JP5678720B2 - Wafer cleaning method - Google Patents

Wafer cleaning method Download PDF

Info

Publication number
JP5678720B2
JP5678720B2 JP2011040113A JP2011040113A JP5678720B2 JP 5678720 B2 JP5678720 B2 JP 5678720B2 JP 2011040113 A JP2011040113 A JP 2011040113A JP 2011040113 A JP2011040113 A JP 2011040113A JP 5678720 B2 JP5678720 B2 JP 5678720B2
Authority
JP
Japan
Prior art keywords
wafer
protective film
water
group
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011040113A
Other languages
Japanese (ja)
Other versions
JP2012178431A (en
Inventor
真規 斎藤
真規 斎藤
公文 創一
創一 公文
崇 齋尾
崇 齋尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2011040113A priority Critical patent/JP5678720B2/en
Priority to KR1020127024857A priority patent/KR101396271B1/en
Priority to PCT/JP2011/064201 priority patent/WO2012002200A1/en
Priority to TW100123184A priority patent/TWI480946B/en
Publication of JP2012178431A publication Critical patent/JP2012178431A/en
Application granted granted Critical
Publication of JP5678720B2 publication Critical patent/JP5678720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体デバイス製造などにおける基板(ウェハ)の洗浄技術に関する。   The present invention relates to a substrate (wafer) cleaning technique in manufacturing a semiconductor device or the like.

半導体チップの製造では、成膜、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細な凹凸パターンが形成され、その後、ウェハ表面を清浄なものとするために、水(純水)や有機溶媒を用いて洗浄がなされる。素子は微細化される方向にあり、凹凸パターンの間隔は益々狭くなってきている。このため、水(純水)を用いて洗浄し、水をウェハ表面から乾燥させる際、気液界面がパターンを通過するときに毛細管現象により、凹凸パターンが倒れるという問題が生じやすくなってきている。この問題は、特に凹凸のパターン間隔がより狭くなった、例えばラインアンドスペース形状のパターンのウェハの場合、線幅(凹部の幅)が20nm台、10nm台世代の半導体チップにおいてより顕著になってきている。   In the production of semiconductor chips, a fine uneven pattern is formed on the silicon wafer surface through film formation, lithography, etching, etc., and then water (pure water) or an organic solvent is used to clean the wafer surface. Is washed. The elements are in the direction of miniaturization, and the interval between the concave and convex patterns is becoming narrower. For this reason, when washing with water (pure water) and drying the water from the wafer surface, the problem that the concave-convex pattern collapses due to capillary action when the gas-liquid interface passes through the pattern is becoming more likely to occur. . This problem becomes more prominent in semiconductor chips having a line width (recessed portion width) of the order of 20 nm or 10 nm, particularly in the case of a wafer with a pattern of line and space, for example, in which the pattern spacing of the unevenness becomes narrower. ing.

特許文献1には、パターン倒れを抑制する手法として気液界面を通過する前に洗浄液を水から2−プロパノールへ置換する技術が開示されている。しかし、対応できるパターンのアスペクト比が5以下である等、限界があると言われている。   Patent Document 1 discloses a technique for replacing a cleaning liquid from water to 2-propanol before passing through a gas-liquid interface as a technique for suppressing pattern collapse. However, it is said that there is a limit such that the aspect ratio of the pattern that can be handled is 5 or less.

また、特許文献2には、パターン倒れを抑制する手法として、レジストパターンを対象とする技術が開示されている。この手法は毛細管力を極限まで下げることによって、パターン倒れを抑制する手法である。しかし、この開示された技術はレジストパターンを対象としており、レジスト自体を改質するものであり、さらに最終的にレジストと共に除去が可能であるため、乾燥後の処理剤の除去方法を想定する必要がなく、本目的には適用できない。   Further, Patent Document 2 discloses a technique for a resist pattern as a technique for suppressing pattern collapse. This technique is a technique for suppressing pattern collapse by reducing the capillary force to the limit. However, since the disclosed technique is intended for a resist pattern, it modifies the resist itself, and can be finally removed together with the resist. Therefore, it is necessary to assume a method for removing the treatment agent after drying. Is not applicable to this purpose.

また、特許文献3には、シリコンを含む膜により凹凸形状パターンを形成したウェハ表面を酸化等により表面改質し、該表面に水溶性界面活性剤またはシランカップリング剤を用いて撥水性保護膜を形成し、毛細管力を低減し、パターンの倒壊を防止する洗浄方法が開示されている。   Further, Patent Document 3 discloses that a wafer surface on which a concavo-convex pattern is formed by a film containing silicon is surface-modified by oxidation or the like, and a water-repellent protective film is formed on the surface using a water-soluble surfactant or silane coupling agent. A cleaning method is disclosed that reduces the capillary force and prevents the pattern from collapsing.

また、特許文献4、5には、N,N−ジメチルアミノトリメチルシランを始めとするシリル化剤及び溶剤を含む処理液を用いて疎水化処理を行うことにより、パターン倒れを防ぐ技術が開示されている。   Patent Documents 4 and 5 disclose techniques for preventing pattern collapse by performing a hydrophobic treatment using a treatment liquid containing a silylating agent such as N, N-dimethylaminotrimethylsilane and a solvent. ing.

特開2008−198958号公報JP 2008-198958 A 特開平5−299336号公報Japanese Patent Laid-Open No. 5-299336 特許第4403202号Patent No. 4403202 特開2010−129932JP2010-129932A 国際公開第10/47196号パンフレットInternational Publication No. 10/47196 Pamphlet

本発明は、半導体デバイス製造などにおいて、特に微細でアスペクト比の高い回路パターン化されたデバイスの製造歩留まりの向上を目的とした基板(ウェハ)の洗浄技術に関するものであり、また、表面に凹凸パターンを有するウェハの凹凸パターン倒れを誘発しやすい洗浄工程を改善することを目的とした撥水性薬液等に関するものである。これまで、前記ウェハとしては表面にシリコン元素を有するウェハが一般的に用いられてきたが、パターンの多様化に伴ってチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を表面に有するウェハが用いられ始めている。凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、凹凸パターン表面に撥水性保護膜を形成するためには、凹凸パターン表面やウェハ表面に存在する水酸基などの反応活性点と、保護膜を形成する化合物とを結合させる必要がある。しかし、前記物質を表面に有するウェハのように、表面に反応活性点、例えばシラノール基が十分に存在しない物質を含むウェハの場合、特許文献3乃至5に記載のいずれの処理液及び処理方法を用いてもパターンの倒壊を防止する撥水性保護膜を形成できないため、パターンの倒壊を防止できないという問題がある。   The present invention relates to a technique for cleaning a substrate (wafer) for the purpose of improving the manufacturing yield of a device having a circuit pattern that is fine and having a high aspect ratio, particularly in the manufacture of semiconductor devices. The present invention relates to a water-repellent chemical solution and the like intended to improve a cleaning process that easily induces a collapse of a concavo-convex pattern of a wafer having a surface. Until now, a wafer having a silicon element on the surface has been generally used as the wafer. However, with the diversification of patterns, titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium are used. Wafers having at least one substance selected from the group on the surface have begun to be used. In order to prevent pattern collapse by making the surface of the concavo-convex pattern water repellent, in order to form a water-repellent protective film on the surface of the concavo-convex pattern, reaction activity such as hydroxyl groups present on the surface of the concavo-convex pattern or the wafer surface It is necessary to bond the point and the compound forming the protective film. However, in the case of a wafer containing a substance that does not have sufficient reaction active sites, for example, silanol groups, on the surface, such as a wafer having the substance on the surface, any of the treatment liquids and treatment methods described in Patent Documents 3 to 5 are used. Even if it is used, it is impossible to form a water-repellent protective film that prevents pattern collapse.

本発明は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハ(以降、「金属系ウェハ」または単に「ウェハ」と記載する場合がある)の凹部表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成し、該凹部に保持された液体と該凹部表面との相互作用を低減せしめることによって、パターン倒れを誘発しやすい洗浄工程を改善する前記金属系ウェハの洗浄方法、及び、前記保護膜を形成する撥水性保護膜形成剤(以降、単に「保護膜形成剤」と記載する場合がある)を含有する撥水性保護膜形成薬液(以降、「保護膜形成薬液」または単に「薬液」と記載する場合がある)を提供することを課題とする。   The present invention provides a wafer having a concavo-convex pattern formed on the surface, wherein at least a part of the concave surface of the concavo-convex pattern is selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium. A water-repellent protective film (hereinafter sometimes simply referred to as “protective film”) on the concave surface of a wafer containing one substance (hereinafter sometimes referred to as “metal wafer” or simply “wafer”) The metal wafer cleaning method, which improves the cleaning process that easily induces pattern collapse by reducing the interaction between the liquid held in the recess and the surface of the recess, and the protective film A water-repellent protective film-forming chemical (hereinafter referred to as “protective film”) containing a water-repellent protective film-forming agent to be formed (hereinafter sometimes simply referred to as “protective film-forming agent”). Forming chemical "or sometimes simply referred to as" chemical ") and to provide a.

パターン倒れは、ウェハの乾燥時に気液界面がパターンを通過するときに生じる。これは、パターンのアスペクト比が高い部分と低い部分との間において、残液高さの差ができ、それによってパターンに作用する毛細管力に差が生じることが原因と言われている。   Pattern collapse occurs when the gas-liquid interface passes through the pattern when the wafer is dried. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern.

このため、毛細管力を小さくすれば、残液高さの違いによる毛細管力の差が低減し、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。   For this reason, if the capillary force is reduced, it can be expected that the difference in capillary force due to the difference in the residual liquid height will be reduced and the pattern collapse will be eliminated. The magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing γ or cos θ.

P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)

本発明では、上記課題を克服するために、撥水性保護膜が形成される凹凸パターンの表面の前処理方法、及び撥水性保護膜の材料に着目した。すなわち、凹凸パターンの凹部表面を酸化処理することにより反応活性点を形成した後、疎水性の強い疎水基をもつ撥水性保護膜形成剤によって該凹部表面に撥水性保護膜を形成することにより、凹部表面に撥水性を付与するものである。   In the present invention, in order to overcome the above-described problems, attention was paid to a pretreatment method for the surface of a concavo-convex pattern on which a water-repellent protective film is formed and a material for the water-repellent protective film. That is, after forming a reactive site by oxidizing the concave surface of the concave and convex pattern, by forming a water repellent protective film on the concave surface with a water repellent protective film forming agent having a hydrophobic group having strong hydrophobicity, It imparts water repellency to the concave surface.

本発明における疎水基とは、無置換の炭化水素基、或いは炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基を示している。疎水基の疎水性は、前記炭化水素基中の炭素数が多いほど強くなる。さらには、炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基の場合、疎水基の疎水性が強くなる場合がある。特に、置換するハロゲン元素がフッ素元素であれば、疎水基の疎水性が強くなり、置換するフッ素元素数が多いほど、疎水基の疎水性が強くなる。   The hydrophobic group in the present invention refers to an unsubstituted hydrocarbon group or a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element. The hydrophobicity of the hydrophobic group increases as the number of carbon atoms in the hydrocarbon group increases. Furthermore, in the case of a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element, the hydrophobicity of the hydrophobic group may increase. In particular, if the halogen element to be substituted is a fluorine element, the hydrophobicity of the hydrophobic group becomes stronger. The greater the number of fluorine elements to be substituted, the stronger the hydrophobicity of the hydrophobic group.

本発明者らは鋭意検討を行い、酸化処理、及び、撥水性保護膜形成剤として特定の疎水基を有するケイ素化合物を含有する撥水性保護膜形成薬液による表面処理を組み合わせることで、当該ウェハの凹凸パターン表面上に良好な撥水性を生じせしめる保護膜を形成し、効率的に洗浄が行えることを見出した。   The present inventors have intensively studied and combined the oxidation treatment and surface treatment with a water-repellent protective film-forming chemical solution containing a silicon compound having a specific hydrophobic group as a water-repellent protective film-forming agent. It was found that a protective film capable of producing good water repellency was formed on the surface of the concavo-convex pattern, and cleaning could be performed efficiently.

本発明は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、
前記ウェハ表面を酸化処理する、酸化処理工程
前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
を含み、前記撥水性保護膜形成剤が、下記一般式[1]で表されるケイ素化合物である、前記ウェハの洗浄方法である。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[1]のR中に含まれる炭素数の合計が6以上であり、Xはそれぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
The present invention provides a wafer having a concavo-convex pattern formed on the surface, wherein at least a part of the concavo-convex pattern has at least a part of the concave surface selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium. A method for cleaning a wafer containing one kind of substance,
A water repellent protective film forming chemical containing a water repellent protective film forming agent for forming a water repellent protective film on the wafer surface is held in at least a recess of the wafer, wherein the wafer surface is oxidized. A method for cleaning a wafer comprising a water repellent protective film forming step of forming a water repellent protective film on the concave surface, wherein the water repellent protective film forming agent is a silicon compound represented by the following general formula [1] It is.
R 1 a SiX 4-a [1]
[In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [1] The total number of carbon atoms contained in R 1 is 6 or more, X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, and the element bonded to the silicon element is oxygen It is at least one group selected from the group consisting of a certain monovalent functional group and a halogen group, and a is an integer of 1 to 3. ]

前記撥水性保護膜形成剤は、下記一般式[2]で表されるケイ素化合物であることが好ましい。
SiX [2]
[式[2]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
The water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [2].
R 1 3 SiX [2]
[In the formula [2], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [2] The total number of carbon atoms contained in R 1 is 6 or more, X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, and monovalent functional group in which the element bonded to the silicon element is oxygen Or a halogen group. ]

また、前記撥水性保護膜形成剤は、下記一般式[3]で表されるケイ素化合物であることが好ましい。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
In addition, the water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 SiX [3]
[In the formula [3], R 2 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms, or a hydrogen group in which a hydrogen element is substituted with a halogen element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]

また、前記撥水性保護膜形成剤は、下記一般式[4]で表されるケイ素化合物であることが好ましい。
(CHSiX [4]
[式[4]中、Rは炭素数が4〜18の少なくとも一部の水素元素がフッ素元素により置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
In addition, the water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [4].
R 3 (CH 3 ) 2 SiX [4]
[In the formula [4], R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]

また、前記酸化処理は、前記ウェハを酸化処理液に浸漬することが好ましい。   In the oxidation treatment, the wafer is preferably immersed in an oxidation treatment solution.

また、前記酸化処理において用いる酸化処理液は、オゾンを含む処理液、過酸化水素を含む処理液、及び酸を含む処理液からなる群から選ばれる少なくとも1つの処理液であることが好ましい。   The oxidation treatment liquid used in the oxidation treatment is preferably at least one treatment liquid selected from the group consisting of a treatment liquid containing ozone, a treatment liquid containing hydrogen peroxide, and a treatment liquid containing acid.

