JP5630690B2 - 集光光学素子、集光装置及び光発電装置 - Google Patents

集光光学素子、集光装置及び光発電装置 Download PDF

Info

Publication number
JP5630690B2
JP5630690B2 JP2010138838A JP2010138838A JP5630690B2 JP 5630690 B2 JP5630690 B2 JP 5630690B2 JP 2010138838 A JP2010138838 A JP 2010138838A JP 2010138838 A JP2010138838 A JP 2010138838A JP 5630690 B2 JP5630690 B2 JP 5630690B2
Authority
JP
Japan
Prior art keywords
optical element
condensing optical
light
condensing
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138838A
Other languages
English (en)
Other versions
JP2012004395A (ja
Inventor
達雄 丹羽
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010138838A priority Critical patent/JP5630690B2/ja
Priority to CN201180030080.XA priority patent/CN102947731B/zh
Priority to EP11795858.7A priority patent/EP2584383A4/en
Priority to PCT/JP2011/064092 priority patent/WO2011158956A1/ja
Publication of JP2012004395A publication Critical patent/JP2012004395A/ja
Priority to US13/718,510 priority patent/US9196778B2/en
Application granted granted Critical
Publication of JP5630690B2 publication Critical patent/JP5630690B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光を集光する装置に関し、なお詳細には、厚さ方向に入射する光を側面方向に集光する集光光学素子、及びこれを用いた集光装置並びに光発電装置に関する。
近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用では、旧来より太陽熱温水器等により太陽光の熱エネルギー利用が用いられてきたほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。
光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、電力への変換効率が概ね10〜20%程度である。そこで、太陽光のスペクトル範囲(約400〜1600nm)を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。
しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに入射させるレンズ集光型(例えば、特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(例えば、特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(例えば、特許文献4を参照)などが提案されている。
特表2005−142373号公報 特開2005−217224号公報 米国特許出願公開第2006/0107993号明細書 米国特許第6274860号明細書
しかしながら、上記各集光方式には一長一短がある。例えば、レンズ集光型では、光軸方向にレンズの焦点距離に応じた厚さが必要であることや、光軸を太陽の方位に一致させるための追尾装置が必要になる。一方、蛍光プレート集光型や分光集光型は、モジュールの光軸方向寸法を薄くでき、また必ずしも追尾装置を必要としないが、波長依存性や変換効率の面で改善すべき余地がある。
本発明は、上記のような事情に鑑みてなされたものであり、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することを目的とする。
上記目的を達成するため、本発明を例示する第1の態様は集光光学素子である。この集光光学素子は、光透過性を有するA部材と、このA部材中に厚さ方向(実施形態におけるy軸方向)及びこれと相互に直交する第1方向(同、x軸方向)、第2方向(同、z軸方向)に複数配設された光透過性を有するB部材とを有して構成される。厚さ方向及び第1方向を含み第2方向と直交する面内(同、x―y平面内)において、B部材は第1方向に開く楔状をなす。そして、A部材における、電界振幅が第1方向に沿った光の屈折率をnax、電界振幅が厚さ方向に沿った光の屈折率をnayとし、B部材における、電界振幅が第1方向に沿った光の屈折率をnbx、電界振幅が厚さ方向に沿った光の屈折率をnbyとしたときに、naxとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴として構成される。
この場合において、前記屈折率の関係は、nax<nbxでありnbx>nbyであること、あるいは、nax<nbxでありnax<nayであること、あるいは、nax>nbxでありnbx<nbyであること、または、nax>nbxでありnax>nayであることが好ましい。
また、A部材における電界振幅が第2方向に沿った光の屈折率をnazとし、B部材における電界振幅が第2方向に沿った光の屈折率をnbzとしたときに、nazとnbzとが実質的に等しいことが好ましい。
なお、前記B部材は厚さ方向に相互に重複して配設されることが望ましい。また、厚さ方向及び第1方向を含む面内において、B部材は二等辺三角形の楔状をなし、二等辺三角形の頂点から底辺に下ろした垂線が第1方向に向かうように配設されることが好ましい。
B部材の楔状の頂角、及び厚さ方向に重複するB部材の重複数は、集光光学素子の表面から厚さ方向に入射して複数のB部材により第1方向に順次屈折され、最も裏面側に配設されたB部材から当該集光光学素子の裏面に向かう光が、裏面において全反射されるように設定されることが好ましい構成態様である。
本発明を例示する第2の態様は集光装置である。この態様に含まれる第1の構成形態の集光装置は、請求項1〜11のいずれかに記載の集光光学素子と、この集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、集光光学素子と反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えて構成される。
本態様に含まれる第2の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第2方向(同、第1の集光光学素子のz軸方向)と平行になるように配設される。
