WO2023130678A1 - 一种准直镜组、光源模组、合光系统及投影装置 - Google Patents

一种准直镜组、光源模组、合光系统及投影装置 Download PDF

Info

Publication number
WO2023130678A1
WO2023130678A1 PCT/CN2022/101593 CN2022101593W WO2023130678A1 WO 2023130678 A1 WO2023130678 A1 WO 2023130678A1 CN 2022101593 W CN2022101593 W CN 2022101593W WO 2023130678 A1 WO2023130678 A1 WO 2023130678A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
lens group
fresnel
collimating
Prior art date
Application number
PCT/CN2022/101593
Other languages
English (en)
French (fr)
Inventor
李贵宇
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023130678A1 publication Critical patent/WO2023130678A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the field of projection technology, and more specifically, to a collimating lens group, a light source module, a light combination system and a projection device.
  • an ordinary lens for example, a traditional spherical or aspheric lens
  • a traditional spherical or aspheric lens is usually used to collimate the light emitted by the light source.
  • Traditional spherical or aspherical lenses not only have average geometric light efficiency, but also are thicker and heavier, occupying a large space in the light combining system and affecting the assembly of other mirror groups in projection equipment.
  • An object of the present application is to provide a new technical solution for a collimator lens group, which can at least solve the problem of the conventional collimator lens having a general geometric light effect and occupying a large space.
  • a collimating lens group including: a first lens; a second lens, the second lens is located on the light transmission path of the first lens, and the second lens is Fresnel lens, the tooth-shaped cutting surface of the Fresnel lens has a groove surface facing the optical axis of the Fresnel lens, the angle between the groove surface and the optical axis is an inclination angle, and the The angle of inclination is 15°-25°.
  • the inclination angle of the second lens is 15°-20°.
  • the tooth groove depth of the Fresnel lens is 0.05-0.08mm.
  • the other surface of the second lens is aspherical.
  • the Fresnel surface of the second lens is far away from the first lens.
  • the first lens is an aspheric lens.
  • the effective focal length of the first lens is 6-7 mm, and the effective focal length of the second lens is 1.5-2 mm.
  • the first lens is made of glass
  • the second lens is made of plastic
  • a light source module including: a light source; and the collimating lens group as described in the above embodiment, the collimating lens group is located on the optical transmission path of the light source.
  • a light combining system including a light combining element, at least one light source module described in the above-mentioned embodiments, the light emitted by the light source module is combined into one beam by the light combining element outgoing light.
  • a projection device including the light combination system, light uniformity system, light valve system and projection lens described in the above embodiments.
  • the second lens adopts a Fresnel lens, which reduces the thickness, size and weight of the collimating lens group, and ensures that the overall length of the collimating lens group in the direction of the optical axis is small and the volume is small. Reduce the space occupied by the collimating lens group.
  • the inclination angle between the groove surface and the optical axis is designed to be 15°-25°, which effectively improves the precision.
  • Fig. 1 is the sectional view of the second lens of the present invention
  • Fig. 2 is the optical path schematic diagram of the combined light system of the present invention
  • FIG. 3 is a schematic diagram of the optical path of the projection device of the present invention.
  • Second lens 20 Fresnel surface 21; Groove surface 22;
  • Condenser lens group 61 Condenser lens group 61 ; half-wave plate 62 ; polarizing beam splitter 63 ; phase compensation plate 64 ; light valve system 65 ; projection lens 66 .
  • the collimator lens group 100 according to the embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • a collimator lens group 100 includes a first lens 10 and a second lens 20 .
  • the second lens 20 is located on the light transmission path of the first lens 10, the second lens 20 is a Fresnel lens, and the tooth-shaped cutting surface of the Fresnel lens has a groove surface 22 facing the optical axis of the Fresnel lens , the angle between the groove surface 22 and the optical axis is an inclination angle, and the angle of the inclination angle is 15°-25°.
  • the collimating lens group 100 is mainly composed of the first lens 10 and the second lens 20.
  • the collimator lens group 100 of the present application can be applied in projection devices, AR optical machines and other equipment.
  • the second lens 20 is disposed on the light transmission path of the first lens 10 , and the light can be incident on the second lens 20 after passing through the first lens 10 .
  • the second lens 20 adopts a Fresnel lens.
  • the Fresnel lens can change the refraction angle of the light and correct the light with a large angle, which is conducive to better collimating the light and ensures that other subsequent optical elements in the projection device can be more accurate. Optimal use of light energy improves the overall optical efficiency of the projection device.
  • a Fresnel lens can be understood as compressing and folding an ordinary spherical or aspheric lens in the direction of the optical axis, which is ideally equivalent to an ordinary spherical or aspheric lens, while having a thinner size and lighter weight. Therefore, by designing the second lens 20 as a Fresnel lens, the overall length of the collimating lens group 100 in the direction of the optical axis is reduced, the volume is small, and the occupied space of the collimating lens group 100 is reduced.
  • the tooth-shaped cutting surface (ie, the Fresnel surface) of the Fresnel lens has a groove surface 22 facing the optical axis of the Fresnel lens.
  • the sawtooth structure of the tooth-shaped cutting surface will cause the loss of its own geometric light effect to a certain extent, and it is difficult to reduce the volume and weight while taking into account the light effect.
  • the groove surface 22 facing the optical axis is an ineffective area