また、本発明は、前記のウェハの洗浄方法に用いる撥水性保護膜形成薬液であり、下記一般式[1]で表される撥水性保護膜形成剤を含有する、撥水性保護膜形成薬液である。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[1]のR中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
Further, the present invention is a water repellent protective film forming chemical used in the above-described wafer cleaning method, which contains a water repellent protective film forming chemical represented by the following general formula [1]. is there.
R 1 a SiX 4-a [1]
[In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [1] The total number of carbon atoms contained in R 1 is 6 or more, X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, and the element bonded to the silicon element is oxygen And at least one group selected from the group consisting of a monovalent functional group and a halogen group, a is an integer of 1 to 3. ]

前記撥水性保護膜形成剤は、下記一般式[2]で表されるケイ素化合物であることが好ましい。
SiX [2]
[式[2]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
The water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [2].
R 1 3 SiX [2]
[In the formula [2], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [2] The total number of carbon atoms contained in R 1 is 6 or more, X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, and monovalent functional group in which the element bonded to the silicon element is oxygen Or a halogen group. ]

また、前記撥水性保護膜形成剤は、下記一般式[3]で表されるケイ素化合物であることが好ましい。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
In addition, the water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 SiX [3]
[In the formula [3], R 2 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms, or a hydrogen group in which a hydrogen element is substituted with a halogen element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]

また、前記撥水性保護膜形成剤は、下記一般式[4]で表されるケイ素化合物であることが好ましい。
(CHSiX [4]
[式[4]中、Rは炭素数が4〜18の少なくとも一部の水素元素がフッ素元素により置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
In addition, the water repellent protective film forming agent is preferably a silicon compound represented by the following general formula [4].
R 3 (CH 3 ) 2 SiX [4]
[In the formula [4], R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]

また、前記撥水性保護膜形成薬液は溶媒を含有することが好ましい。   The water repellent protective film forming chemical solution preferably contains a solvent.

また、前記撥水性保護膜形成薬液は酸を含有することが好ましい。   The water repellent protective film forming chemical preferably contains an acid.

また、撥水性保護膜形成薬液の総量100質量%中に、前記撥水性保護膜形成剤が0.1〜50質量%含有されることが好ましい。   Moreover, it is preferable that 0.1-50 mass% of said water-repellent protective film forming agents are contained in 100 mass% of total amounts of water-repellent protective film forming chemicals.

本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。   In the present invention, the water-repellent protective film is a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency. In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.

本発明のウェハの洗浄方法、及び、薬液を用いることで、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄過程において、凹凸パターンに働く毛細管力を低下させ、ひいてはパターン倒れ防止効果を示す。該洗浄方法を用いると、表面に凹凸パターンを有するウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、本発明の洗浄方法、及び、薬液を用いて行われる表面に凹凸パターンを有するウェハの製造方法は、生産性が高いものとなる。   By using the wafer cleaning method of the present invention and a chemical solution, at least a part of the concave surface of the concave / convex pattern on the surface is formed of titanium, titanium nitride, tungsten, aluminum, copper, tin, In the process of cleaning a wafer containing at least one substance selected from the group consisting of tantalum nitride and ruthenium, the capillary force acting on the concavo-convex pattern is reduced, and the pattern collapse preventing effect is exhibited. When this cleaning method is used, the cleaning step in the method for manufacturing a wafer having a concavo-convex pattern on the surface can be improved without lowering the throughput. Therefore, the cleaning method of the present invention and the method of manufacturing a wafer having a concavo-convex pattern on the surface performed using a chemical solution are highly productive.

本発明の洗浄方法、及び、薬液は、今後益々高くなると予想される例えば7以上のアスペクト比を有する凹凸パターンにも対応可能であり、より高密度化された半導体デバイス生産のコストダウンを可能とする。しかも従来の装置から大きな変更がなく対応でき、その結果、各種の半導体デバイスの製造に適用可能なものとなる。   The cleaning method and the chemical solution of the present invention can cope with a concavo-convex pattern having an aspect ratio of, for example, 7 or more, which is expected to become higher in the future, and can reduce the cost of production of higher-density semiconductor devices. To do. In addition, the conventional apparatus can be applied without significant change, and as a result, can be applied to the manufacture of various semiconductor devices.

表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示す図である。It is a figure which shows a schematic diagram when the wafer 1 by which the surface was made into the surface which has the uneven | corrugated pattern 2 is seen. 図1中のa−a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 凹部4が保護膜形成薬液8を保持した状態の模式図を示している。The recessed part 4 has shown the schematic diagram of the state holding the protective film formation chemical | medical solution 8. FIG. 保護膜が形成された凹部4に液体が保持された状態の模式図を示す図である。It is a figure which shows the schematic diagram of the state by which the liquid was hold | maintained at the recessed part 4 in which the protective film was formed.

本発明のウェハの洗浄方法を実施する前に、一般的には次に挙げる前工程を経ることが多い。
ウェハ表面を微細な凹凸パターンを有する面とする、パターン形成工程、
水、有機溶媒、水と有機溶媒の混合液、及びそれらに過酸化水素、オゾン、酸、アルカリのうち少なくとも1種が混合された混合液、からなる群から選ばれる少なくとも1つからなる前処理洗浄液を用いてウェハ表面を洗浄する、前洗浄工程。
In general, before the wafer cleaning method of the present invention is performed, the following pre-steps are often performed.
A pattern forming process in which the wafer surface is a surface having a fine uneven pattern;
Pretreatment comprising at least one selected from the group consisting of water, an organic solvent, a mixed solution of water and an organic solvent, and a mixed solution in which at least one of hydrogen peroxide, ozone, acid, and alkali is mixed. to clean the wafer surface with a cleaning solution, as precleaning Engineering.

前記パターン形成工程工程において、ウェハ表面に微細なパターンを形成できるのであればその方法は限定されないが、一般的方法としては、該ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するウェハが得られる。   In the pattern forming step, the method is not limited as long as a fine pattern can be formed on the wafer surface. As a general method, after applying a resist to the wafer surface, the resist is exposed through a resist mask. Then, a resist having a desired concavo-convex pattern is produced by etching away the exposed resist or the resist that has not been exposed. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a fine uneven pattern is obtained.

なお、前記ウェハとしては、シリコンウェハ、シリコンおよび/またはシリカ(SiO)を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどの表面をチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムの金属系の物質の層で被覆したもの、またはウェハ上に多層膜を形成し、そのうちの少なくとも1層が前記金属系の物質の層であるもの等が挙げられ、上記の凹凸パターン形成工程は、該金属系の物質の層を含む層において行われる。また、上記凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が該金属系の物質となるものも含まれる。さらには、ウェハ上に凹凸パターンを形成し、その凹凸パターンの表面に前記金属系の物質の層を形成したものも含む。 In addition, as the wafer, the surface of a silicon wafer, a wafer composed of a plurality of components including silicon and / or silica (SiO 2 ), a silicon carbide wafer, a sapphire wafer, various compound semiconductor wafers, a plastic wafer, etc. is made of titanium, A multilayer film is formed on a wafer coated with a metal material layer of titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium, and at least one of the layers is formed of the metal material. The above-mentioned concavo-convex pattern forming step is performed in a layer including a layer of the metal-based substance. Moreover, when the said uneven | corrugated pattern is formed, the thing in which at least one part of this uneven | corrugated pattern becomes this metal-type substance is also contained. Furthermore, the thing which formed the uneven | corrugated pattern on the wafer and formed the layer of the said metal-type substance on the surface of the uneven | corrugated pattern is also included.

また、前記金属系の物質を含む複数の成分から構成されたウェハに対しても、該金属系の物質の表面に前記保護膜を形成することができる。該複数の成分から構成されたウェハとしては、前記金属系の物質がウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が該金属系の物質となるものも含まれる。なお、本発明の薬液で保護膜を形成できるのは前記凹凸パターン中の少なくとも前記金属系の物質部分の表面である。   In addition, the protective film can be formed on the surface of the metal-based material even on a wafer composed of a plurality of components including the metal-based material. As a wafer composed of the plurality of components, the metal-based material is formed on the wafer surface, or when a concavo-convex pattern is formed, at least a part of the concavo-convex pattern becomes the metal-based material. Also included. In addition, it is at least the surface of the said metal-type substance part in the said uneven | corrugated pattern that can form a protective film with the chemical | medical solution of this invention.

前記前洗浄工程において用いる洗浄液の例としては、水、有機溶媒、水と有機溶媒の混合液、及びそれらに過酸化水素、オゾン、酸、アルカリのうち少なくとも1種が混合された混合液、からなる群から選ばれる少なくとも1つが挙げられる。また、上記の洗浄液のうち、複数種類の洗浄液を順次置換して洗浄を行っても良い。   Examples of the cleaning liquid used in the pre-cleaning step include water, an organic solvent, a mixed liquid of water and an organic solvent, and a mixed liquid in which at least one of hydrogen peroxide, ozone, acid, and alkali is mixed. At least one selected from the group consisting of: In addition, cleaning may be performed by sequentially replacing a plurality of types of cleaning liquids among the above cleaning liquids.

凹凸パターンを形成した後のウェハの洗浄において、レジストを除去し、ウェハ表面のパーティクル等を除去した後に、乾燥等により洗浄液を除去する際に、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa−a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。 In the cleaning of the wafer after the formation of the concavo-convex pattern, the resist is removed, after removing the particles and the like of the wafer surface, in removing by Riarai solution purification to drying, the width of the recess is small, the convex portion If the aspect ratio is large, pattern collapse tends to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view when a wafer 1 whose surface has a concavo-convex pattern 2 is viewed from the perspective, and FIG. 2 shows a part of an aa ′ cross section in FIG. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.

本発明のウェハの洗浄方法は、
ウェハ表面を酸化処理する、酸化処理工程
前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程を有する。
The wafer cleaning method of the present invention comprises:
A water repellent protective film forming chemical solution containing a water repellent protective film forming agent for forming a water repellent protective film on the wafer surface is held in at least the recesses of the wafer, and an oxidation treatment step for oxidizing the wafer surface. A water-repellent protective film forming step of forming a water-repellent protective film on the concave surface;

酸化処理工程では、ウェハ表面を酸化させる。本発明の洗浄方法では、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハを対象としており、該ウェハ表面のうち少なくとも前記物質からなる部分を酸化させることになる。この酸化により、前記物質表面に水酸基が形成され、後の工程である撥水性保護膜形成工程において使用する撥水性保護膜形成薬液と該水酸基を反応させることが可能となる。   In the oxidation process, the wafer surface is oxidized. In the cleaning method of the present invention, in a wafer having a concavo-convex pattern formed on the surface, at least a part of the concave surface of the concavo-convex pattern is selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium. A wafer containing at least one selected substance is targeted, and at least a portion made of the substance on the wafer surface is oxidized. By this oxidation, a hydroxyl group is formed on the surface of the substance, and it becomes possible to react the hydroxyl group with a water-repellent protective film-forming chemical used in a water-repellent protective film-forming step which is a later step.

本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、前記酸化処理工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、前記前洗浄工程を実施する場合は、前洗浄工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。なお、本発明において、ウェハの凹凸パターンの少なくとも凹部に前記酸化処理液、前記薬液やその他の液体を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記酸化処理液、前記薬液やその他の液体を供給するときの該薬液や洗浄液の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。   In the wafer cleaning method of the present invention, in order to efficiently perform the cleaning without causing pattern collapse, the water repellent protective film forming step from the oxidation treatment step is performed in a state where liquid is always held in at least the concave portion of the wafer. It is preferable to carry out with. Further, when the pre-cleaning step is performed, it is preferable to perform the water-repellent protective film forming step from the pre-cleaning step in a state where the liquid is always held in at least the concave portion of the wafer. In addition, when the water-repellent protective film forming chemical liquid held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state. In the present invention, the cleaning method of the wafer is not particularly limited as long as the oxidation treatment liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer. As a wafer cleaning method, a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank. One example is a batch system in which a single wafer is immersed and washed. The form of the chemical solution or cleaning liquid when supplying the oxidation treatment liquid, the chemical solution, or other liquid to at least the concave portion of the concave / convex pattern of the wafer is not particularly limited as long as it becomes liquid when held in the concave portion. For example, there are liquid, vapor and the like.

前記酸化処理工程におけるウェハ表面の酸化は、ウェハ表面を酸化させられるものであれば、特に限定されないが、ウェハ表面に酸化処理液を保持する方法によることが好ましい。ウェハ表面に酸化処理液を保持する方法は、枚葉方式であればウェハを回転させながら回転中心付近に液体を供給して掛け流す方法などが挙げられ、バッチ方式であれば酸化処理液中に浸漬する方法などが挙げられる。また、前記酸化処理液として、オゾンを含む処理液、過酸化水素を含む処理液、及び酸を含む処理液からなる群から選ばれる少なくとも1つの処理液を用いると、これらの酸化処理液は強力な酸化剤であるため、ウェハの表面のチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を好適に酸化させることが可能である。   The oxidation of the wafer surface in the oxidation treatment step is not particularly limited as long as the wafer surface can be oxidized, but it is preferable to use a method of holding an oxidation treatment liquid on the wafer surface. The method of holding the oxidation treatment liquid on the wafer surface includes a method of supplying and pouring liquid around the rotation center while rotating the wafer in the case of a single wafer method, and in the oxidation treatment solution in the case of a batch method. The method of immersing is mentioned. Further, when at least one treatment liquid selected from the group consisting of a treatment liquid containing ozone, a treatment liquid containing hydrogen peroxide, and a treatment liquid containing acid is used as the oxidation treatment liquid, these oxidation treatment liquids are powerful. Therefore, it is possible to suitably oxidize at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on the wafer surface. .

前記酸化処理工程は、常温の酸化処理液を用いて行っても良いし、30〜200℃に加温された酸化処理液を用いて行っても良い。一般的に金属や窒化物はより高温で酸化しやすい傾向があり、酸化処理液を30〜200℃に加温して処理することが好ましい。100℃以上の酸化処理液を用いて処理を行う場合、大部分が水からなる酸化処理液であると該処理液が沸騰するため、常圧では温度を上げることが出来なくなる。そのため、100℃以上の酸化処理液を用いて処理を行う場合は、水と異なる溶媒を用いることが好ましい。   The oxidation treatment step may be performed using a normal temperature oxidation treatment solution or an oxidation treatment solution heated to 30 to 200 ° C. In general, metals and nitrides tend to be oxidized at higher temperatures, and it is preferable to treat the oxidation treatment solution by heating to 30 to 200 ° C. When the treatment is carried out using an oxidation treatment solution at 100 ° C. or higher, the treatment solution will boil if most of the treatment solution consists of water, so that the temperature cannot be raised at normal pressure. For this reason, when the treatment is performed using an oxidation treatment solution at 100 ° C. or higher, it is preferable to use a solvent different from water.

次に、撥水性保護膜形成工程について説明する。前記酸化処理工程から撥水性保護膜形成工程への移行は、酸化処理工程においてウェハの凹凸パターンの少なくとも凹部に保持されていた酸化処理液から、撥水性保護膜形成薬液に置換されることで行われる。この酸化処理液から撥水性保護膜形成薬液への置換においては、直接置換されても良いし、異なる洗浄液A(以降、単に「洗浄液A」と記載する場合がある)に一度以上置換された後に、撥水性保護膜形成薬液に置換されても良い。前記洗浄液Aの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Next, the water repellent protective film forming step will be described. The transition from the oxidation treatment step to the water repellent protective film forming step is performed by replacing the oxidation treatment liquid held in at least the concave portion of the concave / convex pattern of the wafer in the oxidation treatment step with a water repellent protective film forming chemical solution. Is called. In the replacement of the oxidation treatment liquid with the water-repellent protective film forming chemical liquid, it may be directly replaced, or after being replaced at least once with a different cleaning liquid A (hereinafter sometimes simply referred to as “cleaning liquid A”). Alternatively, a water repellent protective film forming chemical solution may be substituted. Preferable examples of the cleaning liquid A include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.