本態様に含まれる第3の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第1方向(同、第1の集光光学素子のz軸方向)と平行になるように配設されるとともに、第1の集光光学素子と第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする
本発明を例示する第3の態様は光発電装置である。この態様に含まれる第1の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向の一方の端部(実施形態におけるx軸方向の+x側または−x側の端部)に導かれた光を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)とを備えて構成される。
本態様に含まれる第2の構成形態の光発電装置は、請求項12に記載の集光装置と、
集光光学素子により第1方向の一方の端部(実施形態におけるx軸方向の+x側または−x側の端部)に導かれた光を光電変換する光電変換素子とを備えて構成される。
本態様に含まれる第3、第4の構成形態の光発電装置は、請求項13または14に記載の集光装置と、第1の集光光学素子における第1方向の一方の端部(実施形態におけるx軸方向の+x側または−x側の端部)に導かれた光を光電変換する第1の光電変換素子と、第2の集光光学素子における第1方向の一方の端部(同上)に導かれた光を光電変換する第2の光電変換素子とを備えて構成される。
本発明の第1の態様の集光光学素子は、透明なA部材中に楔状のB部材が第1方向に配向して複数配設されており、A部材及びB部材は、電界振幅が第1方向に沿った光の屈折率を各々nax及びnbxとし、厚さ方向に沿った光の屈折率を各々nay及びnbyとしたときに、電界振幅が第1方向に沿った光についてnbxとnaxとが異なり、電界振幅が厚さ方向に沿った光についてnayとnbyとが実質的に等しく構成される。そのため、この集光光学素子に厚さ方向に入射した光は、電界振幅が第1方向に沿った光が楔状のB部材を透過するたびに、厚さ方向及び第1方向を含む面内で屈折され、第1方向に沿って進む光はそのままA部材及びB部材を透過して、第1方向の一方の端部に集光される。従って、本発明によれば、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。
本発明の第2の態様の集光装置は、集光光学素子を透過した偏光成分の光を再度同一の/または第2の集光光学素子で集光するように構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを高効率で利用可能な集光装置を提供することができる。
本発明の第3の態様の光発電装置は、上記のような集光光学素子または集光装置と、集光された光を光電変換する光電変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光発電装置を提供することができる。
本発明の態様を例示する光発電装置1の外観斜視図である。 図1中に付記するII−II矢視方向に見た模式的な断面図である。 第1構成例の集光光学素子の上方からp偏光の光が入射したときの光線屈折の状況を示した説明図である。 第2構成例の集光光学素子の上方からp偏光の光が入射したときの光線屈折の状況を示した説明図である。 第1構成例の集光装置60の概要構成図である。 第3構成例の集光装置80の概要構成図である。 集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。
以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置1の外観斜視図を図1に、図1中に付記するII−II矢視方向に見た模式的な断面図を図2に示す。なお、説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。y軸は集光光学素子10の厚さ方向、x軸及びz軸は集光光学素子の面内で直交する二軸であり、図2はx軸及びy軸を含みz軸に垂直な面(x−y平面)で切断した模式的な断面図に相当する。なお、説明の便宜上から、図2に示す姿勢をもって上下左右ということがあるが、配設姿勢は任意である。
(全体概要)
光発電装置1は、厚さ方向に入射する光を集光する集光光学素子10(20)と、集光光学素子により集光されて端部に導かれた光を光電変換する光電変換素子50とを備えて構成される。図示する構成形態は、集光光学素子10(20)をプレート状に形成した構成例を示す。光電変換素子50は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。
(集光光学素子の構成形態)
集光光学素子10(20)は、太陽光を透過するA部材11(21)と、このA部材中に多数配設されたB部材12(22)とを主体として構成される。B部材はx軸方向に開く楔状をなし、厚さ方向に複数重複して配設される。実施形態では、B部材がx軸及びz軸を含む面内において二等辺三角形の楔状をなし、二等辺三角形の頂点から底辺に下ろした垂線がx軸方向(+x側)に向かうように配設した構成例を示す。
なお、図2は集光光学素子の作用を説明するための模式図であり、B部材12がx軸方向及びy軸方向に規則的に整列し、上下層でB部材が反ピッチ分x軸方向にずれた構成を示しているが、B部材12はランダムに均一分散されていても良い。また、y軸方向の層数(重複数)は、A部材及びB部材の材質や形状、使用条件等に応じて適宜設定される。これについては後に詳述する。
集光光学素子10(20)は、A部材11(21)とB部材12(22)の屈折率特性が異なり、かつA部材及びB部材の少なくとも一方が複屈折性を有している。いま、A部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnax、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnayとする。同様に、B部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnbx、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnbyとする。
ここで、図2において電界振幅が紙面に平行な光の偏光状態をp偏光、電界振幅が紙面に垂直な光の偏光状態をs偏光とすると、偏光方向がx−y平面内で電界振幅がx軸方向の光はy軸方向に進むp偏光の光であり、偏光方向がx−y平面内で電界振幅がy軸方向の光はx軸方向に進むp偏光の光である。また、偏光方向がy−z平面内で電界振幅がz軸方向の光はy軸方向に進むs偏光の光である。
このとき、naxとnbxとが異なり、nayとnbyとが実質的に等しくなるようにA部材11(21)及びB部材12(22)が設定される。なお、nayとnbyとが実質的に等しいとは、x軸方向に進むp偏光の光が、A部材およびB部材の界面で有意な屈折を起こさないことをいい、具体的には、屈折率差が0.05以下のような場合をいう。
