の集光装置
85 偏光面回転素子

Claims (22)

  1. 光透過性を有するA部材と、前記A部材中に厚さ方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成され、
    前記B部材の粒子径dは、前記厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λであり、
    前記厚さ方向に延びる軸をy軸、前記第1方向に延びる軸をx軸、前記第2方向に延びる軸をz軸、前記x軸及び前記y軸を含む面をxy面とし、
    前記A部材における、電界振幅が前記xy面内で前記y軸方向に進む光の屈折率をnaxy、電界振幅が前記xy面内で前記x軸方向に進む光の屈折率をnayx、電界振幅が前記xy面内で前記y軸から前記x軸方向に角度φ(0<φ<90°)傾斜した軸方向に進む光の屈折率をnaxφとし、
    前記B部材における、電界振幅が前記xy面内で前記y軸方向に進む光の屈折率をnbxy、電界振幅が前記xy面内で前記x軸方向に進む光の屈折率をnbyx、電界振幅が前記xy面内で前記y軸から前記x軸方向に前記角度φ傾斜した軸方向に進む光の屈折率をnbxφとしたときに、
    naxyとnbxy、及びnayxとnbyxとが異なり、naxφとnbxφとが等しく、かつsinφ>(1/naxφ)を満たすように構成したことを特徴とする集光光学素子。
  2. 前記屈折率の関係が、nbxy>nbxφ>nbyxであることを特徴とする請求項1に記載の集光光学素子。
  3. 前記屈折率の関係が、nbxy<nbxφ<nbyxであることを特徴とする請求項1に記載の集光光学素子。
  4. 前記屈折率の関係が、naxy>naxφ>nayxであることを特徴とする請求項1〜3のいずれか一項に記載の集光光学素子。
  5. 前記屈折率の関係が、naxy<naxφ<nayxであることを特徴とする請求項1〜3のいずれか一項に記載の集光光学素子。
  6. 前記y軸及び前記z軸を含む面をzy面とし、
    前記A部材における、電界振幅が前記zy面内で前記y軸方向に進む光の屈折率をnazy、電界振幅が前記zy面内で前記z軸方向に進む光の屈折率をnayz、電界振幅が前記zy面内で前記y軸から前記z軸方向に角度γ(0<γ<90°)傾斜した軸方向に進む光の屈折率をnazγとし、
    前記B部材における、電界振幅が前記zy面内で前記y軸方向に進む光の屈折率をnbzy、電界振幅が前記zy面内で前記z軸方向に進む光の屈折率をnbyz、電界振幅が前記zy面内で前記y軸から前記z軸方向に前記角度γ傾斜した軸方向に進む光の屈折率をnbzγとしたときに、
    nazyとnbzy、及びnayzとnbyzとが異なり、nazγとnbzγとが等しく、かつsinγ>(1/naxγ)を満たすように構成したことを特徴とする請求項1〜5のいずれか一項に記載の集光光学素子。
  7. 前記A部材及び前記B部材は、(π×d×naxy)/λで規定するサイズパラメータαが、1.5≦α≦40であることを特徴とする請求項1〜6のいずれか一項に記載の集光光学素子。
  8. 前記A部材及び前記B部材は、(π×d×naxy)/λで規定するサイズパラメータαが、2≦α≦20であることを特徴とする請求項1〜7のいずれか一項に記載の集光光学素子。
  9. 前記B部材の粒子径dが、20μm以下であることを特徴とする請求項1〜8のいずれか一項に記載の集光光学素子。
  10. 前記A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、前記裏面において全反射されるように設定されることを特徴とする請求項1〜9のいずれか一項に記載の集光光学素子。
  11. 前記第1方向及び前記第2方向の大きさが前記厚さ方向の大きさに対して充分に大きく、プレート状またはシート状に形成されることを特徴とする請求項1〜10のいずれか一項に記載の集光光学素子。
  12. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、
    前記集光光学素子と前記反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。
  13. 請求項1〜11のいずれかに記載の第1の集光光学素子と、
    請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
    前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第2方向と平行になるように配設されることを特徴とする集光装置。
  14. 請求項1〜11のいずれかに記載の第1の集光光学素子と、
    請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
    前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第1方向と平行になるように配設されるとともに、前記第1の集光光学素子と前記第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする集光装置。
  15. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  16. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子と、
    前記集光光学素子により前記第2方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  17. 請求項12に記載の集光装置と、
    前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  18. 請求項13または14に記載の集光装置と、
    前記第1の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子と、
    前記第2の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  19. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子により前記第1方向に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
  20. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子により前記第1方向に導かれた光を光熱変換する光熱変換素子と、
    前記集光光学素子により前記第2方向に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
  21. 請求項12に記載の集光装置と、
    前記集光光学素子により前記第1方向に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
  22. 請求項13または14に記載の集光装置と、
    前記第1の集光光学素子における前記第1方向に導かれた光を光熱変換する光熱変換素子と、
    前記第2の集光光学素子における前記第1方向に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
JP2010238217A 2010-06-18 2010-10-25 集光光学素子、集光装置、光発電装置及び光熱変換装置 Active JP5679283B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010238217A JP5679283B2 (ja) 2010-10-25 2010-10-25 集光光学素子、集光装置、光発電装置及び光熱変換装置
PCT/JP2011/064092 WO2011158956A1 (ja) 2010-06-18 2011-06-20 集光光学素子、集光装置、光発電装置及び光熱変換装置
EP11795858.7A EP2584383A4 (en) 2010-06-18 2011-06-20 Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device
CN201180030080.XA CN102947731B (zh) 2010-06-18 2011-06-20 聚光光学元件、聚光装置、光发电装置和光热转换装置
US13/718,510 US9196778B2 (en) 2010-06-18 2012-12-18 Light concentrating optical element, light concentrating device, photovoltaic power generation device and photothermal conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238217A JP5679283B2 (ja) 2010-10-25 2010-10-25 集光光学素子、集光装置、光発電装置及び光熱変換装置