前記撥水性保護膜形成工程における撥水性保護膜の形成は、ウェハの凹凸パターンの少なくとも凹部に撥水性保護膜形成薬液を保持することにより行われる。図3は、凹部4が撥水性保護膜形成薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa−a’断面の一部を示すものである。この撥水性保護膜形成工程の際に、撥水性保護膜形成薬液が、凹凸パターン2が形成されたウェハ1に供される。この際、撥水性保護膜形成薬液は図3に示したように少なくとも凹部4に保持された状態となり、凹部4の表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。   The formation of the water-repellent protective film in the water-repellent protective film forming step is performed by holding a water-repellent protective film-forming chemical at least in the concave portions of the concave / convex pattern of the wafer. FIG. 3 is a schematic view showing a state in which the concave portion 4 holds the water repellent protective film forming chemical 8. The wafer in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. In the water repellent protective film forming step, the water repellent protective film forming chemical is supplied to the wafer 1 on which the concave / convex pattern 2 is formed. At this time, the water-repellent protective film forming chemical solution is held at least in the concave portion 4 as shown in FIG. 3, and the surface of the concave portion 4 is water-repellent. Note that the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.

また、撥水性保護膜形成工程では、薬液の温度を高くすると、より短時間で前記保護膜を形成しやすいが、撥水性保護膜形成薬液の沸騰や蒸発などにより該薬液の安定性が損なわれる恐れがあるため、前記薬液は10〜160℃で保持されることが好ましく、特には15〜120℃が好ましい。   In the water-repellent protective film forming step, if the temperature of the chemical solution is increased, the protective film can be easily formed in a shorter time. However, the stability of the chemical solution is impaired by boiling or evaporation of the water-repellent protective film-forming chemical solution. Since there exists a possibility, it is preferable that the said chemical | medical solution is hold | maintained at 10-160 degreeC, and 15-120 degreeC is especially preferable.

続いて、撥水性保護膜形成工程において用いる撥水性保護膜形成薬液について説明する。該薬液は、下記一般式[1]で表される撥水性保護膜形成剤を含有する。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[1]のR中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは整数1〜3である。]
Subsequently, the water-repellent protective film forming chemical used in the water-repellent protective film forming step will be described. The chemical solution contains a water repellent protective film forming agent represented by the following general formula [1].
R 1 a SiX 4-a [1]
[In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [1] The total number of carbon atoms contained in R 1 is 6 or more, X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, and the element bonded to the silicon element is oxygen Is at least one group selected from the group consisting of a monovalent functional group and a halogen group, and a is an integer of 1 to 3. ]

例えば、ケイ素表面を酸化処理して得られる酸化ケイ素表面には、反応活性点である水酸基が豊富に存在するが、一般的に、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウム表面に対して、上記酸化処理を行い、それぞれ酸化チタン、酸化タングステン、酸化アルミニウム、酸化銅、酸化スズ、酸化タンタル、及び酸化ルテニウム表面にしても、酸化ケイ素表面に比べると水酸基量が少ない。この少ない水酸基に対して従来のシランカップリング剤を反応させても表面に充分な撥水性を付与することは困難である。しかし、疎水性基がより強い疎水性を有する基であれば、充分な撥水性を付与することが可能である。Rの合計炭素数が多ければ、すなわちRはより強い疎水性を有する疎水性基であることを意味しており、また、Rは水素元素の一部、又は全部がハロゲン元素に置換された炭化水素基であっても良い。特に、Rの合計炭素数が6以上になる、疎水性の強い疎水性基を有する撥水性保護膜形成剤であれば、前記ウェハ表面に存在する水酸基が少なくても、十分に撥水性能を発現する保護膜を形成することができる。なお、式[1]のR中に含まれる炭素数の合計が6以上とは、式[1]にRとして1個〜3個含まれる疎水性基の全ての炭素の数の合計が6以上であるということを示している。 For example, the silicon oxide surface obtained by oxidizing the silicon surface has abundant hydroxyl groups that are reactive sites, but in general, titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, In addition, the above-described oxidation treatment is performed on the surface of ruthenium and ruthenium, and the amount of hydroxyl groups is less than that on the surface of silicon oxide even on the surfaces of titanium oxide, tungsten oxide, aluminum oxide, copper oxide, tin oxide, tantalum oxide, and ruthenium oxide. . Even if a conventional silane coupling agent is reacted with this small number of hydroxyl groups, it is difficult to impart sufficient water repellency to the surface. However, if the hydrophobic group is a group having stronger hydrophobicity, sufficient water repellency can be imparted. If the total number of carbon atoms in R 1 is large, that is, R 1 is a hydrophobic group having stronger hydrophobicity, and R 1 is a part of or all of hydrogen elements substituted with halogen elements. It may be a hydrocarbon group. In particular, if the water repellent protective film forming agent having a hydrophobic group having a strong hydrophobicity with a total carbon number of R 1 of 6 or more, even if there are few hydroxyl groups present on the wafer surface, sufficient water repellent performance Can be formed. Note that the total number of carbons contained in R 1 of the formula [1] is 6 or more means that the total number of all carbons of the hydrophobic group contained in the formula [1] as 1 to 3 as R 1 It shows that it is 6 or more.

また、一般式[1]のXで表される、ケイ素元素と結合する元素が窒素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などから、構成される官能基であれば良く、例えば、−NSi(CH基、−NSi(CH基、−NSi(CH17基、−N(CH基、−N(C基、−N(C基、−N(CH)(C)基、−NH(C)基、−NCO基、イミダゾール基、アセトアミド基などが挙げられる。 In addition, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., any functional group may be used, for example, —NSi (CH 3 ) 3 group, —NSi (CH 3 ) 2 C 4 H 9 group, —NSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) 2 group, —N (C 2 H 5 ) 2 group, —N (C 3 H 7 ) 2 group, —N (CH 3 ) (C 2 H 5 ) group , —NH (C 2 H 5 ) group, —NCO group, imidazole group, acetamide group and the like.

さらに、一般式[1]のXで表される、ケイ素元素と結合する元素が酸素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などから、構成される官能基であれば良く、例えば、−OCH基、−OC基、−OC基、−OCOCH基、−OCOCF基などが挙げられる。 Furthermore, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., as long as it is a functional group composed of, for example, —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group, etc. Is mentioned.

また、一般式[1]のXで表される、ハロゲン基としては−F基、−Cl基、−Br基、−I基などが挙げられる。   Examples of the halogen group represented by X in the general formula [1] include -F group, -Cl group, -Br group, and -I group.

前記一般式[1]のXで表される基は、前記ウェハ表面の水酸基と反応して、該ケイ素化合物中のケイ素元素と該ウェハ表面との間に結合を形成することにより、保護膜を形成することができる。   The group represented by X in the general formula [1] reacts with a hydroxyl group on the wafer surface to form a bond between the silicon element in the silicon compound and the wafer surface, thereby forming a protective film. Can be formed.

一般式[1]で示されるケイ素化合物としては、例えば、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C19(CHSiCl、C1021(CHSiCl、C1123(CHSiCl、C1225(CHSiCl、C1327(CHSiCl、C1429(CHSiCl、C1531(CHSiCl、C1633(CHSiCl、C1735(CHSiCl、C1837(CHSiCl、C11(CH)HSiCl、C13(CH)HSiCl、C15(CH)HSiCl、C17(CH)HSiCl、C19(CH)HSiCl、C1021(CH)HSiCl、C1123(CH)HSiCl、C1225(CH)HSiCl、C1327(CH)HSiCl、C1429(CH)HSiCl、C1531(CH)HSiCl、C1633(CH)HSiCl、C1735(CH)HSiCl、C1837(CH)HSiCl、C(CHSiCl、C(CHSiCl、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、CF(CSiCl、C(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C19(CH)SiCl、C1021(CH)SiCl、C1123(CH)SiCl、C1225(CH)SiCl、C1327(CH)SiCl、C1429(CH)SiCl、C1531(CH)SiCl、C1633(CH)SiCl、C1735(CH)SiCl、C1837(CH)SiCl、C(CH)SiCl、C(CH)SiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C13SiCl、C15SiCl、C17SiCl、C19SiCl、C1021SiCl、C1123SiCl、C1225SiCl、C1327SiCl、C1429SiCl、C1531SiCl、C1633SiCl、C1735SiCl、C1837SiCl、CSiCl、C11SiCl、C13SiCl、C15SiCl、C17SiClなどのクロロシラン系化合物が挙げられる。 Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3) HSiCl , C 7 H 15 (CH 3) HSiCl, C 8 H 17 (CH 3) HSiCl, C 9 H 19 (CH 3) HSiCl, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl , C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl , C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl , C 4 F 9 C 2 H 4 (CH 3) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3) 2 SiC , C 6 F 13 C 2 H 4 (CH 3) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3) 2 SiCl, (C 2 H 5 ) 3 SiCl, C 3 H 7 (C 2 H 5 ) 2 SiCl, C 4 H 9 (C 2 H 5 ) 2 SiCl, C 5 H 11 (C 2 H 5 ) 2 SiCl, C 6 H 13 (C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 (C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9 ) 2 SiCl, C 6 H 13 (C 4 H 9 ) 2 SiCl, C 7 H 15 (C 4 H 9 ) 2 SiCl C 8 H 17 (C 4 H 9 ) 2 SiCl, C 9 H 19 (C 4 H 9 ) 2 SiCl, C 10 H 21 (C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9 ) 2 SiCl, C 15 H 31 (C 4 H 9 ) 2 SiCl, C 16 H 33 (C 4 H 9) 2 SiCl, C 17 H 35 (C 4 H 9) 2 SiCl, C 18 H 37 (C 4 H 9) 2 SiCl, CF 3 C 2 H 4 (C 4 H 9) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 7 F 15 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 H 11 (CH 3 ) SiCl 2 , C 6 H 13 (CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) SiCl 2, C 8 H 17 (CH 3) SiCl , C 9 H 19 (CH 3 ) SiCl 2, C 10 H 21 (CH 3) SiCl 2, C 11 H 23 (CH 3) SiCl 2, C 12 H 25 (CH 3) SiCl 2, C 13 H 27 ( CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) SiCl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3) SiCl 2, C 3 F 7 C 2 H 4 (CH 3) SiCl 2, C 4 F 9 C 2 H 4 (CH 3) SiCl 2, C 5 F 11 C 2 H 4 ( CH 3) SiCl 2, C 6 F 13 C 2 H 4 (CH 3) SiCl 2, C 7 F 15 C 2 H 4 (CH 3) SiCl 2, C 8 F 17 C 2 H 4 (CH 3) iCl 2, C 6 H 13 SiCl 3, C 7 H 15 SiCl 3, C 8 H 17 SiCl 3, C 9 H 19 SiCl 3, C 10 H 21 SiCl 3, C 11 H 23 SiCl 3, C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , C 4 F 9 C 2 H 4 SiCl 3 , C 5 F 11 C 2 H 4 SiCl 3 , C 6 F 13 C 2 H 4 SiCl 3 , C 7 F 15 C 2 H 4 SiCl 3 , C 8 F 17 C 2 H 4 SiCl 3, etc. A chlorosilane type compound is mentioned.