このような集光光学素子10(20)では、上方から素子内に入射してy軸方向に進むp偏光の光は、naxとnbxとが異なることから、楔状のB部材12(22)に入射し出射するたびにx軸方向の正負(図2における左右)いずれかに屈折され、複数のB部材を透過することで、光の進行方向が徐々にx軸に沿うようになる。x軸の正負いずれに屈折するかは、naxとnbxの何れが大きいかにより定まり、nax<nbxのとき、x軸の正方向(図2において左方)、nax>nbxのとき、x軸の負方向(図2において右方)に屈折する。一方、x軸方向に進むp偏光の光は、A部材とB部材の屈折率がほぼ等しいことから、A部材及びB部材の界面で屈折せず、そのままx軸方向に進む。なお、図2はnax<nbxのときを示している。
このため、集光光学素子10(20)に上方から入射したp偏光成分の光は、この素子を厚さ方向に進むにつれて光の進行方向がy軸方向からx軸方向の正負いずれかに回転され、進行方向がx軸方向に沿った光はそのままx軸方向の左右いずれかの端部に向けて進む。また、進行方向がx軸方向まで回転されずに斜め下方に進む光も、x−y平面内でx軸方向に大きく傾いた光になる。進行方向がx軸方向に大きく傾斜して下面側に向かう光は、下面(A部材と空気との界面)で全反射され、以降再びB部材を複数透過する過程で進行方向がx軸方向に回転される。
このため、集光光学素子10(20)に上方から入射したp偏光成分の光は、ほぼ全体がx軸方向の左右いずれかに向かうこととなり、このようにして集光された光がx軸方向の端部に配設された光電変換素子50に集光入射される。
なお、A部材11(21)におけるy軸方向に進むs偏光の光の屈折率nazと、B部材12(22)におけるy軸方向に進むs偏光の光の屈折率nbzとが実質的に等しいことが好ましい態様である。この場合、y軸方向に進むs偏光の光は、A部材及びB部材の界面で屈折せず、そのままy軸方向に進んで集光光学素子10(20)から出射する。端的には、A部材及びB部材の少なくともいずれかが有する複屈折性が、y軸方向に進むp偏光を異常光とする一軸性の複屈折性であり、y軸方向に進むs偏光の光や、x軸方向に進むp偏光、s偏光の光などが常光である場合が相当する。
このような構成よれば、集光光学素子10(20)の上面から入射した光が、A部材とB部材の屈折率差によってx軸方向以外に屈折されることがなく、z軸方向への屈折に伴う損失を抑止することができる。この場合、集光光学素子の上面から入射したs偏光成分の光は、集光光学素子をそのまま透過することになるが、集光光学素子の下面側に同様の集光光学素子10(20)をy軸まわりに90度回転して配置する等により、透過した光を効率的に集光することができる。このような集光光学素子の配置構成による集光装置については後に詳述する。
(集光光学素子の構成例1)
次に、nax及びnbxの相違により、集光光学素子に上方から入射したp偏光成分の光がどの様に屈折して進行方向が回転してゆくかについて、より具体的に説明する。まず最初に、nax<nbxの場合の構成例について、図3を併せて参照しながら説明する。
ここで、図3は、第1構成例の集光光学素子10の上方からp偏光の光が入射したときの光線屈折の状況を示したものである。図中の(a)は、A部材11中のB部材12を透過する光が、B部材12の入射面及び出射面で屈折してA部材11に出射してゆく様子を示す。(b)は、複数のB部材12に繰り返し入射することによる屈折光の進路変化を、x−y平面でのA部材11及びB部材12の屈折率とスネルの法則により表したものである。
本構成例は、B部材12が複屈折性を有しており、図3(b)に示すように、B部材12の屈折率特性は、p偏光の光について、y軸方向に進む光の屈折率nbxがx軸方向に進む光の屈折率nbyよりも大きい正の屈折率楕円30Bを形成する。A部材11は複屈折性をもたず、その屈折率特性はx,y方向のいずれに進む光の屈折率も一定(nax=nay)の屈折率円30Aを形成する。そして、B部材12のx軸方向の屈折率nbyと、A部材11のx軸方向の屈折率nayとが略同一になっている。
なお、図3(b)のシミュレーションでは、nax<nbxであるA部材11及びB部材12の代表例として、A部材11の屈折率nax=nay=1.64とし、B部材12についてy軸方向に進むp偏光の光の屈折率nbx=1.88、x軸方向に進むp偏光の光の屈折率nby=1.64とした。また楔状のB部材12の頂角αを30度とした。
これは、A部材11としてナフタレート70/テレフタレート30のコポリエステル(coPEN)、B部材12としてポリエチレンナフタレート(PEN)を用い、これを共押し出しして積層した素材をx軸方向に一軸延伸して集光光学素子10を作成した場合に相当する。このとき、A部材11(coPEN)は複屈折性を持たず、いずれの方向に進む光についても屈折率が一定となり、nax=nay=1.64程度である。一方、B部材12は延伸方向(x軸方向)と他の方向とで屈折率が異なり、偏光面が延伸方向に沿った光に対して1.88程度、他の方向について1.64程度である。
図3(a)及び(b)に示すように、y軸方向にA部材11を進んできた太い実線で示すp偏光の光L11は、B部材12に入射角aで入射し、界面B11で屈折して屈折角bでB部材12中を進む。このとき、nax<nbxであることから、角度a>角度bであり、界面B11で屈折した光(屈折光)L12は、進行方向がx軸の正の方向(+x方向)に傾いてB部材12中を進む。図3(a),(b)では、B部材12中を進む屈折光L12を細い点線で示す。なお図中のS11は界面B11に立てた垂線である。
この界面B11における入射光L11と屈折光L12との関係を図3(b)で見ると、周知のスネルの法則によりnax sina=nbx sinbであり、入射光L11のベクトルの先端位置を表す内周円30A上の点31から、屈折光L12のベクトルの先端位置を表す外周楕円30B上の点32に変化し、屈折光L12がx軸の正方向に傾く様子が表れている。
B部材12中を進んだ屈折光L12は、界面B12に入射角cで入射し、ここで再び屈折して出射角dでA部材11に出射する。ここでも、nax<nbxであることから、角度c<角度dであり、界面B12で屈折した光(出射光)L13は、再びx軸の正の方向に傾いてA部材11中を進む。図3(a),(b)では、B部材12から出射する出射光L13を太い点線で示す。なお図中のS12は界面B12に立てた垂線である。
この界面B12における屈折光L12と出射光L13との関係を図3(b)で見ると、上記同様にスネルの法則によってnbx sinc=nax sindであり、屈折光L12ベクトルの先端位置を表す外周楕円30B上の点32から、出射光L13のベクトルの先端位置を表す内周円30A上の点33に変化し、出射光L13がさらにx軸の正方向に傾く様子が表れている。
このようにして、y軸方向に進んでB部材12に入射したp偏光の光L11は、この楔状のB部材12を透過することにより微小角度Δだけx軸の正方向(+x方向)に傾き、B部材12から光L13となって出てゆく。この微小角度Δは前記した条件において4〜5度である。
y軸からx軸の正方向に微小角度傾いた光は、厚さ方向に位置する次のB部材12に入射し、上記同様にB部材12の入射界面及び出射界面でx軸の正方向に屈折する。いま、最初に入射するB部材をB部材121、次に入射するB部材をB部材122、以降同様にB部材123…とする。このとき、図3(b)における外周楕円30B上の点34がB部材122の入射界面で屈折した光のベクトルの先端位置、内周円30A上の点35がB部材122の出射界面で屈折した光のベクトルの先端位置を表し、外周楕円30B上の点36がB部材123の入射界面で屈折した光のベクトルの先端位置を表す。
