WO2013058381A1 - 集光装置、光発電装置及び光熱変換装置 - Google Patents

集光装置、光発電装置及び光熱変換装置 Download PDF

Info

Publication number
WO2013058381A1
WO2013058381A1 PCT/JP2012/077151 JP2012077151W WO2013058381A1 WO 2013058381 A1 WO2013058381 A1 WO 2013058381A1 JP 2012077151 W JP2012077151 W JP 2012077151W WO 2013058381 A1 WO2013058381 A1 WO 2013058381A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism member
light
incident
angle
condensing
Prior art date
Application number
PCT/JP2012/077151
Other languages
English (en)
French (fr)
Inventor
達雄 丹羽
和歌奈 内田
達也 千賀
高広 倉島
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013058381A1 publication Critical patent/WO2013058381A1/ja
Priority to US14/256,654 priority Critical patent/US9046279B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a condensing device that condenses light incident from the surface in a lateral direction, and a photovoltaic device and a photothermal conversion device using the condensing device.
  • condensing device that condenses light incident from the surface on the side surface, it has an incident surface on which sunlight is incident and a bottom surface that intersects the incident surface at an acute angle.
  • a condensing device including a prism member that condenses light by being reflected a plurality of times is known.
  • the condensing device 9 includes an incident surface 91 on which sunlight is incident, a bottom surface 92 that intersects the incident surface 91 at an apex angle ⁇ and reflects incident light, and an exit surface 95 that intersects the incident surface 91 at a substantially right angle.
  • a prism member 90 having a prismatic shape or a wedge shape in cross-sectional view is provided.
  • the photovoltaic device is configured such that a photoelectric conversion element (solar cell) 5 that photoelectrically converts collected light is provided on an emission surface 95.
  • the light collecting magnification defined based on the geometric shape of the light collecting device is referred to as “shape light collecting magnification” in this specification. From the above formula, it is required to reduce the apex angle ⁇ in order to increase the shape condensing magnification.
  • the incident angle ⁇ of sunlight on the incident surface 91 in the paper surface of FIG. If not increased, incident light will pass through the bottom surface 92.
  • the incident angle ⁇ is increased, the light intensity (energy density) per unit area of the sunlight incident on the incident surface 91 is lowered, so that it is difficult to efficiently collect the light energy of the sunlight.
  • the bottom surface 92 is made a mirror surface, and by repeating the specular reflection at the bottom surface 92 and the total reflection at the incident surface 91, the incident light is emitted.
  • a condensing device configured to condense on the surface 95 has been proposed (see, for example, Patent Document 1).
  • the condensing device is provided to face the back surface of the first prism member and the first prism member that emits light incident from the front surface from the back surface.
  • a second prism member, and the first prism member is formed on the front surface and collects the incident light by the light collecting structure that projects to the back surface corresponding to the plurality of light collecting structures.
  • the second prism member has an incident surface provided opposite to the back surface of the first prism member, and a reflection that intersects the incident surface at an acute angle.
  • the deflection structure of the first prism member includes a first surface that reflects light collected by the light converging structure, and a first surface. And a second surface that transmits the reflected light and exits the first prism member.
  • the incident surface of the second prism member faces the second surface of the deflection structure of the first prism member substantially parallel to the first prism member. It is preferable to have a light guide surface on which the light emitted from the second surface is incident and a reflection surface that reflects the light reflected by the reflection structure toward the inside of the second prism member.
  • the refractive index of a 1st prism member in the condensing apparatus of a 3rd aspect, between the 2nd surface of a 1st prism member, and the light guide surface of a 2nd prism member, the refractive index of a 1st prism member and It is preferable that a joint portion having a refractive index substantially equal to the refractive index of the second prism member is disposed.
  • the refractive index of the first prism member and the refractive index of the second prism are between the first prism member and the reflecting surface of the second prism. It is preferable that a medium having a refractive index lower than any of the above is disposed.
  • the light is collected by the light collecting structure of the first prism member, reflected by the first surface, and emitted from the second surface. It is preferable that the light thus incident is incident on the incident surface of the second prism member without being blocked by the adjacent deflection structure of the first prism member.
  • the plurality of deflection structures of the first prism member have a repeating structure in which the first surface and the second surface are alternately arranged. Is preferable.
  • the light condensing structure of the first prism member is a convex curved surface on the light incident side, The surface is preferably configured such that the entire light collected by the corresponding light collecting structure is totally reflected.
  • the light condensing structure of the first prism member is convex toward the light incident side by a plurality of planes.
  • the first surface is configured such that the entire light condensed by the condensing structure is totally reflected.
  • the reflecting structure of the second prism member is configured by one plane, and the first prism member to the second prism It is preferable that the light incident on the incident surface of the member is totally reflected by the reflecting structure when traveling inside the second prism member and reaching the reflecting structure.
  • the reflecting structure surface of the second prism member is interposed between the plane and the plane via an air layer.
  • the light is incident on the incident surface of the second prism member from the first prism member and travels through the second prism member to reach the reflecting structure and is transmitted through the plane.
  • the light beam is reflected by the mirror surface, passes through the plane again, travels inside the second prism member, and is further totally reflected by the incident surface inside the second prism member.
  • a photovoltaic device includes a light collecting device according to any one of the first to eleventh aspects, and a photoelectric conversion element that photoelectrically converts light guided to the exit surface of the second prism member.
  • a photothermal conversion device includes a light condensing device according to any one of the first to eleventh aspects, and a photothermal conversion element that photothermally converts light guided to the exit surface of the second prism member.
  • the first prism member of the first configuration form when the minimum emission angle is 54.5 degrees, (a) the relationship between the allowable angle and the focal length, and (b) the relationship between the allowable angle and the maximum emission angle. It is a graph to show. With respect to the first prism member of the first configuration form, (a) the relationship between the minimum emission angle and the maximum allowable angle, and (b) the minimum emission angle when the minimum emission angle is changed in the range of 50 degrees to 80 degrees. It is a graph which shows the relationship with a focal distance, (c) the relationship between the minimum output angle and the maximum output angle. It is a typical sectional view of the 2nd prism member.
  • FIG. 1 shows a schematic configuration diagram of a photovoltaic device PVS that includes the condensing device 1 of the first configuration form.
  • the photovoltaic device PVS includes a light collecting device 1 that collects light and a photoelectric conversion element 5 that photoelectrically converts the collected light.
  • the condensing device 1 has a condensing structure on the surface on which light is incident, and is opposed to the first prism member 10 that obliquely deflects the incident light and emits it from the back surface, and the back surface of the first prism member 10. And a second prism member 20 that condenses the light emitted from the first prism 10 and guides it to the photoelectric conversion element 5.
  • the first prism member 10, the second prism member 20, and the photoelectric conversion element 5 are formed to extend in the front-rear direction perpendicular to the paper surface. That is, FIG. 1 is a sectional view of the photovoltaic device PVS.
  • the vertical and horizontal directions are used with the posture shown in FIG. 1, but the arrangement posture of the photovoltaic device PVS can be arbitrarily set according to the incident direction of light.
  • the second prism member 20 reflects an incident surface 21 on which light emitted from the first prism member 10 is incident, and light whose path is deflected by the first prism member 10 by intersecting the incident surface 21 at an apex angle ⁇ .
  • the reflection structure 22 includes an emission surface 25 from which light reflected by the reflection structure 22 and the incident surface 21 and guided to the left is emitted.
  • FIG. 1 shows a configuration example in which the photoelectric conversion element 5 is provided on the emission surface 25.
  • the width in the front-rear direction perpendicular to the paper surface is uniform.
  • the incident angle ⁇ of the light incident on the incident surface 21 is large, the condition for the incident light to be totally reflected by the reflecting structure 22 is not satisfied. If the total reflection condition is not satisfied, the light passes through the reflection structure 22.
  • a metal film is formed on the reflection structure 22 of the second prism member 20 by vapor deposition or the like to form a mirror surface, transmission from the reflection structure 22 is suppressed. However, even in this case, it is necessary to satisfy the conditions for the light reflected by the reflecting structure 22 to be totally reflected on the incident surface 21.
  • FIG. 2B is a graph plotting the relationship between the incident angle ⁇ on the horizontal axis and the shape focusing magnification on the vertical axis for the second prism member having the apex angle ⁇ min.
  • the incident angle ⁇ is about 60 degrees
  • the reflecting structure 22 is a total reflection surface
  • the incident angle ⁇ is about 70 degrees. It can be seen that the shape condensing magnification increases rapidly. Therefore, if it is assumed that the light energy incident on the incident surface 21 is constant, light having a higher energy density is condensed on the photoelectric conversion element 5 as the incident angle ⁇ is larger.
  • FIG. 3 shows the relationship between the incident light energy and the incident angle ⁇ .
  • the light energy incident on the incident surface 21 if the angle of incidence of sunlight theta a proportion to Lcosshita a, if the angle of incidence of sunlight ⁇ b Lcos ⁇ b Is proportional to That is, the light energy of sunlight incident on the incident surface 21 at an incident angle ⁇ is proportional to cos ⁇ .
  • the horizontal axis represents the incident angle ⁇ of sunlight
  • the incident angle ⁇ of the light incident on the second prism member 20 may be increased. It is required to reduce the angle ⁇ .
  • the inventors propose a configuration in which the first prism member 10 is provided on the incident surface side of the second prism member 20 as means for satisfying such conflicting requirements.
  • the first prism member 10 is an optical element that receives light at a small incident angle, emits the received light at a large output angle, and enters the second prism member 20 at a large incident angle.
  • a prism member 80 having a configuration in which a plurality of triangular prisms are arranged on the back surface is opposed to the incident surface 21 of the second prism member, with reference to FIG. explain.
  • the refractive index of the material constituting the prism member is about 1.5.
  • the angles of the two surfaces 86 and 87 are set so that parallel rays incident from the surface of the prism member 80 at an incident angle of 0 degrees are totally reflected by the two surfaces 86 and 87 of the triangular prism on the back surface and emitted obliquely downward. ing.
  • the incident light deflected in the direction of the condensing surface 25 of the second prism member 20 is guided to the exit surface 25 side and collected.
  • the incident light deflected in the direction opposite to the light collecting surface 25 of the second prism member 20 is emitted through the reflecting structure 22 and the incident surface 21.
  • FIG. 5 explains the configuration and operation of the first prism member 10.
  • the first prism member 10 has a plurality of condensing structures 11, 11... On the light incident surface in order to condense incident light, and in order to deflect the light collected by the condensing structure, Corresponding to each light condensing structure, it has a plurality of deflecting structures 15, 15.
  • the deflection structure 15 has a first surface 16 that reflects the light collected by the light collection structure 11 and a second surface 17 that transmits the light reflected by the first surface 16 and whose path is deflected, A repetitive structure of the first surface 16 and the second surface 17 is formed in a sawtooth shape.
  • the light incident from the incident surface of the first prism member 10 is deflected by a predetermined angle without being blocked by the adjacent deflecting structure by the condensing structure 11 and the deflecting structure 15, and is incident on the incident surface 21 of the second prism member 20. It is comprised so that it may inject into.
  • the angle of the sun changes with the season and time. Therefore, when the light collection target is sunlight and the light is to be incident at a constant incident angle as described above, a tracking device that tracks the sun is required.
  • the price of the tracking device varies greatly depending on the installation accuracy of the light collecting device 1 and the tracking accuracy of the sun. Therefore, in order to realize a sunlight condensing system at a low cost, even if the incident angle of sunlight is deviated by a certain angle range, the photoelectric conversion element 5 is not greatly reduced without greatly reducing the condensing efficiency. It is desirable to have a configuration for guiding light.
  • FIG. 5 is an explanatory diagram for explaining the configuration and operation of the first prism member 10 of the first configuration form, and shows a part of FIG. 1 in an enlarged manner.
  • incident angle 0 degree means 0 degree in the paper surface, and does not necessarily mean that the incident light is perpendicularly incident on the incident surface.
  • FIG. 5 shows two sets of unit optical cells each composed of a pair of condensing structures 11 and deflecting structures 15 facing each other. In FIG. 5, the left unit optical cell has the light condensing of the first prism member 10.
  • the condensing state of the light beam is indicated by an alternate long and short dash line, and a region where light incident in the angle range ⁇ to + ⁇ reaches the first surface 16 is indicated by a thick solid line indicated by an asterisk.
  • the condensing structure 11 has a uniform shape in a direction perpendicular to the paper surface, and is configured by a plurality of convex structures, for example, a plurality of cylindrical lenses 12 on the light incident side.
  • the pitch between unit optical cells is a [mm]
  • the focal length of the cylindrical lens 12 is f [mm]
  • the convergence angle of the condensed light is ⁇ [degrees].
  • the first surface 16 is configured such that the entire condensed light collected by the cylindrical lens 12 is totally reflected. Further, the light transmitted through the second surface 17 is configured to enter the incident surface 21 of the second prism member 20 without being blocked by the adjacent deflection structure 15.
  • an angle formed by the lower surface 18 and the first surface 16 (referred to as an inclination angle of the first surface 16).
  • Is ⁇ and an angle between the lower surface 18 and the second surface 17 (referred to as an inclination angle of the second surface 17) is ⁇ ′.
  • the inclination angle ⁇ ′ of the second surface 17 is set so that the center of the reflected light from which the light collected by the cylindrical lens is totally reflected by the first surface 16 is perpendicular to the second surface 17. .
  • the central value Actr of the emission angle is a light emission angle that is incident on the first prism member 10 at an incident angle of 0 degrees.
  • the maximum emission angle Amax is an emission angle of light that is incident on the first surface 16 at the smallest incident angle out of light indicated by a dotted line that is incident on the first prism member 10 with an inclination of + ⁇ degrees.
  • the minimum emission angle Amin is an emission angle of light that is incident on the first surface 16 at the largest incident angle among light indicated by a one-dot chain line that is incident on the first prism member 10 with an inclination of ⁇ degrees.
  • Maximum emission angle: Amax 180-2 ⁇ + ⁇ + ⁇ (3)
  • Median value: Actr 180-2 ⁇ (4)
  • Minimum emission angle: Amin 180-2 ⁇ - ⁇ - ⁇ (5)
  • the second prism member 20 has an apex angle ⁇ formed by the incident surface 21 and the reflecting structure surface 22 as the incident angle with respect to the incident surface 21 is larger (incidently incident on the incident surface). It can be made small, and thereby a large shape condensing magnification can be obtained. That is, as the minimum emission angle Amin increases, the apex angle ⁇ of the second prism member 20 can be reduced, and the energy density of the light condensed on the photoelectric conversion element 5 can be increased.
  • the minimum emission angle Amin is set, and then the pitch a of the unit optical cell that affects the thickness of the first prism member 10 is determined.
  • the pitch a of the unit optical cell can be reduced to about 200 [ ⁇ m] in consideration of processing accuracy and the like, which can reduce the thickness of the first prism member 10 to about 1 [mm]. Means you can.
  • the inclination angle ⁇ of the first surface 16, the convergence angle ⁇ of the light beam in the cylindrical lens 12, and the angle ⁇ formed between the light beam emitted from the deflection structure 15 and the lower surface 18 are given to the first prism member 10.
  • a function of an inclination angle (hereinafter simply referred to as an inclination angle) ⁇ with respect to an incident angle of 0 degrees of incident light and a focal length f of the cylindrical lens 12 can be expressed as the following expression.
  • (180 ⁇ Amin ⁇ ) / 2 (7)
  • arctan (a / 2f) (8)
  • 2 ⁇ -90- ⁇ - ⁇ (9)
  • the focal length f of the cylindrical lens 12 is 11.2 [mm]
  • the inclination angle ⁇ of the first surface 16 is 58.1 degrees
  • the light beam convergence angle ⁇ is 7.63 degrees
  • the light having the maximum emission angle and the lower surface 18 is 16.7 degrees
  • the maximum emission angle Amax is 73.3 degrees.
  • FIG. 6B shows the relationship between the angle ⁇ and the maximum emission angle Amax.
  • the allowable angle ⁇ can be set in a range of 1.77 degrees or less.
  • FIG. 7A is a graph showing the calculated relationship between the minimum emission angle Amin and the maximum allowable angle ⁇ max when the minimum emission angle Amin is changed in the above angle range.
  • the maximum allowable angle ⁇ max decreases as the minimum emission angle Amin increases. This means that the larger the minimum exit angle Amin, the higher the shape condensing magnification, while the allowable angle range of incident light is narrowed, and high accuracy is required for installation of the condensing device and tracking of the sun. To do. From FIG. 7A, an angle range in which the shape condensing magnification and the tracking accuracy are balanced can be obtained.
  • FIG. 7B is a graph showing the relationship between the minimum emission angle Amin and the focal length f at the maximum allowable angle ⁇ max when the minimum emission angle Amin is changed within the above angle range. 7B that the focal length f of the cylindrical lens 12 increases as the minimum emission angle Amin increases, and the first prism member 10 needs to be thicker.
  • FIG. 7C is a graph showing the relationship between the minimum emission angle Amin and the maximum emission angle Amax at the maximum allowable angle ⁇ max, calculated when the minimum emission angle Amin is changed in the above angle range. From FIG. 7 (c), it can be seen that as the minimum emission angle Amin increases, the maximum emission angle Amax also increases, but the angle range (Amax ⁇ Amin) of the output light beam decreases.
  • the sunlight incident on the first prism member 10 at an incident angle of 0 degrees is condensed and deflected by the condensing structure 11 and the deflecting structure 15 and is emitted from the first prism member 10 at a large emission angle A. Then, the light enters the second prism member 20 at a large incident angle A.
  • the second prism member 20 includes an incident surface 21 on which the light emitted from the first prism member 10 is incident, and the second prism member 20 intersects the incident surface 21 at the apex angle ⁇ .
  • a reflection structure 22 that guides the light whose path is deflected by one prism member 10 in the deflection direction; and an emission surface 25 that emits the light reflected by the reflection structure 22 and the incident surface 21 and guided to the left. Composed.
  • the apex angle ⁇ of the second prism member 20 is set so that when the incident light incident from the incident surface 21 first reaches the reflecting structure 22, the light is totally reflected by the reflecting structure 22 or reflected.
  • the structure 22 differs depending on whether incident light is reflected by using a mirror surface or the like.
  • the minimum apex angle ⁇ min of each of the second prism members in the above two cases is expressed as a function of the refractive index n of the second prism member and the incident angle ⁇ on the incident surface 21.
  • the minimum apex angle ⁇ min is the formula (1), and a configuration in which incident light is reflected by the reflection structure 22 such as a mirror surface (for convenience)
  • the minimum apex angle ⁇ min is expressed by equation (2).
  • the minimum apex angle ⁇ min of the mirror type is 1 ⁇ 2 of the minimum apex angle ⁇ min of the total reflection type. Therefore, the shape condensing magnification can be doubled by using the second prism member 20 as a mirror type.
  • the reflecting structure 22 is a mirror surface
  • a loss due to light absorption occurs with reflection on the mirror surface.
  • the reflectance of an aluminum vapor deposition film widely used as a reflection film is about 90%, and light energy is lost by about 10% every time reflection is repeated. Therefore, in the mirror-type second prism member, as a result, the light energy condensing efficiency is lowered.