また、例えば、C(CHSiOCH、C11(CHSiOCH、C13(CHSiOCH、C15(CHSiOCH、C17(CHSiOCH、C19(CHSiOCH、C1021(CHSiOCH、C1123(CHSiOCH、C1225(CHSiOCH、C1327(CHSiOCH、C1429(CHSiOCH、C1531(CHSiOCH、C1633(CHSiOCH、C1735(CHSiOCH、C1837(CHSiOCH、C11(CH)HSiOCH、C13(CH)HSiOCH、C15(CH)HSiOCH、C17(CH)HSiOCH、C19(CH)HSiOCH、C1021(CH)HSiOCH、C1123(CH)HSiOCH、C1225(CH)HSiOCH、C1327(CH)HSiOCH、C1429(CH)HSiOCH、C1531(CH)HSiOCH、C1633(CH)HSiOCH、C1735(CH)HSiOCH、C1837(CH)HSiOCH、C(CHSiOCH、C(CHSiOCH、C(CHSiOCH、C11(CHSiOCH、C13(CHSiOCH、C15(CHSiOCH、C17(CHSiOCH、(CSiOCH、C(CSiOCH、C(CSiOCH、C11(CSiOCH、C13(CSiOCH、C15(CSiOCH、C17(CSiOCH、C19(CSiOCH、C1021(CSiOCH、C1123(CSiOCH、C1225(CSiOCH、C1327(CSiOCH、C1429(CSiOCH、C1531(CSiOCH、C1633(CSiOCH、C1735(CSiOCH、C1837(CSiOCH、(CSiOCH、C11(CSiOCH、C13(CSiOCH、C15(CSiOCH、C17(CSiOCH、C19(CSiOCH、C1021(CSiOCH、C1123(CSiOCH、C1225(CSiOCH、C1327(CSiOCH、C1429(CSiOCH、C1531(CSiOCH、C1633(CSiOCH、C1735(CSiOCH、C1837(CSiOCH、C11(CH)Si(OCH、C13(CH)Si(OCH、C15(CH)Si(OCH、C17(CH)Si(OCH、C19(CH)Si(OCH、C1021(CH)Si(OCH、C1123(CH)Si(OCH、C1225(CH)Si(OCH、C1327(CH)Si(OCH、C1429(CH)Si(OCH、C1531(CH)Si(OCH、C1633(CH)Si(OCH、C1735(CH)Si(OCH、C1837(CH)Si(OCH、C(CH)Si(OCH、C(CH)Si(OCH、C11(CH)Si(OCH、C13(CH)Si(OCH、C15(CH)Si(OCH、C17(CH)Si(OCH、C13Si(OCH、C15Si(OCH、C17Si(OCH、C19Si(OCH、C1021Si(OCH、C1123Si(OCH、C1225Si(OCH、C1327Si(OCH、C1429Si(OCH、C1531Si(OCH、C1633Si(OCH、C1735Si(OCH、C1837Si(OCH、CSi(OCH、C11Si(OCH、C13Si(OCH、C15Si(OCH、C17Si(OCH
、C(CHSiOC、C11(CHSiOC、C13(CHSiOC、C15(CHSiOC、C17(CHSiOC、C19(CHSiOC、C1021(CHSiOC、C1123(CHSiOC、C1225(CHSiOC、C1327(CHSiOC、C1429(CHSiOC、C1531(CHSiOC、C1633(CHSiOC、C1735(CHSiOC、C1837(CHSiOC、C(CHSiOC、C(CHSiOC、C(CHSiOC、C11(CHSiOC、C13(CHSiOC、C15(CHSiOC、C17(CHSiOC、(CSiOC、C(CSiOC、C(CSiOC、C11(CSiOC、C13(CSiOC、C15(CSiOC、C17(CSiOC、C19(CSiOC、C1021(CSiOC、C1123(CSiOC、C1225(CSiOC、C1327(CSiOC、C1429(CSiOC、C1531(CSiOC、C1633(CSiOC、C1735(CSiOC、C1837(CSiOC、(CSiOC、C11(CSiOC、C13(CSiOC、C15(CSiOC、C17(CSiOC、C19(CSiOC、C1021(CSiOC、C1123(CSiOC、C1225(CSiOC、C1327(CSiOC、C1429(CSiOC、C1531(CSiOC、C1633(CSiOC、C1735(CSiOC、C1837(CSiOC、C11(CH)Si(OC、C13(CH)Si(OC、C15(CH)Si(OC、C17(CH)Si(OC、C19(CH)Si(OC、C1021(CH)Si(OC、C1123(CH)Si(OC、C1225(CH)Si(OC、C1327(CH)Si(OC、C1429(CH)Si(OC、C1531(CH)Si(OC、C1633(CH)Si(OC、C1735(CH)Si(OC、C1837(CH)Si(OC、C(CH)Si(OC、C(CH)Si(OC、C11(CH)Si(OC、C13(CH)Si(OC、C15(CH)Si(OC、C17(CH)Si(OC、C13Si(OC、C15Si(OC、C17Si(OC、C19Si(OC、C1021Si(OC、C1123Si(OC、C1225Si(OC、C1327Si(OC、C1429Si(OC、C1531Si(OC、C1633Si(OC、C1735Si(OC、C1837Si(OC、CSi(OC、C11Si(OC、C13Si(OC、C15Si(OC、C17
Si(OCなどのアルコキシシラン系化合物が挙げられる。
Also, for example, C 4 H 9 (CH 3 ) 2 SiOCH 3 , C 5 H 11 (CH 3 ) 2 SiOCH 3 , C 6 H 13 (CH 3 ) 2 SiOCH 3 , C 7 H 15 (CH 3 ) 2 SiOCH 3 , C 8 H 17 (CH 3 ) 2 SiOCH 3 , C 9 H 19 (CH 3 ) 2 SiOCH 3 , C 10 H 21 (CH 3 ) 2 SiOCH 3 , C 11 H 23 (CH 3 ) 2 SiOCH 3 , C 12 H 25 (CH 3) 2 SiOCH 3, C 13 H 27 (CH 3) 2 SiOCH 3, C 14 H 29 (CH 3) 2 SiOCH 3, C 15 H 31 (CH 3) 2 SiOCH 3, C 16 H 33 (CH 3) 2 SiOCH 3, C 17 H 35 (CH 3) 2 SiOCH 3, C 18 H 37 (CH 3) 2 SiOCH , C 5 H 11 (CH 3 ) HSiOCH 3, C 6 H 13 (CH 3) HSiOCH 3, C 7 H 15 (CH 3) HSiOCH 3, C 8 H 17 (CH 3) HSiOCH 3, C 9 H 19 ( CH 3 ) HSiOCH 3 , C 10 H 21 (CH 3 ) HSiOCH 3 , C 11 H 23 (CH 3 ) HSiOCH 3 , C 12 H 25 (CH 3 ) HSiOCH 3 , C 13 H 27 (CH 3 ) HSiOCH 3 , C 14 H 29 (CH 3) HSiOCH 3, C 15 H 31 (CH 3) HSiOCH 3, C 16 H 33 (CH 3) HSiOCH 3, C 17 H 35 (CH 3) HSiOCH 3, C 18 H 37 (CH 3) HSiOCH 3, C 2 F 5 C 2 H 4 (CH 3) 2 SiOCH 3, C 3 F 7 C 2 H 4 (CH 3) 2 SiOCH 3, C 4 F 9 C 2 H 4 (CH 3) 2 SiOCH 3, C 5 F 11 C 2 H 4 (CH 3) 2 SiOCH 3, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiOCH 3 , (C 2 H 5 ) 3 SiOCH 3 , C 3 H 7 (C 2 H 5) 2 SiOCH 3, C 4 H 9 (C 2 H 5) 2 SiOCH 3, C 5 H 11 (C 2 H 5) 2 SiOCH 3, C 6 H 13 (C 2 H 5 ) 2 SiOCH 3 , C 7 H 15 (C 2 H 5 ) 2 SiOCH 3 , C 8 H 17 (C 2 H 5 ) 2 SiOCH 3 , C 9 H 19 (C 2 H 5 ) 2 SiOCH 3 , C 10 H 21 (C 2 H 5 ) 2 SiOCH 3 , C 11 H 23 (C 2 H 5 ) 2 SiOCH 3 , C 12 H 25 (C 2 H 5 ) 2 SiOCH 3 , C 13 H 27 (C 2 H 5 ) 2 SiOCH 3 , C 14 H 29 (C 2 H 5 ) 2 SiOCH 3 , C 15 H 31 (C 2 H 5 ) 2 SiOCH 3 , C 16 H 33 (C 2 H 5 ) 2 SiOCH 3 , C 17 H 35 (C 2 H 5) 2 SiOCH 3, C 18 H 37 (C 2 H 5) 2 SiOCH 3, (C 4 H 9) 3 SiOCH 3, C 5 H 11 (C 4 H 9) 2 SiOCH 3, C 6 H 13 (C 4 H 9) 2 SiOCH 3, C 7 H 15 (C 4 H 9) 2 SiOCH 3, C 8 H 17 (C 4 H 9) 2 SiOCH 3, C 9 H 19 (C 4 H 9) 2 iOCH 3, C 10 H 21 ( C 4 H 9) 2 SiOCH 3, C 11 H 23 (C 4 H 9) 2 SiOCH 3, C 12 H 25 (C 4 H 9) 2 SiOCH 3, C 13 H 27 ( C 4 H 9) 2 SiOCH 3 , C 14 H 29 (C 4 H 9) 2 SiOCH 3, C 15 H 31 (C 4 H 9) 2 SiOCH 3, C 16 H 33 (C 4 H 9) 2 SiOCH 3 , C 17 H 35 (C 4 H 9 ) 2 SiOCH 3 , C 18 H 37 (C 4 H 9 ) 2 SiOCH 3 , C 5 H 11 (CH 3 ) Si (OCH 3 ) 2 , C 6 H 13 (CH 3) Si (OCH 3) 2 , C 7 H 15 (CH 3) Si (OCH 3) 2, C 8 H 17 (CH 3) Si (OCH 3) 2, C 9 H 19 (CH 3) Si (OC H 3) 2, C 10 H 21 (CH 3) Si (OCH 3) 2, C 11 H 23 (CH 3) Si (OCH 3) 2, C 12 H 25 (CH 3) Si (OCH 3) 2, C 13 H 27 (CH 3) Si (OCH 3) 2, C 14 H 29 (CH 3) Si (OCH 3) 2, C 15 H 31 (CH 3) Si (OCH 3) 2, C 16 H 33 ( CH 3 ) Si (OCH 3 ) 2 , C 17 H 35 (CH 3 ) Si (OCH 3 ) 2 , C 18 H 37 (CH 3 ) Si (OCH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3) Si (OCH 3) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (OCH 3) 2, C 5 F 11 C 2 H 4 (CH 3) Si (OCH 3) 2, C 6 F 13 C 2 H 4 (CH 3 ) Si (OCH ) 2, C 7 F 15 C 2 H 4 (CH 3) Si (OCH 3) 2, C 8 F 17 C 2 H 4 (CH 3) Si (OCH 3) 2, C 6 H 13 Si (OCH 3) 3 , C 7 H 15 Si (OCH 3 ) 3 , C 8 H 17 Si (OCH 3 ) 3 , C 9 H 19 Si (OCH 3 ) 3 , C 10 H 21 Si (OCH 3 ) 3 , C 11 H 23 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 13 H 27 Si (OCH 3 ) 3 , C 14 H 29 Si (OCH 3 ) 3 , C 15 H 31 Si (OCH 3 ) 3 C 16 H 33 Si (OCH 3 ) 3 , C 17 H 35 Si (OCH 3 ) 3 , C 18 H 37 Si (OCH 3 ) 3 , C 4 F 9 C 2 H 4 Si (OCH 3 ) 3 , C 5 F 11 C 2 H Si (OCH 3) 3, C 6 F 13 C 2 H 4 Si (OCH 3) 3, C 7 F 15 C 2 H 4 Si (OCH 3) 3, C 8 F 17 C 2 H 4 Si (OCH 3
) 3 , C 4 H 9 (CH 3 ) 2 SiOC 2 H 5 , C 5 H 11 (CH 3 ) 2 SiOC 2 H 5 , C 6 H 13 (CH 3 ) 2 SiOC 2 H 5 , C 7 H 15 ( CH 3) 2 SiOC 2 H 5 , C 8 H 17 (CH 3) 2 SiOC 2 H 5, C 9 H 19 (CH 3) 2 SiOC 2 H 5, C 10 H 21 (CH 3) 2 SiOC 2 H 5 C 11 H 23 (CH 3 ) 2 SiOC 2 H 5 , C 12 H 25 (CH 3 ) 2 SiOC 2 H 5 , C 13 H 27 (CH 3 ) 2 SiOC 2 H 5 , C 14 H 29 (CH 3 ) 2 SiOC 2 H 5, C 15 H 31 (CH 3) 2 SiOC 2 H 5, C 16 H 33 (CH 3) 2 SiOC 2 H 5, C 17 H 35 (CH 3) 2 SiOC 2 H 5, 18 H 37 (CH 3) 2 SiOC 2 H 5, C 2 F 5 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 3 F 7 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 4 F 9 C 2 H 4 ( CH 3) 2 SiOC 2 H 5, C 5 F 11 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 6 F 13 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 7 F 15 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 8 F 17 C 2 H 4 (CH 3) 2 SiOC 2 H 5, (C 2 H 5) 3 SiOC 2 H 5 , C 3 H 7 (C 2 H 5) 2 SiOC 2 H 5, C 4 H 9 (C 2 H 5) 2 SiOC 2 H 5, C 5 H 11 (C 2 H 5) 2 SiOC 2 H 5, C 6 H 13 (C 2 H 5 ) 2 SiOC 2 H 5 C 7 H 15 (C 2 H 5) 2 SiOC 2 H 5, C 8 H 17 (C 2 H 5) 2 SiOC 2 H 5, C 9 H 19 (C 2 H 5) 2 SiOC 2 H 5, C 10 H 21 (C 2 H 5) 2 SiOC 2 H 5, C 11 H 23 (C 2 H 5) 2 SiOC 2 H 5, C 12 H 25 (C 2 H 5) 2 SiOC 2 H 5, C 13 H 27 (C 2 H 5) 2 SiOC 2 H 5, C 14 H 29 (C 2 H 5) 2 SiOC 2 H 5, C 15 H 31 (C 2 H 5) 2 SiOC 2 H 5, C 16 H 33 (C 2 H 5) 2 SiOC 2 H 5, C 17 H 35 (C 2 H 5) 2 SiOC 2 H 5, C 18 H 37 (C 2 H 5) 2 SiOC 2 H 5, (C 4 H 9) 3 SiOC 2 H 5 , C 5 H 11 (C 4 H 9 ) 2 SiOC 2 H 5 , C 6 H 13 (C 4 H 9 ) 2 SiOC 2 H 5 , C 7 H 15 (C 4 H 9 ) 2 SiOC 2 H 5 , C 8 H 17 (C 4 H 9 ) 2 SiOC 2 H 5 , C 9 H 19 (C 4 H 9 ) 2 SiOC 2 H 5 , C 10 H 21 (C 4 H 9 ) 2 SiOC 2 H 5 , C 11 H 23 (C 4 H 9 ) 2 SiOC 2 H 5, C 12 H 25 (C 4 H 9) 2 SiOC 2 H 5, C 13 H 27 (C 4 H 9) 2 SiOC 2 H 5, C 14 H 29 (C 4 H 9) 2 SiOC 2 H 5, C 15 H 31 ( C 4 H 9) 2 SiOC 2 H 5, C 16 H 33 (C 4 H 9) 2 SiOC 2 H 5, C 17 H 35 (C 4 H 9) 2 SiOC 2 H 5 , C 18 H 37 (C 4 H 9 2 SiOC 2 H 5, C 5 H 11 (CH 3) Si (OC 2 H 5) 2, C 6 H 13 (CH 3) Si (OC 2 H 5) 2, C 7 H 15 (CH 3) Si ( OC 2 H 5) 2, C 8 H 17 (CH 3) Si (OC 2 H 5) 2, C 9 H 19 (CH 3) Si (OC 2 H 5) 2, C 10 H 21 (CH 3) Si (OC 2 H 5 ) 2 , C 11 H 23 (CH 3 ) Si (OC 2 H 5 ) 2 , C 12 H 25 (CH 3 ) Si (OC 2 H 5 ) 2 , C 13 H 27 (CH 3 ) Si (OC 2 H 5 ) 2 , C 14 H 29 (CH 3 ) Si (OC 2 H 5 ) 2 , C 15 H 31 (CH 3 ) Si (OC 2 H 5 ) 2 , C 16 H 33 (CH 3 ) Si (OC 2 H 5 ) 2 , C 17 H 35 (CH 3 ) Si (OC 2 H 5 ) 2 , C 18 H 37 (CH 3 ) Si (OC 2 H 5 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (OC 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) Si (OC 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) Si (OC 2 H 5 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 6 H 13 Si (OC 2 H 5) 3, C 7 H 15 Si (OC 2 H 5) 3, C 8 H 17 Si (OC 2 H 5) 3, C 9 H 19 Si (OC 2 H 5 ) 3, C 10 H 21 Si (OC 2 H 5) 3, C 11 H 23 Si (OC 2 H 5) , C 12 H 25 Si (OC 2 H 5) 3, C 13 H 27 Si (OC 2 H 5) 3, C 14 H 29 Si (OC 2 H 5) 3, C 15 H 31 Si (OC 2 H 5 ) 3 , C 16 H 33 Si (OC 2 H 5 ) 3 , C 17 H 35 Si (OC 2 H 5 ) 3 , C 18 H 37 Si (OC 2 H 5 ) 3 , C 4 F 9 C 2 H 4 Si (OC 2 H 5) 3 , C 5 F 11 C 2 H 4 Si (OC 2 H 5) 3, C 6 F 13 C 2 H 4 Si (OC 2 H 5) 3, C 7 F 15 C 2 H 4 Si (OC 2 H 5 ) 3 , C 8 F 17
Examples thereof include alkoxysilane compounds such as C 2 H 4 Si (OC 2 H 5 ) 3 .