Publications (2)

Publication Number Publication Date
JP2012094574A JP2012094574A (ja) 2012-05-17
JP5679283B2 true JP5679283B2 (ja) 2015-03-04

Family

ID=46387616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238217A Active JP5679283B2 (ja) 2010-06-18 2010-10-25 集光光学素子、集光装置、光発電装置及び光熱変換装置

Country Status (1)

Country Link
JP (1) JP5679283B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057738A (ko) * 2017-11-20 2019-05-29 동국대학교 산학협력단 측면 광전달 시스템

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2880474A4 (en) * 2012-08-01 2016-03-23 Ferro Corp LIGHT-INFLUENCING NANOSCREEN
KR101608116B1 (ko) * 2012-12-18 2016-03-31 제일모직주식회사 열전사 필름, 그의 제조방법 및 이로부터 제조된 유기전계발광소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422475B2 (ja) * 1999-06-14 2003-06-30 日東電工株式会社 偏光導光板及び偏光面光源
JP3891266B2 (ja) * 2000-12-28 2007-03-14 富士電機ホールディングス株式会社 導光板及びこの導光板を備えた液晶表示装置
JP4639337B2 (ja) * 2006-02-17 2011-02-23 国立大学法人長岡技術科学大学 太陽電池および太陽集熱器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057738A (ko) * 2017-11-20 2019-05-29 동국대학교 산학협력단 측면 광전달 시스템
KR102046225B1 (ko) * 2017-11-20 2019-11-19 동국대학교 산학협력단 측면 광전달 시스템

Also Published As

Publication number Publication date
JP2012094574A (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
Gjessing et al. Comparison of periodic light-trapping structures in thin crystalline silicon solar cells
US20100126567A1 (en) Surface plasmon energy conversion device
WO2011158956A1 (ja) 集光光学素子、集光装置、光発電装置及び光熱変換装置
JP5624064B2 (ja) 誘導放出ルミネッセンス光導波路太陽光集光器
US20070227581A1 (en) Concentrator solar cell module
JP2016517178A (ja) メタマテリアルでできた要素を備える光ダイオード
JP5679283B2 (ja) 集光光学素子、集光装置、光発電装置及び光熱変換装置
JP2010263115A (ja) 太陽光集光装置
WO2012025019A1 (zh) 聚光透镜、复眼式透镜聚光器及复眼式聚光太阳电池组件
Peters et al. The effect of photonic structures on the light guiding efficiency of fluorescent concentrators
US10067326B2 (en) Electromagnetic wave concentrator and absorber
US20120067419A1 (en) Metamaterial Integrated Solar Concentrator
Wang et al. Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications
Hong et al. Light trapping in hybrid nanopyramid and nanohole structure silicon solar cell beyond the Lambertian limit
JP5765608B2 (ja) 集光光学素子、集光装置及び光発電装置
JP2007073774A (ja) 太陽電池
WO2013058381A1 (ja) 集光装置、光発電装置及び光熱変換装置
JP5679286B2 (ja) 集光光学素子、集光装置及び光発電装置
JP5630690B2 (ja) 集光光学素子、集光装置及び光発電装置
TW201121075A (en) Solar light-control module
JPWO2012026572A1 (ja) 集光装置、光発電装置及び光熱変換装置
JP6694072B2 (ja) 光起電装置
Haug et al. Super-Lambertian photocurrent-generation in solar cells with periodically textured interfaces
WO2022070800A1 (ja) 太陽光発電装置
Zhu et al. Solar energy broadband capturing by metamaterial absorber based on titanium metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5679283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250