このことから明らかなように、集光光学素子10の上面から入射したp偏光の光は、厚さ方向に複数重複して設けられたB部材12(121,122,123…)に入射し、出射するたびに少しずつ傾斜してゆき、そのベクトルの先端位置は、図3(b)の外周楕円と内周円との間で行き来するように変化する。すなわち、集光光学素子10の上面から入射したp偏光の光は、B部材12(121,122,123…)を透過するごとにその光ベクトルの方向が微小角度ずつx軸の正方向に変化し、図3(b)において光ベクトルが時計回りに回転するように、x軸に沿う方向に変化してゆく。
また、図3(b)からわかるように、B部材12に入射する光のベクトルがx軸に近くなってくるとA部材11とB部材12の屈折率差が小さくなり、これに伴って微小角度Δも小さくなる。そして、B部材12に入射する光のベクトルがx軸に沿うようになる(x軸に平行になる)と、A部材11とB部材12の屈折率差が略ゼロになり、光はA部材11とB部材12の界面で屈折することなくそのままx軸に沿って+x方向に進むことになる。すなわち、光のベクトルがx軸に平行になった光には、B部材12がなくなった状態と同様になり、あたかも均質なA部材11中を進むように、そのまま+x方向の端部に向けて進行する。
従って、集光光学素子10の上面から入射したp偏光の光が、最も下層のB部材12(B部材12mとする)を透過したときに、光のベクトルがx軸に沿うようにすれば、入射したp偏光成分の光は、理想的には全てx軸方向の+x方向の端部に向かい、光電変換素子50に集光入射されることになる。
一方、最も下層のB部材12mから出射した光のベクトルがx軸に平行になるまで回転していなくとも、B部材12mから出射してA部材11中を下面に向かって進む光が、A部材11と空気の界面において全反射される角度まで傾斜していれば、下面で全反射されて上方に向かう光が再び複数のB部材12に入射し出射するたびにx軸の正方向に屈折され、光ベクトルがx軸に沿うようになってくる。
すなわち、最も下面側に配設されたB部材12mから下面に向かう光が、下面において全反射されるようにA部材11及びB部材12を設定すれば、集光光学素子10に入射したp偏光成分の光全てを+x方向の端部に向けて集光することができる。このような構成によれば、B部材12の厚さ方向の層数を削減して集光光学素子10を薄く構成することができる。
このように、集光光学素子10においては、入射したp偏光成分の光がx軸方向の+x側に集光される。そして、光発電装置1では、+x側の端部に集光された光が光電変換素子50により光電変換され電気エネルギーが出力される。
なお、説明簡明化のため、集光光学素子10の上面からp偏光の光がx−y平面で垂直入射した場合を例に説明したが、図2中に付記するように、入射光がx−y平面で左右いずれかに傾斜していても同様に作用することは明らかである。
(集光光学素子の構成例2)
次に、nax及びnbxの相違により、集光光学素子に上方から入射したp偏光成分の光がどの様に屈折して進行方向が回転してゆくかを、上記第1構成例とは逆のnax>nbxの場合について、図4を参照しながら説明する。
この第2構成例の集光光学素子20は、図2に示した第1構成例の集光光学素子10と同様に、太陽光を透過するA部材21と、このA部材中に多数配設されたB部材22とを主体として構成される。B部材22はx軸方向に開く楔状をなし、厚さ方向に複数重複して配設される。B部材22はx軸及びz軸を含む面内において二等辺三角形の楔状をなし、二等辺三角形の頂点から底辺に下ろした垂線がx軸方向(+x側)に向かうように配設される。すなわち、A部材21及びB部材22の配置構成は、第1構成例の集光光学素子10と同様である。
図4は、前述した図3と同様に、第2構成例の集光光学素子20の上方からp偏光の光が入射したときの光線屈折の状況を示したものである。すなわち、図4(a)は、A部材21中のB部材22を透過する光が、B部材22の入射面及び出射面で屈折してA部材21に出射してゆく様子を示す。図4(b)は、複数のB部材に繰り返し入射することによる屈折光の進路変化を、x−y平面でのA部材21及びB部材22の屈折率とスネルの法則により表したものである。
本構成例は、第1構成例と同様にB部材22が複屈折性を有するが、図4(b)に示すように、B部材22の屈折率楕円40BがA部材21の屈折率円40Aの内側に入る形態である。すなわち、B部材22の屈折率特性は、p偏光の光に対して、y軸方向に進む光の屈折率nbxがx軸方向に進む光の屈折率nbyよりも小さい負の屈折率楕円40Bを形成する。A部材21は複屈折性をもたず、屈折率特性はx,y方向のいずれに進む光の屈折率も一定(nax=nay)の屈折率円40Aを形成する。そして、B部材22のx軸方向の屈折率nbyと、A部材21のx軸方向の屈折率nayとが略同一になっている。
図4(b)のシミュレーションでは、nax>nbxであるA部材21及びB部材22の代表例として、A部材21の屈折率nax=nay=1.65とし、B部材22についてy軸方向に進むp偏光の光の屈折率nbx=1.48、x軸方向に進むp偏光の光の屈折率nby=1.65とした。また楔状のB部材22の頂角αは前述の構成系例と同じ30度とした。
これは、A部材21としてナフタレート70/テレフタレート30のコポリエステル、B部材22として方解石を用い、B部材22を分散して積層した素材をx軸方向に一軸延伸して集光光学素子10を作成した場合に相当する。このとき、A部材21は複屈折性を持たず、屈折率nax=nay=1.65程度である。一方、B部材22は負の屈折性を有しており、偏光面が楔の開く方向(延伸方向)に沿った光に対して1.48程度、他の方向について1.65程度である。
図4(a)及び(b)に示すように、y軸方向にA部材21を進んできた太い実線で示すp偏光の光L21は、B部材22に入射角aで入射し、界面B21で屈折して屈折角bでB部材22中を進む。このとき、nax>nbxであることから、角度a<角度bであり、界面B21で屈折した光(屈折光)L22は、進行方向がx軸の負の方向(−x方向)に傾いてB部材22中を進む。図4(a),(b)では、B部材22中を進む屈折光L22を細い点線で示す。なお図中のS21は界面B21に立てた垂線である。
この界面B21における入射光L21と屈折光L22との関係を図4(b)で見ると、前述同様にスネルの法則によりnax sina=nbx sinbであり、入射光L21のベクトルの先端位置を表す外周円40A上の点41から、屈折光L22のベクトルの先端位置を表す内周楕円40B上の点42に変化し、屈折光L22がx軸の負方向に傾く様子が表れている。
B部材22中を進んだ屈折光L22は、界面B22に入射角cで入射し、ここで再び屈折して出射角dでA部材21に出射する。ここでも、nax>nbxであることから、角度c>角度dであり、界面B22で屈折した光(出射光)L23は、再びx軸の負の方向に傾いてA部材21中を進む。図4(a),(b)では、B部材22から出射する出射光L23を太い点線で示す。なお図中のS22は界面B22に立てた垂線である。
この界面B22における屈折光L22と出射光L23との関係を図4(b)で見ると、スネルの法則によってnbx sinc=nax sindであり、屈折光L22のベクトルの先端位置を表す内周楕円40B上の点42から、出射光L23のベクトルの先端位置を表す外周円40A上の点43に変化し、出射光L23がさらにx軸の負方向に傾く様子が表れている。
このようにして、y軸方向に進んでB部材22に入射したp偏光の光L21は、この楔状のB部材22を透過することにより微小角度Δだけx軸の負方向(−x方向)に傾き、B部材22から光L23となって出てゆく。この微小角度Δは前記した条件において3〜4度である。
y軸からx軸の負方向に微小角度傾いた光は、厚さ方向に位置する次のB部材22に入射し、上記同様にB部材22の入射界面及び出射界面でx軸の負方向に屈折する。最初に入射するB部材をB部材221、次に入射するB部材をB部材222、以降同様にB部材223…とすると、図4(b)における内周楕円40B上の点44がB部材222の入射界面で屈折した光のベクトルの先端位置、外周円40A上の点45がB部材222の出射界面で屈折した光のベクトルの先端位置を表し、内周楕円40B上の点46がB部材223の入射界面で屈折した光のベクトルの先端位置を表す。
このことから明らかなように、集光光学素子20の上面から入射したp偏光の光は、厚さ方向に複数重複して設けられたB部材22(221,222,223…)に入射し、出射するたびに少しずつ傾斜してゆき、そのベクトルの先端位置は、図4(b)の外周円40Aと内周楕円40Bとの間で行き来するように変化する。すなわち、集光光学素子20の上面から入射したp偏光の光は、B部材22(221,222,223…)を透過するごとにその光ベクトルの方向が微小角度ずつx軸の負方向に変化し、図4(b)において光ベクトルが反時計回りに回転するように、x軸に沿う方向に変化してゆく。
B部材22に入射する光のベクトルがx軸に近くなってくるとA部材21とB部材22の屈折率差が小さくなり、これに伴って微小角度Δも小さくなる。そして、B部材22に入射する光のベクトルがx軸に沿うようになると、A部材21とB部材22の屈折率差が略ゼロになり、光はあたかも均質媒質中を進むように、A部材21とB部材22の界面で屈折することなくそのままx軸に沿って−x方向に進む。
進行方向がx軸方向に沿うようになった光、及び最下層のB部材22から出射した光のベクトルがx軸に平行になるまで回転していなくとも、A部材21中を下面に向かって進む光が、A部材21と空気の界面において全反射される角度まで傾斜した光の作用は、前述した第1構成例の場合と同様である。
従って、集光光学素子20においては、入射したp偏光成分の光がx軸方向の−x側端部に集光される。そして、−x側の端部に集光された光を光電変換する光電変換素子50を設けることにより、光発電装置1を構成することができる。
この構成例から、厚さ方向に進むp偏光成分の光に対するA部材の屈折率naxとB部材の屈折率nbxとの大小関係が前述した構成例と逆の場合、集光光学素子20により集光される光が、x軸方向の−x側、すなわちx軸上で180度反対側になることがわかる。
また、図3及び図4から、A部材とB部材とは、y軸方向に進むp偏光の光の屈折率差が所定程度あり、x軸方向に進むp偏光の光の屈折率差が微小であれば良く、A部材及びB部材の何れが一方が複屈折率性を有していても、両方が複屈折性を有していても良いことがわかる。
そして、これまでの説明から理解されるように、集光光学素子10,20の上面から厚さ方向に入射するp偏光成分の光を高効率で集光するための条件は、A部材11,21及びB部材12,22の屈折率、B部材12,22の形状、集光光学素子への入射許容傾斜角などを要素として規定される。従って、集光光学素子10,20の用途や使用条件等に応じて、A部材及びB部材の材質、B部材の形状、重複層数等を適宜設定することにより、集光光学素子の上面から厚さ方向に入射する光を高効率で集光する集光光学素子を得ることができる。
なお、B部材の形状はx軸方向に開く楔状であれば直角三角形や、隣接する三角形の頂部と底辺とが連結したリボン状ないしシート状の連続体等であっても良い。また、B部材の楔の大きさは、x軸方向の大きさが集光光学素子により集光する光の波長の1/10以上であれば良いが、x軸方向の大きさが0.1〜100μmであり、y軸方向の大きさがx軸方向の大きさの1/3以下であれば、一軸延伸法等を好適に利用して、薄く柔軟なシート状の集光光学素子を形成することも可能である。
(集光装置及び光発電装置の構成例1)
次に、以上説明したような集光光学素子10,20を用いた集光装置について説明する。既述したように、集光光学素子10,20は、A部材11,21及びB部材12,22のp偏光の光に対する屈折率が、y軸方向に進む光について異なり、x軸方向に進む光について実質的に等しくなるように設定することにより、厚さ方向に入射するp偏光成分の光をx軸方向に屈折させて集光する。
このメカニズムから、集光光学素子の上方から入射する光のうち、s偏光成分の光はx軸方向に集光されず、集光光学素子の下面側から出射する。そこで、本発明の態様の集光装置60,70,80は、このs偏光成分の光を含めて、集光光学素子の上方から入射する光全てを集光し得るように構成される。以下、集光装置の代表的な構成例について、図面を参照して説明する。なお、各図では、電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。
第1構成例の集光装置60の概要構成を図5に示す。図示する集光装置60は、集光光学素子10と、この集光光学素子10の下面側に下面に沿って設けられた反射鏡62と、集光光学素子10と反射鏡62との間に設けられた偏光面回転素子65とを備えて構成される。なお、集光光学素子は、第2構成例の集光光学素子20を用いても良い。
偏光面回転素子65は、二回度透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回目の透過でs偏光を円偏光に変換し、二回目の透過で円偏光をp偏光に変換する、広帯域の1/4波長板が好適に用いられる。
このような構成の集光装置60では、集光光学素子10の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、前述したように、複数のB部材12により屈折されて進行方向(光ベクトル)が時計回りに回転されx軸方向の+x側端部に集光される。一方、集光光学素子10の上面側から厚さ方向に入射した光のうち、s偏光成分の光は、B部材12により屈折されることなく集光光学素子10の下面側から出射する。
集光光学素子10の下面側から出射したs偏光成分の光は、偏光面回転素子65を透過して反射鏡62により反射され、再び偏光面回転素子65を透過して、集光光学素子10の下面側から再び集光光学素子10に入射する。
このとき、集光光学素子10に再入射する光は、偏光面回転素子65を二度透過していることから、偏光面が90度回転されてp偏光成分の光になっている。そのため、集光光学素子10の下面側から再入射して厚さ方向に進むp偏光成分の光は、集光光学素子の下面で全反射されたp偏光成分の光と同様に、順次入射する複数のB部材12により屈折されて進行方向が反時計回りに回転され、集光光学素子10の上面側から厚さ方向に入射したp偏光成分の光とともにx軸方向に沿って+x側端部に集光される。
従って、このような構成の集光装置60によれば、1枚の集光光学素子10で、上方から入射する光全てをx軸方向の一方の端部に集光することができる。また、集光光学素子10の端部に集光された光を光電変換する光電変換素子50を設けることにより、集光光学素子10及び光電変換素子50がわずか1組の簡明かつローコストな構成で、上方から集光光学素子10に入射する光全てを光電変換する光発電装置2を構成することができる。
(集光装置及び光発電装置の構成例2)
次に、第2構成例の集光装置について簡潔に説明する。この構成例の集光装置(図示を省力するが、説明の便宜上、集光装置70とする)は、既述した集光光学素子を二つ用いて構成される。ここでは、集光光学素子10と集光光学素子20を各ひとつ用いる場合を例として説明する。
集光装置70は、第1の集光光学素子10と、その下面側に設けられた第2の集光光学素子20とからなり、第2の集光光学素子20のx軸方向が、第1の集光光学素子10のz軸方向と平行になるように配設されて構成される。より端的にいえば、第1の集光光学素子10の下側に位置する第2の集光光学素子20を、y軸まわりに90度回転して配置することにより集光装置70が構成される。
そのため、第1の集光光学素子の座標系におけるs偏光の光は、第2の集光光学素子の座標系ではp偏光になる。これにより、集光装置70の上方から第1の集光光学素子10に入射した光は、第1の集光光学素子10におけるp偏光成分の光が屈折されて第1の集光光学素子10の+x側の端部に集光され、この集光光学素子10を透過した光が第2の集光光学素子20においてp偏光成分の光になって、第2の集光光学素子20の−x側の端部に集光される。
従って、このような構成の集光装置70によれば、2枚の集光光学素子をy軸まわりに相対角度90度回転して重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置3(不図示)を構成することができる。さらに、第1の集光光学素子10に設けられる光電変換素子と、第2の集光光学素子20に設けられる光電変換素子とが上下に重複しないため、光電変換素子の構成及び配置の自由度を確保することができる。
なお、第1の集光光学素子及び第2の集光光学素子は、同種の集光光学素子を二つ(例えば集光光学素子10を二つ、あるいは集光光学素子20を二つ)用いてもよく、また本構成例のように異なる種類の集光光学素子を組み合わせる場合に、何れを上方に配置しても良い。
(集光装置及び光発電装置の構成例3)
次に、第3構成例の集光装置80について、図6を参照して説明する。本構成例の集光装置80は、既述した集光光学素子二つと偏光面回転素子85により構成される。図6では集光光学素子10を二つ(101,102とする)用いた場合を例示する。
すなわち、集光装置80は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102と、これらの集光光学素子101,102の間に設けられた偏光面回転素子85とからなり、第1の集光光学素子101のx軸方向と第2の集光光学素子102のx軸方向とが平行になるように配設される。
偏光面回転素子85は、透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する、広帯域の1/2波長板が好適に用いられる。
このような構成の集光装置80では、第1の集光光学素子101の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、第1の集光光学素子101に含まれる複数のB部材12により屈折されて進行方向が時計回りに回転され、第1の集光光学素子101+x側端部に集光される。一方、第1の集光光学素子101を透過したs偏光成分の光は第1の集光光学素子10の下面側から出射され偏光面回転素子85に入射する。
偏光面回転素子85に入射したs偏光成分の光は、この偏光面回転素子85を透過する過程で偏光面が90度回転され、p偏光成分の光となって偏光面回転素子85から出射する。そのため、第2の集光光学素子102には、偏光面が回転されてp偏光成分になった光が入射し、この第2の集光光学素子102に含まれる複数のB部材12により屈折されて進行方向が時計回りに回転され、第2の集光光学素子102の+x側端部に集光される。
従って、このような構成の集光装置80によれば、2枚の集光光学素子を重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、集光光学素子101,102の各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置4を構成することができる。
この場合において、第1の集光光学素子101及び第2の集光光学素子102を、y軸まわりに相対角度180度回転して配設するような構成によれば、第1の集光光学素子101に設けられる光電変換素子50と、第2の集光光学素子102に設けられる光電変換素子50とが上下に重複せず、光電変換素子の構成及び配置の自由度を確保することができる。なお、第1の集光光学素子及び第2の集光光学素子は、集光光学素子20を二つ用いても良く、集光光学素子10と集光光学素子20とを組み合わせて用いても良い。
(集光光学素子の端部における光エネルギーの取り出し手法)
次に、以上説明した集光光学素子10,20において、x軸方向の+xまたは−x側の端部に集光された光の、エネルギー取り出し手法について、幾つかの代表的な概念を例示する図7(a)〜(e)を参照しながら簡明に説明する。
(a)は、端部に集光された光を、そのまま取り出し、光として利用する構成例の概念図である。この場合において、集光光学素子の端部から出射する光をシリンドリカルレンズ91や集光ロッド92等を介してz軸方向に集光し、集光された光を光ファイバー93により所望位置に導光するような構成が例示される。
(b)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第1構成例の概念図である。この図は、光電変換素子50を集光光学素子10,20の集光側の端部に結合し、電気エネルギーとして取り出す構成例を示す。なお、集光された光を熱エネルギーとして取り出す場合には、光熱変換する光吸収体付きのヒートパイプ等が好適に用いられる。
(c)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第2構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてミラー94を配設し(あるいは傾斜面に反射膜を形成し)、集光光学素子10,20の上面側(または下面側)に設けた光電変換素子50に集光させる構成例である。これにより、集光光学素子10,20が薄いシート状の場合であっても、所定面積の光電変換素子50を安定的に取り付けることができる。なお、集光された光を熱エネルギーとして取り出す場合には、上記同様に光吸収体付きのヒートパイプ等が好適に用いられる。
(d)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第3構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてダイクロイックミラー95を配設し(あるいは傾斜面に波長選択性のある反射膜を形成し)、集光光学素子10,20の上面側(または下面側)と、集光光学素子10,20の側方とに設けた光電変換素子50,50′に分割して集光させる構成例である。このような構成によれば、分割された各波長帯域について高効率な光電変換素子を用いるこができるため、比較的低コストで変換効率の高い光発電装置を構成することが可能となる。
なお、分割した光のうち一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して熱エネルギーとして利用し、他方(例えば可視領域及び紫外領域の光)を光電変換素子50に入射して電気エネルギーとして利用するような構成も好適な適用例である。
(e)は、端部に集光された光を、さらに厚さ方向に集光して取り出す構成例の概念図である。本構成の集光光学素子10,20は、集光側の端部近傍領域で厚さが徐々に薄くなるように構成されており、素子内部をx軸方向に進む光が、上面あるいは下面で全反射されて厚さ方向に集光されるようになっている。これにより、例えば光をそのまま利用する場合にシリンドリカルレンズ等を用いずに構成することができ、また光電変換素子50やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度を高めることができる。
なお、実施形態では、説明簡明化のため、集光光学素子を板状に構成した形態の例示し、また集光光学素子の作用を説明するため、A部材及びB部材に具体的な物質の屈折率を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子の形状は、薄いシート状や角柱・円柱等のロッド状であっても良く、A部材及びB部材の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。また、本発明の要旨を逸脱しない範囲で、A部材及びB部材以外の他の部材を含むものであっても良い。
以上説明したように、集光光学素子10,20は、母材ないし基材となるA部材中に楔状のB部材が複数配設されており、これら両者の屈折率の関係が厚さ方向であるy軸方向に進むp偏光の光について異なり、B部材の配向方向であるx軸方向について実質的に等しくなるように構成される。集光装置60,70,80及び光発電装置1〜4は、このような集光光学素子を用いて構成される。
従って、以上説明した集光光学素子10,20、集光装置60,70,80によれば、薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。また、これらの集光光学素子10,20、集光装置60,70,80を適用した光発電装置1〜4は、集光部の光軸方向の厚さが薄く小型軽量であり、太陽の追従装置を必ずしも必要としない、新たな太陽光発電手段として好適に適用することができる。
1〜4 光発電装置
10(101,102) 第1構成例の集光光学素子
11 A部材
12(121,122,123…12m) B部材
20 第2構成例の集光光学素子
21 A部材
22(221,222,223…) B部材
50,50′ 光電変換素子
60 第1構成例の集光装置
62 反射鏡
65 偏光面回転素子
80 第3構成例の集光装置
85 偏光面回転素子

Claims (17)

  1. 光透過性を有するA部材と、前記A部材中に厚さ方向及びこれと相互に直交する第1方向、第2方向に複数配設された光透過性を有するB部材とを有して構成され、
    前記厚さ方向及び前記第1方向を含み前記第2方向と直交する面内において、前記B部材は前記第1方向に開く楔状をなし、
    前記A部材における、電界振幅が前記第1方向に沿った光の屈折率をnax、電界振幅が前記厚さ方向に沿った光の屈折率をnayとし、
    前記B部材における、電界振幅が前記第1方向に沿った光の屈折率をnbx、電界振幅が前記厚さ方向に沿った光の屈折率をnbyとしたときに、
    axとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴とする集光光学素子。
  2. 前記屈折率の関係が、nax<nbxであり、nbx>nbyであることを特徴とする請求項1に記載の集光光学素子。
  3. 前記屈折率の関係が、nax<nbxであり、nax<nayであることを特徴とする請求項1に記載の集光光学素子。
  4. 前記屈折率の関係が、nax>nbxであり、nbx<nbyであることを特徴とする請求項1に記載の集光光学素子。
  5. 前記屈折率の関係が、nax>nbxであり、nax>nayであることを特徴とする請求項1に記載の集光光学素子。
  6. 前記A部材における、電界振幅が前記第2方向に沿った光の屈折率をnazとし、
    前記B部材における、電界振幅が前記第2方向に沿った光の屈折率をnbzとしたときに、
    azとnbzとが実質的に等しいことを特徴とする請求項1〜5のいずれか一項に記載の集光光学素子。
  7. 前記B部材が、前記厚さ方向に相互に重複して配設されることを特徴とする請求項1〜6のいずれか一項に記載の集光光学素子。
  8. 前記厚さ方向及び前記第1方向を含む面内において、前記B部材は二等辺三角形の楔状をなし、前記二等辺三角形の頂点から底辺に下ろした垂線が前記第1方向に向かうように配設されることを特徴とする請求項1〜7のいずれか一項に記載の集光光学素子。
  9. 前記B部材の前記第1方向の大きさが0.1〜100μmであり、前記厚さ方向の大きさが前記第1方向の大きさの1/3以下であることを特徴とする請求項1〜8のいずれか一項に記載の集光光学素子。
  10. 前記B部材の楔状の頂角、及び前記厚さ方向に重複する前記B部材の重複数は、
    前記集光光学素子の表面から前記厚さ方向に入射して、複数の前記B部材により前記厚さ方向及び前記第1方向を含む面内で順次屈折され、最も裏面側に配設された前記B部材から当該集光光学素子の裏面に向かう光が、前記裏面において全反射されるように設定されることを特徴とする請求項1〜9のいずれか一項に記載の集光光学素子。
  11. 前記第1方向及び前記第2方向の大きさが前記厚さ方向の大きさに対して充分に大きく、プレート状またはシート状に形成されることを特徴とする請求項1〜10のいずれか一項に記載の集光光学素子。
  12. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、
    前記集光光学素子と前記反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。
  13. 請求項1〜11のいずれかに記載の第1の集光光学素子と、
    請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
    前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第2方向と平行になるように配設されることを特徴とする集光装置。
  14. 請求項1〜11のいずれかに記載の第1の集光光学素子と、
    請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
    前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第1方向と平行になるように配設されるとともに、前記第1の集光光学素子と前記第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする集光装置。
  15. 請求項1〜11のいずれかに記載の集光光学素子と、
    前記集光光学素子により前記第1方向の一方の端部に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  16. 請求項12に記載の集光装置と、
    前記集光光学素子により前記第1方向の一方の端部に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
  17. 請求項13または14に記載の集光装置と、