また、例えば、C(CHSiNCO、C11(CHSiNCO、C13(CHSiNCO、C15(CHSiNCO、C17(CHSiNCO、C19(CHSiNCO、C1021(CHSiNCO、C1123(CHSiNCO、C1225(CHSiNCO、C1327(CHSiNCO、C1429(CHSiNCO、C1531(CHSiNCO、C1633(CHSiNCO、C1735(CHSiNCO、C1837(CHSiNCO、C(CHSiNCO、C(CHSiNCO、C(CHSiNCO、C11(CHSiNCO、C13(CHSiNCO、C15(CHSiNCO、C17(CHSiNCO、(CSiNCO、C(CSiNCO、C(CSiNCO、C11(CSiNCO、C13(CSiNCO、C15(CSiNCO、C17(CSiNCO、C19(CSiNCO、C1021(CSiNCO、C1123(CSiNCO、C1225(CSiNCO、C1327(CSiNCO、C1429(CSiNCO、C1531(CSiNCO、C1633(CSiNCO、C1735(CSiNCO、C1837(CSiNCO、(CSiNCO、C11(CSiNCO、C13(CSiNCO、C15(CSiNCO、C17(CSiNCO、C19(CSiNCO、C1021(CSiNCO、C1123(CSiNCO、C1225(CSiNCO、C1327(CSiNCO、C1429(CSiNCO、C1531(CSiNCO、C1633(CSiNCO、C1735(CSiNCO、C1837(CSiNCO、C11(CH)Si(NCO)、C13(CH)Si(NCO)、C15(CH)Si(NCO)、C17(CH)Si(NCO)、C19(CH)Si(NCO)、C1021(CH)Si(NCO)、C1123(CH)Si(NCO)、C1225(CH)Si(NCO)、C1327(CH)Si(NCO)、C1429(CH)Si(NCO)、C1531(CH)Si(NCO)、C1633(CH)Si(NCO)、C1735(CH)Si(NCO)、C1837(CH)Si(NCO)、C(CH)Si(NCO)、C(CH)Si(NCO)、C11(CH)Si(NCO)、C13(CH)Si(NCO)、C15(CH)Si(NCO)、C17(CH)Si(NCO)、C13Si(NCO)、C15Si(NCO)、C17Si(NCO)、C19Si(NCO)、C1021Si(NCO)、C1123Si(NCO)、C1225Si(NCO)、C1327Si(NCO)、C1429Si(NCO)、C1531Si(NCO)、C1633Si(NCO)、C1735Si(NCO)、C1837Si(NCO)、CSi(NCO)、C11Si(NCO)、C13Si(NCO)、C15Si(NCO)、C17Si(NCO)などのイソシアネートシラン系化合物が挙げられる。 Also, for example, C 4 H 9 (CH 3 ) 2 SiNCO, C 5 H 11 (CH 3 ) 2 SiNCO, C 6 H 13 (CH 3 ) 2 SiNCO, C 7 H 15 (CH 3 ) 2 SiNCO, C 8 H 17 (CH 3) 2 SiNCO , C 9 H 19 (CH 3) 2 SiNCO, C 10 H 21 (CH 3) 2 SiNCO, C 11 H 23 (CH 3) 2 SiNCO, C 12 H 25 (CH 3) 2 SiNCO, C 13 H 27 (CH 3 ) 2 SiNCO, C 14 H 29 (CH 3 ) 2 SiNCO, C 15 H 31 (CH 3 ) 2 SiNCO, C 16 H 33 (CH 3 ) 2 SiNCO, C 17 H 35 (CH 3) 2 SiNCO, C 18 H 37 (CH 3) 2 SiNCO, C 2 F 5 C 2 H 4 (CH 3) 2 SiNCO C 3 F 7 C 2 H 4 (CH 3) 2 SiNCO, C 4 F 9 C 2 H 4 (CH 3) 2 SiNCO, C 5 F 11 C 2 H 4 (CH 3) 2 SiNCO, C 6 F 13 C 2 H 4 (CH 3) 2 SiNCO, C 7 F 15 C 2 H 4 (CH 3) 2 SiNCO, C 8 F 17 C 2 H 4 (CH 3) 2 SiNCO, (C 2 H 5) 3 SiNCO, C 3 H 7 (C 2 H 5 ) 2 SiNCO, C 4 H 9 (C 2 H 5) 2 SiNCO, C 5 H 11 (C 2 H 5) 2 SiNCO, C 6 H 13 (C 2 H 5) 2 SiNCO , C 7 H 15 (C 2 H 5) 2 SiNCO, C 8 H 17 (C 2 H 5) 2 SiNCO, C 9 H 19 (C 2 H 5) 2 SiNCO, C 10 H 21 (C 2 H 5) 2 SiNCO, C 11 H 23 (C 2 H 5) 2 SiNCO, C 12 H 25 (C 2 H 5) 2 SiNCO, C 13 H 27 (C 2 H 5) 2 SiNCO, C 14 H 29 (C 2 H 5) 2 SiNCO, C 15 H 31 (C 2 H 5 ) 2 SiNCO, C 16 H 33 (C 2 H 5 ) 2 SiNCO, C 17 H 35 (C 2 H 5 ) 2 SiNCO, C 18 H 37 (C 2 H 5 ) 2 SiNCO, (C 4 H 9 ) 3 SiNCO, C 5 H 11 (C 4 H 9 ) 2 SiNCO, C 6 H 13 (C 4 H 9 ) 2 SiNCO, C 7 H 15 (C 4 H 9 ) 2 SiNCO, C 8 H 17 (C 4 H 9 ) 2 SiNCO, C 9 H 19 (C 4 H 9 ) 2 SiNCO, C 10 H 21 (C 4 H 9 ) 2 SiNCO, C 11 H 23 (C 4 H 9 ) 2 SiNCO, C 12 H 25 (C 4 H 9 ) 2 SiNCO, C 13 H 27 (C 4 H 9 ) 2 SiNCO, C 14 H 29 (C 4 H 9 ) 2 SiNCO, C 15 H 31 ( C 4 H 9) 2 SiNCO, C 16 H 33 (C 4 H 9) 2 SiNCO, C 17 H 35 (C 4 H 9) 2 SiNCO, C 18 H 37 (C 4 H 9) 2 SiNCO, C 5 H 11 (CH 3 ) Si (NCO) 2 , C 6 H 13 (CH 3 ) Si (NCO) 2 , C 7 H 15 (CH 3 ) Si (NCO) 2 , C 8 H 17 (CH 3 ) Si (NCO) ) 2 , C 9 H 19 (CH 3 ) Si (NCO) 2 , C 10 H 21 (CH 3 ) Si (NCO) 2 , C 11 H 23 (CH 3 ) Si (NCO) 2 , C 12 H 25 ( CH 3 ) Si (NCO) 2 , C 13 H 27 (CH 3 ) Si (NCO) 2 , C 14 H 29 (CH 3 ) Si (NCO) 2 , C 15 H 31 (CH 3 ) Si (NCO) 2 , C 16 H 33 (CH 3 ) Si (NCO) 2 , C 17 H 35 (CH 3 ) Si (NCO) 2 , C 18 H 37 (CH 3 ) Si (NCO) 2 , C 3 F 7 C 2 H 4 ( CH 3) Si (NCO) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (NCO) 2, C 5 F 11 C 2 H 4 (CH 3) Si (NCO) 2, C 6 F 13 C 2 H 4 (CH 3) Si (NCO) 2, C 7 F 15 C 2 H 4 (CH 3) Si (NCO) 2, C 8 F 17 C 2 H 4 (CH 3) Si (NCO) 2, C 6 H 13 Si (NCO) 3 , C 7 H 15 Si (N CO) 3 , C 8 H 17 Si (NCO) 3 , C 9 H 19 Si (NCO) 3 , C 10 H 21 Si (NCO) 3 , C 11 H 23 Si (NCO) 3 , C 12 H 25 Si ( NCO) 3 , C 13 H 27 Si (NCO) 3 , C 14 H 29 Si (NCO) 3 , C 15 H 31 Si (NCO) 3 , C 16 H 33 Si (NCO) 3 , C 17 H 35 Si ( NCO) 3, C 18 H 37 Si (NCO) 3, C 4 F 9 C 2 H 4 Si (NCO) 3, C 5 F 11 C 2 H 4 Si (NCO) 3, C 6 F 13 C 2 H 4 Examples include isocyanate silane compounds such as Si (NCO) 3 , C 7 F 15 C 2 H 4 Si (NCO) 3 , and C 8 F 17 C 2 H 4 Si (NCO) 3 .

また、例えば、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、C19(CHSiNH、C1021(CHSiNH、C1123(CHSiNH、C1225(CHSiNH、C1327(CHSiNH、C1429(CHSiNH、C1531(CHSiNH、C1633(CHSiNH、C1735(CHSiNH、C1837(CHSiNH、C(CHSiNH、C(CHSiNH、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[C19(CHSi]NH、[C1021(CHSi]NH、[C1123(CHSi]NH、[C1225(CHSi]NH、[C1327(CHSi]NH、[C1429(CHSi]NH、[C1531(CHSi]NH、[C1633(CHSi]NH、[C1735(CHSi]NH、[C1837(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[(CSi]NH、[C(CSi]NH、[C(CSi]NH、[C11(CSi]NH、[C13(CSi]NH、[C15(CSi]NH、[C17(CSi]NH、[C19(CSi]NH、[C1021(CSi]NH、[C1123(CSi]NH、[C1225(CSi]NH、[C1327(CSi]NH、[C1429(CSi]NH、[C1531(CSi]NH、[C1633(CSi]NH、[C1735(CSi]NH、[C1837(CSi]NH、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、[C19(CHSi]N、[C1021(CHSi]N、[C1123(CHSi]N、[C1225(CHSi]N、[C1327(CHSi]N、[C1429(CHSi]N、[C1531(CHSi]N、[C1633(CHSi]N、[C1735(CHSi]N、[C1837(CHSi]N、[C(CHSi]N、[C(CHSi]N、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、C19(CHSiN(CH、C1021(CHSiN(CH、C1123(CHSiN(CH、C1225(CHSiN(CH、C1327(CHSiN(CH、C1429(CHSiN(CH、C1531(CHSiN(CH、C1633(CHSiN(CH、C1735(CHSiN(CH、C1837(CHSiN(CH、C11(CH)HSiN(CH、C13(CH
)HSiN(CH、C15(CH)HSiN(CH、C17(CH)HSiN(CH、C19(CH)HSiN(CH、C1021(CH)HSiN(CH、C1123(CH)HSiN(CH、C1225(CH)HSiN(CH、C1327(CH)HSiN(CH、C1429(CH)HSiN(CH、C1531(CH)HSiN(CH、C1633(CH)HSiN(CH、C1735(CH)HSiN(CH、C1837(CH)HSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、(CSiN(CH、C(CSiN(CH、C(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C19(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C19(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C19(CH)Si[N(CH、C1021(CH)Si[N(CH、C1123(CH)Si[N(CH、C1225(CH)Si[N(CH、C1327(CH)Si[N(CH、C1429(CH)Si[N(CH、C1531(CH)Si[N(CH、C1633(CH)Si[N(CH、C1735(CH)Si[N(CH、C1837(CH)Si[N(CH、C(CH)Si[N(CH、C(CH)Si[N(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH、C19Si[N(CH、C1021Si[N(CH、C1123Si[N(CH、C1225Si[N(CH、C1327Si[N(CH、C1429Si[N(CH、C1531Si[N(CH、C1633Si[N(CH、C1735Si[N(CH、C1837Si[N(CH、CSi[N(CH、C11Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH
、C(CHSiN(C、C11(CHSiN(C、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、C19(CHSiN(C、C1021(CHSiN(C、C1123(CHSiN(C、C1225(CHSiN(C、C1327(CHSiN(C、C1429(CHSiN(C、C1531(CHSiN(C、C1633(CHSiN(C、C1735(CHSiN(C、C1837(CHSiN(C、C(CHSiN(C、C(CHSiN(C、C(CHSiN(C、C11(CHSiN(C、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、(CSiN(C、C(CSiN(C、C(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(CSiN(C、C1735(CSiN(C、C1837(CSiN(C、(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(CSiN(C、C1735(CSiN(C、C1837(CSiN(Cなどのアミノシラン系化合物が挙げられる。
Further, for example, C 4 H 9 (CH 3 ) 2 SiNH 2 , C 5 H 11 (CH 3 ) 2 SiNH 2 , C 6 H 13 (CH 3 ) 2 SiNH 2 , C 7 H 15 (CH 3 ) 2 SiNH 2 , C 8 H 17 (CH 3 ) 2 SiNH 2 , C 9 H 19 (CH 3 ) 2 SiNH 2 , C 10 H 21 (CH 3 ) 2 SiNH 2 , C 11 H 23 (CH 3 ) 2 SiNH 2 , C 12 H 25 (CH 3) 2 SiNH 2, C 13 H 27 (CH 3) 2 SiNH 2, C 14 H 29 (CH 3) 2 SiNH 2, C 15 H 31 (CH 3) 2 SiNH 2, C 16 H 33 (CH 3) 2 SiNH 2, C 17 H 35 (CH 3) 2 SiNH 2, C 18 H 37 (CH 3) 2 SiNH 2, C 2 F 5 C 2 H 4 (C 3) 2 SiNH 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiNH 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiNH 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiNH 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiNH 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiNH 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiNH 2 , [C 4 H 9 (CH 3 ) 2 Si] 2 NH, [C 5 H 11 (CH 3 ) 2 Si] 2 NH, [C 6 H 13 (CH 3 ) 2 Si] 2 NH, [C 7 H 15 (CH 3 ) 2 Si] 2 NH, [C 8 H 17 (CH 3 ) 2 Si] 2 NH, [C 9 H 19 (CH 3 ) 2 Si] 2 NH, [C 10 H 21 (CH 3 ) 2 Si] 2 NH, [ C 11 H 23 (CH 3 2 Si] 2 NH, [C 12 H 25 (CH 3) 2 Si] 2 NH, [C 13 H 27 (CH 3) 2 Si] 2 NH, [C 14 H 29 (CH 3) 2 Si] 2 NH [C 15 H 31 (CH 3 ) 2 Si] 2 NH, [C 16 H 33 (CH 3 ) 2 Si] 2 NH, [C 17 H 35 (CH 3 ) 2 Si] 2 NH, [C 18 H 37 (CH 3 ) 2 Si] 2 NH, [C 2 F 5 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [C 3 F 7 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [ C 4 F 9 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 5 F 11 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 6 F 13 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 2 H, [C 8 F 17 C 2 H 4 (CH 3) 2 Si] 2 NH, [(C 2 H 5) 3 Si] 2 NH, [C 3 H 7 (C 2 H 5) 2 Si] 2 NH , [C 4 H 9 (C 2 H 5) 2 Si] 2 NH, [C 5 H 11 (C 2 H 5) 2 Si] 2 NH, [C 6 H 13 (C 2 H 5) 2 Si] 2 NH, [C 7 H 15 ( C 2 H 5) 2 Si] 2 NH, [C 8 H 17 (C 2 H 5) 2 Si] 2 NH, [C 9 H 19 (C 2 H 5) 2 Si] 2 NH, [C 10 H 21 (C 2 H 5 ) 2 Si] 2 NH, [C 11 H 23 (C 2 H 5 ) 2 Si] 2 NH, [C 12 H 25 (C 2 H 5 ) 2 Si ] 2 NH, [C 13 H 27 (C 2 H 5 ) 2 Si] 2 NH, [C 14 H 29 (C 2 H 5 ) 2 Si ] 2 NH, [C 15 H 31 (C 2 H 5 ) 2 Si] 2 NH, [C 16 H 33 (C 2 H 5 ) 2 Si] 2 NH, [C 17 H 35 (C 2 H 5 ) 2 Si] 2 NH, [C 18 H 37 (C 2 H 5) 2 Si] 2 NH, [C 4 H 9 (CH 3) 2 Si] 3 N, [C 5 H 11 (CH 3) 2 Si] 3 N, [C 6 H 13 (CH 3 ) 2 Si] 3 N, [C 7 H 15 (CH 3 ) 2 Si] 3 N, [C 8 H 17 (CH 3 ) 2 Si] 3 N, [C 9 H 19 (CH 3 ) 2 Si] 3 N, [C 10 H 21 (CH 3 ) 2 Si] 3 N, [C 11 H 23 (CH 3 ) 2 Si] 3 N, [C 12 H 25 (CH 3 ) 2 Si] 3 N, [C 13 H 27 (CH 3 ) 2 Si] 3 N, [C 14 H 29 (CH 3) 2 Si] 3 N, [C 15 H 31 (CH 3) 2 Si] 3 N, [C 16 H 33 (CH 3) 2 Si] 3 N, [C 17 H 35 (CH 3) 2 Si] 3 N, [C 18 H 37 (CH 3) 2 Si] 3 N, [C 2 F 5 C 2 H 4 (CH 3) 2 Si] 3 N, [C 3 F 7 C 2 H 4 (CH 3) 2 Si] 3 N, [C 4 F 9 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 5 F 11 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 6 F 13 C 2 H 4 (CH 3) 2 Si] 3 N, [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 3 N, [C 8 F 17 C 2 H 4 (CH 3) 2 Si] 3 N , C 4 H 9 (CH 3 ) 2 SiN (CH 3) 2, C 5 H 11 (CH 3) 2 SiN (CH 3) 2, 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 ( CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3) 2 C 5 H 11 (CH 3) HSiN (CH 3) 2, C 6 H 13 (CH
3) HSiN (CH 3) 2 , C 7 H 15 (CH 3) HSiN (CH 3) 2, C 8 H 17 (CH 3) HSiN (CH 3) 2, C 9 H 19 (CH 3) HSiN (CH 3) 2, C 10 H 21 (CH 3) HSiN (CH 3) 2, C 11 H 23 (CH 3) HSiN (CH 3) 2, C 12 H 25 (CH 3) HSiN (CH 3) 2, C 13 H 27 (CH 3 ) HSiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) HSiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3 ) 2 , C 16 H 33 (CH 3) HSiN (CH 3) 2 , C 17 H 35 (CH 3) HSiN (CH 3) 2, C 18 H 37 (CH 3) HSiN (CH 3) 2, C 2 F 5 C 2 H 4 (CH 3 2 SiN (CH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 6 H 13 ( C 2 H 5) 2 SiN ( CH 3) 2, C 7 H 15 (C 2 H 5) 2 S N (CH 3) 2, C 8 H 17 (C 2 H 5) 2 SiN (CH 3) 2, C 9 H 19 (C 2 H 5) 2 SiN (CH 3) 2, C 10 H 21 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (CH 3 ) 2 C 16 H 33 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN ( CH 3) 2, (C 4 H 9) 3 SiN (CH 3) 2, 5 H 11 (C 4 H 9 ) 2 SiN (CH 3) 2, C 6 H 13 (C 4 H 9) 2 SiN (CH 3) 2, C 7 H 15 (C 4 H 9) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 4 H 9) 2 SiN (CH 3) 2, C 18 H 37 (C 4 H 9) 2 SiN (CH 3) 2, C 5 H 11 (CH 3) Si [N (CH 3) 2] 2 , C 6 H 13 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 H 15 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 H 17 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 9 H 19 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 10 H 21 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 11 H 23 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 12 H 25 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 13 H 27 (CH 3 ) Si [N (CH 3 ) 2 ] 2, C 14 H 29 ( CH 3) Si [N (CH 3) 2] 2, C 15 H 31 (C 3) Si [N (CH 3 ) 2] 2, C 16 H 33 (CH 3) Si [N (CH 3) 2] 2, C 17 H 35 (CH 3) Si [N (CH 3) 2] 2 C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si [N (CH 3) 2] 2, C 6 H 13 Si [N (CH 3) 2] 3, C 7 H 15 Si [N (CH 3) 2 3, C 8 H 17 Si [ N (CH 3) 2] 3, C 9 H 19 Si [N (CH 3) 2] 3, C 10 H 21 Si [N (CH 3) 2] 3, C 11 H 23 Si [N (CH 3 ) 2 ] 3 , C 12 H 25 Si [N (CH 3 ) 2 ] 3 , C 13 H 27 Si [N (CH 3 ) 2 ] 3 , C 14 H 29 Si [N ( CH 3) 2] 3, C 15 H 31 Si [N (CH 3) 2] 3, C 16 H 33 Si [N (CH 3) 2] 3, C 17 H 35 Si [N (CH 3) 2] 3 , C 18 H 37 Si [N (CH 3 ) 2 ] 3 , C 4 F 9 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 5 F 11 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 6 F 13 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 7 F 15 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 8 F 17 C 2 H 4 Si [N (CH 3
) 2 ] 3 , C 4 H 9 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 ( CH 3) 2 SiN (C 2 H 5) 2, C 10 H 21 (CH 3) 2 SiN (C 2 H 5) 2, C 11 H 23 (CH 3) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3) 2 SiN (C 2 H 5 ) 2, C 15 H 31 ( CH 3) 2 SiN (C 2 H 5) 2, C 6 H 33 (CH 3) 2 SiN (C 2 H 5) 2, C 17 H 35 (CH 3) 2 SiN (C 2 H 5) 2, C 18 H 37 (CH 3) 2 SiN (C 2 H 5 ) 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 6 F 13 C 2 H 4 ( CH 3) 2 SiN (C 2 H 5) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN ( C 2 H 5) 2, ( C 2 H 5) 3 SiN (C 2 H 5) 2, C 3 H 7 (C 2 5) 2 SiN (C 2 H 5) 2, C 4 H 9 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 5 H 11 (C 2 H 5) 2 SiN (C 2 H 5) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 2 H 5) 2 SiN (C 2 H 5) 2 C 15 H 31 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 16 H 33 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 2 H 5) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , (C 4 H 9 ) 3 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 4 H 9 ) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 9 H 19 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 10 H 21 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 ( C 4 H 9) 2 SiN ( C 2 H 5) 2, C 15 H 31 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 16 H 33 (C 4 H 9) 2 SiN (C 2 Aminosilane compounds such as H 5 ) 2 , C 17 H 35 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 Can be mentioned.

