WO2013115021A1 - Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer - Google Patents

Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer Download PDF

Info

Publication number
WO2013115021A1
WO2013115021A1 PCT/JP2013/051256 JP2013051256W WO2013115021A1 WO 2013115021 A1 WO2013115021 A1 WO 2013115021A1 JP 2013051256 W JP2013051256 W JP 2013051256W WO 2013115021 A1 WO2013115021 A1 WO 2013115021A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
water
chemical solution
wafer
forming
Prior art date
Application number
PCT/JP2013/051256
Other languages
French (fr)
Japanese (ja)
Inventor
真規 斎藤
公文 創一
忍 荒田
崇 齋尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012020368A external-priority patent/JP5974515B2/en
Priority claimed from JP2012020347A external-priority patent/JP5974514B2/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013115021A1 publication Critical patent/WO2013115021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage

Definitions

  • the present invention relates to a substrate wafer cleaning technique in semiconductor device manufacturing or the like.
  • a fine uneven pattern is formed on the surface of a silicon wafer through film formation, lithography, etching, etc., and then a cleaning liquid such as water or an organic solvent is used to clean the wafer surface. Cleaning is done.
  • the elements are in the direction of miniaturization, and the interval between the concave and convex patterns is becoming narrower. For this reason, after the cleaning, when the cleaning liquid is dried from the wafer surface, a problem that the concave / convex pattern collapses due to the capillary force acting on the concave portion of the wafer is likely to occur. This problem has become more prominent particularly in semiconductor chips of the 20 nm and 10 nm generations where the uneven pattern spacing is narrower.
  • Patent Document 1 discloses a method in which water remaining on the wafer surface is replaced with isopropanol and then dried.
  • Patent Document 2 after cleaning the wafer surface with water, a water-repellent protective film is formed on the concavo-convex pattern portion containing silicon with a silane coupling agent, and then rinsed with water and then dried. A method is disclosed. This protective film is finally removed. Since the pattern portion is rendered water-repellent by the protective film when rinsing with water, the effect of suppressing the collapse of the concavo-convex pattern is produced. This method is said to be effective even for patterns having an aspect ratio of 8 or more.
  • Patent Document 3 discloses a silylating agent containing at least one compound having a disilazane structure as a surface treatment agent capable of efficiently forming a water-repellent protective film, and a solvent containing a 5- or 6-membered lactone compound. It is disclosed to use a surface treatment agent containing
  • the contact angle when assuming that water is retained on the surface after water repellent is larger. Since the capillary force acting on the concave portion calculated from the equation of capillary force is reduced, it is desired that water repellency superior to conventional silane coupling agents is imparted to the wafer surface. In general, in a wafer having a silicon oxide film or a silicon oxide portion on the surface, a large number of silanol groups that are reactive sites exist on the surface, and water repellency is easily imparted.
  • a wafer having a silicon nitride film or a silicon nitride portion on the surface, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer (hereinafter referred to as “silicon wafer other than silicon oxide” or simply “wafer”)
  • silicon wafer other than silicon oxide or simply “wafer”
  • the present invention uses a silicon compound having a large hydrophobic group to form a water-repellent protective film
  • a water-repellent protective film (hereinafter sometimes simply referred to as “protective film”) may be formed on the surface of the concave / convex pattern without generating an insoluble component, thereby imparting superior water repellency to the wafer surface.
  • a chemical solution for forming a water-repellent protective film (hereinafter sometimes simply referred to as “chemical solution for forming a protective film” or “chemical solution”), a chemical solution kit for forming a water-repellent protective film for obtaining the chemical solution (hereinafter simply referred to as “chemical solution”) It is an object of the present invention to provide a wafer cleaning method using the chemical solution or the chemical solution obtained from the chemical solution kit.
  • the contact angle when assuming that water is retained on the surface after water repellent is larger. Since the capillary force acting on the concave portion calculated from the equation of capillary force is reduced, it is desired that water repellency superior to conventional silane coupling agents is imparted to the wafer surface. In the wafer cleaning process, it is necessary to quickly form a water-repellent protective film on the wafer surface for the water repellency.
