WO2023130679A1 - 一种菲涅尔透镜、准直镜组、光源模组和合光系统 - Google Patents

一种菲涅尔透镜、准直镜组、光源模组和合光系统 Download PDF

Info

Publication number
WO2023130679A1
WO2023130679A1 PCT/CN2022/101597 CN2022101597W WO2023130679A1 WO 2023130679 A1 WO2023130679 A1 WO 2023130679A1 CN 2022101597 W CN2022101597 W CN 2022101597W WO 2023130679 A1 WO2023130679 A1 WO 2023130679A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
fresnel
lens group
light source
Prior art date
Application number
PCT/CN2022/101597
Other languages
English (en)
French (fr)
Inventor
李贵宇
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023130679A1 publication Critical patent/WO2023130679A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the field of projection technology, and more specifically, to a Fresnel lens, a collimator lens group, a light source module and a light combination system.
  • an ordinary lens for example, a traditional spherical or aspheric lens
  • a traditional spherical or aspheric lens is usually used to collimate the light emitted by the light source.
  • Traditional spherical or aspherical lenses not only have average geometric light efficiency, but also are thicker and heavier, occupying a large space in the light combining system and affecting the assembly of other mirror groups in projection equipment.
  • An object of the present application is to provide a new technical solution of a Fresnel lens, which can at least solve the problems in the prior art that the collimator lens has a general geometric light effect and occupies a large space.
  • a Fresnel lens is provided, the tooth-shaped cutting surface of the Fresnel lens has a groove surface facing the optical axis of the Fresnel lens, and the groove surface is connected to the optical axis of the Fresnel lens.
  • the included angle between the shafts is an inclination angle, and the angle of the inclination angle is 10°-25°.
  • the inclination angle is 15°-20°
  • the tooth groove depth of the Fresnel lens is 0.05-0.08mm.
  • a collimating lens group including a first lens, a second lens and a third lens arranged in sequence in the direction of the optical axis; wherein the first lens, the second lens and the third lens are Fresnel lenses in the above embodiment.
  • the first Fresnel surface of the first lens is close to the second lens.
  • the second Fresnel surface of the second lens is close to the third lens.
  • the third Fresnel surface of the third lens is far away from the second lens.
  • the effective focal length of the first lens is 3-4 mm
  • the effective focal length of the second lens is 2-3 mm
  • the effective focal length of the third lens is 4-5 mm.
  • the first lens, the second lens and the third lens are all made of plastic.
  • a light source module including: a light source; the collimating lens group described in the above-mentioned embodiments, the collimating lens group is located on the optical transmission path of the light source.
  • a light combining system including a light combining element, at least one light source module described in the above-mentioned embodiments, the light emitted by the light source module is combined into one beam by the light combining element outgoing light.
  • a projection device including the light combination system, light uniformity system, light valve system, and projection lens described in the above embodiments.
  • the inclination angle between the groove surface and the optical axis is designed to be 10 °-25°, which effectively improves the geometric light efficiency of the collimating lens group.
  • Fig. 1 is the sectional view of Fresnel lens of the present invention
  • Fig. 2 is the optical path schematic diagram of the combined light system of the present invention
  • FIG. 3 is a schematic diagram of the optical path of the projection device of the present invention.
  • Tooth-shaped cutting surface 20 first Fresnel surface 21; second Fresnel surface 22; third Fresnel surface 23; groove surface 24;
  • Condenser lens group 61 Condenser lens group 61 ; half-wave plate 62 ; polarizing beam splitter 63 ; phase compensation plate 64 ; light valve system 65 ; projection lens 66 .
  • the tooth-shaped cutting surface 20 of the Fresnel lens has the groove surface 24 towards the optical axis of the Fresnel lens, and the included angle between the groove surface 24 and the optical axis is Inclination angle, the angle of the inclination angle is 10°-25°.
  • the Fresnel lens of the embodiment of the present invention can change the refraction angle of the light, correct the light with a large angle, and can better collimate the light, ensuring that other subsequent optical elements in the projection device The light energy can be better utilized, and the overall optical efficiency of the projection device can be improved.
  • a Fresnel lens can be understood as compressing and folding an ordinary spherical or aspheric lens in the direction of the optical axis, which is ideally equivalent to an ordinary spherical or aspheric lens, while having a thinner size and lighter weight.
  • the sawtooth structure of the tooth-shaped cutting surface 20 will cause the loss of its own geometric light effect to a certain extent, and it is difficult to reduce the volume and weight while taking into account the light effect.
  • the groove surface 24 facing the optical axis is an ineffective area
  • the side of the tooth-shaped cut surface 20 facing away from the optical axis is an effective area.
  • the stray light formed by the invalid area will affect the imaging quality of the Fresnel lens.
  • the present application improves the structure of the Fresnel lens.
  • the tooth-shaped cutting surface 20 of the Fresnel lens is a Fresnel surface
  • the tooth-shaped cutting surface 20 has a groove surface 24 towards the optical axis of the Fresnel lens, and the clamp between the groove surface 24 and the optical axis
  • the angle is the tilt angle
  • the angle ⁇ of the tilt angle is designed to be 10°-25°, which can effectively reduce the secondary refraction of light and ensure that the geometric light efficiency of the Fresnel lens can reach more than 70%.
  • the inclination angle of the Fresnel lens is 15°-20°.
  • the secondary refraction of light can be further reduced, ensuring that the geometric light efficiency of the Fresnel lens can reach about 72%.
  • the tooth groove depth of the Fresnel lens is 0.05-0.08mm.
  • the depth H of the tooth-shaped groove of the tooth-shaped cutting surface 20 of the Fresnel lens is processed to 0.05-0.08 mm.
  • the present invention is by rationally designing the depth of the toothed groove, optionally, the depth H of the toothed groove of the toothed cutting surface 20 of the Fresnel lens is processed to 0.05mm, and at the same time Combined with the inclination angle ⁇ in the range of 10°-25°, it can be ensured that the geometric light efficiency of the Fresnel lens can reach about 72%.
  • the Fresnel lens of the embodiment of the present invention by optimizing the inclination angle of the groove surface 24 facing the optical axis side in the tooth-shaped cutting surface 20 of the Fresnel lens, the distance between the groove surface 24 and the optical axis
  • the inclination angle is designed to be 10°-25°, which effectively improves the geometric light effect of the collimator lens group 100 .
  • a collimator lens group 100 including a first lens 11 , a second lens 12 and a third lens 13 sequentially arranged in the direction of the optical axis.
  • the first lens 11 , the second lens 12 and the third lens 13 are Fresnel lenses in the above embodiments.
  • the collimating lens group 100 is mainly composed of a first lens 11 , a second lens 12 and a third lens 13 sequentially arranged in the direction of the optical axis.
  • the first lens 11 , the second lens 12 and the third lens 13 are Fresnel lenses in the above embodiments.
  • the collimator lens group 100 of the present application can be applied in projection devices, AR optical machines and other equipment.
  • the refraction angle of the light can be changed, and the light with a large angle can be corrected, which is conducive to better collimating the light, and the geometry of the collimating lens group 100
  • the light efficiency is increased to about 72%, which ensures that other subsequent optical elements in the projection device can better utilize light energy and improves the overall optical efficiency of the projection device.
  • the first Fresnel surface 21 of the first lens 11 is close to the second lens 12 .
  • the second Fresnel surface 22 of the second lens 12 is close to the third lens 13 .
  • the third Fresnel surface 23 of the third lens 13 is away from the second lens 12 .
  • the side of the first lens 11 away from the first Fresnel surface 21 is a plane, which can ensure that more light enters the first lens 11 .
  • Both the second Fresnel surface 22 of the second lens 12 and the third Fresnel surface of the third lens 13 are arranged on a side away from the first lens 11 .
  • the sides of the second lens 12 and the third lens 13 close to the first lens 11 can be aspheric surfaces, and the aspheric surfaces can be designed as polynomial aspheric surfaces, for example, even-order aspheric surfaces.
  • the aspherical design of the second lens 12 and the third lens 13 can change the refraction angle of the light, correct the light with a large angle, facilitate better collimation of the light, and facilitate better use of light energy by subsequent optical elements. Increase the geometric light efficiency of the projection device to more than 70%.
  • the light enters the aspherical side of the second lens 12 after passing through the first lens 11, and exits from the Fresnel surface side of the second lens 12 to the aspheric side of the third lens 13, and finally The light is emitted from the side of the Fresnel surface of the third lens 13, so as to achieve collimation of the light and improve the utilization rate of light energy.
  • the effective focal length of the first lens 11 is 3-4 mm
  • the effective focal length of the second lens 12 is 2-3 mm
  • the effective focal length of the third lens 13 is 4-5 mm.
  • the first lens 11 , the second lens 12 and the third lens 13 are all made of plastic.
  • the effective focal length of the first lens 11 is 3- 4mm
  • the effective focal length of the second lens 12 is 2-3mm
  • the effective focal length of the third lens 13 is 4-5mm.
  • the first lens 11, the second lens 12 and the third lens 13 are all made of plastics.
  • the first lens 11, the second lens 12 and the third lens 13 can be made of cycloolefin plastics, and cycloolefin plastics have High transparency, low birefringence, low water absorption and good mold processing performance, etc.
  • the first lens 11 , the second lens 12 and the third lens 13 may be formed by processing PMMA resin or PC resin.
  • the depth of the tooth-shaped groove of the tooth-shaped cutting surface 20 (ie Fresnel surface) of the first lens 11 can be 0.08mm, and the inclination angle of The angle is 21.9° and the effective focal length is 3.69mm.
  • the tooth groove depth of the tooth cutting surface 20 (ie Fresnel surface) of the second lens 12 may be 0.08mm, the inclination angle is 20°, and the effective focal length is 2.58mm.
  • the depth of the tooth-shaped groove of the tooth-shaped cutting surface 20 (ie Fresnel surface) of the third lens 13 may be 0.08mm, the inclination angle is 20°, and the effective focal length is 4.97mm.
  • the present application can reduce the thickness size (the length dimension in the optical axis direction) and the weight of the collimating lens group 100 by adopting three Fresnel lenses made of cycloolefin plastics, and adopt two Compared with the collimating lens group 100 composed of two common lenses, the weight is reduced by 46.1%, which ensures that the overall length of the collimating lens group 100 in the direction of the optical axis is small, the volume is small, and the occupied space of the collimating lens group 100 is reduced.
  • the inclination angle between the groove surface 24 and the optical axis is designed to be 10°-25°, effectively The geometric light efficiency of the collimating lens group 100 is improved.
  • the depth of the toothed groove should be as small as possible theoretically. When the depth of the toothed groove is 0°, it can reach 79% of the ideal state. When the depth of the tooth groove is 0.025mm, it does not meet the manufacturability of the Fresnel lens.
  • the first lens 11, the second lens 12 and the third lens 13 all adopt Fresnel lenses, which reduces the thickness size and weight of the collimator lens group 100, and ensures collimation.
  • the overall length of the mirror group 100 in the direction of the optical axis is small, and the volume is small, which reduces the occupied space of the collimating mirror group 100 .
  • the inclination angle between the groove surface 24 and the optical axis is designed to be 10°-25°, effectively The geometric light efficiency of the collimating lens group 100 is improved.
  • a light source module including: a light source 40 ;
  • the light source module of the embodiment of the present invention is mainly composed of a light source 40 and a collimator lens group 100 .
  • the light source 40 is used to emit light, and the light source 40 can adopt LED (light emitting diode, light emitting diode), OLED (organic light emitting diode) and laser generators and other different types of components capable of generating light beams of different colors.
  • the collimator lens group 100 is arranged on the optical transmission path of the light source 40 . The light emitted by the light source 40 is collimated by the collimator lens group 100 .
  • the collimating lens group 100 can collimate the light emitted by the light source 40 in order to be able to receive the large-angle light emitted by the light source 40 .
  • the present application adopts the collimating lens group 100 composed of three Fresnel lenses made of cycloolefin plastics, which can reduce the thickness and weight of the collimating lens group 100, and ensure that the collimating lens group 100 is integrated in the direction of the optical axis.
  • the length is small, the volume is small, and the occupied space of the light source module is reduced.
  • the inclination angle between the groove surface 24 and the optical axis is designed to be 10°-20°, which can Effectively reduce the secondary refraction of light to ensure that the geometric light efficiency of the light source module can reach about 72%.
  • optical elements such as a dichroic prism 30 can also be arranged on the light propagation path of the collimating lens group 100, and the dichroic prism 30 can reflect the blue light emitted by the light source 40, and at the same time
  • the transmission of red and green light increases the range of use of the light source module, and at the same time facilitates the rational arrangement of the positions of various optical elements according to the space inside the projection device.
  • a light combining system including a light combining element, at least one light source module in the above embodiment, and the light emitted by the light source module is combined into a beam of outgoing light by the light combining element.
  • the light combining system is mainly composed of a light combining element and a light source module.
  • the light emitted by the light source 40 in the light source module is collimated by the collimator lens group 100 and then transmitted to the light combining element.
  • the light combining element can combine the light beams of different colors collimated by the collimating lens group 100 through the transmission path to form a beam of outgoing light.
  • the light combining system according to the embodiment of the present invention should also have corresponding technical effects, that is, in the light combining system according to the embodiment of the present invention, three
  • the collimating lens group 100 composed of Fresnel lenses made of cycloolefin plastic can reduce the thickness, size and weight of the collimating lens group 100, and ensure that the overall length of the collimating lens group 100 in the direction of the optical axis is small and the volume is small , thereby reducing the occupied space of the photocombining system.
  • the inclination angle between the groove surface 24 and the optical axis is designed to be 10°-25°, which can Effectively reduce the secondary refraction of light to ensure that the geometric light efficiency of the combined light system can reach about 75%-77%.
  • a projection device including the light combination system, the light homogenization system 50 , the light valve system 65 , and the projection lens 66 in the above embodiments.
  • the outgoing light after passing through the light combining system can output light spots of uniform size after passing through the uniform light system 50 .
  • the light is uniformed by the dodging system 50 and then enters the light valve system 65 for modulation and imaging, and finally is projected by the projection lens 66 .
  • the present application adopts the collimating lens group 100 composed of three Fresnel lenses made of cycloolefin plastics, which can reduce the thickness and weight of the collimating lens group 100, and ensure that the collimating lens group 100 is integrated in the direction of the optical axis.
  • the length is small, the volume is small, and the occupied space of the light source module is reduced.
  • the inclination angle between the groove surface 24 and the optical axis is designed to be 10°-20°, which can Effectively reduce the secondary refraction of light, and ensure that the geometric light efficiency of the projection device can reach about 72%.
  • the homogenization system 50 includes a homogenization element, which can be a fly eye lens (FLYEYE) or an integrator.
  • the phase compensation plate 64 reaches the light valve system 65, and the light valve system 65 can adopt LCOS (liquid crystal on silicon), LCD (Liquid Crystal Display, liquid crystal display), DMD (digital micromirror) or other reflective spatial light modulation device.
  • the light reflected by the light valve system 65 enters the projection lens 66 to realize the projection imaging of the projection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种菲涅尔透镜、准直镜组(100)、光源模组和合光系统,所述菲涅尔透镜的齿形切割面(20)具有朝向所述菲涅尔透镜光轴的槽面(24),所述槽面(24)与所述光轴之间的夹角为倾斜角,所述倾斜角的角度为10°-25°。通过优化菲涅尔透镜的齿形切割面(20)中朝向光轴一侧的槽面(24)的倾斜角,将该槽面(24)与光轴之间的倾斜角设计为10°-25°,有效提高了准直镜组(100)的几何光效。

Description

一种菲涅尔透镜、准直镜组、光源模组和合光系统 技术领域
本申请涉及投影技术领域,更具体地,涉及一种菲涅尔透镜、准直镜组、光源模组及合光系统。
背景技术
在投影设备的合光系统中,通常采用普通透镜(例如,传统的球面或非球面透镜)对光源发出的光线进行准直。传统的球面或非球面透镜不仅几何光效一般,而且厚度较厚、重量较大,占用合光系统中较大空间,影响投影设备中其他镜组的装配。
发明内容
本申请的一个目的是提供一种菲涅尔透镜的新技术方案,至少能够解决现有技术中准直透镜几何光效一般且占用空间大的问题。
根据本申请的第一方面,提供了一种菲涅尔透镜,所述菲涅尔透镜的齿形切割面具有朝向所述菲涅尔透镜光轴的槽面,所述槽面与所述光轴之间的夹角为倾斜角,所述倾斜角的角度为10°-25°。
可选地,所述倾斜角的角度为15°-20°
可选地,所述菲涅尔透镜的齿形槽深度为0.05-0.08mm。
根据本申请的第二方面,提供一种准直镜组,包括在光轴方向上依次布置的第一透镜、第二透镜和第三透镜;其中,所述第一透镜、所述第二透镜和所述第三透镜均为上述实施例中的菲涅尔透镜。
可选地,所述第一透镜的第一菲涅尔面靠近所述第二透镜。
可选地,所述第二透镜的第二菲涅尔面靠近所述第三透镜。
可选地,所述第三透镜的第三菲涅尔面远离所述第二透镜。
可选地,所述第一透镜的有效焦距为3-4mm,所述第二透镜的有效焦距为2-3mm,所述第三透镜的有效焦距为4-5mm。
可选地,所述第一透镜、所述第二透镜和所述第三透镜均采用塑料制作形成。
根据本申请的第三方面,提供一种光源模组,包括:光源;上述实施例 中所述的准直镜组,所述准直镜组位于所述光源的光路传输路径上。
根据本申请的第四方面,提供一种合光系统,包括合光元件,至少一个上述实施例中所述的光源模组,所述光源模组出射的光线经合光元件合束为一束出射光。
根据本申请的第五方面,提供一种投影装置,包括上述实施例中所述的合光系统、匀光系统、光阀系统、投影镜头。
根据本发明实施例的菲涅尔透镜,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面的倾斜角,将该槽面与光轴之间的倾斜角设计为10°-25°,有效提高了准直镜组的几何光效。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是本发明的菲涅尔透镜的截面图;
图2是本发明的合光系统的光路示意图;
图3是本发明的投影装置的光路示意图。
附图标记:
准直镜组100;
第一透镜11;第二透镜12;第三透镜13;
齿形切割面20;第一菲涅尔面21;第二菲涅尔面22;第三菲涅尔面23;槽面24;
二向色棱镜30;
光源40;
匀光系统50;
聚光镜组61;半波片62;偏振分光器63;相位补偿片64;光阀系统65;投影镜头66。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除 非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面结合附图具体描述根据本发明实施例的菲涅尔透镜。
参见图1,根据本发明实施例的菲涅尔透镜,菲涅尔透镜的齿形切割面20具有朝向菲涅尔透镜光轴的槽面24,槽面24与光轴之间的夹角为倾斜角,倾斜角的角度为10°-25°。
换言之,根据本发明实施例的菲涅尔透镜,菲涅尔透镜能够改变光线的折射角,对大角度的光线进行修正,可以更好地对光线进行准直,保证投影装置中其他后续光学元件能够更好地利用光能,提高投影装置的整体光学效率。
菲涅尔透镜可以理解为将普通的球面或非球面透镜在光轴方向上压缩折叠,在理想上能够等效于普通的球面或非球面透镜,同时具有更薄的尺寸和更轻的重量。
菲涅尔透镜在实际生产制造过程中,齿形切割面20的锯齿结构会一定程度上造成自身几何光效的损耗,很难在减少体积、重量的同时,还能兼顾光效。
需要说明的是,本申请菲涅尔透镜的齿形切割面20中朝向光轴的槽面24为无效区域,齿形切割面20中背向光轴的一面为有效区域。无效区域所形成的杂散光会影响菲涅尔透镜的成像质量。
为此,本申请对菲涅尔透镜的结构进行了改进。如图1所示,菲涅尔透镜的齿形切割面20为菲涅尔面,齿形切割面20具有朝向菲涅尔透镜光轴的 槽面24,槽面24与光轴之间的夹角为倾斜角,倾斜角的角度θ设计为10°-25°,能够有效减少光线的二次折射,保证菲涅尔透镜的几何光效能够达到70%以上。
可选地,菲涅尔透镜的倾斜角的角度为15°-20°。通过将槽面24与光轴之间的倾斜角设计为15°-20°,能够进一步减少光线的二次折射,保证菲涅尔透镜的几何光效能够达到72%左右。
根据本发明的实施例,菲涅尔透镜的齿形槽深度为0.05-0.08mm。
也就是说,参见图1,菲涅尔透镜的齿形切割面20的齿形槽的深度H加工成0.05-0.08mm。理论上齿形槽的深度越小越好,本发明通过合理设计齿形槽的深度,可选地,菲涅尔透镜的齿形切割面20的齿形槽的深度H加工成0.05mm,同时结合倾斜角θ在10°-25°的范围,可以保证菲涅尔透镜的几何光效能够达到72%左右。
总而言之,根据本发明实施例的菲涅尔透镜,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-25°,有效提高了准直镜组100的几何光效。
根据本申请的第二方面,提供一种准直镜组100,包括在光轴方向上依次布置的第一透镜11、第二透镜12和第三透镜13。其中,第一透镜11、第二透镜12和第三透镜13均为上述实施例中的菲涅尔透镜。
也就是说,如图1至图3所示,根据本发明实施例的准直镜组100主要由在光轴方向上依次布置的第一透镜11、第二透镜12和第三透镜13组成。其中,第一透镜11、第二透镜12和第三透镜13均为上述实施例中的菲涅尔透镜。本申请的准直镜组100可以应用在投影装置、AR光机等设备中。通过采用三个菲涅尔透镜组成的准直镜组100,能够改变光线的折射角,对大角度的光线进行修正,有利于更好地对光线进行准直,将准直镜组100的几何光效提高到72%左右,保证投影装置中其他后续光学元件能够更好地利用光能,提高投影装置的整体光学效率。
在本发明的一些具体实施方式中,第一透镜11的第一菲涅尔面21靠近第二透镜12。第二透镜12的第二菲涅尔面22靠近第三透镜13。第三透镜13的第三菲涅尔面23远离第二透镜12。
具体来说,参见图2,第一透镜11的远离第一菲涅尔面21的一侧为平面,可以保证让光线更多地进入第一透镜11。第二透镜12的第二菲涅尔面22和第三透镜13的第三菲尼尔面均布置在远离第一透镜11的一侧。第二透镜12和第三透镜13的靠近第一透镜11的一侧可以为非球面,并且该非球面可以设计成多项式非球面,例如,偶次非球面。第二透镜12和第三透镜13的非球面设计,能够改变光线的折射角,对大角度的光线进行修正,便于更好地将光线准直,有利于后续光学元件更好地利用光能,将投影装置的几何光效提高到70%以上。
在本申请中,光线经过第一透镜11后射入第二透镜12的非球面一侧,并从第二透镜12的菲涅尔面一侧射出至第三透镜13的非球面一侧,最后从第三透镜13的菲涅尔面一侧射出,从而实现对光线的准直,提高光能利用率。通过合理布置第一透镜11、第二透镜12和第三透镜13,能够更好地满足准直镜组100与投影装置中其他光学结构的布局,减少准直镜组100在投影装置中的占用空间。
根据本发明的一个实施例,第一透镜11的有效焦距为3-4mm,第二透镜12的有效焦距为2-3mm,第三透镜13的有效焦距为4-5mm。第一透镜11、第二透镜12和第三透镜13均采用塑料制作形成。
也就是说,在本发明的准直镜组100中,通过将第一透镜11、第二透镜12和第三透镜13均设置为菲涅尔透镜,使第一透镜11的有效焦距为3-4mm,第二透镜12的有效焦距为2-3mm,第三透镜13的有效焦距为4-5mm。第一透镜11、第二透镜12和第三透镜13均采用塑料制成,可选地,第一透镜11、第二透镜12和第三透镜13可以采用环烯烃塑料制成,环烯烃塑料具有高透明度、低双折射、低吸水率以及好的模具加工性能等。具体地,第一透镜11、第二透镜12和第三透镜13可以采用PMMA树脂或PC树脂加工形成。
在本申请的一个具体实施例中,如图1和图2所示,第一透镜11的齿形切割面20(即菲涅尔面)的齿形槽的深度可以为0.08mm,倾斜角的角度为21.9°,有效焦距为3.69mm。第二透镜12的齿形切割面20(即菲涅尔面)的齿形槽的深度可以为0.08mm,倾斜角的角度为20°,有效焦距为2.58mm。 第三透镜13的齿形切割面20(即菲涅尔面)的齿形槽的深度可以为0.08mm,倾斜角的角度为20°,有效焦距为4.97mm。
本申请通过采用三片由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸(在光轴方向的长度尺寸)和重量,跟采用两个普通透镜组成的准直镜组100相对比,重量减少46.1%,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。同时,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-25°,有效提高了准直镜组100的几何光效。
在本申请的准直镜组100中,当第一透镜11、第二透镜12和第三透镜13均采用菲涅尔透镜时,菲涅尔透镜的倾斜角和齿形槽的深度对准直透镜几何光效的影响如下表一所示:
表一:
Figure PCTCN2022101597-appb-000001
如表一所示,齿形槽的深度理论上应该越小越好,当齿形槽深度为0°时,可以达到理想状态下的79%。当齿形槽的深度为0.025mm,不符合菲涅尔透镜的制作性。由表一可知,当菲涅尔透镜的倾斜角为10-20°,准直镜组100的几何光效能够达到67%以上,特别当菲涅尔透镜的倾斜角为10-20°,齿形槽的深度为0.05mm时,菲涅尔透镜的几何光效能够达到72.2%,这与理想状态下79%的几何光效非常接近。
因此,根据本发明实施例的准直镜组100,第一透镜11、第二透镜12和第三透镜13均采用菲涅尔透镜,减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。同时,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-25°,有效提高了准直镜组100的几何光效。
根据本申请的第三方面,提供一种光源模组,包括:光源40;上述实施例中的准直镜组100,准直镜组100位于光源40的光路传输路径上。
具体来说,如图2和图3所示,本发明实施例的光源模组主要由光源40和准直镜组100组成。其中,光源40用于发出光线,光源40可以采用LED(light emitting diode,发光二极管)、OLED(有机发光二极管)以及激光发生器等不同类型的能够产生不同颜色光束的元件。准直镜组100设置在光源40的光路传输路径上。通过准直镜组100对光源40发出的光线进行准直。准直镜组100为了能够接收光源40发出的大角度光,实现对光源40发出的光线进行准直。本申请通过采用三片由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小光源模组的占用空间。同时,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-20°,能够有效减少光线的二次折射,保证光源模组的几何光效能够达到72%左右。
当然,在本申请的光源模组中,还可以在准直镜组100的光线传播路径上设置二向色棱镜30等光学元件,二向色棱镜30能够对光源40发出的蓝光 进行反射,同时对红、绿光透过,提高光源模组的使用范围,同时也便于根据投影装置内部的空间合理布置各个不同光学元件的位置。
根据本申请的第四方面,提供一种合光系统,包括合光元件,至少一个上述实施例中的光源模组,光源模组出射的光线经合光元件合束为一束出射光。
也就是说,合光系统主要由合光元件和光源模组组成,光源模组中光源40发出的光线经过准直镜组100准直后,传递给合光元件。合光元件能够准直镜组100准直后的不同颜色光束经的传递路径进行合并,形成一束出射光。
由于根据本发明实施例的光源模组具有上述技术效果,因此,根据本发明实施例的合光系统也应具有相应的技术效果,即在本发明实施例的合光系统中,采用三片由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,进而减小合光系统的占用空间。同时,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-25°,能够有效减少光线的二次折射,保证合光系统的几何光效能够达到75%-77%左右。
根据本申请的第五方面,参见图2和图3,提供一种投影装置,包括上述实施例中的合光系统、匀光系统50、光阀系统65、投影镜头66。经过合光系统后的出射光,经过匀光系统50后,能够输出均匀大小的光斑。光线通过匀光系统50匀光后进入光阀系统65调制成像,最后通过投影镜头66进行投影。本申请通过采用三片由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小光源模组的占用空间。同时,通过优化菲涅尔透镜的齿形切割面20中朝向光轴一侧的槽面24的倾斜角,将该槽面24与光轴之间的倾斜角设计为10°-20°,能够有效减少光线的二次折射,保证投影装置的几何光效能够达到72%左右。
在本申请中,匀光系统50包括匀光元件,可以采用复眼镜片(FLYEYE)或积分器等,光线经匀光元件匀光后可以通过聚光镜组61、半波片62、偏振 分光器63、相位补偿片64到达光阀系统65,该光阀系统65可以采用LCOS(硅基液晶面板)、LCD(Liquid Crystal Display,液晶显示器)、DMD(数字微反射镜)或其他反射式空间光调制器。最后经过光阀系统65反射后的光线进入投影镜头66,实现投影装置的投影成像。
当然,对于本领域技术人员来说,本申请的投影装置的其他结构及其原理是可以理解并且能够实现的,在本申请中需在详细赘述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (12)