  • the side of the tooth-shaped cut surface facing away from the optical axis is an effective area.
  • the stray light formed by the invalid area will affect the imaging quality of the Fresnel lens.
  • the present application improves the structure of the Fresnel lens.
  • the tooth-shaped cut surface of the Fresnel lens has a groove surface 22 (ineffective area) facing the optical axis of the Fresnel lens.
  • the included angle between the groove surface 22 and the optical axis is an inclination angle, and the angle ⁇ of the inclination angle is 15°-25°.
  • the design of the tilt angle is particularly important.
  • the collimating lens group 100 can collimate the light emitted by the light source 40 in order to be able to receive the large-angle light emitted by the light source 40 .
  • the inclination angle ⁇ between the groove surface 22 and the optical axis to be 15°-25°, the secondary refraction of light can be effectively reduced, and the geometric light efficiency of the collimating lens group 100 can reach 75%-77%. about.
  • the second lens 20 adopts a Fresnel lens, which reduces the thickness and weight of the collimating lens group 100, and ensures the overall length of the collimating lens group 100 in the direction of the optical axis. Smaller and smaller in volume, reducing the occupied space of the collimator lens group 100.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, effectively improving The geometric light effect of the collimator lens group 100 is illustrated.
  • the inclination angle of the second lens 20 is 15°-20°.
  • the secondary refraction of light can be further reduced, ensuring that the geometric light efficiency of the collimator lens group 100 can reach 75.7%-77.1%.
  • the tooth groove depth of the Fresnel lens is 0.05-0.08mm.
  • the depth H of the tooth-shaped groove on the tooth-shaped cutting surface of the Fresnel lens is processed to 0.05-0.08 mm.
  • the present invention can ensure that the geometric light efficiency of the collimating lens group 100 can reach Around 75%-77%.
  • the other surface of the second lens 20 is aspherical.
  • one surface of the second lens 20 is a Fresnel surface 21
  • the other surface is an aspheric surface.
  • the Fresnel surface 21 of the second lens 20 is a side with a serrated cutting surface.
  • the other surface of the second lens 20 adopts an aspheric design, and the aspheric surface of the second lens 20 is a polynomial aspheric surface, for example, an even-order aspheric surface.
  • the aspheric surface design of the second lens 20 can change the refraction angle of the light, correct the light with a large angle, facilitate better collimation of the light, and help the subsequent optical elements to better use light energy, and the geometry of the projection device
  • the light efficiency is increased to more than 75%.
  • the Fresnel surface 21 of the second lens 20 is away from the first lens 10 .
  • the second lens 20 is arranged on the light transmission path of the first lens 10, the aspheric surface of the second lens 20 can face the first lens 10, and the Fresnel surface 21 of the second lens 20 is far away from the first lens 10.
  • a lens 10 After passing through the first lens 10, the light enters the aspheric side of the second lens 20, and exits from the Fresnel surface 21 side of the second lens 20, so as to realize the collimation of the light and improve the utilization rate of light energy.
  • the Fresnel surface 21 of the second lens 20 By arranging the Fresnel surface 21 of the second lens 20 on the side away from the first lens 10, the layout of the collimating lens group 100 and other optical structures in the projection device can be better satisfied, and the number of collimating lens groups 100 can be reduced. Occupied space in projection installations.
  • the Fresnel surface 21 of the second lens 20 can also be placed close to the first lens 10 , and the aspheric surface of the second lens 20 is far away from the first lens 10 .
  • the first lens 10 is an aspherical lens.
  • the first lens 10 is close to the light source 40 , and the first lens 10 adopts an aspheric lens to meet the high refraction requirement of the first lens 10 .
  • the effective focal length of the first lens 10 is 6-7 mm, and the effective focal length of the second lens 20 is 1.5-2 mm.
  • the first lens 10 is made of glass material, and the second lens 20 is made of plastic.
  • the first lens 10 is an aspheric lens, and the effective focal length of the first lens 10 is 6-7 mm, for example, 6.32 mm.
  • the second lens 20 is a Fresnel lens.
  • the depth of the tooth-shaped groove of the tooth-shaped cutting surface of the Fresnel lens ie, the Fresnel surface 21
  • the inclination angle is 19.739°.
  • the effective focal length of the second lens 20 is 1.5-2mm, for example, 1.97mm.
  • the first lens 10 is made of glass material to ensure high refraction performance of the first lens 10 .
  • the second lens 20 is made of plastic.
  • the second lens 20 can be made of cycloolefin plastic, which has high transparency, low birefringence, low water absorption and good mold processing performance.
  • the second lens 20 can be formed by processing PMMA resin or PC resin.
  • the present application can reduce the thickness size of the collimating lens group 100 (on the optical axis) by adopting a high refraction glass lens (the first lens 10) and the Fresnel lens made of cycloolefin plastics to form the collimating lens group 100 direction) and weight, compared with the collimating lens group 100 composed of two common lenses, the length can be reduced by 3.9%, and the weight can be reduced by 37.1%, ensuring that the overall length of the collimating lens group 100 in the direction of the optical axis is shorter Small size, smaller size, reducing the occupied space of the collimator lens group 100.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, effectively improving The geometric light effect of the collimator lens group 100 is illustrated.
  • the depth of the toothed groove should be as small as possible theoretically. When the depth of the toothed groove is 0°, it can reach 79% of the ideal state. When the depth of the tooth groove is 0.025mm, it does not meet the manufacturability of the Fresnel lens. It can be seen from Table 1 that when the inclination angle of the Fresnel lens is 15-25°, the geometric light efficiency of the collimating lens group 100 can reach more than 75%, especially when the inclination angle of the Fresnel lens is 15-20°, The geometric light effect of the Fresnel lens can reach 77.1%, which is very close to the ideal geometric light effect of 79%.