また、一般式[1]のaは1〜3の整数であればよいが、aが1又は2である場合、前記薬液を長期保存すると、水分の混入などにより、前記ケイ素化合物同士の重合反応が起こりやすく、前記ウェハ表面に撥水性保護膜を安定的に形成し難い傾向がある。これを考慮すると、一般式[1]のaが3のもの、すなわち、下記一般式[2]で表されるケイ素化合物が好ましい。
SiX [2]
[式[2]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換もしくはハロゲン元素が置換した炭化水素基であり、式[2]のR中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
Further, a in the general formula [1] may be an integer of 1 to 3, but when a is 1 or 2, when the chemical solution is stored for a long period of time, a polymerization reaction between the silicon compounds occurs due to water mixing. Tends to occur, and it tends to be difficult to stably form a water-repellent protective film on the wafer surface. Considering this, a compound of formula (1) where a is 3, that is, a silicon compound represented by the following formula (2) is preferable.
R 1 3 SiX [2]
[In Formula [2], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms which is unsubstituted or substituted with a halogen element, and in R 1 of Formula [2], The total number of carbon atoms contained is 6 or more, and X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group It is. ]

さらに、前記の一般式[1]のaが3のケイ素化合物のうち、1個のRが炭素数が4〜18の無置換炭化水素基もしくはハロゲン元素が置換した炭化水素基であり、2個のRがいずれもメチル基からなるもの、すなわち下記一般式[3]で表されるケイ素化合物は、ウェハ表面の水酸基との反応性が高いので好ましい。これは、ウェハ表面の水酸基と前記ケイ素化合物のXで表される基との反応において、疎水性基による立体障害が反応性に大きな影響を与えるためであり、ケイ素元素に結合するアルキル鎖のうち、最も長い一つを除く残り二つは短い方が好ましいからである。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の無置換、もしくはハロゲン元素が置換した炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
Further, in the silicon compound in which a in the general formula [1] is 3, one R 1 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms or a hydrocarbon group substituted with a halogen element, 2 A compound in which each R 1 is a methyl group, that is, a silicon compound represented by the following general formula [3] is preferable because of its high reactivity with the hydroxyl group on the wafer surface. This is because the steric hindrance due to the hydrophobic group greatly affects the reactivity in the reaction between the hydroxyl group on the wafer surface and the group represented by X of the silicon compound. This is because the remaining two except the longest one are preferably shorter.
R 2 (CH 3 ) 2 SiX [3]
[In the formula [3], R 2 is an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, A monovalent functional group in which the element bonded to the silicon element is oxygen or a halogen group. ]

また、一般式[1]で表されるケイ素化合物のうち、1個のRが炭素数が4〜18の少なくとも一部の水素元素がフッ素元素により置換した炭化水素基であり、2個のRがいずれもメチル基からなるもの、すなわち下記一般式[4]で表されるケイ素化合物であると、ウェハ表面により優れた撥水性を付与できるため好ましい。前記のような、少なくとも一部の水素元素がフッ素元素により置換した炭化水素基は、特に疎水性が強い疎水基であるため、その結果、得られる保護膜により優れた撥水性を付与できる。
(CHSiX [4]
[式[4]中、Rは炭素数が4〜18の少なくとも一部の水素元素がフッ素元素により置換した炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
In the silicon compound represented by the general formula [1], one R 1 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, It is preferable that all of R 1 is a methyl group, that is, a silicon compound represented by the following general formula [4] because excellent water repellency can be imparted to the wafer surface. Since the hydrocarbon group in which at least a part of the hydrogen element is substituted with the fluorine element as described above is a hydrophobic group having particularly strong hydrophobicity, as a result, excellent water repellency can be imparted to the resulting protective film.
R 3 (CH 3 ) 2 SiX [4]
[In the formula [4], R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, and X is a monovalent element in which the element bonded to the silicon element is nitrogen. The functional group, a monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]

撥水性保護膜形成剤は、撥水性保護膜形成薬液に少なくとも含有されていればよく、各種有機溶媒などを用いて希釈することができる。該有機溶媒は、前記撥水性保護膜形成剤を溶解するものであれば良く、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などが好適に使用される。希釈する溶媒として水を用いた場合、水により前記ケイ素化合物のXで表される基が加水分解してシラノール基(Si−OH)となり、発生したシラノール基同士が縮合反応することにより、前記ケイ素化合物同士が結合して2量体が生成する。この2量体は、ウェハ表面の水酸基との反応性が低いため、ウェハ表面を十分に撥水化できない、または撥水化に要する時間が長くなることから、水を溶媒として使用することは好ましくない。   The water-repellent protective film forming agent may be contained at least in the water-repellent protective film-forming chemical solution, and can be diluted using various organic solvents. The organic solvent only needs to dissolve the water-repellent protective film forming agent. For example, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols. And derivatives thereof, nitrogen-containing compound solvents and the like are preferably used. When water is used as the solvent to be diluted, the group represented by X of the silicon compound is hydrolyzed with water to form a silanol group (Si—OH), and the generated silanol groups undergo a condensation reaction to form the silicon. The compounds combine to form a dimer. Since this dimer has low reactivity with the hydroxyl group on the wafer surface, the wafer surface cannot be made sufficiently water-repellent or the time required for water-repelling becomes longer, so it is preferable to use water as a solvent. Absent.

さらに、前記ケイ素化合物は、プロトン性溶媒と反応しやすいため、前記有機溶媒として、非プロトン性溶媒を用いると、短時間でウェハ表面に撥水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N−H結合を持たない含窒素化合物溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどがあり、N−H結合を持たない含窒素化合物溶媒の例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、トリエチルアミン、ピリジンなどがある。   Furthermore, since the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because water repellency is easily developed on the wafer surface in a short time. The aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent. Examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no N—H bond. Compound solvents are mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone. Examples of halogen solvents include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentafluorobutane, Hydrofluorocarbons such as Kutafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether, Asahi Hydrofluoroethers such as Clin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all manufactured by 3M), chlorocarbons such as tetrachloromethane, hydrochlorocarbons such as chloroform, dichloro Chlorofluorocarbons such as difluoromethane, 1,1-dichloro-2,2,3,3,3-pentafluoropropane, 1,3- Hydrochlorofluorocarbons such as chloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene Examples of the sulfoxide solvent include dimethyl sulfoxide, and examples of the polyhydric alcohol derivative having no hydroxyl group include diethylene glycol monoethyl ether acetate, ethylene glycol, and the like. Examples of nitrogen-containing compound solvents having no N—H bond include monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and the like. Te is, N, N- dimethylformamide, N, N- dimethylacetamide, N- methyl-2-pyrrolidone, triethylamine, pyridine and the like.

さらにまた、前記有機溶媒に不燃性のものを使うと、撥水性保護膜形成薬液が不燃性になる、あるいは、引火点が高くなって、該撥水性保護膜保護膜形成薬液の危険性が低下するので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性有機溶媒として好適に使用できる。   Furthermore, if a nonflammable organic solvent is used, the water repellent protective film forming chemical solution becomes nonflammable, or the flash point becomes high, and the risk of the water repellent protective film protective film forming chemical solution decreases. This is preferable. Many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.

また、有機溶媒には、微量の水分であれば存在してもよい。ただし、この水分が溶媒に大量に含まれると、ケイ素化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記ケイ素化合物と混合したときに、該ケイ素化合物に対して、モル比で1モル倍未満とすることが好ましく、0.5モル倍未満にすることが特に好ましい。   The organic solvent may be present as long as it is a trace amount of water. However, when this moisture is contained in a large amount in the solvent, the silicon compound may be hydrolyzed by the moisture to reduce the reactivity. For this reason, it is preferable to reduce the amount of water in the solvent, and the amount of water is preferably less than 1 mole in terms of molar ratio to the silicon compound when mixed with the silicon compound. It is particularly preferable to make it less than 5 mole times.

前記撥水性保護膜形成薬液は、該薬液の総量100質量%中に、前記撥水性保護膜形成剤が0.1〜50質量%含有されていれば好ましく、より好適な撥水性保護膜形成剤の含有量は前記薬液の総量100質量%に対して0.3〜20質量%である。撥水性保護膜形成剤が0.1質量%未満では撥水性付与効果が不十分となる傾向があり、50質量%より多い場合、洗浄後に撥水性保護膜形成剤由来の成分がウェハ表面に不純物として残留する懸念があることから好ましくない。また撥水性保護膜形成剤の使用量が増すため、コスト的な観点から見ても好ましくない。   The water-repellent protective film forming chemical is preferably contained in an amount of 0.1 to 50% by mass of the water-repellent protective film-forming agent in a total amount of 100% by mass of the chemical. Is 0.3 to 20% by mass with respect to 100% by mass of the total amount of the chemical solution. If the water-repellent protective film forming agent is less than 0.1% by mass, the effect of imparting water repellency tends to be insufficient, and if it exceeds 50% by mass, components derived from the water-repellent protective film forming agent are impurities on the wafer surface after cleaning. As such, there is a concern that it remains as such. Moreover, since the usage-amount of a water repellent protective film formation agent increases, it is unpreferable also from a cost viewpoint.

また、前記薬液には、前記ケイ素化合物と、ウェハ表面の水酸基との反応を促進させるために、触媒が添加されても良い。このような触媒として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロキオン酸、無水ペンタフルオロプロキオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸、アンモニア、アルキルアミンなどの塩基、ピリジン、ジメチルホルムアミドなどの非プロトン性含窒素溶媒、硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、および、スズ、アルミニウム、チタンなどの金属錯体や金属塩が好適に用いられる。特に、触媒効果を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。また、上記触媒は反応により撥水性保護膜の一部を形成するものであってもよい。   Further, a catalyst may be added to the chemical solution in order to promote the reaction between the silicon compound and the hydroxyl group on the wafer surface. Examples of such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, and the like. Bases such as alkylamines, aprotic nitrogen-containing solvents such as pyridine and dimethylformamide, salts such as ammonium sulfide, potassium acetate and methylhydroxyamine hydrochloride, and metal complexes and metal salts such as tin, aluminum and titanium Preferably used. In particular, considering the catalytic effect, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid does not contain moisture. Is preferred. The catalyst may form a part of the water-repellent protective film by reaction.