  • the second prism member 20 described below is shown.
  • FIG. 8 is a schematic cross-sectional view of the second prism 20.
  • the second prism member 20 includes a prism body 26 and a reflection structure 22.
  • the reflection structure 22 includes a flat surface 22a formed on the lower surface of the prism main body 26, and a reflection member 24 that is disposed to face the flat surface 22a in parallel via the air layer 23 and has the opposite surface as a mirror surface 22b. Is done.
  • the flat surface 22a is formed by optical polishing flat.
  • the reflecting member 24 for example, a mirror substrate having an aluminum vapor deposition film formed on the surface of a glass substrate can be used.
  • the air layer 23 only needs to have a layer thickness approximately equal to or greater than the wavelength of light to be collected. In this configuration example, the reflecting member 24 is fixed so that the mirror surface 22b is parallel to the flat surface 22a. Thus, the air layer 23 is formed.
  • the apex angle ⁇ of the second prism member 20 is set based on the minimum apex angle ⁇ min (that is, the expression (2)) calculated when the mirror type is used.
  • the light incident on the prism main body 26 from the incident surface 21 reaches the reflecting structure 22, passes through the plane 22 a, exits from the prism main body 26, is reflected by the mirror surface 22 b, and is reflected from the plane 22 a to the prism main body 26.
  • the incident angle of the light incident on the prism body 26 again from the plane 22a is the same as the incident angle of the first incident light on the plane 22a.
  • the light incident on the prism main body 26 from the incident surface 21 at the incident angle ⁇ is refracted at the refraction angle ⁇ 1 corresponding to the refractive index n of the members constituting the prism main body 26, and enters the plane 22a.
  • the incident angle ⁇ 2 is less than the total reflection critical angle.
  • the light incident on the plane 22a is emitted from the plane 22a in the emission angle theta 21, is reflected by the mirror surface 22b, the incident angle theta 21, again enters the prism body 26 from the plane 22a in the refraction angle theta 2.
  • the refraction angle ⁇ 2 is the same as the incident angle ⁇ 2 when the light incident on the prism body 26 first reaches the plane 22.
  • the light is totally reflected by the plane 22 a and travels inside the prism body 26 toward the incident surface 21.
  • the incident angle sequentially increases by ⁇ every time the light enters each surface.
  • the light that has been totally reflected a plurality of times is guided to the exit surface 25.
  • the reflection structure surface 22 of the second prism member is constituted by the plane 22a of the prism body 26 and the mirror surface 22b disposed via the air layer 23, so that the light incident from the incident surface can be mirrored.
  • the second prism member 20 in which the subsequent reflection is made to be total reflection inside the prism while being reflected by 22b is referred to as total reflection + mirror type second prism member.
  • the apex angle ⁇ of the prism can be made smaller (1/2 of the total reflection type second prism member) in the same manner as the mirror type second prism member.
  • a high shape condensing magnification can be obtained.
  • the light is reflected by the mirror surface only once when the light incident from the incident surface 21 first reaches the reflecting structure 22, and the subsequent incident surfaces. All reflections at 21 and the reflection structure 22 are total reflection. For this reason, there is little presence compared with a mirror type 2nd prism member, and light energy can be condensed with high condensing efficiency.
  • the condensing device 1 sunlight is incident on the first prism member 10 at an incident angle of 0 degree at an incident angle of 0 degree at which the light energy of the incident light is maximum, and is deflected by the condensing structure 11 and the deflecting structure 15.
  • Light is incident on the second prism member 20. Since the second prism member 20 is configured by total reflection + mirror type, light energy can be condensed on the emission surface 25 with high light collection efficiency. That is, according to the condensing device 1 having such a configuration, light energy such as sunlight can be collected with extremely high efficiency, and utilization efficiency of light energy can be increased.
  • the detailed configuration of the light collecting structure 11 and the deflecting structure 15 can be set in view of the allowable angle ⁇ of light incident on the first prism member. Therefore, it is possible to provide a compact light condensing device and a photovoltaic device in which the light condensing magnification and the tracking accuracy are balanced in a high dimension.
  • Example 1 The light collecting device 1 is widely used in the optical technical field when sunlight is incident on the upper surface of the first prism member 10 using the first prism member 10 and the second prism member 20 under the following conditions. Simulations were performed using a ray tracing program.
  • the inclination angle ⁇ ′ of the second surface 17 is 75 degrees, the allowable angle ⁇ of incident light is 1.7 degrees, the minimum emission angle Amin is 55 degrees, the maximum emission angle Amax is 73 degrees, and the second prism member 20 (total reflection) + Mirror type) ⁇ Left-and-right direction length L: 30 [mm] Vertex angle ⁇ : 4.05 degrees Reflectance of mirror surface 22b: 90%
  • FIG. 10 shows the results of ray tracing simulated under the above conditions.
  • FIG. 10A shows the result of ray tracing in the case of performing simulation by excluding the Fresnel loss at the time of entering and exiting each prism member and the loss due to absorption on the mirror surface
  • FIG. These are the results of ray tracing when a simulation is performed in consideration of Fresnel loss at the time of incidence and emission of light to each prism member and loss due to absorption on the mirror surface.
  • the first prism member 10 when sunlight is directly incident on the second prism member 20 at an incident angle of 64 degrees, the light energy of sunlight incident on the incident surface 21 is vertical. 43.4% at the time of incidence (see FIG. 3). From this, it can be seen that the provision of the first prism member 10 can increase the light energy of sunlight incident on the second prism member 20 to more than twice (about 2.1 times).
  • the light incident on the second prism member 20 at an incident angle of 55 to 73 degrees is reflected and collected by the reflecting structure 22 and the incident surface 21 and reaches the photoelectric conversion element 5 provided on the exit surface 25.
  • the Fresnel loss at the time of incidence and emission at each surface and the loss due to absorption at the mirror surface are not taken into account, 98% of the light energy of sunlight perpendicularly incident on the first prism member 10 from above is the photoelectric conversion element 5.
  • 74% of the light energy of sunlight perpendicularly incident on the first prism member 10 reaches the photoelectric conversion element 5.
  • the energy condensing magnification when the sunlight is directly incident on the second prism member 20 without using the first prism member 10 is calculated, it is 5 when the incident angle is 66 degrees at which the shape condensing magnification is maximum. It was 0.0 times.
  • the light energy of sunlight is reduced with a small device configuration using the second prism member having a small apex angle as with the mirror type second prism member. It can be understood that light can be collected with high efficiency.
  • Example 2 Next, a simulation result when sunlight is incident on the upper surface of the first prism member 10 in the light collecting apparatus 1 using the first prism member 10 and the second prism member 20 under the following conditions will be described.
  • the inclination angle ⁇ ′ of the second surface 17 is 65 degrees, the allowable angle ⁇ of incident light is 1 degree, the minimum emission angle Amin is 62 degrees, the maximum emission angle Amax is 76 degrees, and the second prism member 20 (total reflection + mirror) type) ⁇ Left and right length L: 30 [mm] Vertex angle ⁇ : 4.05 degrees Reflectance of mirror surface 22b: 90%
  • FIG. 11 shows the results of ray tracing simulated under the above conditions.
  • FIG. 11A shows the result of ray tracing in the case where the simulation is performed excluding Fresnel loss at the time of incidence and exit of the light beam to each prism member and loss due to absorption at the mirror surface
  • FIG. These are the results of ray tracing in the case where a simulation is performed in consideration of Fresnel loss at the time of incidence and exit of light to the prism, and loss due to absorption on the mirror surface.
  • the Fresnel loss at the time of incidence and at the time of emergence is not taken into account, all the rays of sunlight that are perpendicularly incident on the first prism member 10 from above are emitted to the lower surface side of the first prism member 10 and enter the second prism member 20. Incident.
  • the incident angle of light incident on the second prism member 20 is 62 to 76 degrees (average incident angle 68 degrees).
  • 92.4% of the light energy of sunlight that is perpendicularly incident on the first prism member 10 is emitted from the lower surface side of the first prism member 10, and the second prism. Incident on the member 20.
  • the first prism member 10 when sunlight is directly incident on the second prism member 20 at an incident angle of 68 degrees, the light energy of sunlight incident on the incident surface 21 is at the time of vertical incidence. 37.5% (see FIG. 3). From this, it can be seen that also in the present embodiment, by providing the first prism member 10, the light energy of sunlight incident on the second prism member 20 can be increased more than twice (about 2.5 times). .
  • the light incident on the second prism member 20 at an incident angle of 62 to 76 degrees is reflected and collected by the reflecting structure 22 and the incident surface 21 and reaches the photoelectric conversion element provided on the exit surface 25. If the Fresnel loss at the entrance and exit at each surface and the loss due to the absorption at the mirror surface are not taken into account, 99% of the light energy of the sunlight incident on the first prism member 10 from above with an incident angle of 0 degrees It reaches the photoelectric conversion element 5. When considering the Fresnel loss at the time of incidence and emission and the loss due to the absorption on the mirror surface, 72% of the light energy of sunlight perpendicularly incident on the first prism member 10 reaches the photoelectric conversion element 5.
  • the energy condensing magnification when sunlight is directly incident on the second prism member 20 without using the first prism member 10 is 5.0 when the incident angle is 66 degrees at which the shape condensing magnification is maximum. It was twice.
  • the light energy of sunlight is highly efficient with a small device configuration using the second prism member having a small apex angle as in the case of the mirror-type second prism. It is understood that the light can be condensed.
  • FIG. 12 (a) shows that the incident direction of sunlight incident on the first prism member 10 fluctuates in the range of ⁇ ⁇ degrees to the left and right within the plane of each figure shown in FIGS.
  • How the light energy that reaches the photoelectric conversion element 5 changes in a case that is, in the case where the unit optical cell of the first prism member is changed in the range of ⁇ ⁇ degrees from the normal incidence state. It is a graph which shows the result of having simulated the arrival rate of optical energy about.
  • the sign of the fluctuation direction of sunlight is the same as in FIG. FIG. 12 (b) shows that the sunlight incident on the first prism member 10 is within a range of ⁇ ⁇ degrees in the front-rear direction in a plane perpendicular to the paper surface of each drawing shown in FIGS.
  • Light energy that reaches the photoelectric conversion element 5 when it fluctuates that is, when it fluctuates within a range of ⁇ ⁇ degrees in a plane perpendicular to the repetitive arrangement direction of the unit optical cells of the first prism member from the normal incidence state
  • the light energy of sunlight incident on the upper surface of the first prism member 10 is assumed to be 100%, the Fresnel loss at the entrance surface and the exit surface, and the loss due to absorption at the mirror surface. Is considered.
  • the fluctuation angle ⁇ of the sunlight incident angle increases beyond the allowable angle ⁇ , the light energy reaching the photoelectric conversion element 5 decreases.
  • the light energy reaching the photoelectric conversion element 5 does not change greatly in the range where the fluctuation angle ⁇ is about ⁇ 30 degrees, and high efficiency can be stably obtained. That is, even if the incident direction of sunlight fluctuates considerably in the plane perpendicular to the repetitive arrangement direction of the unit optical cells of the first prism member with respect to the normal incidence, the light energy reaching the photoelectric conversion element 5 can be reduced. It can be seen that the impact is small.
  • the first prism member of the light concentrator 1 has a structure in which a plurality of unit optical cells each having a light condensing structure and a deflecting structure whose cross-sectional shape is uniform along one direction are repeatedly arranged. With respect to the in-plane orthogonal to the repeated arrangement of cells, the angle error in installation and tracking can be set loosely.
  • FIG. 13 is a modification in which the position where light is collected on the first surface 16 is changed.
  • FIG. 13A shows the path of light when the incident angle of light incident on the first prism member 10 is + ⁇
  • FIG. 13B shows the incident angle of light incident on the first prism member 10 is ⁇ .
  • the path of light at ⁇ is shown.
  • the incident angle of the light incident on the first prism member 10 is an allowable angle of ⁇ degrees
  • the position where the light is collected on the first surface 16 is lower than the lower end of the first surface 16. It is configured to be somewhat upward.
  • the light collecting device can be configured with the second prism member 20 as a total reflection type or a mirror type.
  • FIG. 14 is an explanatory diagram for explaining the configuration and operation of the first prism member 110 of the first configuration example in the second configuration form, and an enlarged view showing a part of the first prism member 110 in an enlarged manner. It is.
  • FIG. 14 shows a unit optical cell composed of a pair of a condensing structure 111 and a deflecting structure 115 in the first prism member 110.
  • the first prism member 110 is mainly composed of a plurality of condensing structures 111, 111... For condensing incident light, and a plurality of deflection structures 115, 115. Is done.
  • the light condensing structure 111 has a convex structure on the light incident side constituted by a plurality of planes extending in a direction perpendicular to the paper surface in FIG. More specifically, as shown in the partially enlarged view in FIG. 14, the condensing structure 111 has three surfaces including an A surface 112a, a B surface 112b in contact with the A surface 112a, and a C surface 112c in contact with the B surface 112b. Is shown.
  • the upper surface of the first prism member 110 has a configuration in which a plurality of light condensing structures 111 composed of these three surfaces are repeatedly arranged in the left-right direction on the paper surface.
  • the C surface 112c is a surface orthogonal to the light incident direction, and is formed in a range of approximately y / 2, where y is the width in the left-right direction of the paper surface of the unit optical cell.
  • the B surface 112b is a plane having a predetermined inclination angle with respect to the C surface, is connected to the C surface 112c, and is formed in a range of approximately y / 4.
  • the A surface 112a is a plane having a larger inclination angle than the B surface 112b with respect to the C surface, and is formed in a range of approximately y / 4 when connected to the C surface 112c.
  • the deflecting structure 115 includes a first surface 116 that reflects the light collected by the condensing structure 111 and a second surface 117 that transmits the light reflected by the first surface 116 and whose path is deflected.
  • the first surface 116 and the second surface 117 are arranged so as to be arranged in a sawtooth shape.
  • the deflection structure 115 is assumed to be a lower surface 118 parallel to the upper surface (C surface 112c)
  • the cross section of the region surrounded by the first surface 116, the second surface 117, and the lower surface 118 forms an equilateral triangle. It is formed in a triangular prism that has a uniform shape in a perpendicular direction.
  • the inclination angle ⁇ of the first surface which is an angle between the lower surface 118 and the first surface 116
  • the inclination angle ⁇ ′ of the second surface which is an angle between the lower surface 118 and the second surface 117, is 60 °. It is.
  • the distance f ′ between the upper surface 112c and the lower surface 118 of the first prism member 110, and the inclination angles of the A surface 112a and the B surface 112b in the light converging structure 111 are the same for the entire light condensed by the light converging structure 111.
  • the surface 116 is configured to be totally reflected. Further, the light transmitted through the second surface 117 is configured to enter the incident surface 21 of the second prism member without being blocked by the adjacent deflection structure 115.
  • FIG. 15 shows the operation when light is incident on the upper surface (C surface 112c) of the first prism member 110 shown in FIG. 14 at an incident angle of 0 degrees.
  • 15A shows the path of the light beam incident on the A surface 112a
  • FIG. 15B shows the path of the light beam incident on the B surface 112b
  • FIG. 15C shows the path of the light beam incident on the C surface 112c.
  • the light incident on the A surface 112a is refracted by the A surface 112a from the A surface 112a and travels obliquely downward to the right.
  • the inclination angle of the A surface 112 a is configured such that light incident on the left end of the A surface 112 a reaches the lower end of the first surface 116.
  • the light incident on the right end of the A surface 112a is configured to reach the middle portion of the first surface 116 in the vertical direction.
  • Light incident on the left end of the B surface reaches the lower end of the first surface 116, and light incident on the right end of the B surface reaches an intermediate portion in the vertical direction of the first surface 116. It is configured as follows.
  • the light incident on the C surface 112c enters the first prism member 110 without being refracted and travels inside.
  • the light incident on the left end of the C surface 112 c reaches the vicinity of the lower end of the first surface 116, and the light incident on the right end of the C surface reaches the vicinity of the upper end of the first surface 116.
  • FIG. A second prism member is disposed on the emission side of the first prism member, and light emitted from the first prism member is incident on the incident surface 21 of the second prism member 20.
  • the basic configuration of the second prism member 20 is as already described. That is, the second prism member 20 is configured to receive the incident surface 21 on which the light emitted from the first prism member 110 is incident and the light whose path is deflected by the first prism member 110 intersecting the incident surface 21 at the apex angle ⁇ . A reflection structure 22 to be reflected and an emission surface 25 from which the light reflected and guided by the reflection structure 22 and the incident surface 21 is emitted (see FIG. 8 and the like). In the condensing device 2 having the first prism member 110 of this configuration, the already described total reflection + mirror type second prism member is used (see FIG. 9).
  • the condensing device 2 configured as described above, sunlight is incident on the first prism member 110 at an incident angle of 0 degree at which the light energy of the incident light is maximum, and the condensing structure 111 and the deflecting structure 115 The deflected light is incident on the second prism member 20. Since the second prism member 20 is configured by total reflection + mirror type, light energy can be condensed on the emission surface 25 with high light collection efficiency. That is, according to the condensing device 2 having such a configuration, light energy such as sunlight can be collected with extremely high efficiency, and the utilization efficiency of light energy can be increased.
  • First prism member 110 Pitch a ⁇ number of unit optical cells: 2 [mm] ⁇ 15 -Distance f 'between the upper surface and the lower surface: 10 [mm] -A surface 112a width and inclination angle: 0.5 [mm], 15 degrees-B surface 112b width and inclination angle: 0.5 [mm], 8 degrees-C surface 112c width and inclination angle: 1 [ mm], 0 degree.
  • Inclination angle ⁇ of the first surface 116 60 degrees.
  • Inclination angle ⁇ ′ of the second surface 117 60 degrees.
  • Second prism member 20 (total reflection + mirror type) ⁇ Left and right length L: 30 [mm] -Apex angle ⁇ : 3.3 degrees-Reflectance of mirror surface 22b: 90%
  • FIG. 16 shows the result of ray tracing simulated under the above conditions.
  • FIG. 16A shows the result of ray tracing in the case where the simulation is performed by excluding the Fresnel loss at the time of entering and exiting each prism and the loss due to absorption on the mirror surface
  • FIG. FIG. 6 is a ray tracing result when a simulation is performed in consideration of Fresnel loss at the time of incidence and emission of light to the prism, and loss due to absorption on the mirror surface.
  • the first prism member 110 when the sunlight is directly incident on the second prism member 20 at an incident angle of 64 degrees, the light energy of the sunlight incident on the incident surface 21 has an incident angle of 0. It was 43.4% when incident at a degree (see FIG. 3). Therefore, it can be seen that by providing the first prism member 110, the light energy of sunlight incident on the second prism member 20 can be increased to twice or more (about 2.1 times).
  • the light incident on the second prism member 20 at an incident angle of 55 to 73 degrees is reflected and collected by the reflecting structure 22 and the incident surface 21 and reaches the photoelectric conversion element 5 provided on the exit surface 25. If the Fresnel loss at the entrance and exit on each surface and the loss due to the absorption at the mirror surface are not taken into account, 98% of the light energy of the sunlight incident on the first prism member 110 from above with an incident angle of 0 degrees It reaches the photoelectric conversion element 5. In consideration of the Fresnel loss at the time of incidence and emission and the loss due to absorption on the mirror surface, 73% of the light energy of sunlight perpendicularly incident on the first prism member 110 reaches the photoelectric conversion element 5.