  • the second lens 20 adopts a Fresnel lens, which reduces the thickness and weight of the collimating lens group 100, and ensures that the overall length of the collimating lens group 100 in the direction of the optical axis is shorter. Small size, smaller size, reducing the occupied space of the collimator lens group 100.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, effectively improving The geometric light effect of the collimator lens group 100 is illustrated.
  • the second aspect of the present application provides a light source module including a light source 40 and the collimator lens group 100 in the above embodiment.
  • the collimator lens group 100 is located on the optical transmission path of the light source 40 .
  • the light source module of the embodiment of the present invention is mainly composed of a light source 40 and a collimator lens group 100 .
  • the light source 40 is used to emit light, and the light source 40 can adopt LED (light emitting diode, light emitting diode), OLED (organic light emitting diode) and laser generators and other different types of components capable of generating light beams of different colors.
  • the collimator lens group 100 is arranged on the optical transmission path of the light source 40 . The light emitted by the light source 40 is collimated by the collimator lens group 100 .
  • the collimating lens group 100 can collimate the light emitted by the light source 40 in order to be able to receive the large-angle light emitted by the light source 40 .
  • the present application can reduce the thickness and weight of the collimating lens group 100 by adopting a high refraction glass lens (the first lens 10) and the Fresnel lens made of cycloolefin plastics to form the collimating lens group 100, and ensure that The overall length of the collimator lens group 100 in the direction of the optical axis is small, and the volume is small, which reduces the occupied space of the light source module.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, which can effectively Reduce the secondary refraction of light to ensure that the geometric light efficiency of the light source module can reach about 75%-77%.
  • optical elements such as a dichroic prism 30 can also be arranged on the light propagation path of the collimating lens group 100, and the dichroic prism 30 can reflect the blue light emitted by the light source 40, and at the same time
  • the transmission of red and green light increases the range of use of the light source module, and at the same time facilitates the rational arrangement of the positions of various optical elements according to the space inside the projection device.
  • a light combining system including a light combining element, at least one light source module in the above-mentioned embodiments, and the light emitted by the light source module is combined into a beam of outgoing light by the light combining element.
  • the light combining system is mainly composed of a light combining element and a light source module.
  • the light emitted by the light source 40 in the light source module is collimated by the collimator lens group 100 and then transmitted to the light combining element.
  • the light combining element can combine the light beams of different colors collimated by the collimating lens group 100 through the transmission path to form a beam of outgoing light.
  • the light combining system according to the embodiment of the present invention should also have the corresponding technical effect, that is, in the light combining system according to the embodiment of the present invention, a piece of high refraction
  • the glass lens (the first lens 10) and the collimator lens group 100 that are made up of the Fresnel lens that is made of cycloolefin plastics can reduce the thickness size and the weight of the collimator lens group 100, guarantee the collimator lens group 100 in the light
  • the overall length in the axial direction is small, and the volume is small, thereby reducing the occupied space of the photocombining system.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, which can effectively Reduce the secondary refraction of light to ensure that the geometric light efficiency of the combined light system can reach about 75%-77%.
  • a projection device including the light combination system, the light uniformity system 50 , the light valve system 65 and the projection lens 66 in the above embodiments.
  • the outgoing light can output light spots of uniform size after passing through the light homogenization system 50 .
  • the light is uniformed by the dodging system 50 and then enters the light valve system 65 for modulation and imaging, and finally is projected by the projection lens 66 .
  • the present invention can reduce the thickness size and the weight of the collimating lens group 100 by adopting a high refraction glass lens (the first lens 10) and the Fresnel lens made of cycloolefin plastics to ensure that The overall length of the collimator lens group 100 in the direction of the optical axis is relatively small, and its volume is relatively small, thereby reducing the internal occupied space of the projection device.
  • the inclination angle between the groove surface 22 and the optical axis is designed to be 15°-25°, which can effectively Reduce the secondary refraction of light to ensure that the overall light efficiency of the projection device can reach more than 75%.
  • the homogenization system 50 includes a homogenization element, which can be a fly eye lens (FLYEYE) or an integrator.
  • the phase compensation plate 64 reaches the light valve system 65, and the light valve system 65 can adopt LCOS (liquid crystal on silicon), LCD (Liquid Crystal Display, liquid crystal display), DMD (digital micromirror) or other reflective spatial light modulation device.
  • the light reflected by the light valve system 65 enters the projection lens 66 to realize the projection imaging of the projection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