  • an insoluble component is generated in a method of cleaning a wafer containing silicon oxide on the surface (hereinafter, sometimes simply referred to as “wafer”) using a liquid while preventing collapse of the concavo-convex pattern.
  • the water-repellent protective film refers to a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency.
  • the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is.
  • the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
  • the liquid such as the cleaning liquid is removed from the concave portion of the concave / convex pattern of the wafer, that is, when dried, the protective film is formed at least on the concave surface. Therefore, the capillary force acting on the concave portion is reduced, and the pattern collapse hardly occurs.
  • the present invention has a concavo-convex pattern on the surface and repels at least the concave surface of the wafer after a cleaning step of a silicon-based wafer other than silicon oxide containing silicon element at least on the concave surface of the concavo-convex pattern and before a drying step.
  • a water-repellent protective film-forming chemical solution for forming an aqueous protective film wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, and the silicon compound is represented by the following general formula [1],
  • the non-aqueous solvent is 40:60 by mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a).
  • It is a chemical solution for forming a water-repellent protective film characterized in that it is constituted by ⁇ 97: 3.
  • R 1 a SiX 4-a [1]
  • R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements.
  • the total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more.
  • X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
  • the silicon compound can chemically react with the concavo-convex pattern and the silanol group on the wafer surface.
  • the silicon element of the silicon compound is chemically reacted with the concavo-convex pattern and the silicon element on the wafer surface via a siloxane bond.
  • the hydrocarbon group represented by R 1 in the general formula [1] is a hydrophobic group, and the hydrophobic group is large, that is, the total number of carbon atoms contained in all the hydrocarbon groups bonded to silicon element.
  • the wafer surface has good water repellency. Can be expressed.
  • a concavo-convex pattern or a wafer surface containing a material with a small number of silanol groups, which is a reactive site per unit area, such as silicon nitride can form a protective film that sufficiently produces water repellency. .
  • the chemical solution of the present invention is used, among silicon-based wafers other than silicon oxide containing silicon element, for example, a wafer having a plurality of types of compounds such as silicon and silicon nitride present on the surface at one time.
  • a protective film can also be formed, water repellency can be expressed efficiently in a short time, and the change in surface treatment conditions according to the production lot can be reduced.
  • the solvent contained in the chemical solution is a non-aqueous solvent.
  • the reactive site of the silicon compound in the chemical solution (X in the general formula [1]) is hydrolyzed with water to form a silanol group (Si—OH), Since the reactive site also reacts with this silanol group, silicon compounds are bonded to each other to form a dimer.
  • This dimer has a low reactivity with the silanol group on the uneven pattern surface or wafer surface, and therefore cannot sufficiently impart water repellency to the uneven pattern surface or wafer surface, or to impart water repellency.
  • the raw material of the chemical solution and the raw material of the chemical solution kit for obtaining the chemical solution described later preferably have a low water content.
  • the non-aqueous solvent contained in the chemical solution is a mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a). 40:60 to 97: 3.
  • the reason for using the solvent (a) is that the silane coupling reaction tends to be promoted in the silane coupling reaction between the silicon compound and the silanol group described above.
  • the reaction promoting effect is considered to occur because, when the solvent (a) is used, the silanol group, which is a reaction point on the wafer surface, is not solvated and thus becomes more reactive.
  • the solvent (a) is difficult to dissolve a silicon compound having a large hydrophobic group. Therefore, the present inventors have conducted extensive research in view of such problems, and as a result, by adding the solvent (b) to the solvent (a), a better reaction promoting effect is obtained while improving the solubility of the silicon compound. In addition, the inventors have found that an excellent water repellency imparting effect can be obtained even when the silicon compound concentration is low, and the present invention has been achieved.
  • the solvent (a) and the solvent (b) are constituted by a mass ratio of 40:60 to 97: 3.
  • the content of the solvent (a) in 100% by mass of the nonaqueous solvent contained in the chemical solution is less than 40% by mass, it is difficult to obtain the merit of the reaction promoting effect by using the solvent (a).
  • the content of the solvent (a) is more than 97% by mass, it is difficult to dissolve the silicon compound having a large hydrophobic group, and the silicon compound may remain undissolved.
  • the ratio of the solvent (a) to the solvent (b) is more preferably 70:30 to 95: 5 by mass ratio.
  • the content of the solvent (a) in 100% by mass of the non-aqueous solvent contained in the chemical solution is 70% by mass or more, excellent water repellency is imparted by the above-described reaction promoting effect even when the concentration of the silicon compound is particularly low. Since an effect is acquired, it is preferable. Further, it is preferable that the content of the solvent (a) is 95% by mass or less because the silicon compound is easily dissolved and there is no undissolved residue.
  • Examples of such a solvent (a) include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -nonanolactone, ⁇ -decanolactone, ⁇ -undecanolactone, ⁇ -dodecanolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -octanolactone, ⁇ -nonanolactone, ⁇ -decanolactone, ⁇ -undecanolactone, ⁇ -dodecanolactone, ⁇ -hexanolactone, etc.
  • Examples include lactone solvents and carbonate solvents such as propylene carbonate. Of these, lactone solvents are more preferable because of their high polarity and excellent reaction promotion effect.
  • the silicon compound is likely to react with a protic solvent, and as a result, the reactivity of the silicon compound is likely to be reduced. Therefore, the solvent (a) and the solvent (b) used as the non-aqueous solvent are: Both are preferably aprotic solvents.
  • Examples of the solvent (b) include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen elements having no NH bond.
  • a solvent is mentioned.
  • Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane.
  • Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, ethyl hexyl acetate, and ethyl acetoacetate.
  • Examples of the ethers include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
  • Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3- Hydrofluorocarbons such as tafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl Hydrofluoro ethers such as perfluoroisobutyl ether, Asahiklin AE-3000 (Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all manufactured
  • sulfoxide solvents include dimethyl sulfoxide and the like, polyhydric alcohols having no hydroxyl group
  • derivatives include diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene.
  • Glycol dimethyl ether diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol
  • nitrogen element-containing solvents that include dimethyl ether and have no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.
  • X in the general formula [1] is a reactive site having reactivity with a silanol group which is a reaction site of the wafer, the reactive site reacts with the silanol group of the wafer, and the silicon compound is bonded to the siloxane bond.
  • the protective film is formed by chemically bonding to the silicon element of the wafer via When cleaning the wafer using the cleaning liquid, when the cleaning liquid is removed from the concave portion of the wafer, that is, when the wafer is dried, if the protective film is formed on the surface of the concave portion, the capillary force acting on the concave portion is reduced. Pattern collapse is less likely to occur.
  • the monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is nitrogen, includes hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine, chlorine Further, elements such as bromine and iodine may be contained.
  • functional groups include isocyanate groups, amino groups, alkylamino groups, dialkylamino groups, isothiocyanate groups, azide groups, acetamide groups, —NHSi (CH 3 ) 3 groups, —NHSi (CH 3 ) 2 C 4.
  • H 9 group —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N (CH 3 ) C (O) CF 3 , —N ⁇ C (CH 3 ) OSi (CH 3 ) 3 , —N ⁇ C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , An imidazole ring (formula [4]), an oxazolidinone ring (formula [5]), a morpholine ring (formula [6]), —NH—C (O) —Si (CH 3 ) 3 , —N (H ) 2-b (Si (H ) c R 4 3-c) b (R 4 is a part or all of the hydrogen elements are replaced with fluorine element Monovalent hydrocarbon group which may
  • the monovalent functional group in which the element bonded to the silicon element which is an example of X in the general formula [1] is oxygen is hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine Further, elements such as chlorine, bromine and iodine may be contained.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • halogen group which is an example of X in the general formula [1] includes a fluoro group, a chloro group, a bromo group, an iodo group, and the like. Of these, a chloro group is more preferred.
  • Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl,
  • the halogen element to be substituted is a fluorine element in consideration of water repellency. Preferably there is.
  • the water repellent protective film-forming chemical may contain two or more silicon compounds represented by the general formula [1].
  • the chemical solution for forming the water repellent protective film is in a state of being maintained at a temperature of 10 ° C. to 160 ° C.
  • the silicon compound is likely to be dissolved in the chemical solution, so that a more uniform chemical solution is obtained.
  • the temperature is preferably 50 to 120 ° C.
  • the chemical solution is maintained at a temperature of 10 ° C. to 160 ° C. because the protective film can be easily formed in a shorter time. In particular, 50 to 120 ° C. is preferable.
  • R 1 is one hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with halogen elements.
  • a compound composed of two methyl groups (that is, a compound represented by the following general formula [2]) is preferable because it has higher reactivity with the concavo-convex pattern surface and the silanol group on the wafer surface.
  • R 2 (CH 3 ) 2 SiX [2] [In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element.
  • the silicon compound is more preferably a silicon compound represented by the following general formula [3].
  • R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3] [In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
  • Examples of the silicon compound represented by the general formula [3] include C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 ( CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN
  • the silicon compound concentration in the chemical solution for forming a water repellent protective film is preferably 0.1 to 4% by mass.
  • excellent water repellency can be imparted to the wafer surface as long as the silicon compound concentration is 0.1% by mass or more due to the effect of promoting the silane coupling reaction by the solvent (a) as described above. This is preferable because it is possible.
  • the concentration of the silicon compound is preferably low, and the upper limit is preferably 4% by mass.
  • the chemical solution further contains an acid in order to promote the reaction between the silicon compound as the protective film forming agent and the silanol groups on the uneven pattern surface or the wafer surface.
  • an acid a water-free acid such as trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride and the like is preferable. Used for.
  • acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid may not contain moisture. preferable.
  • the reactivity of the silicon compound with respect to the silanol groups on the uneven pattern surface or the wafer surface may decrease due to steric hindrance.
  • an acid that does not contain water the reaction between the silanol group on the uneven pattern surface and the wafer surface and the silicon compound is promoted, which compensates for the decrease in reactivity due to steric hindrance of the hydrophobic group There is.
  • the addition amount of the acid is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound.
  • the addition amount of the acid is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass.
  • the amount of acid added to the total amount of the chemical solution is preferably 0.0001 to 50% by mass, more preferably 0.001 to 33% by mass, with respect to 100% by mass of the total amount of the chemical solution.
  • the present invention also provides a water-repellent protective film-forming chemical solution kit for obtaining the above-described water-repellent protective film-forming chemical solution, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent.
  • Water repellent characterized in that it comprises a treatment liquid A having (a) and / or a solvent (b), an acid, and a treatment liquid B having the solvent (a) and / or the solvent (b).
  • This is a chemical solution kit for forming a protective film.
  • medical solution kit is what makes the said chemical
  • medical solution for water-repellent protective film formation can be used.
  • the content ratio of the solvent (a) and the solvent (b) contained in the treatment liquids A and B is not particularly limited, but when the treatment liquid A and the treatment liquid B are mixed to obtain the chemical liquid, the chemical liquid
  • the solvent (a) and the solvent (b) contained in are prepared so as to be constituted by a mass ratio of 40:60 to 97: 3.
  • the solvent (a) used in the chemical solution kit is preferably a lactone solvent having high polarity and excellent in the reaction promoting effect.
  • the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [2].
  • the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [3].
  • the present invention includes the following steps: Cleaning the wafer surface with a cleaning liquid, A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface; A drying process to remove the liquid on the wafer surface; A water-repellent protective film removing step for removing the water-repellent protective film from the surface of the recess, wherein the water-repellent protective film-forming chemical solution or the water-repellent protective film-forming chemical solution kit is included in the water-repellent protective film-forming step.