  • the energy condensing magnification when sunlight is directly incident on the second prism member 20 without using the first prism member 110 is 5.2 when the incident angle is 69 degrees at which the shape condensing magnification is maximum. It was twice.
  • the light collecting device 2 shown in the present embodiment also increases the light energy of sunlight with a small device configuration using the second prism member having a small apex angle as in the case of the mirror type second prism member. It is understood that light can be collected efficiently.
  • FIG. 17A shows a case where the incident direction of sunlight incident on the first prism member 110 fluctuates in the range of ⁇ ⁇ degrees to the left and right within the plane of each figure shown in FIGS.
  • the light energy reaching the photoelectric conversion element 5 changes from the incident state in the range of ⁇ ⁇ degrees in the repeated arrangement direction of the plurality of unit optical cells of the first prism member
  • the light energy It is a graph which shows the result of having simulated the arrival rate of.
  • the sign of the fluctuation direction of the sunlight incident angle is the same as that in FIG. FIG. 17B shows that sunlight incident on the first prism member 110 fluctuates in the range of ⁇ ⁇ degrees before and after the vertical incidence in a plane perpendicular to the paper surface of each figure shown in FIGS.
  • the light reaching the photoelectric conversion element 5 It is a graph which shows the result of having simulated the arrival rate of light energy, how energy changes.
  • the light energy of sunlight incident on the upper surface of the first prism member 110 is assumed to be 100%, the Fresnel loss at the entrance surface and the exit surface, and the loss due to absorption at the mirror surface. Is considered.
  • the photoelectric conversion element 5 when the sunlight incident on the first prism member 110 fluctuates by ⁇ ⁇ degrees in a plane orthogonal to the repeated arrangement direction of the plurality of unit optical cells, the photoelectric conversion element 5 It can be seen that the light energy that arrives does not change greatly when the fluctuation angle ⁇ is in the range of about ⁇ 30 degrees, and that high efficiency is obtained in a fairly wide angle range.
  • the condensing device 2 has a structure in which a plurality of unit optical cells each having a condensing structure and a deflecting structure are repeatedly arranged along one direction, and thus the arrangement direction of the plurality of unit optical cells is repeated.
  • the angle error in installation and tracking can be set loosely in the direction perpendicular to the direction.
  • FIG. 18 is an explanatory diagram for explaining the configuration and operation of the first prism member 210 of the second configuration example, and an enlarged view showing a part of the first prism member 210 in an enlarged manner.
  • FIG. 18 shows a unit optical cell composed of a pair of the light condensing structure 211 and the deflecting structure 215 in the first prism member, a partially enlarged view in which the condensing structure 211 and the deflecting structure 215 are enlarged, and the unit optical cell. The path of the light beam incident on the line is shown.
  • the first prism member 210 is mainly composed of a plurality of condensing structures 211, 211,... For condensing incident light, and a plurality of deflecting structures 215, 215,. Is done.
  • the condensing structure 211 has a convex structure constituted by a plurality of planes extending in a direction perpendicular to the paper surface in FIG. More specifically, the condensing structure 211 includes an A surface 212a, a B surface 212b in contact with the A surface 212a, a C surface 212c in contact with the B surface 212b, and a C surface 212c, as shown in a partially enlarged view in FIG. The figure which consists of four surfaces by D surface 212d which touches is shown. A plurality of condensing structures 211 composed of these four surfaces are repeatedly arranged in the left-right direction on the paper surface. In the enlarged view of the light condensing structure, the A plane 212a is drawn on the right end side, but this is drawn in this way due to the positional relationship with the deflection structure.
  • the D surface 212d is a surface perpendicular to the incident direction of light, and is formed in a range of approximately y / 4, where y is the width in the left-right direction of the unit optical cell.
  • the C plane 212c is a plane having a predetermined inclination angle with respect to the D plane, and is connected to the D plane 212d and is formed in a range of approximately y / 4.
  • the B surface 212b is a plane having an inclination angle larger than that of the C surface 212c with respect to the D surface, and is connected to the C surface 212c to be formed in a range of approximately y / 4.
  • the A surface 212a is a plane having a larger inclination angle than the B surface 212b with respect to the D surface, and is connected to the B surface 212b and is formed in a range of approximately y / 4.
  • the deflecting structure 215 has a first surface 216 that reflects the light collected by the condensing structure 211, and a second surface 217 that transmits the light reflected by the first surface 216 and whose path is deflected,
  • the first surface 216 and the second surface 217 are repeatedly arranged to form a sawtooth shape.
  • the cross section of the region surrounded by the first surface 216, the second surface 217, and the lower surface 218 forms a triangle and is perpendicular to the paper surface.
  • the triangular prism has a uniform shape in any direction.
  • the inclination angle of the first surface which is the angle formed by the lower surface 218 and the first surface 216
  • ⁇ ′ 60 degrees
  • the inclination angle of the second surface which is the angle formed by the lower surface 218 and the second surface 217
  • the inclination angle ⁇ ′ of 217 is such that the entire light condensed by the condensing structure 211 is totally reflected by the first surface 216, and the light emitted through the second surface 217 is incident on the adjacent deflection structure 215. It is configured to be incident on the incident surface 21 of the second prism member without being blocked.
  • each surface reaches the vicinity of the lower end of the first surface 216, and the light incident on the right end of each surface is the upper and lower intermediate portions of the first surface 216. Is configured to reach.
  • the light incident on the D surface 212d travels vertically downward in the first prism member without being refracted, and the light incident on the left end of the D surface reaches the lower end of the first surface 216 and enters the right end of the D surface.
  • the light is configured to reach the upper and lower intermediate portions of the first surface 216.
  • the basic configuration of the second prism member 20 is as already described. That is, the second prism member 20 receives the light incident on the incident surface 21 where the light emitted from the first prism member 210 is incident and the light whose path is deflected by the first prism member 210 intersecting the incident surface 21 at the apex angle ⁇ . A reflection structure surface 22 to be reflected and an emission surface 25 from which the light reflected and guided by the reflection structure surface 22 and the incident surface 21 is emitted (see FIG. 8 and the like). In the condensing device 2 ′ having the first prism member 210 of this configuration, the already described total reflection + mirror type second prism member is used (see FIG. 9).
  • the condensing device 2 ′ configured as described above, sunlight is incident on the first prism 210 at an incident angle of 0 degree at which the light energy of the incident light is maximum, and the condensing structure 211 and the deflecting structure 215 are used.
  • the deflected light is incident on the second prism member 20. Since the second prism member 20 is configured by total reflection + mirror type, light energy can be condensed on the emission surface 25 with high light collection efficiency. That is, according to the condensing device 2 ′ having such a configuration, light energy such as sunlight can be collected with extremely high efficiency, and the utilization efficiency of light energy can be increased.
  • First prism member 210 Pitch a ⁇ number of unit optical cells: 1 [mm] ⁇ 30 -Distance f 'between the upper surface and the lower surface: 15 [mm] ⁇ Width and inclination angle of A surface 212a: 0.25 [mm], 8.1 degrees ⁇ Width and inclination angle of B surface 212b: 0.24 [mm], 5.4 degrees ⁇ Width and inclination of C surface 212c Angle: 0.25 [mm], 2.8 degrees. Width and inclination angle of D surface 212d: 0.26 [mm], 0 degrees. Inclination angle ⁇ of first surface 216: 54 degrees. Inclination angle ⁇ ′: 74.8 ° Second prism member 20 (total reflection + mirror type) ⁇ Left and right length L: 30 [mm] ⁇ Vertex angle ⁇ : 2.6 degrees ⁇ Reflectance of mirror surface 22b: 90%
  • FIG. 19 shows the result of ray tracing simulated under the above conditions.
  • FIG. 19A shows the result of ray tracing in the case of performing a simulation by excluding the Fresnel loss at the time of entering and exiting each prism and the loss due to absorption at the mirror surface
  • FIG. FIG. 6 is a ray tracing result when a simulation is performed in consideration of Fresnel loss at the time of incidence and emission of light to the prism, and loss due to absorption on the mirror surface.
  • the first prism member 210 when sunlight is directly incident on the second prism member 20 at an incident angle of 71 degrees, the light energy of the sunlight incident on the incident surface 21 has an incident angle of 0. It was 33% of the incident time (see FIG. 3). Therefore, it can be seen that by providing the first prism member 210, the light energy of sunlight incident on the second prism member 20 can be increased more than twice (about 2.8 times).
  • the light incident on the second prism member 20 at an incident angle of 69 to 76 degrees is reflected and collected by the reflecting structure 22 and the incident surface 21 and reaches the photoelectric conversion element 5 provided on the exit surface 25.
  • the Fresnel loss at the time of incidence and emission at each surface and the loss due to absorption at the mirror surface are not taken into account, 96% of the light energy of sunlight perpendicularly incident on the first prism member 210 from above is the photoelectric conversion element 5.
  • 69% of the light energy of sunlight perpendicularly incident on the first prism member 210 reaches the photoelectric conversion element 5.
  • the energy collection magnification is 5.8 when the incident angle is 66 degrees at which the shape collection magnification is maximum. It was twice.
  • the light collecting device 2 ′ shown in the present embodiment also increases the light energy of sunlight with a small device configuration using the second prism member having a small apex angle as with the mirror-type second prism. It is understood that light can be collected efficiently.
  • FIG. 20A shows a case where the incident direction of sunlight incident on the first prism member 210 fluctuates in the range of ⁇ ⁇ degrees to the left and right within the plane of each figure shown in FIGS.
  • FIG. 20B shows a case where the incident direction of sunlight incident on the first prism member 210 is tilted back and forth within a range of ⁇ ⁇ degrees in a plane orthogonal to the paper surface of each drawing shown in FIGS. That is, when the light energy that reaches the photoelectric conversion element 5 changes from the normal incidence state within a range of ⁇ ⁇ degrees in a plane orthogonal to the repetitive arrangement direction of the plurality of unit optical cells of the first prism member) It is a graph which shows the result of having simulated, or having simulated the arrival rate of light energy.
  • the light energy of sunlight incident on the upper surface of the first prism member 210 is assumed to be 100%, the Fresnel loss at the incident surface and the exit surface, and the loss due to absorption at the mirror surface. Is considered.
  • the condensing device 2 ′ has a structure in which a plurality of unit optical cells each having a condensing structure and a deflecting structure are repeatedly arranged along a direction, and thus a plurality of unit optical cells are repeatedly arranged. For a direction perpendicular to the direction, the angle error in installation and tracking can be set loosely.
  • the light collecting device may be configured by using the second prism member 20 as the total reflection type or the mirror type.
  • FIG. 23 is an explanatory diagram for explaining the configuration and operation of the first prism member 310 and the second prism member 320 of the third configuration form.
  • the condensing structure 311 of the first prism member 310 is the same as the condensing structure 11 shown in FIG.
  • a plurality of deflecting structures 315 are provided on the light exit surface side in correspondence with the plurality of condensing structures 311.
  • a unit optical cell is constituted by a pair of condensing structure 311 and deflecting structure 315 facing each other.
  • the deflecting structure 315 includes a first surface 316 that reflects the light collected by the condensing structure 311, a second surface 317 that transmits the light reflected by the first surface and whose path is deflected, and the first surface 316. And a third surface 318 connecting the second surface 317, and is configured in a sawtooth shape by a repeating structure of the first surface, the second surface, and the third surface.
  • the second prism member 320 is reflected by the incident surface 321 provided to face the emission side of the first prism member 310, the reflection structure 322 that intersects the incident surface 321 at an acute angle, the reflection structure 322, and the incident surface 321. And an emission surface 325 from which light guided to the side emerges.
  • the incident surface 321 includes a light guide surface 3211 that guides the light emitted from the first prism member 310 and guides the light to the reflection structure 322, and all the light reflected by the reflection structure 322 toward the inside of the second prism member 320.
  • the reflecting surface 3212 to be reflected and the connecting surface 3213 connecting the light guide surface 3211 and the reflecting surface 3212 are configured.
  • the reflective surface 3212 is preferably parallel to the reflective structure 322. Thereby, total reflection can be reliably realized between the reflecting surface 3212 and the reflecting structure 322.
  • the light guide surface 3211 of the second prism member 320 is preferably set to be parallel to the second surface 317 of the first prism member 310, and the light guide surface 3211 and the first prism are set. Between the second surface 317 of the member 310 and the second prism member 320, a joint 319 having the same refractive index as that of the first prism member 310 and the second prism member or a refractive index close to these refractive indexes. Is preferably arranged. Thereby, reflection on the second surface 317 of the first prism member and the light guide surface 3211 of the second prism member 320 is suppressed, and higher condensing efficiency can be realized.
  • the bonding agent balsam or ultraviolet curable resin can be used.
  • the refractive index of the medium between the third surface 318 of the first prism member 310 and the reflecting surface 3212 of the second prism member 320 is the refractive index of the first prism member 310 and the second prism member. It is necessary to make it smaller than any of the above. This is because total reflection needs to be performed between the third surface 318 of the first prism member 310 and the reflection surface 3212 of the second prism member 320.
  • the medium is preferably air, but a low refractive index material may be interposed in some cases.
  • the light incident on the first prism member 310 is collected by the light collecting structure 311 and reaches the first surface 316.
  • the light totally reflected by the first surface 316 is emitted from the second surface 317, enters the second prism member 320 from the light guide surface 3211 of the second prism member 320, and travels inside the second prism member 320.
  • the light that reaches the reflecting structure 322 is reflected and totally reflected by the reflecting surface 3212, and is finally collected on the emitting surface 325 while repeating this operation.
  • the condensing device 3 including the first prism member 310 and the second prism member 320 of the third configuration form, light energy such as sunlight can be collected with extremely high efficiency, and the utilization efficiency of the light energy. Can be increased.
  • the reflection structure 322 of the second prism member 320 may be a total reflection + mirror type, or may be a total reflection type. *
  • the photoelectric conversion element 5 is provided on the emission surface 25 of the second prism member 20, and the light condensed by the condensing devices 1, 2, 2 ′ is incident on the photoelectric conversion element 5 to perform photoelectric conversion.
  • the photoelectric conversion device PVS that is extracted as electric energy has been described.
  • the light collecting device of the present disclosure can also be applied to other energy extraction methods and utilization methods.
  • FIGS. 21 (a) to 21 (e) illustrating their concepts.
  • FIG. 21A is a conceptual diagram of an application example in which light collected at the end of the second prism member 20 is taken out from the emission surface 25 and used as it is.
  • the light emitted from the emission surface 25 of the second prism member 20 is further condensed through the cylindrical lens 81, the condensing rod 82, etc., and the condensed light is guided to a desired position by the optical fiber 83. Is exemplified.
  • FIG. 21 (b) shows a first configuration example in which the light collected on the emission surface 25 of the second prism member 20 is converted into electric energy or thermal energy (this designation is also used in FIGS. 14 and 15).
  • FIG. 21B shows a configuration example in which the photoelectric conversion element 5 is coupled to the emission surface 25 of the second prism member 20 and is taken out as electric energy.
  • the heat pipe with a light absorber etc. are used suitably as a photothermal conversion element which carries out photothermal conversion of the condensed light into thermal energy. It is done.
  • FIG. 21 (c) is a conceptual diagram of a second application example in which the light condensed on the emission surface 25 of the second prism member 20 is converted into electric energy or thermal energy and used.
  • a surface obtained by obliquely cutting the end of the second prism member 20 is used as the output surface 25, and a mirror 84 is provided on the output surface 25 (or a reflection film is formed on the output surface 25).
  • This is an application example in which light is condensed on the photoelectric conversion element 5 provided on the upper surface side (or lower surface side) of the prism member 20.
  • a heat pipe with a light absorber or the like is preferably used.
  • FIG. 21 (d) is a conceptual diagram of a third application example in which the light collected on the emission surface 25 of the second prism member 20 is converted into electric energy or heat energy and used.
  • a surface obtained by obliquely cutting the end of the second prism member 20 is used as an output surface 25, and a dichroic mirror 85 is provided on the output surface 25 (or a reflection film having wavelength selectivity is provided on the output surface 25).
  • This is an application example in which the light is divided and condensed into photoelectric conversion elements 5 and 5 ′ provided on the upper surface side (or lower surface side) of the second prism member 20 and the side of the second prism member 20. According to such a configuration, since it is possible to use a highly efficient photoelectric conversion element for each divided wavelength band, it is possible to configure a photovoltaic device with high conversion efficiency at a relatively low cost. .
  • One of the divided lights (for example, light in the infrared region) is incident on a heat pipe with a light absorber and used as thermal energy, and the other (for example, light in the visible region and ultraviolet region) is used as a photoelectric conversion element.
  • the other for example, light in the visible region and ultraviolet region
  • a configuration in which the light is incident on 5 and used as electric energy is also a preferable application example.
  • FIG. 21 (e) is a conceptual diagram of an application example in which the light condensed on the emission surface 25 of the second prism member 20 is further collected in the thickness direction and extracted.
  • the second prism member 20 of this configuration is formed in a parabolic shape that gradually decreases in thickness in the vicinity of the exit surface 25, and light traveling in the direction of the exit surface 25 through the inside of the second prism member is The light is totally reflected by the upper curved surface or the lower curved surface and condensed in the thickness direction.
  • the collected light when used as it is, it can be configured without using a cylindrical lens as shown in (a), and is incident on the photoelectric conversion element 5 or the heat pipe.
  • the power density (energy collection magnification) of incident light can be increased with a simple configuration.
  • the condensing structures 11, 111, 211 for condensing the light incident on the second prism member 20, and the condensing First prism members 10, 110, and 210 having deflection structures 15, 115, and 215 for deflecting and emitting the emitted light are provided. And it is comprised so that the light radiate
  • the photovoltaic device and the photothermal conversion device including such condensing devices 1, 2, 2 ′ are thin and small in weight in the vertical direction of the condensing device, and collect light energy. Since the efficiency is high, it is possible to provide a photovoltaic device and a photothermal conversion device that are small and have high energy conversion efficiency.
  • the condensing device when condensing sunlight in the condensing devices 1, 2 and 2 ′, the condensing device may be configured so that light in at least a specific wavelength range in the sunlight spectrum is condensed. .
  • the wavelength range can be determined according to the spectral sensitivity characteristics of the photoelectric conversion element 5 and the absorption characteristics of the photothermal conversion element.
  • you may comprise a condensing apparatus so that the light of the wavelength which becomes the maximum photoelectric conversion efficiency may be condensed.
  • the specific wavelength range of the light condensed by the condensing device may be, for example, 350 to 1800 nm, or may be 350 to 1100 nm as exemplified in the examples.
  • the former condensing device for condensing light in the wavelength range can be suitably applied when using a multi-junction photoelectric conversion element, and the condensing device for condensing light in the latter wavelength range is a crystal
  • the present invention can be suitably applied when a silicon photoelectric conversion element is used.
  • Japan Application 2011 No. 230125 (October 19, 2011)

Abstract

 本発明を例示する態様の集光装置1は、表面から入射した光を裏面から出射する第1プリズム部材10と、第1プリズム部材の裏面に対向して設けられた第2プリズム部材20とを備え、第1プリズム部材は、表面に形成され入射した光を集光する複数の集光構造と、複数の集光構造に対応して裏面に突出し集光構造により集光された光を偏向して出射させる複数の偏向構造とを有し、第2プリズム部材は、第1プリズム部材の裏面に対向して設けられた入射面と、入射面と鋭角に交差する反射構造と、光を出射させる出射面とを有し、第1プリズム部材の偏向構造から偏向して出射した光は、第2プリズム部材の入射面から第2プリズム部材に入射し、第2プリズム部材の内部において、反射構造及び入射面で反射されることで出射面に向けて導かれ、出射面から出射するように構成した集光装置。

Description

集光装置、光発電装置及び光熱変換装置
 本発明は、表面から入射する光を側面方向に集光する集光装置、及びこの集光装置を用いた光発電装置並びに光熱変換装置に関する。
 表面から入射した光を側面に集光する集光装置として、太陽光が入射する入射面及び入射面に対して鋭角に交差する底面を有し、入射面から入射した太陽光を底面と入射面との間で複数回反射させて集光するプリズム部材を備えた集光装置が知られている。
 このような集光装置の基本的な概念を図22に示す。集光装置9は、太陽光が入射する入射面91と、入射面91と頂角εで交差し入射光を反射する底面92と、入射面91とほほ直角に交差する出射面95とからなり、断面視がプリズム状ないし楔状に形成されたプリズム部材90を備えて構成される。光発電装置は、集光された光を光電変換する光電変換素子(太陽電池)5が出射面95に設けられて構成される。
 いま、プリズム部材90の水平方向の長さをL、厚さ方向の高さをHとし、紙面直交方向の幅を一定としたときに、この集光装置9の集光倍率は、一般的に(入射面積)/(出射面積)=L/Hで規定される。このように、集光装置の幾何学的な形状に基づいて規定される集光倍率を、本明細書においては「形状集光倍率」という。上記式から、形状集光倍率を高めるためには、頂角εを小さくすることが求められる。
 ところが、頂角εを小さくすると、これに伴って入射面91から入射した光の底面92への入射角も小さくなるため、図22の紙面内における太陽光の入射面91への入射角θを大きくしないと入射光が底面92を透過してしまう。一方、この入射角θを大きくすると、入射面91に入射する太陽光の単位面積当たりの光強度(エネルギー密度)が低くなるため、太陽光の光エネルギーを効率的に集光することが難しい。
 そこで、底面92に金属膜を蒸着し、あるいは反射鏡を接着する等により底面92をミラー面とし、底面92での鏡面反射と入射面91での全反射とを繰り返すことにより、入射光を出射面95に集光するように構成した集光装置が提案されている(例えば、特許文献1を参照)。
日本国特開平6-275859号公報
 しかしながら、上記のように底面をミラー面とした集光装置においても、入射面への太陽光の入射角θを小さくすると、底面で反射(鏡面反射)された光が入射面から出射するようになる。そのため、太陽光の光エネルギーを、より効率的に集光可能な集光装置が求められていた。本発明は、このような事情に鑑みてなされたものであり、太陽光等の光エネルギーの利用効率を高めた集光装置を提供することを目的とする。また、太陽光等の光エネルギーを、効率的に電気エネルギーに変換可能な光発電装置、効率的に熱エネルギーに変換可能な光熱変換装置を提供することを目的とする。
 上記目的を達成するため、本発明の第1の態様によると、集光装置は、表面から入射した光を裏面から出射する第1プリズム部材と、第1プリズム部材の裏面に対向して設けられた第2プリズム部材とを備え、第1プリズム部材は、表面に形成され入射した光を集光する複数の集光構造と、複数の集光構造に対応して裏面に突出し集光構造により集光された光を偏向して出射させる複数の偏向構造とを有し、第2プリズム部材は、第1プリズム部材の裏面に対向して設けられた入射面と、入射面と鋭角に交差する反射構造と、光を出射させる出射面とを有し、第1プリズム部材の偏向構造から偏向して出射した光は、第2プリズム部材の入射面から第2プリズム部材に入射し、第2プリズム部材の内部において、反射構造及び入射面で反射されることで出射面に向けて導かれ、出射面から出射するように構成される。
 本発明の第2の態様によると、第1の態様の集光装置において、第1プリズム部材の偏向構造は、集光構造により集光された光を反射する第1面と、第1面で反射された光を透過して第1プリズム部材から出射する第2面と、を有することが好ましい。
 本発明の第3の態様によると、第2の態様の集光装置において、第2プリズム部材の入射面は、第1プリズム部材の偏向構造の第2面と略平行に対向し第1プリズム部材の第2面から出射した光を入射させる導光面と、反射構造で反射された光を第2プリズム部材の内部に向けて反射させる反射面とを有することが好ましい。
 本発明の第4の態様によると、第3の態様の集光装置において、第1プリズム部材の第2面と第2プリズム部材の導光面との間に、第1プリズム部材の屈折率及び第2プリズム部材の屈折率とほぼ等しい屈折率を有する接合部が配置されることが好ましい。
 本発明の第5の態様によると、第3の態様の集光装置において、第1プリズム部材と第2プリズムの反射面との間に、第1プリズム部材の屈折率及び第2プリズムの屈折率のいずれよりも低い屈折率を有する媒質が配置されることが好ましい。
 本発明の第6の態様によると、第2~5の態様のいずれか一つの集光装置において、第1プリズム部材の集光構造により集光され第1面により反射されて第2面から出射された光が、第1プリズム部材の隣接する偏向構造に遮られることなく第2プリズム部材の入射面に入射するように構成されることが好ましい。
 本発明の第7の態様によると、第2~6の態様のいずれか一つの集光装置において、第1プリズム部材の複数の偏向構造は、第1面及び第2面が交互に並ぶ繰り返し構造をなすことが好ましい。
 本発明の第8の態様によると、第1~7の態様のいずれか一つの集光装置において、第1プリズム部材の集光構造は、光の入射側に凸状の曲面であり、第1面は、対応する集光構造により集光された光全体が全反射されるように構成することが好ましい。
 本発明の第9の態様によると、第1~7の態様のいずれか一つの集光装置において、第1プリズム部材の集光構造は、複数の平面により光の入射側に凸状となるように構成され、第1面は、集光構造により集光された光全体が全反射されるように構成することが好ましい。
 本発明の第10の態様によると、第1~9の態様のいずれか一つの集光装置において、第2プリズム部材の反射構造は、一つの平面により構成され、第1プリズム部材から第2プリズム部材の入射面に入射した光が、第2プリズム部材の内部を進行して反射構造に到達した際に、反射構造で全反射されるように構成することが好ましい。
 本発明の第11の態様によると、第1~9の態様のいずれか一つの集光装置において、第2プリズム部材の反射構造面は、平面と、当該平面との間に空気層を介して対向配置されたミラー面とにより構成され、第1プリズム部材から第2プリズム部材の入射面に入射した光が、第2プリズム部材の内部を進行して反射構造に到達した際に、平面を透過した後、ミラー面で反射され、再び平面を透過して第2プリズム部材の内部を進行し、更に、入射面で第2プリズム部材の内部に全反射されるように構成することが好ましい。
 本発明の第12の態様によると、光発電装置は、第1~11の態様のいずれか一つの集光装置と、第2プリズム部材の出射面に導かれた光を光電変換する光電変換素子とを備える。
 本発明の第13の態様によると、光熱変換装置は、第1~11の態様のいずれか一つの集光装置と、第2プリズム部材の出射面に導かれた光を光熱変換する光熱変換素子とを備える。
本発明の態様を例示する光発電装置の概要構成図である。 第2プリズム部材に太陽光が入射して集光する場合において、太陽光の入射角と形状集光倍率との関係を説明するための説明図である。 第2プリズム部材に太陽光が入射して集光する場合において、太陽光の入射角と第2プリズム部材の入射面に入射する光エネルギーとの関係を説明するための説明図である。 第1プリズム部材の基本的な概念を説明するための説明図である。 第1構成形態の第1プリズム部材について、構成及び作用を説明するための説明図である。 第1構成形態の第1プリズム部材について、最小出射角を54.5度とした場合における、(a)許容角度と焦点距離との関係、(b)許容角度と最大出射角との関係、を示すグラフである。 第1構成形態の第1プリズム部材について、最小出射角を50度~80度の範囲で変化させた場合における、(a)最小出射角と最大許容角との関係、(b)最小出射角と焦点距離との関係、(c)最小出射角と最大出射角との関係、を示すグラフである。 第2プリズム部材の模式的な断面図である。 全反射+ミラータイプの第2プリズム部材の作用を説明するための説明図である。 実施例1の集光装置について、(a)入出射時のフレネル損失及びミラー面での吸収損失を除外してシミュレーションした光線追跡結果、(b)入出射時のフレネル損失及びミラー面での吸収損失を考慮してシミュレーションした光線追跡結果である。 実施例2の集光装置について、(a)入出射時のフレネル損失及びミラー面での吸収損失を除外してシミュレーションした光線追跡結果、(b)入出射時のフレネル損失及びミラー面での吸収損失を考慮してシミュレーションした光線追跡結果である。 実施例1及び実施例2の集光装置について、(a)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に変動した場合の、太陽光入射各の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフ、(b)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に直交する面内で変動した場合の、太陽光の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフである。 第1構成形態における変形例の第1プリズム部材について、構成及び作用を説明するための説明図である。 第2構成形態における第1構成例の第1プリズム部材について、集光構造及び偏向構造の構成を説明するための説明図である。 第2構成形態における第1構成例の第1プリズム部材について、集光構造及び偏向構造の作用を説明するための説明図である。 実施例3の集光装置について、(a)入出射時のフレネル損失及びミラー面での吸収損失を除外してシミュレーションした光線追跡結果、(b)入出射時のフレネル損失及びミラー面での吸収損失を考慮してシミュレーションした光線追跡結果である。 実施例3の集光装置について、(a)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に変動した場合の、太陽光の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフ、(b)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に直交する面内で変動した場合の、太陽光の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフである。 第2構成形態における第2構成例の第1プリズム部材について、集光構造及び偏向構造の構成及び作用を説明するための説明図である。 実施例4の集光装置について、(a)入出射時のフレネル損失及びミラー面での吸収損失を除外してシミュレーションした光線追跡結果、(b)入出射時のフレネル損失及びミラー面での吸収損失を考慮してシミュレーションした光線追跡結果である。 実施例4の集光装置について、(a)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に変動した場合の、太陽光の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフ、(b)太陽光の入射方向が第1プリズム部材の単位光学セルの繰り返し配列方向に直交する面内で変動した場合の、太陽光の変動角と光電変換素子に到達する光エネルギーの到達割合との関係をシミュレーションした結果を表すグラフである。 集光装置からの光エネルギーの取り出し手法を例示する概念図である。 従来の集光装置の基本的な概念図である。 第3構成形態における第1プリズム部材及び第2プリズム部材について、集光構造及び偏向構造の作用を説明するための説明図である。
 以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置として、第1構成形態の集光装置1を備えた光発電装置PVSの概要構成図を図1に示す。光発電装置PVSは、光を集光する集光装置1と、集光された光を光電変換する光電変換素子5とを備えて構成される。
 集光装置1は、光を入射させる表面に集光構造を有し、入射した光を斜めに偏向させて裏面からに出射させる第1プリズム部材10と、第1プリズム部材10の裏面に対向して設けられ第1プリズム10から出射した光を集光して光電変換素子5に導く第2プリズム部材20とを備えて構成される。第1プリズム部材10、第2プリズム部材20、及び光電変換素子5は、紙面に垂直な前後方向に延びて形成されている。すなわち、図1は光発電装置PVSの断面図である。なお、以降では、説明の便宜上から図1に示す姿勢をもって上下左右の方向を用いるが、光発電装置PVSの配設姿勢は光の入射方向に応じて任意に設定することができる。
 第2プリズム部材20は、第1プリズム部材10から出射した光が入射する入射面21と、入射面21と頂角εで交差して第1プリズム部材10により進路が偏向された光を反射させる反射構造22と、反射構造22及び入射面21により反射されて左方に導かれた光が出射する出射面25とを有して構成される。図1は、出射面25に光電変換素子5を設けた構成例を示している。
 ここで、図2(a)に示すように、入射面21の左右方向の長さをL、出射面25の上下方向の高さをHとすると、紙面に垂直な前後方向の幅が一様な第2プリズム部材20の形状集光倍率はL/H=1/tanεと規定される。従って、形状集光倍率を高めるためには、頂角εをできるだけ小さくすればよい。しかし、頂角εを小さくすると、入射面21から第2プリズム部材20内に入射した光が反射構造22に到達する際の入射角も小さくなる。そのため、入射面21への光の入射角θが大きくないと、入射光が反射構造22で全反射するための条件を満たさない。全反射の条件を満たさない場合には、光が反射構造22を透過してしまう。一方、第2プリズム部材20の反射構造22に蒸着等により金属膜を形成してミラー面とした場合には、反射構造22からの透過は抑止される。ただし、この場合においても、反射構造22で反射された光が入射面21において全反射するための条件を満たす必要がある。
 第2プリズム部材20に入射角θで入射した光が、反射構造22及び入射面21を透過することなく反射されて出射面に導かれるための最小の頂角εminを求めると、下記のようになる。式中のnは第2プリズム部材20の屈折率である。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)及び(2)から、第2プリズム部材20への光の入射角θが大きいほど(90度に近いほど)最小頂角εminが小さくなり、第2プリズム部材を薄く構成できることがわかる。頂角がεminの第2プリズム部材に関して、横軸に入射角θ、縦軸に形状集光倍率をとり、これらの関係をプロットしたグラフを図2(b)に示す。図2(b)から、反射構造22がミラー面の場合には、入射角θが60度前後から、また、反射構造22が全反射面の場合には入射角θが70度前後から、それぞれ形状集光倍率が急激に高くなることが分かる。従って、入射面21に入射する光エネルギーが一定であると仮定するなら、入射角θが大きいほどエネルギー密度が高い光を光電変換素子5に集光することになる。
 しかし、第2プリズム部材20に太陽光を入射させた場合、入射面21に入射する光エネルギーは入射角θに依存する。図3に、入射する光エネルギーと入射角θの関係を示す。図3(a)に示すように、入射面21に入射する光エネルギーは、太陽光の入射角がθaであればLcosθaに比例し、太陽光の入射角がθbであればLcosθbに比例する。すなわち、入射角θで入射面21に入射する太陽光の光エネルギーはcosθに比例する。図3(b)は、横軸に太陽光の入射角θ、縦軸に入射角θ=0度のときに入射面21に入射する光エネルギーを100%とした場合の割合をとり、入射角θと入射光エネルギーとの関係を示したグラフである。図3(b)から明らかなように、入射面21に入射する光エネルギーは、入射角θが大きいほど(90度に近いほど)減少する。なお、図3(b)中にドットで示す実施例1及び実施例2については後に詳述する。
 このように、形状集光倍率を高めるためには、第2プリズム部材20に入射する光の入射角θを大きくすればよいことがわかるが、一方、形状集光倍率を高くするには、入射角θを小さくすることが求められる。発明者らは、このように相反する要求を両立させる手段として、第2プリズム部材20の入射面側に、第1プリズム部材10を設けた構成を提案する。
 第1プリズム部材10は、小さい入射角で光を受光し、受光した光を大きな出射角で出射して、第2プリズム部材20に大きな入射角で入射させる光学素子である。
 ここで、光の偏向作用について、第2プリズム部材の入射面21に対向させて、裏面に三角プリズムが複数並べた構成としたプリズム部材80を配置する場合を想定し、図4を参照して説明する。なお、プリズム部材を構成する材料の屈折率は約1.5とする。プリズム部材80の表面から入射角0度で入射した平行光線は、裏面の三角プリズムの二面86及び87で全反射して各々斜め下方に出射するように二面86及び87の角度は設定されている。出射された光が第2プリズム部材20に入射した場合、第2プリズム部材20の集光面25の方向に偏向して入射した光は出射面25側に導光されて集光される。しかし、第2プリズム部材20の集光面25とは反対方向に偏向して入射した光は反射構造22及び入射面21を通して出射してしまう。プリズム部材80からの出射方向を一方向にするためには、三角形の二面86,87のうち一方にのみ入射させる必要がある。即ち、第2プリズム部材20の集光面25の方向に偏向して入射させるには、例えば平面86にのみ光を入射させる必要がある。
 図5により、第1プリズム部材10の構成と作用を説明する。第1プリズム部材10は、入射した光を集光するために、光の入射面に複数の集光構造11,11…を有するとともに、集光構造により集光された光を偏向させるために、各集光構造に対応して、光の出射面に突出した複数の偏向構造15,15…とを有して構成される。偏向構造15は、集光構造11により集光された光を反射する第1面16と、第1面16により反射されて進路が偏向された光を透過する第2面17とを有し、第1面16及び第2面17の繰り返し構造により鋸歯状に構成される。第1プリズム部材10の入射面から入射した光は、集光構造11及び偏向構造15によって、隣接する偏向構造に遮られることなく、所定角度偏向された状態で第2プリズム部材20の入射面21に入射するように構成される。
 太陽の角度は季節・時間と共に変動する。そのため、集光対象が太陽光であり、かつ上記のように一定の入射角度で入射させようとする場合には、太陽を追尾する追尾装置が必要になる。追尾装置の価格は、集光装置1の設置精度や太陽の追尾精度によって大きく変化する。従って、太陽光の集光システムを低コストで実現するためには、太陽光の入射角がある程度の角度範囲ずれた場合であっても、集光効率を大きく低下させることなく光電変換素子5に導光する構成とすることが望まれる。