一种准直镜组(100)、光源模组、合光系统及投影装置,准直镜组(100)包括:第一透镜(10);第二透镜(20),第二透镜(20)位于第一透镜(10)的光线传输路径上,第二透镜(20)为菲涅尔透镜,菲涅尔透镜的齿形切割面具有朝向菲涅尔透镜光轴的槽面(22),槽面(22)与光轴之间的夹角为倾斜角,倾斜角的角度为15°-25°。准直镜组(100)中第二透镜(20)采用菲涅尔透镜,减少准直镜组(100)的厚度尺寸和重量,保证准直镜组(100)在光轴方向上整体长度较小,体积较小,减小准直镜组(100)的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面(22)的倾斜角,将槽面(22)与光轴之间的倾斜角设计为15°-25°,有效提高了准直镜组(100)的几何光效。

Description

一种准直镜组、光源模组、合光系统及投影装置 技术领域
本申请涉及投影技术领域,更具体地,涉及一种准直镜组、光源模组、合光系统及投影装置。
背景技术
在投影设备的合光系统中,通常采用普通透镜(例如,传统的球面或非球面透镜)对光源发出的光线进行准直。传统的球面或非球面透镜不仅几何光效一般,而且厚度较厚、重量较大,占用合光系统中较大空间,影响投影设备中其他镜组的装配。
发明内容
本申请的一个目的是提供一种准直镜组的新技术方案,至少能够解决现有技术中准直透镜几何光效一般且占用空间大的问题。
根据本申请的第一方面,提供了一种准直镜组,包括:第一透镜;第二透镜,所述第二透镜位于所述第一透镜的光线传输路径上,所述第二透镜为菲涅尔透镜,所述菲涅尔透镜的齿形切割面具有朝向所述菲涅尔透镜光轴的槽面,所述槽面与所述光轴之间的夹角为倾斜角,所述倾斜角的角度为15°-25°。
可选地,所述第二透镜的所述倾斜角的角度为15°-20°。
可选地,所述菲涅尔透镜的齿形槽深度为0.05-0.08mm。
可选地,所述第二透镜的另一表面为非球面。
可选地,所述第二透镜的菲涅尔面远离所述第一透镜。
可选地,所述第一透镜为非球面透镜。
可选地,所述第一透镜的有效焦距为6-7mm,所述第二透镜的有效焦距为1.5-2mm。
可选地,所述第一透镜采用玻璃材质制作形成,所述第二透镜采用塑料制作形成。
根据本申请的第二方面,提供一种光源模组,包括:光源;如上述实施例中所述的准直镜组,所述准直镜组位于所述光源的光路传输路径上。
根据本申请的第三方面,提供一种合光系统,包括合光元件,至少一个上述实施例中所述的光源模组,所述光源模组出射的光线经合光元件合束为一束出射光。
根据本申请的第四方面,提供一种投影装置,包括上述实施例中所述的合光系统、匀光系统、光阀系统和投影镜头。
根据本发明实施例的准直镜组,第二透镜采用菲涅尔透镜,减少准直镜组的厚度尺寸和重量,保证准直镜组在光轴方向上整体长度较小,体积较小,减小准直镜组的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面的倾斜角,将该槽面与光轴之间的倾斜角设计为15°-25°,有效提高了准直镜组的几何光效。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明的第二透镜的截面图;
图2是本发明的合光系统的光路示意图;
图3是本发明的投影装置的光路示意图。
附图标记:
准直镜组100;
第一透镜10;
第二透镜20;菲涅尔面21;槽面22;
二向色棱镜30;
光源40;
匀光系统50;
聚光镜组61;半波片62;偏振分光器63;相位补偿片64;光阀系统65;投影镜头66。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面结合附图具体描述根据本发明实施例的准直镜组100。
如图1至图3所示,根据本发明实施例的准直镜组100包括第一透镜10和第二透镜20。
具体而言,第二透镜20位于第一透镜10的光线传输路径上,第二透镜20为菲涅尔透镜,菲涅尔透镜的齿形切割面具有朝向菲涅尔透镜光轴的槽面22,槽面22与光轴之间的夹角为倾斜角,倾斜角的角度为15°-25°。
换言之,根据本发明实施例的准直镜组100主要由第一透镜10和第 二透镜20组成。本申请的准直镜组100可以应用在投影装置、AR光机等设备中。其中,参见图2和图3,第二透镜20设置在第一透镜10的光线传输路径上,光线经过第一透镜10后能够入射到第二透镜20上。第二透镜20采用菲涅尔透镜,菲涅尔透镜能够改变光线的折射角,对大角度的光线进行修正,有利于更好地对光线进行准直,保证投影装置中其他后续光学元件能够更好地利用光能,提高投影装置的整体光学效率。
菲涅尔透镜可以理解为将普通的球面或非球面透镜在光轴方向上压缩折叠,在理想上能够等效于普通的球面或非球面透镜,同时具有更薄的尺寸和更轻的重量。因此通过将第二透镜20设计成菲涅尔透镜,使准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。
如图1所示,菲涅尔透镜的齿形切割面(即菲涅尔面)具有朝向菲涅尔透镜光轴的槽面22。菲涅尔透镜在实际生产制造过程中,齿形切割面的锯齿结构会一定程度上造成自身几何光效的损耗,很难在减少体积、重量的同时,还能兼顾光效。
需要说明的是,本申请菲涅尔透镜的齿形切割面中朝向光轴的槽面22为无效区域,齿形切割面中背向光轴的一面为有效区域。无效区域所形成的杂散光会影响菲涅尔透镜的成像质量。
为此,本申请对菲涅尔透镜的结构进行了改进。参加图1,菲涅尔透镜的齿形切割面具有朝向菲涅尔透镜光轴的槽面22(无效区域)。槽面22与光轴之间的夹角为倾斜角,倾斜角的角度θ为15°-25°。在准直镜组100中,对于倾斜角度的设计尤为重要。准直镜组100为了能够接收光源40发出的大角度光,实现对光源40发出的光线进行准直。本发明通过将槽面22与光轴之间的倾斜角θ设计为15°-25°,能够有效减少光线的二次折射,保证准直镜组100的几何光效能够达到75%-77%左右。
由此,根据本发明实施例的准直镜组100,第二透镜20采用菲涅尔透镜,减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将 该槽面22与光轴之间的倾斜角设计为15°-25°,有效提高了准直镜组100的几何光效。
可选地,第二透镜20的倾斜角的角度为15°-20°。通过将槽面22与光轴之间的倾斜角设计为15°-20°,能够进一步减少光线的二次折射,保证准直镜组100的几何光效能够达到75.7%-77.1%。
根据本发明的一个实施例,菲涅尔透镜的齿形槽深度为0.05-0.08mm。
也就是说,如图1所示,菲涅尔透镜的齿形切割面的齿形槽的深度H加工成0.05-0.08mm。理论上齿形槽的深度越小越好,本发明通过合理设计齿形槽的深度,同时结合倾斜角θ在15°-25°的范围,可以保证准直镜组100的几何光效能够达到75%-77%左右。
根据本发明的一个实施例,第二透镜20的另一表面为非球面。
换句话说,如图2所示,第二透镜20的一个表面为菲涅尔面21,另一个表面为非球面。第二透镜20的菲涅尔面21,即具有齿形切割面的一侧。第二透镜20的另一面采用非球面设计,第二透镜20的非球面为多项式非球面,例如,偶次非球面。第二透镜20的非球面设计,能够改变光线的折射角,对大角度的光线进行修正,便于更好地将光线准直,有利于后续光学元件更好地利用光能,将投影装置的几何光效提高到75%以上。
根据本发明的一个实施例,第二透镜20的菲涅尔面21远离第一透镜10。
也就是说,参见图2,第二透镜20设置在第一透镜10的光线传输路径上,第二透镜20的非球面可以朝向第一透镜10,第二透镜20的菲涅尔面21远离第一透镜10。光线经过第一透镜10后射入第二透镜20的非球面一侧,并从第二透镜20的菲涅尔面21一侧射出,从而实现对光线的准直,提高光能利用率。通过将第二透镜20的菲涅尔面21设置在远离第一透镜10的一侧,能够更好地满足准直镜组100与投影装置中其他光学结构的布局,减少准直镜组100在投影装置中的占用空间。当然,在本申请中,也可以将第二透镜20的菲涅尔面21靠近第一透镜10,第二透镜20的非球面远离第一透镜10。
在本发明的一些具体实施方式中,第一透镜10为非球面透镜。第一透镜10靠近光源40,第一透镜10采用非球面透镜,满足第一透镜10高折射需求。
根据本发明的一个实施例,第一透镜10的有效焦距为6-7mm,第二透镜20的有效焦距为1.5-2mm。第一透镜10采用玻璃材质制作形成,第二透镜20采用塑料制作形成。
换句话说,在本发明的准直镜组100中,第一透镜10为非球面透镜,第一透镜10的有效焦距为6-7mm,例如,6.32mm。第二透镜20为菲涅尔透镜。菲涅尔透镜的齿形切割面(即菲涅尔面21)的齿形槽的深度可以为0.08mm,倾斜角的角度为19.739°。第二透镜20的有效焦距为1.5-2mm,例如,1.97mm。其中,第一透镜10采用玻璃材质制成,保证第一透镜10的高折射性能。第二透镜20采用塑料制成,可选地,第二透镜20可以采用环烯烃塑料制成,环烯烃塑料具有高透明度、低双折射、低吸水率以及好的模具加工性能等。具体地,第二透镜20可以采用PMMA树脂或PC树脂加工形成。
本申请通过采用一片高折射的玻璃透镜(第一透镜10)和由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸(在光轴方向的长度尺寸)和重量,跟采用两个普通透镜组成的准直镜组100相对比,长度能够减小3.9%,重量减少37.1%,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将该槽面22与光轴之间的倾斜角设计为15°-25°,有效提高了准直镜组100的几何光效。
在本申请的准直镜组100中,当第一透镜10采用玻璃非球面透镜,第二透镜20采用菲涅尔透镜时,菲涅尔透镜的倾斜角和齿形槽的深度对准直透镜几何光效的影响如下表一所示:
表一:
Figure PCTCN2022101593-appb-000001