特に、一般式[1]表されるケイ素化合物の疎水性基Rの炭素数が大きくなると、立体障害のためにウェハ表面の水酸基に対する該ケイ素化合物の反応性が低下する場合がある。この場合は、水を含まない酸を触媒として添加することで、ウェハ表面の水酸基と前記ケイ素化合物との反応が促進され、前記のような疎水性基の立体障害による反応性の低下を補ってくれる場合がある。 In particular, when the number of carbon atoms of the hydrophobic group R 1 of the silicon compound represented by the general formula [1] increases, the reactivity of the silicon compound with respect to the hydroxyl group on the wafer surface may decrease due to steric hindrance. In this case, by adding an acid not containing water as a catalyst, the reaction between the hydroxyl group on the wafer surface and the silicon compound is promoted to compensate for the decrease in reactivity due to the steric hindrance of the hydrophobic group as described above. There is a case.

前記触媒の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01〜100質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に添加しても触媒効果は向上せず、ケイ素化合物よりも多くすると、逆に触媒効果が低下する場合もある。さらに、不純物としてウェハ表面に残留する懸念もある。このため、前記触媒添加量は、0.01〜100質量%が好ましく、より好ましくは0.1〜50質量%、さらに好ましくは0.2〜20質量%である。   The addition amount of the catalyst is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Furthermore, there is a concern that the impurities may remain on the wafer surface as impurities. For this reason, 0.01-100 mass% of the said catalyst addition amount is preferable, More preferably, it is 0.1-50 mass%, More preferably, it is 0.2-20 mass%.

撥水性保護膜形成剤により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa−a’断面の一部を示すものである。凹部4の表面には撥水性保護膜形成剤により撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から異なる洗浄液B(以降、単に「洗浄液B」と記載する場合がある)に置換した後の液体(洗浄液B)でもよいし、置換途中の液体(薬液と洗浄液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。   FIG. 4 shows a schematic diagram in the case where the liquid 9 is held in the recess 4 that has been made water-repellent by the water-repellent protective film forming agent. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. 1. A water repellent protective film 10 is formed on the surface of the recess 4 by a water repellent protective film forming agent. At this time, the liquid 9 held in the recess 4 may be the above-described chemical liquid or a liquid (cleaning liquid B) after the chemical liquid is replaced with a different cleaning liquid B (hereinafter sometimes simply referred to as “cleaning liquid B”). , A liquid in the middle of substitution (a mixed solution of a chemical solution and a cleaning solution) may be used. The water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.

前記洗浄液Bの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Preferable examples of the cleaning liquid B include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.

前記凹凸パターンを有するウェハの凹部に液体が保持されると、該凹部に毛細管力が働く。この毛細管力の大きさは、前述したように以下に示される式で求められるPの絶対値である。
P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
図4の凹部4のように凹部表面に撥水性保護膜が存在すると、θが増大され、Pの絶対値が低減される。パターン倒れの抑制の観点から、Pの絶対値は小さいほど好ましく、除去される液体との接触角を90°付近に調整して毛細管力を限りなく0.0MN/mに近づけることが理想的である。
When the liquid is held in the concave portion of the wafer having the concave / convex pattern, a capillary force acts on the concave portion. The magnitude of this capillary force is the absolute value of P obtained by the following formula as described above.
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
When a water-repellent protective film exists on the surface of the recess as in the recess 4 of FIG. 4, θ is increased and the absolute value of P is decreased. From the viewpoint of suppressing pattern collapse, the smaller the absolute value of P, the better. It is ideal to adjust the contact angle with the liquid to be removed to around 90 ° to bring the capillary force as close as possible to 0.0 MN / m 2. It is.

図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は50〜130°であると、パターン倒れが発生し難いため好ましい。接触角は90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、70〜110°が特に好ましい。また、例えば、線幅(凹部の幅)が45nmのラインアンドスペース形状のパターンのウェハの場合、毛細管力は2.1MN/m以下であることが好ましい。該毛細管力が2.1MN/m以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.1MN/m以下が特に好ましい。さらに、洗浄液との接触角を90°付近に調整して毛細管力を限りなく0.0MN/mに近づけることが理想的である。 As shown in FIG. 4, when the protective film 10 is formed on the surface of the recess, the contact angle when it is assumed that water is held on the surface is preferably 50 to 130 ° because pattern collapse hardly occurs. The closer the contact angle is to 90 °, the smaller the capillary force acting on the recess and the more difficult the pattern collapse occurs, so 70 to 110 ° is particularly preferable. For example, in the case of a line-and-space pattern wafer with a line width (width of recess) of 45 nm, the capillary force is preferably 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs. Further, when the capillary force becomes small, pattern collapse hardly occurs. Therefore, the capillary force is particularly preferably 1.1 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close to 0.0 MN / m 2 as possible.

続いて、本発明のウェハの洗浄方法で洗浄された後の該ウェハの凹部に保持された液体の除去方法を説明する。なお、凹部に保持されている液体は、前記薬液、洗浄液B、または、薬液と洗浄液の混合液である。前記液体を除去する方法として、自然乾燥、エアー乾燥、Nガス乾燥、スピン乾燥法、IPA(2−プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。また、前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。 Subsequently, a method for removing the liquid held in the concave portion of the wafer after being cleaned by the wafer cleaning method of the present invention will be described. The liquid held in the recess is the chemical liquid, the cleaning liquid B, or a mixed liquid of the chemical liquid and the cleaning liquid. As a method for removing the liquid, known drying methods such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, vacuum drying, etc. It is preferable to carry out by. In addition, in order to efficiently remove the liquid, the remaining liquid may be dried after the retained liquid is drained and removed.

最後に、前記の液体を除去した後のウェハ表面から撥水性保護膜を除去する方法を説明する。前記撥水性保護膜を除去する場合、該保護膜中のC−C結合、C−F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。   Finally, a method for removing the water repellent protective film from the wafer surface after removing the liquid will be described. When removing the water-repellent protective film, it is effective to cut the C—C bond and C—F bond in the protective film. The method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.

光照射で前記保護膜を除去する場合、該保護膜中のC−C結合、C−F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。   When the protective film is removed by light irradiation, wavelengths shorter than 340 nm and 240 nm, which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energies of C—C bonds and C—F bonds in the protective film. It is preferable to irradiate ultraviolet rays containing. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.

また、光照射で前記保護膜を除去する場合、紫外線で前記保護膜の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどが好適に用いられる。また、光照射しながらウェハを加熱してもよい。   Further, when the protective film is removed by light irradiation, if the constituent components of the protective film are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable. As this light source, a low-pressure mercury lamp, an excimer lamp, or the like is preferably used. Further, the wafer may be heated while irradiating light.

ウェハを加熱する場合、400〜700℃、好ましくは、500〜700℃でウェハの加熱を行う。この加熱時間は、1〜60分間、好ましくは10〜30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。   When the wafer is heated, the wafer is heated at 400 to 700 ° C, preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.

加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。   Methods for removing the protective film by heating include a method of bringing a wafer into contact with a heat source and a method of placing the wafer in a heated atmosphere such as a heat treatment furnace. The method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.

ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。   When the wafer is exposed to ozone, ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage may be provided to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.

前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。   By combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge, the protective film on the wafer surface can be efficiently removed.

ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本発明では、前記保護膜形成薬液の評価を中心に行った。また、下記の式
P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
から明らかなようにパターン倒れは、洗浄液のウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターンの凹部に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式と保護膜の液滴の接触角の評価から毛細管力を導き出してもよい。なお、実施例において、前記洗浄液として水を用いた。
Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Therefore, in the present invention, the evaluation was mainly performed on the protective film forming chemical solution. Also, the following formula
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
As apparent from FIG. 5, the pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the liquid droplets, and the surface tension of the cleaning liquid. In the case of the cleaning liquid held in the concave portion of the concave / convex pattern, the contact angle of the droplet and the capillary force acting on the concave portion, which may be considered equivalent to the pattern collapse, have a correlation. Capillary force may be derived from the evaluation of the contact angle of the drop. In the examples, water was used as the cleaning liquid.

しかしながら、表面に微細な凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。   However, in the case of a wafer having a fine uneven pattern on the surface, the contact angle of the protective film 10 itself formed on the surface of the uneven pattern cannot be accurately evaluated.

水滴の接触角評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。   As described in JIS R 3257 “Test method for wettability of substrate glass surface”, water droplet contact angle is evaluated by dropping several μl of water droplets on the surface of the sample (substrate) and measuring the angle between the water droplet and the substrate surface. Made by measurement. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.

そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に窒化チタン層を有する窒化チタン膜付きウェハ(以降、「TiNウェハ」と記載することがある)を用いた。   Therefore, in this embodiment, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed. The film 10 was considered and various evaluations were performed. In this example, a wafer with a titanium nitride film having a titanium nitride layer on a silicon wafer with a smooth surface (hereinafter sometimes referred to as “TiN wafer”) was used as the wafer with a smooth surface.

詳細を下記に述べる。以下では、本発明の洗浄方法で洗浄されたウェハの評価方法、保護膜形成薬液の調製、そして、本発明の洗浄方法で洗浄されたウェハの評価結果が述べられる。   Details are described below. Below, the evaluation method of the wafer cleaned by the cleaning method of the present invention, the preparation of the protective film forming chemical solution, and the evaluation result of the wafer cleaned by the cleaning method of the present invention will be described.

〔本発明の洗浄方法で洗浄されたウェハの評価方法〕
本発明の洗浄方法で洗浄されたウェハの評価方法として、以下の(1)〜(4)の評価を行った。
[Evaluation method of wafer cleaned by cleaning method of the present invention]
As evaluation methods for wafers cleaned by the cleaning method of the present invention, the following evaluations (1) to (4) were performed.

(1)ウェハ表面に形成された保護膜の接触角評価
保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA−X型)で測定した。ここでは保護膜の接触角が50〜130°の範囲であったものを合格とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). It was measured by Interface Science: CA-X type). Here, the protective film having a contact angle in the range of 50 to 130 ° was regarded as acceptable.

(2)毛細管力の評価
下式を用いてPを算出し、毛細管力(Pの絶対値)を求めた。
P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
なお、本実施例では、パターン形状の一例として、線幅(凹部の幅)が45nmのラインアンドスペース形状のパターンのウェハを想定した。なお、線幅が45nmのパターンでは、気液界面がウェハ表面のパターンを通過するとき、液体が水の場合はパターンが倒れやすく、2−プロパノールの場合はパターンが倒れ難い傾向がある。ウェハ表面が例えば、窒化チタンである場合、該表面に対する2−プロパノールの接触角は0.5°であり、同様に水の接触角は2°である。また、他の金属系の物質(チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム等)においても同程度である。上記の条件の場合、洗浄液が、2−プロパノール(表面張力:22mN/m)では毛細管力は0.98MN/mとなる。一方、水銀を除く液体の中で表面張力が最も大きい水(表面張力:72mN/m)では毛細管力は3.2MN/mとなる。そこで中間の2.1MN/mを目標とし、水が保持されたときの毛細管力が2.1MN/m以下になれば合格とした。
(2) Evaluation of capillary force P was calculated using the following equation, and the capillary force (absolute value of P) was determined.
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
In the present embodiment, as an example of the pattern shape, a line-and-space pattern wafer having a line width (recessed portion width) of 45 nm is assumed. In the pattern with a line width of 45 nm, when the gas-liquid interface passes through the pattern on the wafer surface, the pattern tends to collapse when the liquid is water, and the pattern does not easily collapse when the liquid is 2-propanol. When the wafer surface is, for example, titanium nitride, the contact angle of 2-propanol with the surface is 0.5 °, and the contact angle of water is 2 °. The same applies to other metal substances (titanium, tungsten, aluminum, copper, tin, tantalum nitride, ruthenium, etc.). In the case of the above conditions, when the cleaning liquid is 2-propanol (surface tension: 22 mN / m), the capillary force is 0.98 MN / m 2 . On the other hand, the capillary force is 3.2 MN / m 2 in water (surface tension: 72 mN / m) having the largest surface tension among liquids excluding mercury. Therefore, the target was 2.1 MN / m 2 in the middle, and the test was accepted if the capillary force when water was retained was 2.1 MN / m 2 or less.

(3)保護膜の除去性
以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを、前記保護膜が除去されたと判断して、合格とした。
・ランプ:セン特殊光源製PL2003N−10
・照度:15mW/cm(光源からサンプルまでの距離は10mm)
(3) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions. When the contact angle of water droplets was 10 ° or less after irradiation, it was judged that the protective film was removed, and the result was accepted.
・ Lamp: Sen Special Light Source PL2003N-10
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)

(4)保護膜除去後のウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ−電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、ウェハ洗浄前後の表面の中心線平均面粗さ:Ra(nm)の差ΔRa(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。

Figure 0005678720
ここで、X、X、Y、Yは、それぞれ、X座標、Y座標の測定範囲を示す。Sは、測定面が理想的にフラットであるとした時の面積であり、(X−X)×(Y−Y)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Zは、測定面内の平均高さを表す。 (4) Evaluation of surface smoothness of wafer after removal of protective film Surface observation with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan) and centerline average surface roughness of the surface before and after wafer cleaning : Ra (nm) difference ΔRa (nm) was determined. Ra is a three-dimensional extension of the centerline average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula.
Figure 0005678720
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and is a value of (X R −X L ) × (Y B −Y T ). Moreover, F (X, Y) is, the measurement point (X, Y) in height, Z 0 represents the average height within the measurement surface.

保護膜形成前のウェハ表面のRa値、及び保護膜を除去した後のウェハ表面のRa値を測定し、両者の差(ΔRa)が±1nm以内であれば、洗浄によってウェハ表面が浸食されていない、および、前記薬液の残渣がウェハ表面にないとし、合格とした。   The Ra value of the wafer surface before forming the protective film and the Ra value of the wafer surface after removing the protective film are measured. If the difference (ΔRa) is within ± 1 nm, the wafer surface is eroded by cleaning. It was determined that there was no residue of the chemical solution on the wafer surface, and the test was accepted.

[実施例1]
(1)撥水性保護膜形成薬液の調製
撥水性保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C(CH(CHSiCl〕;10g、有機溶媒としてハイドロフルオロエーテル(3M製HFE−7100);90gを混合し、約5分間撹拌して、保護膜形成薬液の総量に対する保護膜形成剤の濃度(以降「保護膜形成剤濃度」と記載する)が10質量%の保護膜形成薬液を得た。
[Example 1]
(1) Preparation of water repellent protective film-forming chemical solution Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] as a water repellent protective film forming agent; 10 g, hydrofluoroether ( 3M HFE-7100); 90 g was mixed and stirred for about 5 minutes, and the concentration of the protective film forming agent relative to the total amount of the protective film forming chemical (hereinafter referred to as “protective film forming agent concentration”) was 10% by mass. A protective film forming chemical was obtained.