    前記第1の集光光学素子における前記第1方向の一方の端部に導かれた光を光電変換する第1の光電変換素子と、
    前記第2の集光光学素子における前記第1方向の一方の端部に導かれた光を光電変換する第2の光電変換素子とを備えた光発電装置。
JP2010138838A 2010-06-18 2010-06-18 集光光学素子、集光装置及び光発電装置 Active JP5630690B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010138838A JP5630690B2 (ja) 2010-06-18 2010-06-18 集光光学素子、集光装置及び光発電装置
CN201180030080.XA CN102947731B (zh) 2010-06-18 2011-06-20 聚光光学元件、聚光装置、光发电装置和光热转换装置
EP11795858.7A EP2584383A4 (en) 2010-06-18 2011-06-20 Light-focusing optical element, light-focusing device, photovoltaic device and photothermal conversion device
PCT/JP2011/064092 WO2011158956A1 (ja) 2010-06-18 2011-06-20 集光光学素子、集光装置、光発電装置及び光熱変換装置
US13/718,510 US9196778B2 (en) 2010-06-18 2012-12-18 Light concentrating optical element, light concentrating device, photovoltaic power generation device and photothermal conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138838A JP5630690B2 (ja) 2010-06-18 2010-06-18 集光光学素子、集光装置及び光発電装置

Publications (2)

Publication Number Publication Date
JP2012004395A JP2012004395A (ja) 2012-01-05
JP5630690B2 true JP5630690B2 (ja) 2014-11-26

Family

ID=45536032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138838A Active JP5630690B2 (ja) 2010-06-18 2010-06-18 集光光学素子、集光装置及び光発電装置

Country Status (1)

Country Link
JP (1) JP5630690B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130333742A1 (en) * 2012-06-15 2013-12-19 Chi Lin Technology Co., Ltd. Power generating window set and power generating module thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422475B2 (ja) * 1999-06-14 2003-06-30 日東電工株式会社 偏光導光板及び偏光面光源
JP3476753B2 (ja) * 2000-07-11 2003-12-10 清蔵 宮田 偏光機能を有する散乱導光シート
JP3871913B2 (ja) * 2000-11-14 2007-01-24 シャープ株式会社 反射型表示装置およびプリズムアレイシート
JP4639337B2 (ja) * 2006-02-17 2011-02-23 国立大学法人長岡技術科学大学 太陽電池および太陽集熱器
CN101681034A (zh) * 2008-04-03 2010-03-24 松下电器产业株式会社 信息显示装置

Also Published As

Publication number Publication date
JP2012004395A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5346008B2 (ja) 薄型フラット集光装置
US20070227581A1 (en) Concentrator solar cell module
JP2013123059A (ja) 集光のための方法及び装置
US20100154866A1 (en) Hybrid solar power system
WO2011158956A1 (ja) 集光光学素子、集光装置、光発電装置及び光熱変換装置
WO2012083821A1 (zh) 多波段集光及能量转换模块
WO2012025019A1 (zh) 聚光透镜、复眼式透镜聚光器及复眼式聚光太阳电池组件
JP5630690B2 (ja) 集光光学素子、集光装置及び光発電装置
JP5679283B2 (ja) 集光光学素子、集光装置、光発電装置及び光熱変換装置
JP2007073774A (ja) 太陽電池
WO2013058381A1 (ja) 集光装置、光発電装置及び光熱変換装置
WO2012026572A1 (ja) 集光装置、光発電装置及び光熱変換装置
JP5765608B2 (ja) 集光光学素子、集光装置及び光発電装置
TWM343170U (en) Fresnel lens light gathering structure
JP6694072B2 (ja) 光起電装置
JP5679286B2 (ja) 集光光学素子、集光装置及び光発電装置
US20160172521A1 (en) Solar concentrator with microreflectors
US9741886B2 (en) Thin film solar collector and method
TWI578024B (zh) 集光模組
Lin et al. A study for the special Fresnel lens for high efficiency solar concentrators
JP5655146B2 (ja) 集光型レンズアレイおよびそれを備えた太陽電池
WO2012169980A1 (en) A waveguide for concentrated solar collectors and a solar collector thereof
Languy et al. Achromatization of solar concentrator thanks to diffractive optics
WO2012033132A1 (ja) 集光装置、光発電装置及び光熱変換装置
TW201119065A (en) Stacked-layer type solar panel with light condenser and light-conductive module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5630690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250