如表一所示,齿形槽的深度理论上应该越小越好,当齿形槽深度为0°时,可以达到理想状态下的79%。当齿形槽的深度为0.025mm,不符合菲涅尔透镜的制作性。由表一可知,当菲涅尔透镜的倾斜角为15-25°,准直镜组100的几何光效能够达到75%以上,特别当菲涅尔透镜的倾斜角为15-20°时,菲涅尔透镜的几何光效能够达到77.1%,这与理想状态下79%的几何光效非常接近。
因此,根据本发明实施例的准直镜组100,第二透镜20采用菲涅尔透镜,减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小准直镜组100的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将该槽面22与光轴之间的倾斜角设计为15°-25°,有效提高了准直镜组100的几何光效。
本申请的第二方面,提供一种光源模组包括光源40和上述实施例中的准直镜组100。准直镜组100位于光源40的光路传输路径上。
具体来说,如图2和图3所所示,本发明实施例的光源模组主要由光源40和准直镜组100组成。其中,光源40用于发出光线,光源40可以采用LED(light emitting diode,发光二极管)、OLED(有机发光二极管)以及激光发生器等不同类型的能够产生不同颜色光束的元件。准直镜组100设置在光源40的光路传输路径上。通过准直镜组100对光源40 发出的光线进行准直。准直镜组100为了能够接收光源40发出的大角度光,实现对光源40发出的光线进行准直。本申请通过采用一片高折射的玻璃透镜(第一透镜10)和由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,减小光源模组的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将该槽面22与光轴之间的倾斜角设计为15°-25°,能够有效减少光线的二次折射,保证光源模组的几何光效能够达到75%-77%左右。
当然,在本申请的光源模组中,还可以在准直镜组100的光线传播路径上设置二向色棱镜30等光学元件,二向色棱镜30能够对光源40发出的蓝光进行反射,同时对红、绿光透过,提高光源模组的使用范围,同时也便于根据投影装置内部的空间合理布置各个不同光学元件的位置。
根据本申请的第三方面,提供一种合光系统,包括合光元件,至少一个上述实施例中的光源模组,光源模组出射的光线经合光元件合束为一束出射光。
也就是说,合光系统主要由合光元件和光源模组组成,光源模组中光源40发出的光线经过准直镜组100准直后,传递给合光元件。合光元件能够准直镜组100准直后的不同颜色光束经的传递路径进行合并,形成一束出射光。
由于根据本发明实施例的光源模组具有上述技术效果,因此,根据本发明实施例的合光系统也应具有相应的技术效果,即在本发明实施例的合光系统中,采用一片高折射的玻璃透镜(第一透镜10)和由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,进而减小合光系统的占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将该槽面22与光轴之间的倾斜角设计为15°-25°,能够有效减少光线的二次折射,保证合光系统的几何光效能够达到75%-77%左右。
根据本申请的第四方面,提供一种投影装置,包括上述实施例中的合光系统、匀光系统50、光阀系统65和投影镜头66。如图3所示,经过合光系统后的出射光,经过匀光系统50后,能够输出均匀大小的光斑。光线通过匀光系统50匀光后进入光阀系统65调制成像,最后通过投影镜头66进行投影。
本发明通过采用一片高折射的玻璃透镜(第一透镜10)和由环烯烃塑料制成的菲涅尔透镜组成的准直镜组100,能够减少准直镜组100的厚度尺寸和重量,保证准直镜组100在光轴方向上整体长度较小,体积较小,进而减小投影装置的内部占用空间。同时,通过优化菲涅尔透镜的齿形切割面中朝向光轴一侧的槽面22的倾斜角,将该槽面22与光轴之间的倾斜角设计为15°-25°,能够有效减少光线的二次折射,保证投影装置的整体光效能够达到75%以上。
在本申请中,匀光系统50包括匀光元件,可以采用复眼镜片(FLYEYE)或积分器等,光线经匀光元件匀光后可以通过聚光镜组61、半波片62、偏振分光器63、相位补偿片64到达光阀系统65,该光阀系统65可以采用LCOS(硅基液晶面板)、LCD(Liquid Crystal Display,液晶显示器)、DMD(数字微反射镜)或其他反射式空间光调制器。最后经过光阀系统65反射后的光线进入投影镜头66,实现投影装置的投影成像。
当然,对于本领域技术人员来说,本申请的投影装置的其他结构及其原理是可以理解并且能够实现的,在本申请中需在详细赘述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (11)

  1. 一种准直镜组,其特征在于,包括:
    第一透镜;
    第二透镜,所述第二透镜位于所述第一透镜的光线传输路径上,所述第二透镜为菲涅尔透镜,所述菲涅尔透镜的齿形切割面具有朝向所述菲涅尔透镜光轴的槽面,所述槽面与所述光轴之间的夹角为倾斜角,所述倾斜角的角度为15°-25°。
  2. 根据权利要求1所述的准直镜组,其特征在于,所述第二透镜的所述倾斜角的角度为15°-20°。
  3. 根据权利要求1所述的准直镜组,其特征在于,所述菲涅尔透镜的齿形槽深度为0.05-0.08mm。
  4. 根据权利要求1所述的准直镜组,其特征在于,所述第二透镜的另一表面为非球面。
  5. 根据权利要求4所述的准直镜组,其特征在于,所述第二透镜的菲涅尔面远离所述第一透镜。
  6. 根据权利要求1所述的准直镜组,其特征在于,所述第一透镜为非球面透镜。
  7. 根据权利要求1所述的准直镜组,其特征在于,所述第一透镜的有效焦距为6-7mm,所述第二透镜的有效焦距为1.5-2mm。
  8. 根据权利要求1所述的准直镜组,其特征在于,所述第一透镜采用玻璃材质制作形成,所述第二透镜采用塑料制作形成。
  9. 一种光源模组,其特征在于,包括:
    光源;
    如权利要求1-8中任一项所述的准直镜组,所述准直镜组位于所述光源的光路传输路径上。
  10. 一种合光系统,其特征在于,包括合光元件,至少一个如权利要求9中所述的光源模组,所述光源模组出射的光线经合光元件合束为一束出射光。
  11. 一种投影装置,其特征在于,包括如权利要求10中所述的合光系统、匀光系统、光阀系统和和投影镜头。
PCT/CN2022/101593 2022-01-04 2022-06-27 一种准直镜组、光源模组、合光系统及投影装置 WO2023130678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210004247.5 2022-01-04
CN202210004247.5A CN114442334A (zh) 2022-01-04 2022-01-04 准直镜组、光源模组、合光系统及投影装置

Publications (1)

Publication Number Publication Date
WO2023130678A1 true WO2023130678A1 (zh) 2023-07-13

Family

ID=81365477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101593 WO2023130678A1 (zh) 2022-01-04 2022-06-27 一种准直镜组、光源模组、合光系统及投影装置

Country Status (2)

Country Link
CN (1) CN114442334A (zh)
WO (1) WO2023130678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322303A (ja) * 1994-05-19 1995-12-08 Pioneer Electron Corp 背面投射型プロジェクションテレビ
JPH11167064A (ja) * 1997-12-04 1999-06-22 Sony Corp 照明装置
CN103261943A (zh) * 2010-12-28 2013-08-21 洛克希德马丁公司 采用一个或多个菲涅尔透镜的头戴式显示装置
CN207216257U (zh) * 2017-07-27 2018-04-10 深圳奥比中光科技有限公司 含有菲涅尔透镜的激光投影装置
CN113253557A (zh) * 2021-04-30 2021-08-13 电子科技大学 一种基于菲涅尔透镜的投影仪系统
CN113568263A (zh) * 2021-06-29 2021-10-29 电子科技大学 一种基于菲涅尔透镜提高准直效率的照明系统
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489971C (zh) * 2005-09-02 2009-05-20 鸿富锦精密工业(深圳)有限公司 光学模组及采用所述光学模组的光学记录/再现装置
JP5054725B2 (ja) * 2009-05-14 2012-10-24 日本特殊光学樹脂株式会社 ソーラーシステム用フレネルレンズ及びソーラーシステム
CN209805986U (zh) * 2019-07-22 2019-12-17 东莞广辰光电科技有限公司 一种亮度均匀的投影结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322303A (ja) * 1994-05-19 1995-12-08 Pioneer Electron Corp 背面投射型プロジェクションテレビ
JPH11167064A (ja) * 1997-12-04 1999-06-22 Sony Corp 照明装置
CN103261943A (zh) * 2010-12-28 2013-08-21 洛克希德马丁公司 采用一个或多个菲涅尔透镜的头戴式显示装置
CN207216257U (zh) * 2017-07-27 2018-04-10 深圳奥比中光科技有限公司 含有菲涅尔透镜的激光投影装置
CN113253557A (zh) * 2021-04-30 2021-08-13 电子科技大学 一种基于菲涅尔透镜的投影仪系统
CN113568263A (zh) * 2021-06-29 2021-10-29 电子科技大学 一种基于菲涅尔透镜提高准直效率的照明系统
CN114442334A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 准直镜组、光源模组、合光系统及投影装置
CN114442203A (zh) * 2022-01-04 2022-05-06 歌尔光学科技有限公司 菲涅尔透镜、准直镜组、光源模组及合光系统

Also Published As

Publication number Publication date
CN114442334A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023130678A1 (zh) 一种准直镜组、光源模组、合光系统及投影装置
WO2023130679A1 (zh) 一种菲涅尔透镜、准直镜组、光源模组和合光系统
WO2019071951A1 (zh) 复眼透镜组及投影装置
US10754162B2 (en) Projection apparatus and head-mounted display device
TWM487442U (zh) 一種發光裝置
WO2017128187A1 (zh) 一种短距离光学放大模组、放大方法及放大系统
TWI639795B (zh) 反射型複眼陣列照明器
WO2023130680A1 (zh) 一种聚光镜组、照明系统及投影装置
WO2014187107A1 (zh) 光线转换装置、背光模组及显示装置
TW201241541A (en) Projection apparatus
WO2015010418A1 (zh) 背光模组及显示装置
WO2019037370A1 (zh) 一种hud照明系统、抬头显示装置以及实现方法
TWI379105B (en) Optical film and backlight module using the same
US20160147068A1 (en) Virtual image display apparatus
CN116520626A (zh) 光学投影系统以及电子设备
US11592736B2 (en) Homogenizing element and projection device
US20220066222A1 (en) Total reflection based compact near-eye display device with large field of view
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
CN216133290U (zh) 一种小型单lcd投影机匀光光路
US11796901B2 (en) Illumination system and projection device
US20240045316A1 (en) Illumination system and projection device
TWI823539B (zh) 投影裝置
KR100831374B1 (ko) 광학필름 및 광학필름을 구비한 디스플레이모듈
CN219202118U (zh) 一种lcd投影机照明装置
US20230102400A1 (en) Wavefront control element, lighting device, and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918134

Country of ref document: EP

Kind code of ref document: A1