(2)TiNウェハの前洗浄
前洗浄として、平滑な窒化チタン膜付きウェハ(表面に厚さ50nmの窒化チタン層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間浸漬した。
(2) Pre-cleaning of TiN wafer As pre-cleaning, a wafer with a smooth titanium nitride film (a silicon wafer having a titanium nitride layer with a thickness of 50 nm on the surface) was immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes, and then purified. Immerse in water for 1 minute.

(3)TiNウェハの酸化処理
水/エチレングリコール(以降、「EG」と記載する)が質量比で20/80で混合された溶媒に、濃度が0.1mol/Lとなるように塩酸を混合し、酸化処理液を調製した。液温を130℃に保持した該酸化処理液中に、前記「(2)TiNウェハの前処理工程2」後のTiNウェハを1分間浸漬して、酸化処理を行った。
(3) Oxidation treatment of TiN wafer Hydrochloric acid is mixed in a solvent in which water / ethylene glycol (hereinafter referred to as “EG”) is mixed at a mass ratio of 20/80 so that the concentration is 0.1 mol / L. Then, an oxidation treatment solution was prepared. The TiN wafer after the “(2) TiN wafer pretreatment step 2” was immersed in the oxidation treatment liquid maintained at 130 ° C. for 1 minute to carry out an oxidation treatment.

(4)ウェハ表面への撥水性保護膜形成薬液による表面処理
「(3)TiNウェハの酸化処理」後のTiNウェハを、2−プロパノール(以降、「iPA」と記載することがある)に1分間浸漬し、次いで、プロピレングリコールモノメチルエーテルアセテート(以降、「PGMEA」と記載することがある)に1分間浸漬した。その後、撥水性保護膜形成工程として、該TiNウェハを、上記「(1)保護膜形成薬液の調製」で調製した保護膜形成薬液に20℃で1分間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前処理工程2以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、TiNウェハ表面の純水を除去した。
(4) Surface treatment with water-repellent protective film forming chemical on the wafer surface The TiN wafer after “(3) TiN wafer oxidation treatment” is 1 in 2-propanol (hereinafter sometimes referred to as “iPA”). Then, it was immersed in propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as “PGMEA”) for 1 minute. Thereafter, as a water repellent protective film forming step, the TiN wafer was immersed in the protective film forming chemical solution prepared in the above “(1) Preparation of protective film forming chemical solution” at 20 ° C. for 1 minute. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. In addition, the process after the said pre-processing process 2 was performed in the state by which the liquid was always hold | maintained on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.

得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は96°となり、優れた撥水性付与効果を示した。また、上記「毛細管力の評価」に記載した式を使って水が保持されたときの毛細管力を計算したところ、毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 When the obtained TiN wafer was evaluated in the manner described in “Method for evaluating wafer cleaned by the cleaning method of the present invention”, the initial contact angle before forming the water-repellent protective film was less than 10 °. The contact angle after the formation of the protective film was 96 °, indicating an excellent water repellency imparting effect. Further, when the capillary force when water was retained was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 0.3 MN / m 2 and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Further, the ΔRa value of the wafer by UV irradiation was within ± 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.

[実施例2]
撥水性保護膜形成剤としてオクチルジメチルジメチルアミノシラン〔C17(CHSiN(CH〕;5g、有機溶媒としてPGMEA;94.82g、触媒として無水トリフルオロ酢酸〔(CFCO)O〕;0.18gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成薬液を得た。
[Example 2]
Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as a water repellent protective film forming agent; 5 g, PGMEA as an organic solvent; 94.82 g, trifluoroacetic anhydride as a catalyst [(CF 3 CO) 2 O]; 0.18 g was mixed and stirred for about 5 minutes to obtain a protective film-forming chemical solution having a protective film-forming agent concentration of 5 mass%.

実施例1と同様に「(2)TiNウェハの前洗浄」、及び「(3)TiNウェハの酸化処理」を行ったTiNウェハを、iPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成薬液に45℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前処理工程2以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。   The TiN wafer subjected to “(2) TiN wafer pre-cleaning” and “(3) TiN wafer oxidation treatment” as in Example 1 was immersed in iPA for 1 minute, and then immersed in PGMEA for 1 minute. Then, as a water-repellent protective film forming step, it was immersed in the protective film-forming chemical solution prepared above at 45 ° C. for 1 hour. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. In addition, the process after the said pre-processing process 2 was performed in the state by which the liquid was always hold | maintained on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.

得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は71°となり、優れた撥水性付与効果を示した。また、上記「毛細管力の評価」に記載した式を使って水が保持されたときの毛細管力を計算したところ、毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 When the obtained TiN wafer was evaluated in the manner described in “Method for evaluating wafer cleaned by the cleaning method of the present invention”, the initial contact angle before forming the water-repellent protective film was less than 10 °. The contact angle after the formation of the protective film was 71 °, indicating an excellent water repellency imparting effect. Further, when the capillary force when water was retained was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 1.0 MN / m 2 and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Further, the ΔRa value of the wafer by UV irradiation was within ± 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.

[比較例1]
撥水性保護膜形成剤としてN,N−ジメチルアミノトリメチルシラン〔(CHSiN(CH〕;5g、有機溶媒としてPGMEA;95gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成薬液を得た。実施例1と同様に「(2)TiNウェハの前処理工程2」、及び「(3)TiNウェハの酸化処理」を行ったTiNウェハを、iPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成薬液に20℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前処理工程2以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。
[Comparative Example 1]
5 g of N, N-dimethylaminotrimethylsilane [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 5 g and PGMEA; 95 g as an organic solvent were mixed as a water-repellent protective film forming agent, and stirred for about 5 minutes to form a protective film A protective film forming chemical solution having a forming agent concentration of 5% by mass was obtained. The TiN wafer subjected to “(2) TiN wafer pretreatment step 2” and “(3) TiN wafer oxidation treatment” in the same manner as in Example 1 was immersed in iPA for 1 minute, and then in PGMEA for 1 minute. After soaking, as a water-repellent protective film forming step, the film was immersed in the protective film-forming chemical solution prepared above for 1 hour at 20 ° C. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. In addition, the process after the said pre-processing process 2 was performed in the state by which the liquid was always hold | maintained on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.

得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角でも23°であり、充分な撥水性を付与することが出来なかった。また、上記「毛細管力の評価」に記載した式を使って水が保持されたときの毛細管力を計算したところ、毛細管力は2.9MN/mとなり、毛細管力は大きかった。 When the obtained TiN wafer was evaluated in the manner described in “Method for evaluating wafer cleaned by the cleaning method of the present invention”, the initial contact angle before forming the water-repellent protective film was less than 10 °. The contact angle after forming the protective film was also 23 °, and sufficient water repellency could not be imparted. Further, when the capillary force when water was retained was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 2.9 MN / m 2 and the capillary force was large.

[比較例2]
撥水性保護膜形成剤としてN,N−ジメチルアミノトリメチルシラン〔(CHSiN(CH〕;5g、有機溶媒としてPGMEA;95gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成薬液を得た。実施例1と同様に「(2)TiNウェハの前洗浄」を行った後、「(3)TiNウェハの酸化処理」を行わずに、TiNウェハをiPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成薬液に20℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前処理工程2以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。
[Comparative Example 2]
5 g of N, N-dimethylaminotrimethylsilane [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 5 g and PGMEA; 95 g as an organic solvent were mixed as a water-repellent protective film forming agent, and stirred for about 5 minutes to form a protective film A protective film forming chemical solution having a forming agent concentration of 5% by mass was obtained. After performing “(2) TiN wafer pre-cleaning” in the same way as in Example 1, without performing “(3) TiN wafer oxidation treatment”, the TiN wafer was immersed in iPA for 1 minute, and then PGMEA. After being immersed for 1 minute, as a water-repellent protective film forming step, it was immersed in the protective film-forming chemical solution prepared above at 20 ° C. for 1 hour. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. In addition, the process after the said pre-processing process 2 was performed in the state by which the liquid was always hold | maintained on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.

得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角でも18°であり、充分な撥水性を付与することが出来なかった。また、上記「毛細管力の評価」に記載した式を使って水が保持されたときの毛細管力を計算したところ、毛細管力は3.0MN/mとなり、毛細管力は大きかった。 When the obtained TiN wafer was evaluated in the manner described in “Method for evaluating wafer cleaned by the cleaning method of the present invention”, the initial contact angle before forming the water-repellent protective film was less than 10 °. The contact angle after forming the protective film was 18 °, and sufficient water repellency could not be imparted. Moreover, when the capillary force when water was held was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 3.0 MN / m 2 and the capillary force was large.

1 ウェハ
2 ウェハ表面の凹凸パターン
3 パターンの凸部
4 パターンの凹部
5 凹部の幅
6 凸部の高さ
7 凸部の幅
8 凹部4に保持された撥水性保護膜形成薬液
9 凹部4に保持された液体
10 撥水性保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Convex / concave pattern on wafer surface 3 Convex part 4 Pattern concave part 5 Concave width 6 Convex height 7 Convex width 8 Water repellent protective film forming chemical 9 held in concave part 4 Retained in concave part 4 Liquid 10 water repellent protective film

Claims (4)

表面に凹凸パターンを形成されたウェハに撥水性保護膜を形成した後に乾燥する洗浄方法において、該ウェハは、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハであって、
水、有機溶媒、水と有機溶媒の混合液、及びそれらに過酸化水素、オゾン、酸、アルカリのうち少なくとも1種が混合された混合液、からなる群から選ばれる少なくとも1つからなる前処理洗浄液を用いて前記ウェハ表面を洗浄する、前洗浄工程
前記ウェハ表面にオゾン、過酸化水素、及び酸からなる群から選ばれる少なくとも1つと、水と、沸点が100℃よりも高い水以外の溶媒とを含む100〜200℃の酸化処理液を保持して該ウェハ表面を酸化処理して該ウェハ表面に水酸基を形成する、酸化処理工程
前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
を含み、前記撥水性保護膜形成剤が、下記一般式[1]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[1]のR中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
In the cleaning method of drying after forming a water-repellent protective film on a wafer having a concavo-convex pattern formed on the surface , the wafer has at least a part of the concave surface of the concavo-convex pattern made of titanium, titanium nitride, tungsten, aluminum, copper, tin, a web c comprising at least one material selected from the group consisting of tantalum nitride, and ruthenium,
Pretreatment comprising at least one selected from the group consisting of water, an organic solvent, a mixed solution of water and an organic solvent, and a mixed solution in which at least one of hydrogen peroxide, ozone, acid, and alkali is mixed. A pre-cleaning step of cleaning the wafer surface with a cleaning liquid; at least one selected from the group consisting of ozone, hydrogen peroxide and acid on the wafer surface ; water; and a boiling point higher than 100C An oxidation treatment liquid containing a solvent other than water is held at 100 to 200 ° C. to oxidize the wafer surface to form a hydroxyl group on the wafer surface . Oxidation treatment step A water repellent protective film is formed on the wafer surface A water-repellent protective film-forming chemical solution containing a water-repellent protective film-forming chemical solution for holding a water-repellent protective film on at least the concave portion of the wafer and forming a water-repellent protective film on the concave surface, Repellent Sexual protective film forming agent, characterized in that it is a silicon compound represented by the following general formula [1], the method of cleaning the wafer.
R 1 a SiX 4-a [1]
[In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [1] The total number of carbon atoms contained in R 1 is 6 or more, X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, and the element bonded to the silicon element is oxygen And at least one group selected from the group consisting of a monovalent functional group and a halogen group, a is an integer of 1 to 3. ]
前記撥水性保護膜形成剤が、下記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項1に記載のウェハの洗浄方法。
SiX [2]
[式[2]中、Rは、それぞれ互いに独立して、水素、又は炭素数が1〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
The method for cleaning a wafer according to claim 1, wherein the water repellent protective film forming agent is a silicon compound represented by the following general formula [2].
R 1 3 SiX [2]
[In the formula [2], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and the formula [2] The total number of carbon atoms contained in R 1 is 6 or more, X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, and monovalent functional group in which the element bonded to the silicon element is oxygen Or a halogen group. ]
前記撥水性保護膜形成剤が、下記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項1または請求項2に記載のウェハの洗浄方法。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
3. The wafer cleaning method according to claim 1, wherein the water repellent protective film forming agent is a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 SiX [3]
[In the formula [3], R 2 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms, or a hydrogen group in which a hydrogen element is substituted with a halogen element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]
前記撥水性保護膜形成剤が、下記一般式[4]で表されるケイ素化合物であることを特徴とする、請求項1乃至請求項3のいずれかに記載のウェハの洗浄方法。
(CHSiX [4]
[式[4]中、Rは炭素数が4〜18の少なくとも一部の水素元素がフッ素元素により置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
The method for cleaning a wafer according to any one of claims 1 to 3, wherein the water repellent protective film forming agent is a silicon compound represented by the following general formula [4].
R 3 (CH 3 ) 2 SiX [4]
[In the formula [4], R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, and X is a monovalent element in which an element bonded to a silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]
JP2011040113A 2010-06-30 2011-02-25 Wafer cleaning method Expired - Fee Related JP5678720B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011040113A JP5678720B2 (en) 2011-02-25 2011-02-25 Wafer cleaning method
KR1020127024857A KR101396271B1 (en) 2010-06-30 2011-06-22 Wafer cleaning method
PCT/JP2011/064201 WO2012002200A1 (en) 2010-06-30 2011-06-22 Wafer cleaning method
TW100123184A TWI480946B (en) 2010-06-30 2011-06-30 Wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040113A JP5678720B2 (en) 2011-02-25 2011-02-25 Wafer cleaning method

Publications (2)

Publication Number Publication Date
JP2012178431A JP2012178431A (en) 2012-09-13
JP5678720B2 true JP5678720B2 (en) 2015-03-04

Family

ID=46980103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040113A Expired - Fee Related JP5678720B2 (en) 2010-06-30 2011-02-25 Wafer cleaning method

Country Status (1)

Country Link
JP (1) JP5678720B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525152B1 (en) * 2012-12-12 2015-06-04 영창케미칼 주식회사 Coating Composition For CAPACITOR Anti-leaning
CN113394074A (en) * 2020-03-11 2021-09-14 长鑫存储技术有限公司 Method for processing semiconductor structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP5533178B2 (en) * 2009-04-24 2014-06-25 セントラル硝子株式会社 Silicon wafer cleaning agent

Also Published As

Publication number Publication date
JP2012178431A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5482192B2 (en) Silicon wafer cleaning agent
JP6032338B2 (en) Chemical solution for protective film formation
JP5533178B2 (en) Silicon wafer cleaning agent
JP5446848B2 (en) Silicon wafer cleaning agent
WO2012090779A1 (en) Wafer washing method
US9748092B2 (en) Liquid chemical for forming protecting film
WO2011145500A1 (en) Chemical for forming protective film
KR101075200B1 (en) Silicon wafer cleaning agent, wafer repellent used in the cleaning process for silicon wafer, method for cleaning surface of silicon wafer
WO2012002145A1 (en) Chemical solution for forming water-repellent protective film
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
KR101572583B1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
TWI480946B (en) Wafer cleaning method
JP5678720B2 (en) Wafer cleaning method
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
WO2012002200A1 (en) Wafer cleaning method
JP5712670B2 (en) Water repellent protective film forming chemical
JP6098741B2 (en) Wafer cleaning method
WO2010084826A1 (en) Silicon wafer cleaning agent
JP5830931B2 (en) Wafer cleaning method
WO2013115021A1 (en) Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP5974515B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5678720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees