JP2010266629A - ソーラーシステム用フレネルレンズ及びソーラーシステム - Google Patents

ソーラーシステム用フレネルレンズ及びソーラーシステム Download PDF

Info

Publication number
JP2010266629A
JP2010266629A JP2009117262A JP2009117262A JP2010266629A JP 2010266629 A JP2010266629 A JP 2010266629A JP 2009117262 A JP2009117262 A JP 2009117262A JP 2009117262 A JP2009117262 A JP 2009117262A JP 2010266629 A JP2010266629 A JP 2010266629A
Authority
JP
Japan
Prior art keywords
prism
incident
fresnel lens
light
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009117262A
Other languages
English (en)
Other versions
JP5054725B2 (ja
Inventor
Osamu Sato
佐藤  修
Koichi Sato
公一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TOKUSHU KOGAKU JUSHI KK
Original Assignee
NIPPON TOKUSHU KOGAKU JUSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TOKUSHU KOGAKU JUSHI KK filed Critical NIPPON TOKUSHU KOGAKU JUSHI KK
Priority to JP2009117262A priority Critical patent/JP5054725B2/ja
Publication of JP2010266629A publication Critical patent/JP2010266629A/ja
Application granted granted Critical
Publication of JP5054725B2 publication Critical patent/JP5054725B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

【課題】 光の利用効率の高い優れた性能のソーラーシステム用フレネルレンズを提供する。
【解決手段】 一つの面上に多数並べられたプリズム部は、光軸Aに近い側に位置する第一の群のプリズム部11と、光軸Aから遠い側に位置する第二の群のプリズム部12とから成る。第一の群の各プリズム部11は、第一の面3に達した光が第一の面3で屈折して出射するすることで集光レンズ作用を為すよう形成され、第二の群の各プリズム部12は、第一の面3に達した光が第一の面3で全反射した後、第二の面4で屈折して出射することで集光レンズ作用を為すよう形成されている。第一の群又は第二の群の各プリズム部11,12の入射面2は、集光レンズ面となっている。
【選択図】 図1

Description

本願の発明は、ソーラーシステム用フレネルレンズ及びこのフレネルレンズを備えたソーラーシステムに関するものである。
図10は、一般的なフレネルレンズの構造を示した正面断面概略図である。
フレネルレンズは、通常のレンズを多数のプリズム状のセグメントに分割し、セグメントを平面上に並べることでシート状又はプレート状に変換した光学部品である。したがって、フレネルレンズは、プリズム部1を同一平面上に多数並べて設けたものとなっている。このようなフレネルレンズは、一方の側の面が平坦面2で、他方の側の面がプリズム部1によって形成される凹凸面である場合が多い。
図10には、平凸レンズをフレネルレンズで達成した構成が示されており、(1)は入射側を凸にした配置、(2)は出射側を凸にした配置である。フレネルレンズを構成する各プリズム部1は、図10に拡大して示すように、二つの面101,102から成る凸面を有している。このうちの一方の面101は、フレネルレンズ全体として一つのレンズ作用を為すよう形成された面(以下、レンズ面)である。他方の面102は、各レンズ面101をつなげるための面であり、一義的にはレンズ作用のための面ではない。以下、この面を、非レンズ面と呼ぶ。
このようなフレネルレンズにおいて、図10(1)に示すように、凹凸面を入射側にし、平坦面2を出射側にして配置する場合が多い。この理由について、平行光を一点に集光する場合を例にして説明する。
フレネルレンズの効率を高くするには、非レンズ面102の部分で光の損失がないようにすることが重要である。非レンズ面102での損失を無くすには、ドラフト角をゼロにすれば良い。ドラフト角は、非レンズ面102が平坦面2の法線に対して成す角である(図10にθdで示す)。しかしながら、ドラフト角θdがゼロであると、フレネルレンズを成型法で製作する際の離型が難しいという問題がある。離型とは、成型後に製品を型から引き離すことを指す。このため、多少のドラフト角θdをつけた設計とされることが多い。
この場合、図10(2)に拡大して示すように、出射側が凹凸面であると、ドラフト角θdが少しついている場合、非レンズ面102に達した光L1は、非レンズ面102で全反射し、集光点から大きく外れた方向に進んでしまう。一方、入射側を凹凸面とした場合では、図10(1)に拡大して示すように、非レンズ面102に達した光L1は、非レンズ面102で屈折するものの、集光点から大きく外れることなく進んでいく。このため、ドラフト角θdを適宜設計すれば、集光点の照度を上げるのに貢献させることができる。
このようなことから、一般的には、凹凸面を出射側にするよりも入射側にした設計や配置の方が、ドラフト角を多少つけても光の利用効率が高くできると言われており、凹凸面を入射側にする方が好ましいとされている。
特開平4−127101号公報
しかしながら、ソーラーシステム用のフレネルレンズの場合、どうしても入射側を平坦面にしなければならない事情がある。ソーラーシステム用のフレネルレンズの場合、当然のことながら、戸外に配置され、直射日光に晒される。この場合、入射面が凹凸面であると、埃やゴミが溜まってしまい、その結果、透過特性が著しく低下してしまうからである。入射側に透明な板をおいて埃やゴミが付かないようにしてもよいが、どんなに透過率の高い板を使用しても光の吸収等はあり、ロスの発生は避けられない。このようなことから、ソーラーシステム用のフレネルレンズは、入射側を平坦面とした設計が行われる。
また、入射面が凹凸面の構造でも、非レンズ面でのロスは存在する。即ち、図10(1)に示すように、レンズ面101に入射する光のうち、頂角付近から入射する光L2は、レンズ面101で屈折した後、非レンズ面102に達する。この光L2は、非レンズ面102で全反射し、集光点から遠ざかる方向に進んでしまう。入射側を平坦面とすれば、このようなロスは避けられる。
一方、ソーラーシステムのような大型のシステムに搭載されるフレネルレンズは、システム全体を少しでもコンパクトにするため、焦点距離をより短くすることが求められる。発明者の研究によると、上記のように入射側を平坦面とした構成において焦点距離の短いものを得ようとすると、従来の考え方では限界があることが判明した。
即ち、焦点距離を短くする場合、レンズ面が光軸に垂直な面に対して成す角を大きくする必要がある。この角を、以下、「立ち上がり角」と呼び、図10(2)にθuで示す。集光作用を為させる場合、立ち上がり角θuは、光軸Aから遠い位置に位置するプリズム部のレンズ面ほど大きくする。言い換えれば、光軸Aから遠ざかるに従って立ち上がり角θuを漸増させれば、計算上は凸レンズと同様の集光作用が得られるということである。しかしながら、立ち上がり角θuがあまり大きくなると、レンズ面への光の入射角が臨界角に近くなる。臨界角を越えてしまうと、光はレンズ面で全反射し、設計通りの集光作用が得られなくなってしまう。
例えば、フレネルレンズの材質としてポリメチルメタクリレート(PMMA)樹脂を使用した場合、臨界角は42度程度であり、これを越えると全反射する。したがって、レンズ面をこの角度以上に立ち上げなければならない場合、従来の考え方では設計ができなくなってしまう。
光軸に近い位置のプリズム部では、立ち上がり角θuはそれほど大きくしなくて済むので、光軸に近い位置にだけプリズム部を配置し、臨界角を超えないようにすることも考えられる。しかしながら、プリズム部の数が少なくなり、全体として小さいフレネルレンズにならざるを得ず、集光量が少なくなってしまう問題が生ずる。
このような問題を解決するには、屈折系のプリズム部と全反射系のプリズム部とを組み合わせた構造を採用すると好適である。即ち、光軸に近い位置には、従来と同様にレンズ面101での屈折を利用するプルズム部(屈折系のプリズム部)を配置し、光軸からある限度以上遠い位置には、レンズ面101で全反射した光が非レンズ面102で屈折して出射することでレンズ作用を為すプリズム部(全反射系のプリズム部)を配置するようにするのである。
しかしながら、発明者の研究によると、全反射系のプリズム部を配置した場合、出射した光が、内側に隣接する別のプリズム部に遮蔽される、いわゆるケラレが発生してしまう。このケラレによる損失が無視できず、光の利用効率が悪いという問題がある。
また、製造上の問題として、前述したように出来ればドラフト角をつけた構造として離型性を良くすることが望ましい。さらには、レンズ面101と非レンズ面102とが成す頂角が鋭利なものであると、成型に使用する型の製作の際に鋭利な刃先のバイトを使用しなければならず、バイトの消耗が激しくなる欠点がある。
また、頂角が鋭利な製品は、頂角の欠けが生じ易く、取り扱いを慎重にせざえるを得ない煩わしさがある他、製品としての耐久性の点でも問題が生じ易い。このため、頂角を鋭利なものにしなくても必要な性能が得られる構造であることが望ましい。
本願の発明は、上記課題を解決するために為されたものであり、光の利用効率の高い優れた性能のソーラーシステム用フレネルレンズを提供する技術的意義を有するものである。
上記課題を解決するため、本願の請求項1記載の発明は、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造のソーラーシステム用フレネルレンズであって、
多数のプリズム部は、光軸に近い側に位置する第一の群のプリズム部と、光軸から遠い側に位置する第二の群のプリズム部とから成り、
各群のプリズム部は、フレネルレンズ全体として一つの集光レンズ作用を為すよう形成されているとともに、各プリズム面は、入射面から入射した光が最初に到達する第一の面と、第一の面とは別の第二の面とを有しており、
第一の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されており、
第二の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
第二の群の各プリズム部の入射面は、集光レンズ面となっているという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記第二の群の各プリズム部の入射面は、入射面から入射した光が前記第一の面上の所定の領域で全反射するよう集光するものであり、この所定の領域は、前記第一の面で全反射して前記第二の面から出射する際、実質的にすべての光が、内側に隣接するプリズム部に遮蔽されることなく進む位置に設定されているという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、前記請求項1又は2の構成において、前記第二の群の各プリズム部の第一の面又は第二の面は、入射面により集光された光を平行光に戻すコリメータ面となっているという構成を有する。
また、上記課題を解決するため、請求項4記載の発明は、前記請求項3の構成において、前記入射面は、前記コリメータ面となっている第一の面又は第二の面の入射側近傍位置に光を集光する集光レンズ面となっているという構成を有する。
また、上記課題を解決するため、請求項5記載の発明は、前記請求項1乃至4いずれかの構成において、前記第二の群の各プリズム部の第二の面は、光軸に対して非平行であるとともに光軸に対して入射面の側で交差するよう形成されているという構成を有する。
また、上記課題を解決するため、請求項6記載の発明は、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造のソーラーシステム用フレネルレンズであって、
多数のプリズム部は、光軸に近い側に位置する第一の群のプリズム部と、光軸から遠い側に位置する第二の群のプリズム部とから成り、
各群のプリズム部は、フレネルレンズ全体として一つの集光レンズ作用を為すよう形成されているとととに、各プリズム面は、入射面から入射した光が最初に到達する第一の面と、第一の面とは別の第二の面とを有しており、
第一の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されており、
第二の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
第一の群の各プリズム部の入射面は、集光レンズ面となっているという構成を有する。
また、上記課題を解決するため、請求項7記載の発明は、前記請求項6の構成において、前記第一の群の各プリズム部の第一の面は、入射面により集光された光を平行光に戻すコリメータ面となっているという構成を有する。
また、上記課題を解決するため、請求項8記載の発明は、前記請求項1乃至7いずれかに記載のフレネルレンズを備え、太陽光を利用するソーラーシステムであって、太陽光が前記光軸に平行に進んで前記入射面に入射するよう前記フレネルレンズを配置したという構成を有する。
また、上記課題を解決するため、請求項9記載の発明は、太陽光を利用するソーラーシステムであって、太陽光が光軸に平行に入射する姿勢で取り付けられているとともに、一つの面上に並べられた複数のフレネルレンズと、各フレネルレンズを保持する保持枠とを備えており、
各フレネルレンズは、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造を有しており、
各プリズム部は、複数のフレネルレンズ全体として一つの集光レンズ作用を為すよう形成されており、
各プリズム面は、光軸から遠い側に位置する第一の面と、光軸に近い側に位置する第二の面とから成っており、
複数のフレネルレンズのうちの一つは、請求項1乃至7いずれかに記載のフレネルレンズであって、このフレネルレンズは光軸上に配置されており、他のフレネルレンズは、その周囲に配置されており、
周囲に配置されたフレネルレンズの各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
この周囲に配置されたフレネルレンズのうちの第二の群の各プリズム部の入射面は、光を集光する集光レンズ面となっているこという構成を有する。
また、上記課題を解決するため、請求項10記載の発明は、太陽光を利用するソーラーシステムであって、太陽光が光軸に平行に入射する姿勢で取り付けられているとともに、一つの面上に並べられた複数のフレネルレンズと、各フレネルレンズを保持する保持枠とを備えており、
各フレネルレンズは、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造を有しており、
各プリズム部は、複数のフレネルレンズ全体として一つの集光レンズ作用を為すよう形成されており、
各プリズム面は、光軸から遠い側に位置する第一の面と、光軸に近い側に位置する第二の面とから成っており、
複数のフレネルレンズのうちの一つは光軸上に配置されており、他のフレネルレンズは、その周囲に配置されたものであって請求項1乃至7いずれかに記載のフレネルレンズであり、
光軸上に配置されたフレネルレンズの各プリズム部は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されているという構成を有する。
以下に説明する通り、本願の請求項1記載の発明によれば、第二の群の各プリズム部の入射面が集光レンズ面となっているので、出射した光が、隣接したプリズム部に遮蔽されるのを防ぐことができ、光の利用効率が高くなる。また、第二の面に対しドラフト角を付与することができるので、成型により製造する場合にも離型性が良くなる。さらに、第一の面と第二の面とが成す頂角を鋭利なものにする必要がないので、製造コストが安くなり、また製品の耐久性も高くなる。
また、請求項2記載の発明によれば、上記効果に加え、出射した光が、隣接したプリズム部に遮蔽されるのが実質的にゼロになるので、光の利用効率を最も高くすることができる。
また、請求項3記載の発明によれば、上記効果に加え、出射した光が、隣接したプリズム部に遮蔽されるのが実質的にゼロになるので、光の利用効率を最も高くすることができる。その上、集光レンズ面である入射面の曲率を、フレネルレンズ全体の集光レンズ作用における焦点距離とは無関係に定めることができるので、設計の自由度が高い。そして、入射面から入射して進む光束をより細く絞ることができるので、第二の面に対して大きなドラフト角を付与できる効果や、頂角を鋭利なものにする必要がないという効果が、より著しい。
また、請求項5記載の発明によれば、上記効果に加え、第二の面にドラフト角が与えられているので、成型により製造する場合にも離型性が良くなる。
また、請求項6記載の発明によれば、第一の群の各プリズム部の入射面が集光レンズ面となっているので、第二の面に対してドラフト角を付与したり、第一の面と第二の面とが成す頂角を鈍化させたりしても、光の利用効率が低下することは無い。
また、請求項7記載の発明によれば、上記効果に加え、集光レンズ面である入射面の曲率を、フレネルレンズ全体の集光レンズ作用における焦点距離とは無関係に定めることができるので、設計の自由度が高い。そして、入射面から入射して進む光束をより細く絞ることができるので、第二の面に対して大きなドラフト角を付与できる効果や、頂角を鋭利なものにする必要がないという効果が、より著しい。
また、請求項8乃至10いずれかの発明によれば、上記いずれかの効果を有するフレネルレンズを用いているので、光の利用効率が高いソーラーシステムが得られる。
第一の実施形態に係るフレネルレンズの断面概略図である。 図1のソーラー用フレネルレンズの作用効果について示した図である。 第二の実施形態に係るフレネルレンズの断面概略図である。 第三の実施形態に係るフレネルレンズの断面概略図である。 第四の実施形態に係るフレネルレンズの断面概略図である。 第五の実施形態に係るフレネルレンズの断面概略図である。 実施形態のソーラーシステムの斜視概略図である。 図7に示すソーラーシステムに搭載された複数のフレネルレンズのプリズム部1の構成について模式的に示した平面概略図である。 図8に示す各フレネルレンズF1〜F9のプリズム部1における第一第二の群の区分けについて示した断面概略図である。 一般的なフレネルレンズの構造を示した正面断面概略図である。
次に、本願発明を実施するための最良の形態(以下、実施形態)について説明する。まず、ソーラー用フレネルレンズの発明の実施形態について説明する。
図1は、本願発明の第一の実施形態に係るソーラー用フレネルレンズの断面概略図である。図1に示すフレネルレンズは、多数のプリズム部11、12を、一つの面上に並べた構造を有する。各プリズム部11、12は、入射面2と、入射面2とは反対側に突出しているプリズム面とから成っている。
各プリズム面は、本実施形態では、断面がほぼ三角形状の部位を形成しており、第一の面3と第二の面4とから成っている。第一の面3は、入射面2が入射した光が最初に到達する面である。各プリズム部11,12において、第一の面3は光軸Aから遠い側にあり、第二の面4は光軸Aに近い位置にある。
尚、図1は、光軸Aの右側の部分のみを示しており、且つ説明に必要な部分のみを抜粋して概略的に示している。本実施形態では、各プリズム部11,12は円周状に延びており、光軸Aを中心として同心上に配置されている。
これらのプリズム部11,12は、光軸Aに近い側に位置する第一の群のプリズム部11と、光軸Aから遠い側に位置する第二の群のプリズム部12とから成っている。このフレネルレンズは、屈折系と全反射系を組み合わせて構成している。即ち、第一の群のプリズム部11は、第一の面3での屈折を利用してレンズ作用を為させるのに対し、第二の群のプリズム部12は、第一の面3での全反射を利用してレンズ作用を為させるものとなっている。図1において、第一の群と第二の群との境界線を、一点鎖線6で示す。
より具体的に説明すると、本実施形態のフレネルレンズは、全体として集光レンズ作用を為すものである。集光レンズには色々なものがあるが、本実施形態のフレネルレンズは、図10(2)と同様、出射側が凸である平凸レンズと等価なものとなっており、平行な太陽光を一点に集光するものとなっている。
このうち、第一の群のプリズム部11は、第一の面3が、平凸レンズの凸面に等価となっており、各第一の面3をつなげてくと平凸レンズの凸面に近似する面を形成するようになっている。一方、第二の群の各プリズム部12では、第一の面3が全反射であって第二の面4が屈折面であり、これらの面により得られる作用が、第一の群の各プリズム部11で得られる作用と合わせて、フレネルレンズ全体として平凸レンズの作用を為すよう構成されている。即ち、第二の群の各プリズム部12は、第一の面3で全反射して第二の面4で屈折して出射した光が、第一の群の各プリズム部11から出射した光と同じ位置(即ち、焦点)に集まるよう構成されている。
上記説明から解るように、第一の群の各プリズム部11では第一の面3の角度は入射光が全反射しない角度に設定され、第二の群の各プリズム部12では第一の面3の角度は入射光が全反射する角度に設定される。以下、各プリズム部11,12の材質がPMMA樹脂である場合を例にし、上記の点をさらに具体的に説明する。
光がPMMA樹脂の媒体内から外部(空気中)に出射する場合、臨界角は42度程度であり、入射角が42度を超えると全反射する。したがって、第一の群のプリズム部11は、入射角が42度を超えないようになっている。各プリズム部11,12において、光は入射面2に垂直に入射するので、第一の面3への光の入射角θiは、第一の面3が入射面2と平行な面に対して成す角(立ち上がり角θu)に等しい。したがって、第一の群の各プリズム部11は、立ち上がり角θuが42度を超えないようになっている。
第一の群のプリズム部11は第一の面3での屈折により前記レンズ作用を為すから、最も中央の(光軸A上の)プリズム部11において第一の面3の立ち上がり角θuは0度であり、光軸Aから遠ざかるにしたがって、徐々に立ち上がり角θuが大きくなっている。そして、42度を超えない範囲で最も大きな立ち上がり角θuのプリズム部11が、第一の群において最外周に位置するものとなる。以下、このプリズム部11を、第一群最外周部と呼ぶ。第一群最外周部11における立ち上がり角θuは、例えば38度程度に設定される。
第二の面4から出射する光が入射面2に対して成す角(以下、単に「出射角」と呼ぶ)θeは、光軸A上のプリズム部11において最も大きい角度(90度)となり、光軸Aから遠ざかるに従って徐々に小さくなる。
第二の群の各プリズム部12では、第二の面4から出射する光が第一の群の各プリズム部11からの光と同じ位置(焦点)に結ぶことと、第一の面3の立ち上がり角θuが臨界角より大きいことの二つを条件とする以外、本質的に制限はない。したがって、これら二つの条件を満たすよう第一第二の各面3,4を設計すればよい。
第二の群のプリズム部12から出射する光の出射角θeは、図1に示すように、最も光軸Aに近い位置に位置するプリズム部(以下、第二群最内周部)12において最も大きく、光軸Aから遠ざかるに従って徐々に小さくなる。そして、第二群最内周部12における出射角θeは、第一群最外周部11における出射角θeから僅かに小さいのみであり、出射角θeの漸次減少がシームレスにつながるようになっている。
さて、本実施形態のフレネルレンズが、従来のものと大きく異なるのは、第二の群の各プリズム部12において入射面2が平坦面ではなく曲面となっている点である。より具体的には、第二の群の各プリズム部12は、入射面2が集光レンズ面となっている。この実施形態では、入射面2は入射側に凸である凸レンズ面となっている。図1に示すように、入射面2は断面が円弧状であり、これが光軸Aを中心に円周状に延びた構成となっている。
このように第二の群のプリズム部12において各入射面2を集光レンズ面にしておくと、効率の向上の点で顕著な効果が得られる。以下、図2を使用してこの点について説明する。図2は、図1のソーラー用フレネルレンズの作用効果について示した図である。図2には、比較のため、第二の群の各プリズム部12の入射面2が平坦面である例(比較例)の構成が併せて示してあり、(1)が比較例、(2)が第一の実施形態である。
入射面2が平坦面である場合も集光レンズ面である場合も、前述したように、第一の面3の光軸Aに対する角度が漸次変化しているため、第一の面3で屈折又は全反射した光は、焦点の位置に結ぶ。このようなフレネルレンズの作用において、入射面2が平坦面である場合と集光レンズ面である場合とでは、第二の群の各プリズム部12での効率に大きな違いが出る。
図2(1)に示すように、入射面2が平坦面である場合、光軸Aに近い側において入射面2に入射した光束L1は、前述したように第一の面3で全反射して第二の面4で屈折して出射し、焦点に結ぶ。しかしながら、光軸Aから遠い側において入射面2に入射した光束L2は、第一の面3で全反射して第二の面で屈折して出射するものの、内側(光軸側)に隣接する別のプリズム部12に遮蔽されてしまい、焦点には結ばない。厳密には、隣接するプリズム部12内に入射して反射した後に出射して焦点まで達する光もゼロではないが、実質的にはゼロである。即ち、光束L2は、損失になってしまうものである。
このような光軸側に位置する別のプリズム部で出射光が遮蔽される問題は、ケラレと呼ばれる。フレネルレンズが大型化したり、フレネルレンズ全体としての焦点距離が短くなったりすると、このケラレの問題が顕在化してくる。
一方、図2(2)に示すように、入射面2が集光レンズ面であると、入射面2から入射した光は、少しずつ絞られながら第一の面3で全反射し、第二の面4で屈折しながら出射する。したがって、隣接するプリズム部12に遮蔽されないようにすることが可能であり、光の利用効率を高くすることができる。
入射面2を集光レンズ面にすることの別のメリットは、第二の面4に大きなドラフト角を付与できる点である。図2(1)から理解できるように、入射面2が平坦面である場合、一つのプリズム部12において最大限に光を利用するためには、ドラフト角を0にし、第二の面4を入射面2に対して垂直にせざるを得ない。少しでもドラフト角を付与すると、入射面2において最も光軸寄りの位置から入射した光が第一の面3に最初に達せずに第二の面4に最初に達し、第二の面4で全反射してしまう。この光は、フレネルレンズの作用にはよらない光であり、損失である。
一方、図2(2)に示すように、入射面2を集光レンズ面として光を少しずつ絞りながら第一の面3に向かわせると、第二の面4に多少のドラフト角を付与しても、光が第二の面4に最初に達してしまうことがない。このため、ドラフト角を付与して離型性を向上させても光の利用効率が低下することはない。
入射面2を集光レンズ面とすることのさらに別のメリットは、プリズム部12の頂角を鈍化させることができる点である。図2(1)から解るように、入射面2が平坦面である場合、光を最大限に利用しようとすると、第一の面3において、第二の面4との交点(頂角)の位置まで最大に利用する必要がある。即ち、原理的には、入射面2から入射して第二の面4に沿って進む光まで第一の面3で全反射させて出射させる必要がある。言い換えると、第一の面3と第二の面4とが交差した部分、第一の面3と第二の面4とが成す角のまま鋭利なものとしておく必要がある。
しかしながら、鋭利な頂角のプリズム部は、幾つかの問題がある。一つは、製造上の問題である。鋭利な頂角のプリズム部は、それに合わせて鋭利な凹部を有する型によって成型する必要があり、鋭利な凹部の型は、鋭利なバイトで切削して製作することになる。しかしながら、鋭利なバイトは耐久性が低く、一つの型を製作するのに多くのバイトを消耗してしまい、型の製作コストが高くなってしま問題がある。また、鋭利なバイトをして鋭利な凹部を得ても、型の寸法精度はそれほど高くすることができず、成型したプリズム部12の頂角は、僅かではあるが丸みを帯びて鈍化し易い。この点は、熱間プレス成型等に比べて量産性に優れた射出成型の場合に顕著である。頂角が丸みを帯びて鈍化してしまった場合、その部分では必要な特性は得られなくなり、光の損失が大きくなってしまう。
さらに、製造後の製品上の問題として、プリズム部の頂角が鋭利である場合、運搬時や使用時等のちょっとした弾みで頂部が欠け易うという問題がある。頂角が欠けてしまうと、上記説明から解る通り、即それは性能低下につながる。即ち、製品としての耐久性や信頼性の点で問題となる。このように、入射面2を平坦面とする構造は、製造コストが高くなり易く、また製品としての耐久性や信頼性の点でも問題がある。
一方、図2(2)に示すように、入射面2を集光レンズ面にして光を絞るようにすると、第一の面3は隅まで使用する必要がない。第一の面3のうちの中央部分でのみ全反射作用があれば良い。このため、図2(2)に示すように、頂角を鈍化させても何ら問題はない。したがって、型の製作に鋭利なバイトを使用する必要はなく、頂角が丸みを帯び易い射出成型法により製造したとしても、性能上の問題は生じない。そして、頂角を鈍化させておけば、欠ける恐れも少なくなるので、製品の耐久性や信頼性も高い。
尚、第一の群の各プリズム部11では、本実施形態ではドラフト角ゼロとなっている。即ち、第二の面4は、光軸Aに対して平行である。これは、前述したように、ドラフト角をつけると損失が生じるためである。
次に、第二の実施形態のソーラー用フレネルレンズについて説明する。図3は、第二の実施形態に係るソーラー用フレネルレンズの断面概略図である。
この第二の実施形態においても、第の群のプリズム部12において、入射面2は集光レンズ面となっている。この第二の実施形態が第一の実施形態と異なるのは、入射面2により集光された光を平行光にするコリメータ面が設けられている点である。この第二の実施形態では、第一の面3においてコリメータ面を設けている。即ち、図3に示すように、第一の面3は、コリメータ面に形成された部位(以下、コリメータ部)31を有している。コリメータ部31は、全反射によりコリメート作用を為すので、コリメータミラーと同様のものということができる。
第二の実施形態においても、入射面2で集光された光は、少しずつ絞られながら第一の面3のコリメータ部31に達し、コリメータ部31で全反射した後、第二の面4で屈折しながら出射する。この際、光はコリメータ部31の曲率に従って平行光に変換され、第二の面4から出射する。
図2(2)と図3とを比較すると解るように、第二の実施形態によれば、第一の実施形態に比べてさらに光の利用効率が高くなる。即ち、図2(2)に示すように、第一の実施形態では、効率は良くなるものの、光軸Aからより遠い位置のプリズム部12では、より出射角θeが小さくなってくるため、出射する光がケラレる恐れが出てくる。入射面2の集光レンズ面の焦点距離を短くして光をより絞るようにすれば、ケラレを無くすことはできるが、フレネルレンズ全体の焦点位置よりも手前の位置で光が結んでしまい、その位置から光は広がってしまう。したがって、結局は損失が大きくなってしまう。
一方、図3に示すように、光を平行光に戻すようにすると、細く絞られた光束のままで進むから、より光軸Aから遠い位置のプリズム部12でも損失は実質的にゼロとなる。尚、第二の群の各プリズム部12を経た光は、すべてコリメータ部31で決まる幅をもったまたフレネルレンズ全体の焦点(集光点)に達する。したがって、コリメータ部31を採用することは、集光点でのスポット径を小さくすることの限界となってしまうことになりそうであるが、これは正しくはない。元来、フレネルレンズは、レンズ面を小さなセグメント(各プリズム部)に分割したもので、各セグメントの有限な幅自体がスポット径の最小限界となっているためである。このように、第二の実施形態では、より光軸Aから遠い位置のプリズム部12でもケラレが実質的にゼロになるので、光の利用効率を最大にすることができる。
また、集光レンズ面である入射面2の曲率は、コリメータ部31の位置との関係で最適なものにすれば良く、フレネルレンズ全体の焦点(集光位置)に依存せずに決めることができる。このため、図3に示すように、かなり光を絞るように入射面2を形成することができる。したがって、第二の面4に対してより大きなドラフト角を付与して離型性をさらに向上させることができるし、第一の面3上で利用する領域はより小さくて済むので、頂角をさらに鈍化させたとしても性能は何ら低下しない。
上記第二の実施形態において、第二の面4から出射される光束の幅を小さくしてスポット径を小さくする観点から、コリメータ部31は、集光レンズ面である入射面2の焦点の位置の近傍に配置されることが望ましい。どちらかというと、焦点の近傍で且つ焦点よりも出射側にコリメータ部31が位置することが望ましい。これは、図3から解るように、焦点よりも入射側にコリメータ部31が位置させる場合、第一の面3を入射面2に近い位置にする必要があり、この構造では、第二の面4における光の出射位置も入射面2よりの位置になり、ケラレが発生する恐れがあるからである。集光レンズ面である入射面2の曲率を緩くして焦点距離を長くすることで対応しても良いが、前述したドラフト角の付与や頂角の鈍化のためには、より光を絞る方が好ましく、どちらかというと、焦点距離を短くしつつ、焦点よりも僅かに出射側にコリメータ部31を置くことが望ましい。
次に、本願の第三の実施形態に係るソーラーシステム用フレネルレンズについて説明する。図4は、第三の実施形態に係るソーラー用フレネルレンズの断面概略図である。
図4に示すように、第三の実施形態では、コリメータ面が第二の面4に形成されている。第二の面4におけるコリメータ面も、第二の面4内の限られた部位(以下、コリメータ部)41となっている。第一の面3については、第一の実施形態と同様、平坦面となっている。
コリメータ部41は、屈折によって光を平行光にするものであり、出射側に凸である凸レンズ(コリメータレンズ)と同様のものとなっている。コリメータ部41は、第二の面4のうち、第一の面3からの光が到達する部位にのみ形成されている。この部位は、図4に示すように、頂角よりの位置である。また、集光メンズ面である入射面2の焦点は、コリメータ部41の僅かに入射側の位置に設定されている。
この第三の実施形態では、光は入射面2で集光され、少しずつ絞られながら第一の面3に達して第一の面3で全反射する。全反射した後も少しずつ絞られながら進み、コリメータ部41の手前で結んだ後、コリメータ部41に達して屈折することで平行光に変換されて出射する。その後、各実施形態と同様に、フレネルレンズ全体の焦点の位置に結ぶ。
第三の実施形態においても、光は細く絞られた後に平行光になって出射するため、隣接するプリズム部12によるケラレは実質的にゼロであり、光の利用効率を最大にすることができる。また、入射面2からの光束は少しずつ絞られるので、第二の面4に大きなドラフト角を付与して離型性をより向上させることができる。
また、図4に示すように、第一の面3にしろ第二の面4にしろ、頂角の付近は光学的には使用しないので、頂角を鈍化させても何ら性能は低下しない。尚、この第三の実施形態では、コリーメタ部41の縁をそのまま延長して第一の面3と交差させており、結果的に鈍化させた頂角の設計となっている。いずれにしても、この第三の実施形態のソーラーシステム用フレネルレンズも、鋭利なバイトを使用する必要はなく、また量産性に優れた射出成型法で製造することができるので、製造コストを安くしつつ高性能のソーラーシステム用フレネルレンズを得ることができる。
次に、本願発明の第四の実施形態のソーラーシステム用フレネルレンズについて説明する。図5は、第四の実施形態のソーラーシステム用フレネルレンズの断面概略図である。
第四の実施形態のフレネルレンズは、上記第三の実施形態と同様、コリメータ部41が第二の面4に形成されている。この第四の実施形態のフレネルレンズが第三の実施形態と異なるのは、図5に示すように、集光レンズ面である入射面2の焦点の位置よりも手前側にコリメータ部41が位置している点である。
この第四の実施形態では、入射面2の曲率を緩くすることができる長所がある。入射面2の曲率がきつく(曲率半径が小さく)なると、周辺部で光が全反射する恐れも出てくるが、この第四の実施形態ではこのような問題は無い。
次に、本願発明の第五の実施形態のソーラーシステム用フレネルレンズについて説明する。図6は、第五の実施形態のソーラーシステム用フレネルレンズの断面概略図である。
第五の実施形態のフレネルレンズの特徴点は、上記第二の実施形態の構成において、第一の群の各プリズム部11においても入射面2を集光レンズ面としている点である。そして、第一の面3においてコリメータ部31を設けている。コリメータ部31は、第三又は第四の実施形態においけるコリメータ部41と同様に、出射側に凸であるコリメータレンズ面の構成となっている。
第一の群のプリズム部11においては、内側に隣接するプリズム部11によるケラレの問題は無い。しかしながら、上記のように入射面2を集光レンズ面としておくと、図6に示すように、第二の面4に対してドラフト角を付与したり、頂角を鈍化させたりしても、光の利用効率は何ら低下することが無い。従って、前述した各実施形態と同様、製造コストを低減させつつ高性能のフレネルレンズを得ることができる。尚、第二の群のプリズム部12においては入射面2を集光レンズ面とせず、第一の群のプリズム部11においてのみ入射面2を集光レンズ面とした場合でも、これらの効果が得られるのは勿論である。
上述した各実施形態のソーラー用フレネルレンズについて、具体的な寸法例を示すと、フレネルレンズ全体としては100〜300mm角の正方形の板状で、全体としては焦点距離100〜200mm程度の集光レンズを成す場合、一つのプリズム部11,12の幅(ピッチ幅)は、0.1〜1.0mm程度である。この場合、光軸から半径50〜150mm程度までの領域については第一の群のプリズム部11が形成され、それよりも遠い領域には第二の群のプリズム部12が形成される。
このような寸法例において、例えば第二の実施形態の構造を採用する場合、第二の群のプリズム部12の各入射面2は、曲率半径が0.2〜1.0mm程度の凸レンズの構成とされ、第一の面3のコリメータ部31は、曲率半径が1.0〜2.0mm程度のコリメータミラーの構成とされる。
上記各実施形態のソーラー用フレネルレンズにおいて、各プリズム部11,12は、光軸Aに対して同軸円周状に長いものであるとしたが、各プリズム部11,12が直線状に延びる構造とされる場合もある。この場合は、光は全体として線状に集光されることになる。
また、上記各実施形態において、集光レンズ面である入射面2やコリメータ部31,41は、球面又は断面が円弧面である必要はなく、いわゆる非球面レンズの構成が採用されることもあり得る。
次に、ソーラーシステムの発明の実施形態について説明する。
実施形態のソーラーシステムは、上述したいずれかの実施形態のフレネルレンズを使用したシステムである。本願において、「ソーラーシステム」とは、太陽光を利用したシステムを広く意味する用語である。「利用する」とは、熱エネルギーとして利用する場合や、太陽電池のように光電変換して電気エネルギーとして取り出す場合を含む。但し、実施形態のソーラーシステムは、太陽光を集光してエネルギー密度を高くした上で利用することが想定されており、このような利用の仕方が望ましい分野に用途に好適に適用されるものである。
図7は、実施形態のソーラーシステムの斜視概略図である。
図7に示すソーラーシステムは、同一平面上に並べられた複数のフレネルレンズF1〜F9と、各フレネルレンズF1〜F9を保持する保持枠71と、各フレネルレンズF1〜F9の姿勢を制御する姿勢制御装置とを備えている。
各フレネルレンズF1〜F9が並べられた平面は、太陽光の入射方向に垂直である。したがって、太陽光は各フレネルレンズF1〜F9に垂直に入射する。
各フレネルレンズF1〜F9は、全体として正方形の板状である。この実施形態では、合計で9枚のフレネルレンズが搭載されており、図7に示すように碁盤の升目状に並べてられている。保持枠71は、これらのフレネルレンズF1〜F9を保持できるよう直角格子状のものである。
各フレネルレンズF1〜F9は、例えば1100×1100mm程度の大きなものである。保持枠71全体としては例えば3300×3300mm程度の大きなものであり、受光面の大きさが10m程度のシステムとなっている。
姿勢制御装置は、各フレネルレンズF1〜F9を一括して姿勢制御するものであって、各フレネルレンズF1〜F9の入射面2が太陽光の入射方向に対して常に垂直になるようにするものである。姿勢制御装置は、太陽光の高度の変化に追従して各フレネルレンズF1〜F9の傾斜角度を制御する高度追従制御機構72と、太陽の経度の変化に追従して各フレネルレンズF1〜F9の水平方向の向きを制御する経度追従制御機構73とを含んでいる。
上述した保持枠71は、一対の支柱74によって支えられている。保持枠71は、水平な回転軸の周りに所定角度回転可能な状態で支柱74に取り付けられている。回転軸は、保持枠71の中心を通る位置となっている。尚、保持枠71の中心は、九つのフレネルレンズのうち中央に設けられたフレネルレンズF1の中心に一致している。「保持枠71の中心」や「フレネルレンズの中心」は、「保持枠71の重心」、「フレネルレンズの重心」と言い換えることも可能である。
高度追従制御機構72は、保持枠71に取り付けられたアーム75と、アーム75を駆動する駆動部76によって構成されている。アーム75は、左右一対のものである。アーム75は、クランクアームと同様の構造であり、駆動部76は、アーム75を引っ張ったり押したりすることが可能となっている。この駆動によって保持枠71の傾斜角度が制御されるようになっている。
また、支柱74は、回転台77の上に固定されている。経度追従制御機構73は、この回転台77を鉛直な回転軸の周りに回転させる機構となっている。この回転軸も、保持枠71の中心を通る位置である。
姿勢制御装置は、不図示のコンピュータを備えている。コンピュータには、太陽の軌道に関するデータが入力されており、このデータに従って高度追従制御機構72と経度追従制御機構73とを制御するようになっている。
尚、このソーラーシステムは、複数のフレネルレンズによる太陽光の集光位置に、受光部(不図示)を備えている。受光部の構成は、集光された太陽光をどのように利用するかによって異なる。本実施形態では、集光された太陽光の高いエネルギーを利用して試料の加工を行うことが想定されており、試料を入れる容器が受光部として採用されている。
図8は、図7に示すソーラーシステムに搭載された複数のフレネルレンズのプリズム部1の構成について模式的に示した平面概略図である。
実施形態のソーラーシステムは、複数のフレネルレンズF1〜F9が全体として一つのレンズと等価になるような構成である。光軸Aは、中央のフレネルレンズF1の中心を通り、各フレネルレンズF1〜F9が並べられた平面に対して垂直な方向に設定されている。中央のフレネルレンズF1では、各プリズム部は光軸Aを中心とする同心円周状であり、自身の中心と同心である。一方の周辺のフレネルレンズF2〜F9では、各プリズム部が同じ光軸Aに対して同心円周状となっており、自身の中心とは同心ではない(いわゆるオフアクシス)。言い換えると、フレネルレンズF2〜F9では、各プリズム部は光軸Aを中心とする円弧状である。
図9は、図8に示す各フレネルレンズF1〜F9のプリズム部11,12における第一第二の群の区分けについて示した断面概略図である。一例として、フレネルレンズF1,F4,F8の断面が示されている。
前述したように、第一の群のプリズム部11は光軸Aに近い位置に位置するものであり、第二の群のプリズム部12は光軸Aから遠い位置に位置するものである。この場合、複数のフレネルレンズにおける区分けは、二つのパターンがある。
第一のパターンは、図9(1)にすように、中央のフレネルレンズF1において、第一の群のプリズム部11と第二の群のプリズム部12とがあり、周辺のフレネルレンズF4,F8では、全て第二の群のプリズム部12となっているパターンである。第二のパターンは、図9(2)に示すように、中央のフレネルレンズF1では、全て第一の群のプリズム部11であり、周辺のフレネルレンズF4,F8では、第一の群のプリズム部11と第二の群のプリズム部12とがあるパターンである。
第一のパターンは、各フレネルレンズF1〜F9(特に中央のフレネルレンズF1)が大きく、全体として大きな領域で太陽光を受光して集光する場合に用いられる。第二のパターンは、逆に各フレネルレンズF1〜F9(特に中央のフレネルレンズF1)が小さく、比較的小さい領域で太陽光を受光して集光する場合に用いられる。いずれにしても、複数のフレネルレンズを用いているので、一枚のフレネルレンズの場合に比べてより大きな領域で太陽光を受光して集光することができ、よりエネルギー密度を高くすることができる。
上記以外のパターンとして、中央に位置する光軸上のフレネルレンズF1と、その四辺に隣接するフレネルレンズF2,F4,F6、F8とについては、全て第一の群のプリズム部11から成るものとし、四隅に位置するフレネルレンズF3,F5,F7,F9については、第一の群のプリズム部11と第二の群のプリズム部12とから成るものとする場合もある。四隅に位置するフレネルレンズF3,F5,F7,F9が、光軸Aから最も遠いプリズム部群を含むからである。
さらに別のパターンとしては、中央のフレネルレンズF1は全て第一の群のプリズム部11とし、周囲のフレネルレンズF4,F8は全て第二の群のプリズム部12とする場合もあり得る。
上述したソーラーシステムにおいて、姿勢制御装置は、太陽光が各フレネルレンズF1〜F9に常に垂直に入射するようにするので、光の利用効率を常時高くする意義がある。とはいえ、光の利用効率をそれほど高くする必要がない場合には、姿勢制御装置を設けず、簡略化したシステムとする場合もある。
尚、上述したように複数のフレネルレンズを光軸に垂直な同一平面上に配置する構成は、「フレネルレンズ組立体」の発明として捉えることができる。このようなフレネルレンズ組立体は、上記ソーラーシステムの用途以外にも使用することができる。
11 第一の群のプリズム部
12 第二の群のプリズム部
2 入射面
3 第一の面
31 コリメータ部
4 第二の面
41 コリメータ部
71 保持枠
72 高度追従制御機構
73 経度追従制御機構

Claims (10)

  1. 太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造のソーラーシステム用フレネルレンズであって、
    多数のプリズム部は、光軸に近い側に位置する第一の群のプリズム部と、光軸から遠い側に位置する第二の群のプリズム部とから成り、
    各群のプリズム部は、フレネルレンズ全体として一つの集光レンズ作用を為すよう形成されているとともに、各プリズム面は、入射面から入射した光が最初に到達する第一の面と、第一の面とは別の第二の面とを有しており、
    第一の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されており、
    第二の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
    第二の群の各プリズム部の入射面は、集光レンズ面となっていることを特徴とするソーラーシステム用フレネルレンズ。
  2. 前記第二の群の各プリズム部の入射面は、入射面から入射した光が前記第一の面上の所定の領域で全反射するよう集光するものであり、この所定の領域は、前記第一の面で全反射して前記第二の面から出射する際、実質的にすべての光が、内側に隣接するプリズム部に遮蔽されることなく進む位置に設定されていることを特徴とする請求項1記載のソーラーシステム用フレネルレンズ。
  3. 前記第二の群の各プリズム部の第一の面又は第二の面は、入射面により集光された光を平行光に戻すコリメータ面となっていることを特徴とする請求項1又は2記載のソーラーシステム用フレネルレンズ。
  4. 前記入射面は、前記コリメータ面となっている第一の面又は第二の面の入射側近傍位置に光を集光する集光レンズ面となっていることを特徴とする請求項3記載のソーラーシステム用フレネルレンズ。
  5. 前記第二の群の各プリズム部の第二の面は、光軸に対して非平行であるとともに光軸に対して入射面の側で交差するよう形成されていることを特徴とする請求項1乃至4いずれかに記載のソーラーシステム用フレネルレンズ。
  6. 太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造のソーラーシステム用フレネルレンズであって、
    多数のプリズム部は、光軸に近い側に位置する第一の群のプリズム部と、光軸から遠い側に位置する第二の群のプリズム部とから成り、
    各群のプリズム部は、フレネルレンズ全体として一つの集光レンズ作用を為すよう形成されているとととに、各プリズム面は、入射面から入射した光が最初に到達する第一の面と、第一の面とは別の第二の面とを有しており、
    第一の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されており、
    第二の群の各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
    第一の群の各プリズム部の入射面は、集光レンズ面となっていることを特徴とするソーラーシステム用フレネルレンズ。
  7. 前記第一の群の各プリズム部の第一の面は、入射面により集光された光を平行光に戻すコリメータ面となっていることを特徴とする請求項6記載のソーラーシステム用フレネルレンズ。
  8. 請求項1乃至7いずれかに記載のフレネルレンズを備え、太陽光を利用するソーラーシステムであって、太陽光が前記光軸に平行に進んで前記入射面に入射するよう前記フレネルレンズを配置したことを特徴とするソーラーシステム。
  9. 太陽光を利用するソーラーシステムであって、太陽光が光軸に平行に入射する姿勢で取り付けられているとともに、一つの面上に並べられた複数のフレネルレンズと、各フレネルレンズを保持する保持枠とを備えており、
    各フレネルレンズは、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造を有しており、
    各プリズム部は、複数のフレネルレンズ全体として一つの集光レンズ作用を為すよう形成されており、
    各プリズム面は、光軸から遠い側に位置する第一の面と、光軸に近い側に位置する第二の面とから成っており、
    複数のフレネルレンズのうちの一つは、請求項1乃至7いずれかに記載のフレネルレンズであって、このフレネルレンズは光軸上に配置されており、他のフレネルレンズは、その周囲に配置されており、
    周囲に配置されたフレネルレンズの各プリズム部のプリズム面は、第一の面に達した光が第一の面で全反射した後、第二の面で屈折して出射することで前記集光レンズ作用を為すよう形成されており、
    この周囲に配置されたフレネルレンズのうちの第二の群の各プリズム部の入射面は、光を集光する集光レンズ面となっていることを特徴とするソーラーシステム用フレネルレンズ。
  10. 太陽光を利用するソーラーシステムであって、太陽光が入射面に垂直に入射する姿勢で取り付けられているとともに、一つの面上に並べられた複数のフレネルレンズと、各フレネルレンズを保持する保持枠とを備えており、
    各フレネルレンズは、太陽光が入射する側に位置される入射面と、入射面とは反対側に突出しているプリズム面とより成るプリズム部を、一つの面上に多数並べた構造を有しており、
    各プリズム部は、複数のフレネルレンズ全体として一つの集光レンズ作用を為すよう形成されており、
    各プリズム面は、光軸から遠い側に位置する第一の面と、光軸に近い側に位置する第二の面とから成っており、
    複数のフレネルレンズのうちの一つは光軸上に配置されており、他のフレネルレンズは、その周囲に配置されたものであって請求項1乃至7いずれかに記載のフレネルレンズであり、
    光軸上に配置されたフレネルレンズの各プリズム部は、第一の面に達した光が第一の面で屈折して出射するすることで前記集光レンズ作用を為すよう形成されていることを特徴とするソーラーシステム。
JP2009117262A 2009-05-14 2009-05-14 ソーラーシステム用フレネルレンズ及びソーラーシステム Active JP5054725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117262A JP5054725B2 (ja) 2009-05-14 2009-05-14 ソーラーシステム用フレネルレンズ及びソーラーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117262A JP5054725B2 (ja) 2009-05-14 2009-05-14 ソーラーシステム用フレネルレンズ及びソーラーシステム

Publications (2)

Publication Number Publication Date
JP2010266629A true JP2010266629A (ja) 2010-11-25
JP5054725B2 JP5054725B2 (ja) 2012-10-24

Family

ID=43363655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117262A Active JP5054725B2 (ja) 2009-05-14 2009-05-14 ソーラーシステム用フレネルレンズ及びソーラーシステム

Country Status (1)

Country Link
JP (1) JP5054725B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058381A1 (ja) * 2011-10-19 2013-04-25 株式会社ニコン 集光装置、光発電装置及び光熱変換装置
CN103257381A (zh) * 2013-05-14 2013-08-21 苏州大学 一种太阳能聚光菲涅尔透镜及其设计方法
WO2020115855A1 (ja) * 2018-12-06 2020-06-11 三菱電機株式会社 採光装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114488499A (zh) * 2022-01-04 2022-05-13 歌尔光学科技有限公司 聚光镜组、照明系统及投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056102A (ja) * 1998-08-03 2000-02-25 Sohei Suzuki 集光レンズと前記集光レンズを用いた集光方法
JP2002289897A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
WO2004049059A1 (ja) * 2002-11-26 2004-06-10 Mitsubishi Denki Kabushiki Kaisha 透過型スクリーンおよび投写型表示装置
JP2007079082A (ja) * 2005-09-14 2007-03-29 Three M Innovative Properties Co フレネルレンズ
JP2007134316A (ja) * 2005-10-14 2007-05-31 Toshiba Corp 照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056102A (ja) * 1998-08-03 2000-02-25 Sohei Suzuki 集光レンズと前記集光レンズを用いた集光方法
JP2002289897A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
WO2004049059A1 (ja) * 2002-11-26 2004-06-10 Mitsubishi Denki Kabushiki Kaisha 透過型スクリーンおよび投写型表示装置
JP2007079082A (ja) * 2005-09-14 2007-03-29 Three M Innovative Properties Co フレネルレンズ
JP2007134316A (ja) * 2005-10-14 2007-05-31 Toshiba Corp 照明装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058381A1 (ja) * 2011-10-19 2013-04-25 株式会社ニコン 集光装置、光発電装置及び光熱変換装置
US9046279B2 (en) 2011-10-19 2015-06-02 Nikon Corporation Light condensing device, photovoltaic power generation device and photo-thermal conversion device
TWI574043B (zh) * 2011-10-19 2017-03-11 尼康股份有限公司 A light collecting device, a photovoltaic device and a light and heat conversion device
CN103257381A (zh) * 2013-05-14 2013-08-21 苏州大学 一种太阳能聚光菲涅尔透镜及其设计方法
WO2020115855A1 (ja) * 2018-12-06 2020-06-11 三菱電機株式会社 採光装置
JPWO2020115855A1 (ja) * 2018-12-06 2021-05-20 三菱電機株式会社 採光装置
JP7281057B2 (ja) 2018-12-06 2023-05-25 三菱電機株式会社 採光装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114488499A (zh) * 2022-01-04 2022-05-13 歌尔光学科技有限公司 聚光镜组、照明系统及投影装置
WO2023130679A1 (zh) * 2022-01-04 2023-07-13 歌尔光学科技有限公司 一种菲涅尔透镜、准直镜组、光源模组和合光系统

Also Published As

Publication number Publication date
JP5054725B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5054725B2 (ja) ソーラーシステム用フレネルレンズ及びソーラーシステム
TWI523245B (zh) Secondary lens and collector type solar power generation module
US9435934B2 (en) Optics for solar concentrators
JP4287896B1 (ja) フレネルレンズ及びソーラーシステム
JP2013513938A (ja) 両面性のセルを有する光起電性モジュール用の反射素子
JP5248305B2 (ja) ソーラーシステム
WO2011079856A1 (en) Photovoltaic concentrator with optical stepped lens and optical stepped lens
JP2006332113A (ja) 集光型太陽光発電モジュール及び集光型太陽光発電装置
WO2013010496A1 (en) Light concentration system
KR101207852B1 (ko) 평판형 고집광 태양전지 모듈 및 이를 이용한 태양광 트랙커
JP2016138911A (ja) フレネルレンズ、集光型太陽光発電モジュール、及び集光型太陽光発電装置
KR101007649B1 (ko) 다수 채널을 갖는 광가이드 장치
CN101169510A (zh) 玻璃板硅胶太阳聚光透镜制造方法及太阳聚光装置
US8684545B2 (en) Light concentration apparatus, systems and methods
US9207371B2 (en) Solar concentrator
US9039213B2 (en) Light concentration apparatus, systems and methods
KR101059759B1 (ko) 프리즘 하이브리드 태양광 집광기
JP5872236B2 (ja) 光学モジュールおよび光学システム
CN202929224U (zh) 短焦距薄型菲涅尔透镜
JP7017228B2 (ja) 集光ユニット及び太陽光受光装置
JP5054730B2 (ja) ソーラーシステム用フレネルレンズ及びソーラーシステム
JP5655146B2 (ja) 集光型レンズアレイおよびそれを備えた太陽電池
JP2011059323A (ja) 集光モジュールおよびこれを用いた集光ユニット
JP2009139872A (ja) 太陽光集光装置
WO2012169980A1 (en) A waveguide for concentrated solar collectors and a solar collector thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250