  1. 一种菲涅尔透镜,其特征在于,所述菲涅尔透镜的齿形切割面具有朝向所述菲涅尔透镜光轴的槽面,所述槽面与所述光轴之间的夹角为倾斜角,所述倾斜角的角度为10°-25°。
  2. 根据权利要求1所述的菲涅尔透镜,其特征在于,所述倾斜角的角度为15°-20°。
  3. 根据权利要求1所述的菲涅尔透镜,其特征在于,所述菲涅尔透镜的齿形槽深度为0.05-0.08mm。
  4. 一种准直镜组,其特征在于,包括在光轴方向上依次布置的第一透镜、第二透镜和第三透镜;其中,所述第一透镜、所述第二透镜和所述第三透镜均为如权利要求1-3中任意一项的菲涅尔透镜。
  5. 根据权利要求4所述的准直镜组,其特征在于,所述第一透镜的第一菲涅尔面靠近所述第二透镜。
  6. 根据权利要求4所述的准直镜组,其特征在于,所述第二透镜的第二菲涅尔面靠近所述第三透镜。
  7. 根据权利要求4所述的准直镜组,其特征在于,所述第三透镜的第三菲涅尔面远离所述第二透镜。
  8. 根据权利要求4所述的准直镜组,其特征在于,所述第一透镜的有效焦距为3-4mm,所述第二透镜的有效焦距为2-3mm,所述第三透镜的有效焦距为4-5mm。
  9. 根据权利要求4所述的准直镜组,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜均采用塑料制作形成。
  10. 一种光源模组,其特征在于,包括:
    光源;
    如权利要求4-9中任一项所述的准直镜组,所述准直镜组位于所述光源的光路传输路径上。
  11. 一种合光系统,其特征在于,包括合光元件,至少一个如权利要求10所述的光源模组,所述光源模组出射的光线经合光元件合束为一束出射光。
  12. 一种投影装置,其特征在于,包括如权利要求11所述的合光系统、匀光系统、光阀系统、投影镜头。
PCT/CN2022/101597 2022-01-04 2022-06-27 一种菲涅尔透镜、准直镜组、光源模组和合光系统 WO2023130679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210005491.3 2022-01-04
CN202210005491.3A CN114442203A (zh) 2022-01-04 2022-01-04 菲涅尔透镜、准直镜组、光源模组及合光系统

Publications (1)

Publication Number Publication Date
WO2023130679A1 true WO2023130679A1 (zh) 2023-07-13

Family

ID=81366085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101597 WO2023130679A1 (zh) 2022-01-04 2022-06-27 一种菲涅尔透镜、准直镜组、光源模组和合光系统

Country Status (2)

Country Link
CN (1) CN114442203A (zh)
WO (1) WO2023130679A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322303A (ja) * 1994-05-19 1995-12-08 Pioneer Electron Corp 背面投射型プロジェクションテレビ
JP2010266629A (ja) * 2009-05-14 2010-11-25 Nippon Tokushu Kogaku Jushi Kk ソーラーシステム用フレネルレンズ及びソーラーシステム
CN103261943A (zh) * 2010-12-28 2013-08-21 洛克希德马丁公司 采用一个或多个菲涅尔透镜的头戴式显示装置
TWM585357U (zh) * 2019-04-29 2019-10-21 大陸商北京眸合科技有限公司 實現空中懸浮顯示的光學系統
CN209805986U (zh) * 2019-07-22 2019-12-17 东莞广辰光电科技有限公司 一种亮度均匀的投影结构
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统
CN114488499A (zh) * 2022-01-04 2022-05-13 歌尔光学科技有限公司 聚光镜组、照明系统及投影装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489971C (zh) * 2005-09-02 2009-05-20 鸿富锦精密工业(深圳)有限公司 光学模组及采用所述光学模组的光学记录/再现装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322303A (ja) * 1994-05-19 1995-12-08 Pioneer Electron Corp 背面投射型プロジェクションテレビ
JP2010266629A (ja) * 2009-05-14 2010-11-25 Nippon Tokushu Kogaku Jushi Kk ソーラーシステム用フレネルレンズ及びソーラーシステム
CN103261943A (zh) * 2010-12-28 2013-08-21 洛克希德马丁公司 采用一个或多个菲涅尔透镜的头戴式显示装置
TWM585357U (zh) * 2019-04-29 2019-10-21 大陸商北京眸合科技有限公司 實現空中懸浮顯示的光學系統
CN209805986U (zh) * 2019-07-22 2019-12-17 东莞广辰光电科技有限公司 一种亮度均匀的投影结构
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统
CN114488499A (zh) * 2022-01-04 2022-05-13 歌尔光学科技有限公司 聚光镜组、照明系统及投影装置

Also Published As

Publication number Publication date
CN114442203A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023130679A1 (zh) 一种菲涅尔透镜、准直镜组、光源模组和合光系统
WO2023130678A1 (zh) 一种准直镜组、光源模组、合光系统及投影装置
TWI360685B (zh)
US10754162B2 (en) Projection apparatus and head-mounted display device
WO2019071951A1 (zh) 复眼透镜组及投影装置
TWM487442U (zh) 一種發光裝置
TWI328125B (en) Light source module
TWI639795B (zh) 反射型複眼陣列照明器
KR20130107209A (ko) 편광된 프로젝션 조명기
WO2020010704A1 (zh) 光学系统及头戴显示设备
TW201241541A (en) Projection apparatus
WO2023130680A1 (zh) 一种聚光镜组、照明系统及投影装置
WO2023231449A1 (zh) 匀光组件、投影光机及投影设备
US20160147068A1 (en) Virtual image display apparatus
US20240027884A1 (en) Illumination system and projection apparatus
Krijn et al. LED-based mini-projectors
CN116540484A (zh) 投影显示模组以及可穿戴设备
CN116520626A (zh) 光学投影系统以及电子设备
US20190339602A1 (en) Projector and light source module
CN114967311B (zh) 一种投影系统以及电子设备
US11592736B2 (en) Homogenizing element and projection device
US20220066222A1 (en) Total reflection based compact near-eye display device with large field of view
US11796901B2 (en) Illumination system and projection device
CN115508923B (zh) 复眼透镜、投影照明光路及投影装置
KR100831374B1 (ko) 광학필름 및 광학필름을 구비한 디스플레이모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918135

Country of ref document: EP

Kind code of ref document: A1