(第1構成形態の第1プリズム部材)
 図5は、第1の構成形態の第1プリズム部材10について、構成及び作用を説明するための説明図であり、図1の一部を拡大して示したものである。以降の説明では、理解を容易にするために、光線の方向、角度に関しては、図面の紙面内における記載とする。従って、例えば、「入射角0度」は、紙面内における0度を意味するものであって、必ずしも入射面に対して垂直入射することを意味するものではない。図5には、対向する一対の集光構造11と偏向構造15とからなる単位光学セルを二組示しており、図5において、左側の単位光学セルには、第1プリズム部材10の集光構造11に入射角θ=0度でした平行光線の集光状態を実線で示されている。また、右側の単位光学セルには、入射角がθ=0度に対して+Δθ度傾斜した光線の集光状態が点線で、また、入射角がθ=0度に対して-Δθ度傾斜した光線の集光状態が一点鎖線で示されており、角度範囲-Δθ~+Δθで入射する光が第1面16に到達する領域を星印で示す太い実線で示している。
 本構成形態の第1プリズム部材10において、集光構造11は、紙面に直角方向に一様な形状となっており、光の入射側に複数の凸構造、例えば複数のシリンドリカルレンズ12により構成される。単位光学セル間のピッチはa[mm]、シリンドリカルレンズ12の焦点距離はf[mm]、集光光線の収束角はβ[度]である。偏向構造15において、第1面16は、シリンドリカルレンズ12により集光された集光光全体が全反射されるように構成される。また、第2面17を透過した光が隣接する偏向構造15に遮られることなく、第2プリズム部材20の入射面21に入射するように構成される。
 図5に示すように、上面(シリンドリカルレンズの頂線を結んだ平面)と平行な下面18を想定し、この下面18と第1面16とがなす角度(第1面16の傾斜角という)をα、下面18と第2面17とがなす角度(第2面17の傾斜角という)をα’とする。第2面17の傾斜角α’は、シリンドリカルレンズにより集光された光が第1面16により全反射される反射光の中心が、第2面17に対して垂直となるように設定される。
 第1プリズム部材10から出射される出射光と下面18に垂直な面とがなす角度について図5を参照しながら考察する。出射角の中央値Actrは、第1プリズム部材10に入射角0度で入射した光出射角である。最大出射角Amaxは、第1プリズム部材10に+Δθ度傾斜して入射した点線で示す光のうち、第1面16に最も小さい入射角で入射した光の出射角である。また、最小出射角Aminは、第1プリズム部材10に-Δθ度傾斜して入射した一点鎖線で示す光のうち、第1面16に最も大きな入射角で入射した光の出射角である。
 最大出射角Amax、出射角中央値Actr、最小出射角Aminは、第1面16に入射する光線の収束角がβ=arctan(a/2f)であることから、下記のように表される。
  最大出射角:Amax=180-2α+β+Δθ ・・・・・・・・(3)
  中央値  :Actr=180-2α ・・・・・・・・・・・・・(4)
  最小出射角:Amin=180-2α-β-Δθ ・・・・・・・・(5)
 偏向構造15から出射した全ての光線が、隣接する偏向構造15に遮られない(隣接する偏向構造に入射することなく、その下方を通過する)ようにするためには、次式の条件を満たすことが必要である。すなわち、偏向構造15から出射した光線と下面18とがなす角度をγとすると、
  tanγ>2f*tanΔθ*tanα/(2f*tanΔθ+a) ・・・・(6)
 既に記載したように、第2プリズム部材20は、入射面21への入射角が大きいほど(入射面に対して斜めに入射するほど)入射面21と反射構造面22とがなす頂角εを小さくすることができ、それにより、大きな形状集光倍率を得ることができる。すなわち最小出射角Aminが大きいほど第2プリズム部材20の頂角εを小さくでき、光電変換素子5に集光する光のエネルギー密度を増大することができる。
 そこで、まず、最小出射角Aminを設定し、次に、第1プリズム部材10の厚さに影響を与える単位光学セルのピッチaを定める。単位光学セルのピッチaは、加工精度などを考慮すると200[μm]程度まで小さくすることが可能であり、これは、第1プリズム部材10の厚さを1[mm]程度まで薄くすることができることを意味する。
 第1プリズム部材10において、第1面16の傾斜角α、シリンドリカルレンズ12における光線の収束角β、及び偏向構造15から出射した光線と下面18とがなす角度γは、第1プリズム部材10に入射する光線の入射角0度に対する傾き角度(以下、単に傾き角度という)Δθ、及びシリンドリカルレンズ12の焦点距離fの関数で、以下の式のように表せる。
  α=(180-Amin-β-Δθ)/2 ・・・・・・・・・・・(7)
  β=arctan(a/2f) ・・・・・・・・・・・・・・・・・・(8)
  γ=2α-90-β-Δθ ・・・・・・・・・・・・・・・・・(9)
 最小出射角Aminを54.5度とし、単位光学セルのピッチaを3[mm]とした場合を考える。第1プリズム部材10に入射する光線の傾き角度Δθを、集光装置1が許容し得る光線の傾き角度、すなわち許容角度とすれば、許容角度Δθが大きいほど、集光装置を低コスト化できる。そこで、(6)式を満たす許容角度Δθの最大値(最大許容角)Δθmaxを求めると、最大許容角Δθmax=1.77度となる。このとき、シリンドリカルレンズ12の焦点距離f=11.2[mm]、第1面16の傾斜角α=58.1度、光線の収束角β=7.63度、最大出射角の光と下面18とがなす角度γ=16.7度、最大出射角Amax=73.3度となる。
 最小出射角Amin=54.5度、単位光学セルのピッチa=3[mm]の第1プリズム部材10における、許容角度Δθと焦点距離fとの関係を図6(a)に、また、許容角度Δθと最大出射角Amaxとの関係を図6(b)に示す。図6(a)及び図6(b)に示すように、上記条件の第1プリズム部材10では、許容角度Δθは1.77度以下の範囲で設定可能である。例えば、許容角度Δθを1.4度とした場合には、シリンドリカルレンズ12の焦点距離をf=7.1~23[mm]の範囲で適宜に設定することができる。また、許容角度Δθを1.2度とした場合には、最大出射角をAmax=62.8~82.9度の範囲で適宜に設定することができる。
 次に、最小出射角Aminを50度~80度の範囲で変化させた場合について、図7を参照して説明する。図7(a)は、上記角度範囲で最小出射角Aminを変化させた場合について、最小出射角Aminと最大許容角Δθmaxとの関係を算出して示したグラフである。図7(a)に示したように、最小出射角Aminが大きくなるほど、最大許容角Δθmaxは小さくなる。これは、最小出射角Aminを大きくするほど形状集光倍率を高くできる一方で、入射光の許容角度範囲が狭くなり、集光装置の設置や太陽の追尾に高い精度が必要になることを意味する。図7(a)から、形状集光倍率と追尾精度とをバランスさせた角度範囲を求めることができる。
 図7(b)は、最大許容角Δθmaxにおける、最小出射角Aminと焦点距離fとの関係を、最小出射角Aminを上記角度範囲で変化させた場合について算出して示したグラフである。図7(b)から、最小出射角Aminが大きくなるほど、シリンドリカルレンズ12の焦点距離fは大きくなり、第1プリズム部材10が厚くする必要があることが分かる。
 図7(c)は、最大許容角Δθmaxにおける、最小出射角Aminと最大出射角Amaxとの関係を、最小出射角Aminを上記角度範囲で変化させた場合について算出して示したグラフである。図7(c)から、最小出射角Aminが大きくなるほど、最大出射角度Amaxも大きくなるが、出射光線の角度範囲(Amax-Amin)は小さくなることが分かる。
 以上説明した通り、第1プリズム部材10に入射角0度で入射した太陽光は、集光構造11及び偏向構造15により集光及び偏向されて、大きな出射角Aで第1プリズム部材10から出射し、第2プリズム部材20に大きな入射角Aで入射する。
 図1~図3を参照して説明したように、第2プリズム部材20は、第1プリズム部材10から出射した光が入射する入射面21と、入射面21と頂角εで交差して第1プリズム部材10により進路が偏向された光を偏向方向に導く反射構造22と、反射構造22及び入射面21により反射されて左方に導かれた光が出射する出射面25とを有して構成される。
 第2プリズム部材20の頂角εは、光が入射面21から入射した入射光が反射構造22に最初に到達した際に、光を反射構造22で全反射する構成にするか、あるいは、反射構造22をミラー面等にして入射光を反射させるかによって異なる。上記二つの場合におけるそれぞれの第2プリズム部材の最小頂角εminは、第2プリズム部材の屈折率n及び入射面21への入射角θの関数で表される。入射光を反射構造22で全反射させる構成(便宜的に全反射タイプという)の場合の最小頂角εminは(1)式、入射光をミラー面等とした反射構造22で反射させる構成(便宜的にミラータイプという)の場合の最小頂角εminは(2)式で表される。
 (1)式と(2)式とを比較すると明らかなように、ミラータイプの最小頂角εminは全反射タイプの最小頂角εminの1/2となる。従って、第2プリズム部材20をミラータイプにすることによって形状集光倍率を2倍にすることができる。しかしながら、反射構造22をミラー面にした場合には、ミラー面における反射に伴って光の吸収による損失が発生する。反射膜として広く用いられているアルミニウム蒸着膜の反射率でも90%程度であり、反射を繰り返す度に約10%ずつ光エネルギーが損失する。そのため、ミラータイプの第2プリズム部材では、結果的には光エネルギーの集光効率が低くなる。この点に関して、次に説明する第2プリズム部材20を示す。図8に、この第2プリズム20の模式的な断面図を示す。
 第2プリズム部材20は、プリズム本体26と反射構造22により構成される。反射構造22は、プリズム本体26の下面に形成された平面22aと、当該平面22aに対して空気層23を介して平行に対向配置され、対向面をミラー面22bとした反射部材24とにより構成される。平面22aは平坦に光学研磨して形成される。反射部材24は、例えば、ガラス基板の表面にアルミニウム蒸着膜が形成しミラー面としたものを用いることができる。空気層23は、層の厚さが概ね集光対象の光の波長以上であれば良く、本構成例においては、平面22aに対してミラー面22bが平行となるように反射部材24を固定することにより、空気層23を形成している。
 第2プリズム部材20の頂角εは、ミラータイプとした場合に算出される最小頂角εmin(すなわち(2)式)に基づいて設定される。このとき、入射面21からプリズム本体26に入射した光は反射構造22に到達し、平面22aを透過してプリズム本体26から出射した後、ミラー面22bで反射され、平面22aからプリズム本体26に再び入射する。平面22aからプリズム本体26に再び入射する光の入射角は、平面22aへの第1入射光の入射角と同一になる。
 この様子について図9を参照して説明する。図9に示すように、入射角θで入射面21からプリズム本体26に入射した光は、プリズム本体26を構成する部材の屈折率nに応じた屈折角θ1で屈折して、平面22aに入射角θ2=θ1+εで入射する。入射角θ2は全反射臨界角未満である。平面22aに入射した光は出射角θ21で平面22aから出射し、ミラー面22bで反射され、入射角θ21、屈折角θ2で平面22aからプリズム本体26に再び入射する。この屈折角はθ2は、プリズム本体26に入射した光が最初に平面22に到達した際の入射角θ2と同一である。
 平面22aから再び入射した光は、プリズム本体26の内部を入射面21に向けて進行し、入射面21に入射角θ3で入射する。入射面21に入射する光の入射角θ3は、θ3=θ2+ε=θ1+2εである。この入射角θ3は、全反射臨界角より大きいので、光は入射面21で全反射され、再びプリズム本体26の内部を反射構造22に向けて進行し、平面22aに入射角θ4(不図示)で入射する。この入射角θ4は、θ4=θ3+ε=θ1+3εで表され、全反射臨界角より大きい。このため、光は平面22aで全反射され、入射面21に向けてプリズム本体26の内部を進行する。以降の各面への入射角は、それぞれの面に入射するたびに入射角がεずつ順次増加する。複数回全反射された光は出射面25に導かれる。
 このように、第2プリズム部材の反射構造面22を、プリズム本体26の平面22aと空気層23を介して配設したミラー面22bとにより構成することで、入射面から入射した光をミラー面22bで反射させる一方、以降の反射をプリズム内部の全反射とした形態の第2プリズム部材20を、本明細書においては、全反射+ミラータイプの第2プリズム部材という。
 全反射+ミラータイプの第2プリズム部材20によれば、プリズムの頂角εをミラータイプの第2プリズム部材と同様に小さく(全反射タイプの第2プリズム部材の1/2に)することができ、これにより高い形状集光倍率を得ることができる。また、本形態の第2プリズム部材20では、ミラー面で光が反射するのは、入射面21から入射した光が最初に反射構造22に到達した際の1回のみであり、以降の入射面21及び反射構造22における反射は全て全反射である。このため、ミラータイプの第2プリズム部材に比べて存質が少なく、高い集光効率で光エネルギーを集光することができる。
 集光装置1においては、入射光の光エネルギーが最大となる入射角0度で第1プリズム部材10に太陽光を入射角0度で入射させ、集光構造11及び偏向構造15により偏向させた光を第2プリズム部材20に入射させる。第2プリズム部材20は全反射+ミラータイプにより構成されているので、高い集光効率で光エネルギーを出射面25に集光できる。すなわち、このような構成の集光装置1によれば、太陽光等の光エネルギーを極めて高い効率で集光することができ、光エネルギーの利用効率を高めることができる。
 第1プリズム部材10については既に詳しく説明したように、第1プリズム部材に入射する光の許容角度Δθを見込んで、集光構造11や偏向構造15の詳細構成を設定することができ、太陽光の集光倍率と追尾精度とを高い次元でバランスさせた小型の集光装置、光発電装置を提供することが可能となる。
(実施例1)
 集光装置1について、下記条件の第1プリズム部材10及び第2プリズム部材20を用いて、第1プリズム部材10の上面に太陽光を入射させた場合について、光学技術分野で広く用いられている光線追跡プログラムを用いてシミュレーションを行った。なお、太陽光は、波長350~1100 [nm]、視直径±0.26度とし、太陽光の中心光軸が第1プリズム部材10の上面に入射角θ=0度で入射する条件とした。
○第1プリズム部材10
・単位光学セルのピッチa×数   :3[mm]×10
・シリンドリカルレンズの焦点距離f:15.3[mm](収束角β=5.6度)
・第1面16の傾斜角α      :56度(ずらし幅x=0.45[mm])
・第2面17の傾斜角α’     :75度
・入射光の許容角度Δθ      :1.7度
・最小出射角Amin         :55度
・最大出射角Amax         :73度
○第2プリズム部材20(全反射+ミラータイプ)
・左右方向長さL         :30[mm]
・頂角ε             :4.05度
・ミラー面22bの反射率     :90%
 上記条件でシミュレーションした光線追跡結果を図10に示す。図10(a)は、各プリズム部材への光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を除外してシミュレーションを行った場合の光線追跡結果、図10(b)は、各プリズム部材への光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮してシミュレーションを行った場合の光線追跡結果である。
 入射時及び出射時のフレネル損失を考慮しない場合、上方から第1プリズム部材に入射角0度で入射した太陽光は、全ての光線が第1プリズム部材10の下面側に出射して第2プリズム部材20に入射する。第2プリズム部材20に入射する光の入射角は55~73度(平均入射角64度)となる。入射時及び出射時のフレネル損失を考慮した場合には、第1プリズム部材10に入射角0度で入射した太陽光の光エネルギーの92.8%が第1プリズム部材10の下面側から出射して第2プリズム20に入射する。
 もし、第1プリズム部材10を用いない場合を考えると、第2プリズム部材20に入射角64度で太陽光を直接入射させた場合には、入射面21に入射する太陽光の光エネルギーは垂直入射時の43.4%である(図3を参照)。このことから、第1プリズム部材10を設けることにより、第2プリズム部材20に入射する太陽光の光エネルギーを2倍以上(約2.1倍)に高められることが分かる。
 第2プリズム部材20に入射角55~73度で入射した光は、反射構造22及び入射面21で反射されて集光され、出射面25に設けられた光電変換素子5に到達する。各面での入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮しない場合、上方から第1プリズム部材10に垂直入射した太陽光の光エネルギーの98%が光電変換素子5に到達する。入射時及び出射時におけるフレネル損失及びミラー面での吸収による損失を考慮した場合には、第1プリズム部材10に垂直入射した太陽光の光エネルギーの74%が光電変換素子5に到達する。
 集光装置1のエネルギー集光倍率を、エネルギー集光倍率=出射光のエネルギー密度[W/cm2]÷入射光のエネルギー密度[W/cm2]と定義すれば、本実施例におけるエネルギー集光倍率は、形状集光倍率14.1×74%=10.4倍となる。一方、第1プリズム部材10を用いずに第2プリズム部材20に太陽光を直接入射させた場合のエネルギー集光倍率を計算すると、形状集光倍率が最大となる入射角66度のときで5.0倍であった。
 このように、本実施例に示す集光装置1によれば、ミラータイプの第2プリズム部材と同様に小さい頂角の第2プリズム部材を用いた小型の装置構成で、太陽光の光エネルギーを高効率で集光可能なことが理解できる。
(実施例2)
 次に、集光装置1において、下記条件の第1プリズム部材10及び第2プリズム部材20を用いて、第1プリズム部材10の上面に太陽光を入射させた場合のシミュレーション結果について説明する。
○第1プリズム部材10
・単位光学セルのピッチa×数   :3[mm]×10
・シリンドリカルレンズの焦点距離f:21.5[mm](収束角β=4度)
・第1面16の傾斜角α      :56.5度(ずらし幅x=0.375[mm])
・第2面17の傾斜角α’     :65度
・入射光の許容角度Δθ      :1度
・最小出射角Amin         :62度
・最大出射角Amax         :76度
○第2プリズム部材20(全反射+ミラータイプ)
・左右方向長さL         :30[mm]
・頂角ε             :4.05度
・ミラー面22bの反射率     :90%
 上記条件でシミュレーションした光線追跡結果を図11に示す。図11(a)は、各プリズム部材への光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を除外してシミュレーションを行った場合の光線追跡結果、図11(b)は、プリズムへの光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮してシミュレーションを行った場合の光線追跡結果である。
 入射時及び出射時のフレネル損失を考慮しない場合、上方から第1プリズム部材10に垂直入射した太陽光は、全ての光線が第1プリズム部材10の下面側に出射して第2プリズム部材20に入射する。第2プリズム部材20に入射する光の入射角は62~76度(平均入射角68度)となる。入射時及び出射時のフレネル損失を考慮した場合には、第1プリズム部材10に垂直入射した太陽光の光エネルギーの92.4%が第1プリズム部材10の下面側から出射して第2プリズム部材20に入射する。
 第1プリズム部材10を用いない場合を考えると、第2プリズム部材20に入射角68度で太陽光を直接入射させた場合には、入射面21に入射する太陽光の光エネルギーは垂直入射時の37.5%である(図3を参照)。このことから、本実施例においても、第1プリズム部材10を設けることにより、第2プリズム部材20に入射する太陽光の光エネルギーを2倍以上(約2.5倍)に高められることが分かる。
 第2プリズム部材20に入射角62~76度で入射した光は、反射構造22及び入射面21で反射されて集光され、出射面25に設けられた光電変換素子に到達する。各面での入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮しない場合、上方から第1プリズム部材10に入射角0度で入射した太陽光の光エネルギーの99%が光電変換素子5に到達する。入射時及び出射時のフレネル損失及びミラー面での吸収による損失を考慮した場合には、第1プリズム部材10に垂直入射した太陽光の光エネルギーの72%が光電変換素子5に到達する。従って、集光装置全体でのエネルギー集光倍率は、形状集光倍率14.1×72%=10.2倍となる。一方、第1プリズム部材10を用いずに第2プリズム部材20に太陽光を直接入射させた場合のエネルギー集光倍率は、形状集光倍率が最大となる入射角66度のときで5.0倍であった。
 このように、本実施例に示す集光装置1においても、ミラータイプの第2プリズムと同様に小さい頂角の第2プリズム部材を用いた小型の装置構成で、太陽光の光エネルギーを高効率で集光可能なことが理解される。
 次に、集光装置1において、第1プリズム部材10の上面に垂直入射する太陽光の入射角度が変動した場合について、その影響をシミュレーションした結果について図12を参照して説明する。図12(a)は、第1プリズム部材10に入射する太陽光の入射方向が、垂直入射に対して図1~5に示す各図の紙面内において、左右に±δ度の範囲で変動した場合(すなわち、垂直入射の状態から第1プリズム部材の単位光学セルの繰り返し配列方向に±δ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどのように変化するかについて、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。太陽光の変動方向の符号は図5と同様である。図12(b)は、第1プリズム部材10に入射する太陽光が、垂直入射に対して図1~図5に示す各図の紙面に直交する面内において、前後に±ζ度の範囲で変動した場合(すなわち、垂直入射の状態から第1プリズム部材の単位光学セルの繰り返し配列方向に直交する面内で±ζ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどのように変化するかについて、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。図12(a)及び図12(b)ともに、第1プリズム部材10の上面に入射する太陽光の光エネルギーを100%とし、入射面及び出射面でのフレネル損失並びにミラー面での吸収による損失を考慮している。
 図12(a)から、太陽光入射角の変動角δが、実施例1の集光装置における許容角度Δθ=1.7度、実施例2の集光装置における許容角度Δθ=1.7度の範囲内にある場合には、光電変換素子5に到達する光エネルギーは大きく変化せず、高い効率が得られることが確認できる。実施例1の集光装置及び実施例2の集光装置ともに、太陽光入射角の変動角δが許容角度Δθを超えて増大した場合には、光電変換素子5に到達する光エネルギーが低下するが、変動角δが-方向であるとき、すなわち太陽光が第2プリズム部材20の出射面方向に変動したときには急激に低下し、変動角δが+方向、すなわち太陽光が第2プリズム部材20の頂点方向に変動したときには比較的緩やかに低下することがわかる。
 一方、図12(b)からは、光電変換素子5に到達する光エネルギーは変動角ζが±30度程度の範囲では大きく変化せず、高い効率が安定的に得られることがわかる。すなわち、太陽光の入射方向が、垂直入射に対して第1プリズム部材の単位光学セルの繰り返し配列方向に直交する面内でかなり大きく変動しても、光電変換素子5に到達する光エネルギーへの影響は小さいことが分かる。
 以上説明したように、集光装置1においては、設定された許容角度Δθの範囲内において、高い効率で太陽光の光エネルギーを集光可能であることが確認できる。また、集光装置1の第1プリズム部材においては、断面形状が一方向に沿って一様な集光構造および偏向構造からなる単位光学セルが、複数繰り返し配列する構造であり、複数の単位光学セルの繰り返し配列に直交する面内に関しては、設置及び追尾における角度誤差を緩めに設定することができる。
(変形例)
 以上の説明においては、第1プリズム部材10に入射する光の入射角が-Δθ度においてシリンドリカルレンズ12により集光された光が、第1面16の下端(偏向構造15の頂部)近傍に集光されるようにした構成した場合について説明した(図5を参照)。しかし、光が第1面16において集光される位置はこれに限らない。図13は、光が第1面16において集光される位置を変更した変形例である。図13(a)は、第1プリズム部材10に入射する光の入射角が+Δθのときの光の進路を、図13(b)は、第1プリズム部材10に入射する光の入射角が-Δθのときの光の進路を示す。図示する変形例では、第1プリズム部材10に入射する光の入射角が許容角度である-Δθ度のときに、光が第1面16において集光する位置が、第1面16の下端よりも幾分上方となるようにした構成されている。
 以上の説明は、第2プリズム部材20を全反射+ミラータイプとした構成におけるものであるが、第2プリズム部材20を全反射タイプあるいはミラータイプとして集光装置を構成することも可能である。
(第2構成形態の第1プリズム部材)
 次に、第2構成形態の第1プリズム部材について、図14を参照して説明する。図14は、第2構成形態における第1構成例の第1プリズム部材110について、その構成及び作用を説明するための説明図、及び第1プリズム部材110の一部を拡大して示した拡大図である。図14では、第1プリズム部材110における集光構造111及び偏向構造115の対からなる単位光学セルを示している。
 第1プリズム部材110は、入射した光を集光する複数の集光構造111,111…と、各集光構造に対応して裏面に突出した複数の偏向構造115,115…とを主体として構成される。
 集光構造111は、図14において紙面に直角方向に延びる複数の平面により構成された光の入射側に凸構造をなしている。より詳しく説明すると、集光構造111は、図14中の部分拡大図に示すように、A面112aと、A面112aに接するB面112bと、B面112bに接するC面112cとによる三面からなる形態を示している。第1プリズム部材110の上面は、この三面からなる複数の集光構造111が紙面の左右方向に繰り返して配列された構成となっている。
 C面112cは光の入射方向に直交する面であり、単位光学セルの紙面の左右方向の幅をyとしたときに、概ねy/2の範囲に形成される。B面112bは、C面に対して所定の傾斜角度を有する平面であり、C面112cと接続されて、概ねy/4の範囲に形成される。A面112aは、C面に対してB面112bより大きな傾斜角度を有する平面であり、C面112cと接続されたて、概ねy/4の範囲に形成される。
 偏向構造115は、集光構造111により集光された光を反射する第1面116と、第1面116により反射されて進路が偏向された光を透過する第2面117とを有し、第1面116と第2面117がり返して配列されることで鋸歯状に構成される。偏向構造115は、上面(C面112c)と平行な下面118を想定したときに、第1面116、第2面117、及び下面118に囲まれた領域の断面が正三角形をなし、紙面に直角な方向に一様な形状をなすような三角プリズムに形成されている。すなわち、下面118と第1面116とがなす角度である第1面の傾斜角α=60度、下面118と第2面117とがなす角度である第2面の傾斜角α’=60度である。
 そして、第1プリズム部材110の上面112cと下面118との間隔f’、集光構造111におけるA面112a及びB面112bの傾斜角は、集光構造111により集光された光全体が第1面116において全反射されるように構成される。また第2面117を透過した光が隣接する偏向構造115に遮られることなく、第2プリズム部材の入射面21に入射するように構成される。
 図15に、図14に示した第1プリズム部材110の上面(C面112c)に光を入射角0度で入射させた場合の作用を示す。図15(a)はA面112aに入射した光線の進路、図15(b)はB面112bに入射した光線の進路、図15(c)はC面112cに入射した光線の進路を示す。
 図15(a)に示すように、A面112aに入射した光は、A面112aから第1プリズム部材110に入射した光はA面112aで屈折して右斜め下方に向けて進行する。A面112aの傾斜角は、A面112aの左端に入射した光が第1面116の下端に到達するように構成されている。A面112aの右端に入射した光は、第1面116の上下方向の中間部に到達するように構成される。B面112bについても同様であり、B面の左端に入射した光が第1面116の下端に到達し、B面の右端に入射した光は第1面116の上下方向の中間部に到達するように構成されている。C面112cに入射した光は屈折することなく第1プリズム部材110に入射して内部を進行する。C面112cの左端に入射した光が第1面116の下端近傍に到達し、C面の右端に入射した光は第1面116の上端近傍に到達するように構成されている。
 A面112a、B面112b、及びC面112cから入射して第1プリズム部材110の内部を進行し、第1面116に到達した光は、第1面116で全反射され、第2面117を透過して第1プリズム部材110から出射される。その際、隣接する偏向構造115に遮られることはないように構成されている。第1プリズム部材の出射側には第2プリズム部材が配置されており、第1プリズム部材から出射した光は、第2プリズム部材20の入射面21に入射する。
 第2プリズム部材20の基本的な構成は、既に説明した通りである。すなわち、第2プリズム部材20は、第1プリズム部材110から出射した光が入射する入射面21と、入射面21と頂角εで交差して第1プリズム部材110により進路が偏向された光を反射させる反射構造22と、反射構造22及び入射面21により反射されて導かれた光が出射する出射面25とを有して構成される(図8等を参照)。本構成形態の第1プリズム部材110を有する集光装置2では、既に説明した全反射+ミラータイプの第2プリズム部材が用いられている(図9を参照)。
 以上説明したように構成された集光装置2においては、入射光の光エネルギーが最大となる入射角0度で第1プリズム部材110に太陽光を入射させ、集光構造111及び偏向構造115により偏向させた光を第2プリズム部材20に入射させる。第2プリズム部材20は全反射+ミラータイプにより構成されているので、高い集光効率で光エネルギーを出射面25に集光できる。すなわち、このような構成の集光装置2によれば、太陽光等の光エネルギーを極めて高い効率で集光することができ、光エネルギーの利用効率を高めることができる。
(実施例3)
 集光装置2について、下記条件の第1プリズム部材110及び第2プリズム部材20を用いて、第1プリズム部材110の上面に太陽光を入射させた場合について、光学技術分野で広く用いられている光線追跡プログラムを用いてシミュレーションを行った。太陽光の波長及び視直径は前述同様であり、太陽光の中心光軸が第1プリズム部材110の上面に入射角θ=0度で入射する条件とした。
○第1プリズム部材110
・単位光学セルのピッチa×数  :2[mm]×15
・上面と下面との間の距離f’  :10[mm]
・A面112aの幅及び傾斜角  :0.5[mm],15度
・B面112bの幅及び傾斜角  :0.5[mm],8度
・C面112cの幅及び傾斜角  :1[mm],0度
・第1面116の傾斜角α    :60度
・第2面117の傾斜角α’   :60度
○第2プリズム部材20(全反射+ミラータイプ)
・左右方向長さL        :30[mm]
・頂角ε            :3.3度
・ミラー面22bの反射率    :90%
 上記条件でシミュレーションした光線追跡結果を図16に示す。図16(a)は、各プリズムへの光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を除外してシミュレーションを行った場合の光線追跡結果、図16(b)は、プリズムへの光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮してシミュレーションを行った場合の光線追跡結果である。
 入射時及び出射時のフレネル損失を考慮しない場合、上方から第1プリズム部材110に入射角0度で入射した太陽光は、99.6%の光線が第1プリズム部材110の下面側に出射して第2プリズム部材20に入射する。第2プリズム部材20に入射する光の入射角は55~73度(平均入射角64度)となる。入射時及び出射時のフレネル損失を考慮した場合には、第1プリズム部材110に入射角0度で入射した太陽光の光エネルギーの92%が第1プリズム部材110の下面側に出射して第2プリズム部材20に入射する。
 第1プリズム部材110を用いない場合を考えると、第2プリズム部材20に太陽光を入射角64度で直接入射させた場合には、入射面21に入射する太陽光の光エネルギーは入射角0度で入射した場合の43.4%であった(図3を参照)。従って、第1プリズム部材110を設けることにより、第2プリズム部材20に入射する太陽光の光エネルギーを2倍以上(約2.1倍)に高められることがわかる。
 第2プリズム部材20に入射角55~73度で入射した光は、反射構造22及び入射面21で反射されて集光され、出射面25に設けられた光電変換素子5に到達する。各面での入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮しない場合、上方から第1プリズム部材110に入射角0度で入射した太陽光の光エネルギーの98%が光電変換素子5に到達する。入射時及び出射時のフレネル損失及びミラー面での吸収による損失を考慮した場合には、第1プリズム部材110に垂直入射した太陽光の光エネルギーの73%が光電変換素子5に到達する。従って、本実施例における集光装置全体でのエネルギー集光倍率は、形状集光倍率17.3×73%=12.6倍となる。一方、第1プリズム部材110を用いずに第2プリズム部材20に太陽光を直接入射させた場合のエネルギー集光倍率は、形状集光倍率が最大となる入射角69度のときで5.2倍であった。
 このように、本実施例に示す集光装置2においても、ミラータイプの第2プリズム部材と同様に小さい頂角の第2プリズム部材を用いた小型の装置構成で、太陽光の光エネルギーを高効率で集光可能なことが理解される。
 実施例3の集光装置2において、第1プリズム部材110の上面に垂直入射する太陽光の入射角度が変動した場合について、光電変換素子5に到達する光エネルギーがどの様に変化するかについてシミュレーションした結果を図17に示す。図17(a)は、第1プリズム部材110に入射する太陽光の入射方向が、図14~16に示す各図の紙面内において、左右に±δ度の範囲で変動した場合(すなわち、垂直入射の状態から第1プリズム部材の複数の単位光学セルの繰り返し配列方向±δ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどのように変化するかについて、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。太陽光入射角の変動方向の符号は図5と同様である。図17(b)は、第1プリズム部材110に入射する太陽光が、垂直入射に対して図14~16に示す各図の紙面に直交する面内において、前後に±ζ度の範囲で変動した場合(すなわち、垂直入射の状態から第1プリズム部材の複数の単位光学セルの繰り返し配列方向に直交する面内で±ζ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどの様に変化するか、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。図17(a)及び図17(b)共に、第1プリズム部材110の上面に入射する太陽光の光エネルギーを100%とし、入射面及び出射面でのフレネル損失並びにミラー面での吸収による損失を考慮している。
 図17(a)から、第1プリズム部材110に入射する太陽光の入射角度が、複数の単位光学セルの繰り返し配列方向に変動した場合には、光電変換素子5に到達する光エネルギーは急激に低下するその際、変動角δが-方向であるとき、すなわち太陽光の入射角度が第2プリズム部材20の出射面方向に変動したときに比べて、変動角δが+方向、すなわち太陽光の入射角度が第2プリズム部材20の頂点方向に変動したときには、やや穏やかに低下することがわかる。一方、図17(b)から、第1プリズム部材110に入射する太陽光が、複数の単位光学セルの繰り返し配列方向と直交する面内で±ζ度変動した場合には、光電変換素子5に到達する光エネルギーは、変動角ζが±30度程度の範囲では大きく変化せず、かなり広い角度範囲で高い効率が得られることがわかる。
 以上説明したように、集光装置2では、太陽光を入射角0度で入射させることにより高効率で太陽光の光エネルギーを集光可能であることが確認できる。また、集光装置2は、断面形状が一方向に沿って一様な、集光構造および偏向構造からなる単位光学セルが複数繰り返し配列する構造であるため、複数の単位光学セルの繰り返し配列方向とは直角の方向に対しては、設置及び追尾における角度誤差を緩めに設定することができる。
 次に、第2構成形態における第2構成例の第1プリズム部材210について、図18を参照して説明する。図18は、第2構成例の第1プリズム部材210について、その構成及び作用を説明するための説明図、及び第1プリズム部材210の一部を拡大して示した拡大図である。図18では、第1プリズム部材における集光構造211及び偏向構造215の対からなる単位光学セルを示すとともに、集光構造211、及び偏向構造215の部分を拡大した部分拡大図、及び単位光学セルに入射した光線の進路を示している。
 第1プリズム部材210は、入射した光を集光する複数の集光構造211,211…と、各集光構造に対応して裏面に突出した複数の偏向構造215,215…とを主体として構成される。
 集光構造211は、図18において紙面に直角方向に延びる複数の平面により構成された凸構造をなしている。より詳しく説明すると、集光構造211は、図18中の部分拡大図に示すように、A面212aと、A面212aに接するB面212b、B面212bに接するC面212cと、C面212cに接するD面212dとによる四面からなる形態を示している。この四面からなる複数の集光構造211が紙面の左右方向に繰り返し配列された構成となっている。なお、集光構造の拡大図では、A面212aが右端側に描かれているが、これは偏向構造との位置的な関連によりこのように描かれたものである。
 D面212dは光の入射方向に対して直角な面であり、単位光学セルの左右方向の幅をyとしたときに、概ねy/4の範囲に形成される。C面212cは、D面に対して所定の傾斜角度を有する平面であり、D面212dと接続されて、概ねy/4の範囲に形成される。B面212bは、D面に対してC面212cよりも大きな傾斜角度を有する平面であり、C面212cと接続されて概ねy/4の範囲に形成される。A面212aは、D面に対してB面212bよりも更に大きな傾斜角度を有する平面であり、B面212bに接続されて概ねy/4の範囲に形成される。
 偏向構造215は、集光構造211により集光された光を反射する第1面216と、第1面216により反射されて進路が偏向された光を透過する第2面217とを有し、第1面216と第2面217が繰り返して配列されることで鋸歯状に構成される。偏向構造215は、上面(C面212d)と平行な下面218を想定したときに、第1面216、第2面217、及び下面218に囲まれた領域の断面が三角形をなし、紙面に直角な方向に一様な形状をなすような三角プリズムに形成されている。すなわち、下面218と第1面216とがなす角度である第1面の傾斜角はα=60度、下面218と第2面217とがなす角度である第2面の傾斜角はα’=60度である。
 第1プリズム部材210の上面212dと下面218との間隔f’、集光構造211におけるA面212a、B面212b、及びC面212cの傾斜角、第1面216の傾斜角α、第2面217の傾斜角α’等は、集光構造211により集光された光全体が第1面216において全反射され、かつ、第2面217を透過して出射した光が隣接する偏向構造215に遮られることなく、第2プリズム部材の入射面21に入射するように構成される。
 具体的には、A面212a~C面212cに入射した光は、各面で屈折してプリズム内に入射し、各面の傾斜角に応じた傾きで第1面216に向かって進行する。A面212aの傾斜角は、A面の左端に入射した光が第1面216の下端近傍に到達するように設定される。このとき、A面の右端に入射した光は第1面216の上下中間部に到達するように構成されている。B面212b、C面212cについても同様であり、各面の左端に入射した光が第1面216の下端近傍に到達し、各面の右端に入射した光は第1面216の上下中間部に到達するように構成されている。D面212dに入射した光は屈折することなく第1プリズム部材内を鉛直下方に進行し、D面の左端に入射した光は第1面216の下端に到達し、D面の右端に入射した光は第1面216の上下中間部に到達するように構成されている。
 上記説明のように、A面212a~びD面212dの各面から入射しプリズム内を進行して第1面216に到達した光は、第1面216で全反射され、第2面217を透過し、隣接する偏向構造215に遮られることなく、第2プリズム部材20の入射面21に入射する。
 第2プリズム部材20の基本的な構成は、既に説明した通りである。すなわち、第2プリズム部材20は、第1プリズム部材210から出射した光が入射する入射面21と、入射面21と頂角εで交差して第1プリズム部材210により進路が偏向された光を反射させる反射構造面22と、反射構造面22及び入射面21により反射されて導かれた光が出射する出射面25とを有して構成される(図8等を参照)。本構成形態の第1プリズム部材210を有する集光装置2’では、既に説明した全反射+ミラータイプの第2プリズム部材が用いられている(図9を参照)。
 以上説明したように構成された集光装置2’においては、入射光の光エネルギーが最大となる入射角0度で第1プリズム210に太陽光を入射させ、集光構造211及び偏向構造215により偏向させた光を第2プリズム部材20に入射させる。第2プリズム部材20は全反射+ミラータイプにより構成されているので、高い集光効率で光エネルギーを出射面25に集光できる。すなわち、このような構成の集光装置2’によれば、太陽光等の光エネルギーを極めて高い効率で集光することができ、光エネルギーの利用効率を高めることができる。
(実施例4)
 集光装置2について、下記条件の第1プリズム部材210及び第2プリズム部材20を用いて、第1プリズム部材210の上面に太陽光を入射させた場合について、光学技術分野で広く用いられている光線追跡プログラムを用いてシミュレーションを行った。太陽光の波長及び視直径は前述同様であり、太陽光の中心光軸が第1プリズム部材210の上面に入射角θ=0度で入射する条件とした。
○第1プリズム部材210
・単位光学セルのピッチa×数  : 1[mm]×30
・上面と下面との間の距離f’ : 15[mm]
・A面212aの幅及び傾斜角  :0.25[mm],8.1度
・B面212bの幅及び傾斜角  :0.24[mm],5.4度
・C面212cの幅及び傾斜角  :0.25[mm],2.8度
・D面212dの幅及び傾斜角  :0.26[mm],0度
・第1面216の傾斜角α    : 54度
・第2面217の傾斜角α’   : 74.8度
○第2プリズム部材20(全反射+ミラータイプ)
・左右方向長さL        : 30[mm]
・頂角ε            : 2.6度
・ミラー面22bの反射率    : 90%
 上記条件でシミュレーションした光線追跡結果を図19に示す。図19(a)は、各プリズムへの光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を除外してシミュレーションを行った場合の光線追跡結果、図19(b)は、プリズムへの光線の入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮してシミュレーションを行った場合の光線追跡結果である。
 入射時及び出射時のフレネル損失を考慮しない場合、上方から第1プリズム部材210に入射角0度で入射した太陽光は、98%の光線が第1プリズム部材210の下面側に出射して第2プリズム部材20に入射する。第2プリズム部材20に入射する光の入射角は69~76度(平均入射角71度)となる。入射時及び出射時のフレネル損失を考慮した場合には、第1プリズム部材210に入射角0度で入射した太陽光の光エネルギーの91%が第1プリズム部材210の下面側に出射して第2プリズム20部材に入射する。
 第1プリズム部材210を用いない場合を考えると、第2プリズム部材20に太陽光を入射角71度で直接入射させた場合には、入射面21に入射する太陽光の光エネルギーは入射角0度で入射時の33%であった(図3を参照)。従って、第1プリズム部材210を設けることにより、第2プリズム部材20に入射する太陽光の光エネルギーを2倍以上(約2.8倍)に高められることがわかる。
 第2プリズム部材20に入射角69~76度で入射した光は、反射構造22及び入射面21で反射されて集光され、出射面25に設けられた光電変換素子5に到達する。各面での入射時及び出射時のフレネル損失、並びにミラー面での吸収による損失を考慮しない場合、上方から第1プリズム部材210に垂直入射した太陽光の光エネルギーの96%が光電変換素子5に到達する。入射時及び出のフレネル損失及びミラー面での吸収による損失を考慮した場合には、第1プリズム部材210に垂直入射した太陽光の光エネルギーの69%が光電変換素子5に到達する。従って、本実施例における集光装置全体でのエネルギー集光倍率は、形状集光倍率22.0×69%=15.2倍となる。一方、第1プリズム部材210を用いずに第2プリズム部材20に太陽光を直接入射させた場合のエネルギー集光倍率は、形状集光倍率が最大となる入射角66度のときで5.8倍であった。
 このように、本実施例に示す集光装置2’においても、ミラータイプの第2プリズムと同様に小さい頂角の第2プリズム部材を用いた小型の装置構成で、太陽光の光エネルギーを高効率で集光可能なことが理解される。
 実施例4の集光装置2’において、第1プリズム部材210の上面に垂直入射する太陽光の入射角度が変動した場合について、光電変換素子5に到達する光エネルギーがどの様に変化するかについてシミュレーションを行った結果を図20に示す。図20(a)は、第1プリズム部材210に入射する太陽光の入射方向が、図18及び19に示す各図の紙面内において、左右に±δ度の範囲で変動した場合(すなわち、垂直入射の状態から第1プリズム部材の複数の単位光学セルの繰り返し配列方向±δ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどの様に変化するか、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。太陽光入射角の変動方向の符号は図5と同様である。図20(b)は、第1プリズム部材210に入射する太陽光の入射方向が、図18及び19に示す各図の紙面に直交する面内において前後に±ζ度の範囲で傾斜した場合(すなわち、垂直入射の状態から第1プリズム部材の複数の単位光学セルの繰り返し配列方向に直交する面内で±ζ度の範囲で変動した場合)に、光電変換素子5に到達する光エネルギーがどの様に変化するか、光エネルギーの到達割合をシミュレーションした結果を示すグラフである。図20(a)及び図20(b)共に、第1プリズム部材210の上面に入射する太陽光の光エネルギーを100%とし、入射面及び出射面でのフレネル損失並びにミラー面での吸収による損失を考慮している。
 図20(a)から、第1プリズム部材210に入射する太陽光が、複数の単位光学セルの繰り返し配列方向に変動した場合には、光電変換素子5に到達する光エネルギーは急激に低下し、低下の程度は、変動角δが+方向のときと-方向のときとでほぼ同様であることがわかる。一方、図20(b)から、第1プリズム部材210に入射する太陽光の入射角が、複数の単位光学セルの繰り返し配列方向と直交する面内で±ζ度傾斜した場合には、光電変換素子5に到達する光エネルギーは、変動角δθが±20度程度の範囲では大きく変化せず、かなり広い角度範囲で高い効率が得られることがわかる。
 上記説明の通り、実施例4の集光装置2’においても、太陽光を入射角0度で入射させることにより高効率で太陽光の光エネルギーを集光可能であることが確認できる。また、集光装置2’は、断面形状が一方向に沿って一様な、集光構造および偏向構造からなる単位光学セルが複数繰り返し配列する構造であるため、複数の単位光学セルの繰り返し配列方向とは直角の方向に対しては、設置及び追尾における角度誤差を緩めに設定することができる。
 以上では、第2プリズム部材20を全反射+ミラータイプとした構成を例示したが、第2プリズム部材20を全反射タイプあるいはミラータイプとして集光装置を構成することも可能である。
(第3構成形態の第1プリズム部材及び第2プリズム部材)
 次に、第3構成形態の第1プリズム部材310及び第2プリズム部材320の偏向構造について、図23を参照して説明する。図23は、第3構成形態の第1プリズム部材310及び第2プリズム部材320について、その構成及び作用を説明するための説明図である。
 第1プリズム部材310の集光構造311は図5に示された集光構造11と同様である。複数の集光構造311に対応して、光の出射面側には、複数の偏向構造315が設けられている。対向する一対の集光構造311と偏向構造315により単位光学セルを構成している。偏向構造315は、集光構造311により集光された光を反射する第1面316と、第1面により反射されて進路が偏向された光を透過する第2面317と、第1面316と第2面317を繋ぐ第3面318とを有し、第1面、第2面、及び第3面の繰り返し構造により鋸歯状に構成される。
 第2プリズム部材320は、第1プリズム部材310の出射側に対向して設けられた入射面321と、入射面321と鋭角に交差する反射構造322と、反射構造322及び入射面321により反射されて側方に導かれた光が出射する出射面325とを有する。入射面321は、第1プリズム部材310から出射した光を入射させて反射構造322に導く導光面3211と、反射構造322で反射された光を前記第2プリズム部材320の内部に向けて全反射させる反射面3212と、導光面3211と反射面3212とを繋ぐ連絡面3213により構成される。反射面3212は反射構造322と平行にすることが好ましい。これにより、反射面3212と反射構造322との間で全反射が確実に実現することができる。
 集光装置3においては、第2プリズム部材320の導光面3211は、第1プリズム部材310の第2面317と平行になるように設定されることが好ましく、導光面3211と第1プリズム部材310の第2面317と第2プリズム部材320の間には、第1プリズム部材310及び第2プリズム部材の屈折率と同じ屈折率、または、これらの屈折率に近い屈折率の接合部319を配置することが好ましい。これにより、第1プリズム部材の第2面317と第2プリズム部材320の導光面3211における反射が抑えられ、より高い集光効率を実現することが可能となる。接合剤としては、バルサムや紫外線硬化樹脂を用いることができる。
 集光装置3においては、第1プリズム部材310の第3面318と第2プリズム部材320の反射面3212との間の媒質の屈折率は、第1プリズム部材310及び第2プリズム部材の屈折率のいずれよりも小さくする必要がある。これは、第1プリズム部材310の第3面318と第2プリズム部材320の反射面3212との間で全反射が行われる必要があることによる。媒質は空気であることが好ましいが、場合によっては低屈折率の材料が介在してもよい。
 第1プリズム部材310に入射した光は、集光構造311により集光され、第1面316に到達する。第1面316で全反射された光は第2面317から出射し、第2プリズム部材320の導光面3211から第2プリズム部材320に入射し、第2プリズム部材320の内部を進行する。反射構造322に到達した光は反射されて反射面3212により全反射され、この動作を繰り返しながら最終的に出射面325に集光される。第3構成形態の第1プリズム部材310及び第2プリズム部材320を備えた集光装置3によれば、太陽光等の光エネルギーを極めて高い効率で集光することができ、光エネルギーの利用効率を高めることができる。
 第2プリズム部材320の反射構造322は、全反射+ミラータイプであってもよいし、あるいは、全反射タイプであってもよい。 
(集光装置からの光エネルギーの取り出し手法)
 上記説明は、第2プリズム部材20の出射面25に光電変換素子5を設け、集光装置1,2,2’により集光された光を光電変換素子5に入射させて光電変換することで、電気エネルギーとして取り出す光電変換装置PVSを説明した。本開示の集光装置は、他のエネルギー取り出し手法や、利用手法に適用することもできる。以下、集光装置1,2,2’を、他のエネルギー取り出し手法に用いた幾つかの場合について、それらの概念を例示する図21(a)~(e)を参照しながら説明する。
 図21(a)は、第2プリズム部材20の端部に集光された光を出射面25から取り出し、そのまま光として利用する応用例の概念図である。この場合において、第2プリズム部材20の出射面25から出射する光をシリンドリカルレンズ81や集光ロッド82等を介して更に集光し、集光された光を光ファイバー83により所望の位置に導く構成が例示される。
 図21(b)は、第2プリズム部材20の出射面25に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第1構成例(図14、15にもこの呼び名がある)の概念図である。図21(b)は、光電変換素子5を第2プリズム部材20の出射面25に結合し、電気エネルギーとして取り出す構成例を示している。なお、集光された光を熱エネルギーとして取り出す光熱変換装置とする場合には、集光された光を熱エネルギーに光熱変換する光熱変換素子として、光吸収体付きのヒートパイプ等が好適に用いられる。
 図21(c)は、第2プリズム部材20の出射面25に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第2応用例の概念図である。本応用例では、第2プリズム部材20の端部を斜めにカットした面を出射面25とし、出射面25にミラー84を配設し(あるいは出射面25に反射膜を形成し)、第2プリズム部材20の上面側(または下面側)に設けた光電変換素子5に集光させる応用例である。これにより、第2プリズム部材20の厚さ方向の寸法が小さい場合であっても、比較的大きな面積の光電変換素子5を取り付けることができる。なお、集光された光を熱エネルギーとして取り出す場合には、光吸収体付きのヒートパイプ等が好適に用いられる。
 図21(d)は、第2プリズム部材20の出射面25に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第3応用例の概念図である。本応用例では、第2プリズム部材20の端部を斜めにカットした面を出射面25とし、出射面25にダイクロイックミラー85を配設し(あるいは出射面25に波長選択性のある反射膜を形成し)、第2プリズム部材20の上面側(または下面側)と、第2プリズム部材20の側方とに設けた光電変換素子5,5’に分割して集光させる応用例である。このような構成によれば、分割された各波長帯域について高効率な光電変換素子を用いることが可能となるため、比較的低コストで変換効率の高い光発電装置を構成することが可能となる。
 なお、分割した光のうち一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して熱エネルギーとして利用し、他方(例えば可視領域及び紫外領域の光)を光電変換素子5に入射して電気エネルギーとして利用するような構成も好適な応用例である。
 図21(e)は、第2プリズム部材20の出射面25に集光された光を、さらに厚さ方向に集光して取り出す応用例の概念図である。本構成の第2プリズム部材20は、出射面25の近傍領域で厚さが徐々に薄くなるパラボリック状に形成されており、第2プリズム部材の内部を出射面25の方向に進行する光が、上方の曲面あるいは下方の曲面で全反射されて厚さ方向に集光されるようになっている。これにより、例えば集光された光をそのまま利用するような場合に、(a)に示すようなシリンドリカルレンズ等を用いずに構成することができ、また光電変換素子5やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度(エネルギー集光倍率)を高めることができる。
 以上説明したように、本発明を例示する態様の集光装置1,2,2’においては、第2プリズム部材20に入射した光を集光する集光構造11,111,211と、集光された光を偏向して出射させる偏向構造15,115,215とを有する第1プリズム部材10,110,210が設けられている。そして、第1プリズム部材から出射する光が、隣接する偏向構造に遮られることなく、第2プリズム部材20の入射面に入射するように構成される。そのため、これらの態様の集光装置によれば、太陽光等の光エネルギーを効率的に集光することができ、光エネルギーの利用効率を高めた集光装置を提供することができる。
 また、このような集光装置1,2,2’を備えた光発電装置や光熱変換装置は、集光装置の上下方向の厚さが薄くて小型軽量であり、且つ光エネルギーのエネルギー集光効率が高いことから、小型でエネルギー換効率が高い光発電装置、光熱変換装置を提供することが可能となる。
 なお、集光装置1,2,2’において太陽光を集光する場合は、太陽光のスペクトルのうち少なくとも特定の波長範囲の光が集光されるように集光装置を構成しても良い。波長範囲は、光電変換素子5の分光感度特性や光熱変換素子の吸収特性に応じて決定することができる。また、少なくとも光電変換効率が最大となる波長の光が集光されるように集光装置を構成しても良い。集光装置により集光される光の具体的な波長範囲としては、例えば、350~1800nmであっても良いし、実施例で例示したように350nm~1100nmであっても良い。前者の波長範囲の光を集光する集光装置は、多接合型の光電変換素子を用いる場合に好適に適用することができ、後者の波長範囲の光を集光する集光装置は、結晶シリコンの光電変換素子を用いる場合に好適に適用することができる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国出願2011年第230125号(2011年10月19日)

Claims (13)

  1.  表面から入射した光を裏面から出射する第1プリズム部材と、前記第1プリズム部材の裏面に対向して設けられた第2プリズム部材とを備え、
     前記第1プリズム部材は、前記表面に形成され入射した光を集光する複数の集光構造と、前記複数の集光構造に対応して前記裏面に突出し前記集光構造により集光された光を偏向して出射させる複数の偏向構造とを有し、
     前記第2プリズム部材は、前記第1プリズム部材の裏面に対向して設けられた入射面と、前記入射面と鋭角に交差する反射構造と、光を出射させる出射面とを有し、
     前記第1プリズム部材の前記偏向構造から偏向して出射した光は、前記第2プリズム部材の前記入射面から前記第2プリズム部材に入射し、前記第2プリズム部材の内部において、前記反射構造及び前記入射面で反射されることで前記出射面に向けて導かれ、前記出射面から出射するように構成した集光装置。
  2.  前記第1プリズム部材の前記偏向構造は、前記集光構造により集光された光を反射する第1面と、前記第1面で反射された光を透過して前記第1プリズム部材から出射する第2面と、を有する請求項1に記載の集光装置。
  3.  前記第2プリズム部材の前記入射面は、前記第1プリズム部材の前記偏向構造の第2面と略平行に対向し前記第1プリズム部材の前記第2面から出射した光を入射させる導光面と、前記反射構造で反射された光を前記第2プリズム部材の内部に向けて反射させる反射面とを有する請求項2に記載の集光装置。
  4.  前記第1プリズム部材の前記第2面と前記第2プリズム部材の導光面との間に、前記第1プリズム部材の屈折率及び前記第2プリズム部材の屈折率とほぼ等しい屈折率を有する接合部が配置された請求項3に記載の集光装置。
  5.  前記第1プリズム部材と前記第2プリズムの前記反射面との間に、前記第1プリズム部材の屈折率及び前記第2プリズムの屈折率のいずれよりも低い屈折率を有する媒質が配置された請求項3に記載の集光装置。
  6.  前記第1プリズム部材の前記集光構造により集光され前記第1面により反射されて前記第2面から出射された光が、前記第1プリズム部材の隣接する前記偏向構造に遮られることなく前記第2プリズム部材の入射面に入射するように構成された請求項2~5に記載の集光装置。
  7.  前記第1プリズム部材の前記複数の偏向構造は、前記第1面及び前記第2面が交互に並ぶ繰り返し構造をなす請求項2~6のいずれか一項に記載の集光装置。
  8.  前記第1プリズム部材の前記集光構造は、光の入射側に凸状の曲面であり、
     前記第1面は、対応する前記集光構造により集光された光全体が全反射されるように構成した請求項1~7のいずれか一項に記載の集光装置。
  9.  前記第1プリズム部材の前記集光構造は、複数の平面により光の入射側に凸状となるように構成され、
     前記第1面は、前記集光構造により集光された光全体が全反射されるように構成した請求項1~7のいずれか一項に記載の集光装置。
  10.  前記第2プリズム部材の前記反射構造は、一つの平面により構成され、前記第1プリズム部材から前記第2プリズム部材の前記入射面に入射した光が、前記第2プリズム部材の内部を進行して前記反射構造に到達した際に、前記反射構造で全反射されるように構成した請求項1~9のいずれか一項に記載の集光装置。
  11.  前記第2プリズム部材の前記反射構造面は、前記平面と、当該平面との間に空気層を介して対向配置されたミラー面とにより構成され、前記第1プリズム部材から前記第2プリズム部材の前記入射面に入射した光が、前記第2プリズム部材の内部を進行して前記反射構造に到達した際に、前記平面を透過した後、前記ミラー面で反射され、再び前記平面を透過して前記第2プリズム部材の内部を進行し、更に、前記入射面で前記第2プリズム部材の内部に全反射されるように構成した請求項1~9のいずれか一項に記載の集光装置。
  12.  請求項1~11のいずれか一項に記載の集光装置と、
     前記第2プリズム部材の出射面に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  13.  請求項1~11のいずれか一項に記載の集光装置と、
     前記第2プリズム部材の出射面に導かれた光を光熱変換する光熱変換素子とを備えた光熱変換装置。
PCT/JP2012/077151 2011-10-19 2012-10-19 集光装置、光発電装置及び光熱変換装置 WO2013058381A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/256,654 US9046279B2 (en) 2011-10-19 2014-04-18 Light condensing device, photovoltaic power generation device and photo-thermal conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-230125 2011-10-19
JP2011230125 2011-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/256,654 Continuation US9046279B2 (en) 2011-10-19 2014-04-18 Light condensing device, photovoltaic power generation device and photo-thermal conversion device

Publications (1)

Publication Number Publication Date
WO2013058381A1 true WO2013058381A1 (ja) 2013-04-25

Family

ID=48141024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077151 WO2013058381A1 (ja) 2011-10-19 2012-10-19 集光装置、光発電装置及び光熱変換装置

Country Status (4)

Country Link
US (1) US9046279B2 (ja)
JP (1) JPWO2013058381A1 (ja)
TW (1) TWI574043B (ja)
WO (1) WO2013058381A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130389A (ja) * 2014-01-07 2015-07-16 株式会社ニコン 集光装置、光発電装置、集光装置の製造方法
JP2018006132A (ja) * 2016-06-30 2018-01-11 三菱電機株式会社 集光装置及び照明装置
EP3785061B1 (fr) * 2018-04-24 2023-01-18 Valeo Comfort and Driving Assistance Guide de lumiere pour module d'interface a detection de gestes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789514B2 (ja) * 2016-08-05 2020-11-25 サンテック株式会社 検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275859A (ja) * 1993-03-24 1994-09-30 Omron Corp 太陽電池用集光装置
JPH10221528A (ja) * 1996-12-05 1998-08-21 Toyota Motor Corp 太陽電池装置
JP2010266629A (ja) * 2009-05-14 2010-11-25 Nippon Tokushu Kogaku Jushi Kk ソーラーシステム用フレネルレンズ及びソーラーシステム
WO2011074108A1 (ja) * 2009-12-18 2011-06-23 サン電子株式会社 集光装置
JP2012189280A (ja) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd 集光装置、集束装置及びレンズシート

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758197A (en) * 1971-11-15 1973-09-11 Bucode Light collecting and transmitting apparatus
US4069812A (en) * 1976-12-20 1978-01-24 E-Systems, Inc. Solar concentrator and energy collection system
US4377154A (en) * 1979-04-16 1983-03-22 Milton Meckler Prismatic tracking insolation
JPH1138209A (ja) * 1997-07-18 1999-02-12 Konica Corp 光制御シート、面光源装置及び液晶表示装置
TWI315432B (en) * 2005-11-21 2009-10-01 Optoma Corp Brightness enhancement film and backlight module
EP2153475B1 (en) 2007-05-01 2017-07-12 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
JP5304551B2 (ja) 2009-09-03 2013-10-02 三菱電機株式会社 誘導加熱調理器
US20120216863A1 (en) * 2011-02-25 2012-08-30 Teledyne Scientific & Imaging, Llc Solar energy concentrator architectures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275859A (ja) * 1993-03-24 1994-09-30 Omron Corp 太陽電池用集光装置
JPH10221528A (ja) * 1996-12-05 1998-08-21 Toyota Motor Corp 太陽電池装置
JP2010266629A (ja) * 2009-05-14 2010-11-25 Nippon Tokushu Kogaku Jushi Kk ソーラーシステム用フレネルレンズ及びソーラーシステム
WO2011074108A1 (ja) * 2009-12-18 2011-06-23 サン電子株式会社 集光装置
JP2012189280A (ja) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd 集光装置、集束装置及びレンズシート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130389A (ja) * 2014-01-07 2015-07-16 株式会社ニコン 集光装置、光発電装置、集光装置の製造方法
JP2018006132A (ja) * 2016-06-30 2018-01-11 三菱電機株式会社 集光装置及び照明装置
EP3785061B1 (fr) * 2018-04-24 2023-01-18 Valeo Comfort and Driving Assistance Guide de lumiere pour module d'interface a detection de gestes

Also Published As

Publication number Publication date
US9046279B2 (en) 2015-06-02
US20140224301A1 (en) 2014-08-14
TW201326891A (zh) 2013-07-01
JPWO2013058381A1 (ja) 2015-04-02
TWI574043B (zh) 2017-03-11

Similar Documents

Publication Publication Date Title
US8885995B2 (en) Light-guide solar energy concentrator
US7817885B1 (en) Stepped light collection and concentration system, components thereof, and methods
JP2007027150A (ja) 集光型光発電システム
US20100329619A1 (en) Dimpled Light Collection and Concentration System, Components Thereof, and Methods
US9246038B2 (en) Light collecting and emitting apparatus, method, and applications
JP2000147262A (ja) 集光装置及びこれを利用した太陽光発電システム
US9036963B2 (en) Light collecting and emitting apparatus, method, and applications
US9477071B2 (en) Method and device for concentrating, collimating, and directing light
KR100934358B1 (ko) 태양 전지 모듈의 효율 향상을 위한 프리즘 유리 구조
WO2013058381A1 (ja) 集光装置、光発電装置及び光熱変換装置
CN102947731B (zh) 聚光光学元件、聚光装置、光发电装置和光热转换装置
US9985156B2 (en) Optical concentrator/diffuser using graded index waveguide
KR101007649B1 (ko) 다수 채널을 갖는 광가이드 장치
US20120170144A1 (en) Solar concentration device
WO2012026572A1 (ja) 集光装置、光発電装置及び光熱変換装置
WO2015098209A1 (ja) 集光光学素子、及びこれを備えた集光装置
JP2014013306A (ja) 集光素子及び太陽電池システム
US8993871B2 (en) Condensing lens array, and solar cell provided with same
WO2012033132A1 (ja) 集光装置、光発電装置及び光熱変換装置
JP2013088690A (ja) 集光装置及び該集光装置を用いた光発電装置
JP2000249805A (ja) 不連続線集光レンズ
WO2012067082A1 (ja) 集光装置、光発電装置及び光熱変換装置
JP2009188139A (ja) 太陽レンズ
KR101059761B1 (ko) 프리즘 태양광 집광기
JP2018105929A (ja) 集光板及びそれを用いた太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841943

Country of ref document: EP

Kind code of ref document: A1