  • the wafer cleaning method is characterized by using the obtained chemical solution for forming a water-repellent protective film.
  • the wafer is a wafer containing silicon nitride on at least the concave surface of the concave / convex pattern.
  • the water repellent protective film removing step is selected from light irradiation of the wafer surface, heating of the wafer, irradiation of the wafer surface with plasma, exposure of the wafer surface to ozone, and corona discharge of the wafer. It is preferable to carry out by at least one processing method.
  • the water-repellent protective film refers to a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency.
  • the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is.
  • the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
  • the liquid such as the cleaning liquid is removed from the concave portion of the concave / convex pattern of the wafer, that is, when dried, the protective film is formed at least on the concave surface. Therefore, the capillary force acting on the concave portion is reduced, and the pattern collapse hardly occurs.
  • the present invention forms a water-repellent protective film on at least the concave surface of the wafer after the step of cleaning the wafer having a concave-convex pattern on the surface and containing silicon oxide on at least the concave surface of the concave-convex pattern and before the drying step.
  • a chemical solution for forming a water-repellent protective film wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, wherein the silicon compound is represented by the following general formula [1],
  • a mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a) is 40:60 to 97: 3
  • a chemical solution for forming a water repellent protective film is 40:60 to 97: 3
  • R 1 a SiX 4-a [1] [In the formula [1], R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements.
  • the total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more.
  • X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
  • the silicon compound can chemically react with the concavo-convex pattern and the silanol group on the wafer surface.
  • the silicon element of the silicon compound is chemically reacted with the concavo-convex pattern and the silicon element on the wafer surface via a siloxane bond.
  • the hydrocarbon group represented by R 1 in the general formula [1] is a hydrophobic group, and the hydrocarbon group is large, that is, the total number of carbon atoms contained in all the hydrocarbon groups bonded to silicon element.
  • the protective film is formed with a number of 6 or more (in other words, the number of carbon atoms contained in a number of R 1 groups represented by R 1 a is 6 or more), the wafer surface has better water repellency. Can be granted.
  • the solvent contained in the chemical solution is a non-aqueous solvent.
  • the reactive site of the silicon compound in the chemical solution (X in the general formula [1]) is hydrolyzed with water to form a silanol group (Si—OH), Since the reactive site also reacts with this silanol group, silicon compounds are bonded to each other to form a dimer.
  • This dimer has a low reactivity with the silanol group on the uneven pattern surface or wafer surface, and therefore cannot sufficiently impart water repellency to the uneven pattern surface or wafer surface, or to impart water repellency.
  • the raw material of the chemical solution and the raw material of the chemical solution kit for obtaining the chemical solution described later preferably have a low water content.
  • the non-aqueous solvent contained in the chemical solution is a mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a). 40:60 to 97: 3.
  • the reason for using the solvent (a) is that the silane coupling reaction tends to be promoted in the silane coupling reaction between the silicon compound and the silanol group described above.
  • the reaction promoting effect is considered to occur because, when the solvent (a) is used, the silanol group, which is a reaction point on the wafer surface, is not solvated and thus becomes more reactive.
  • the solvent (a) is difficult to dissolve a silicon compound having a large hydrophobic group. Therefore, the present inventors have conducted extensive research in view of such problems, and as a result, by adding the solvent (b) to the solvent (a), a better reaction promoting effect is obtained while improving the solubility of the silicon compound. In addition, the inventors have found that an excellent water repellency imparting effect can be obtained even when the silicon compound concentration is low, and the present invention has been achieved.
  • the solvent (a) and the solvent (b) are constituted by a mass ratio of 40:60 to 97: 3.
  • the content of the solvent (a) in 100% by mass of the nonaqueous solvent contained in the chemical solution is less than 40% by mass, it is difficult to obtain the merit of the reaction promoting effect by using the solvent (a).
  • the content of the solvent (a) is more than 97% by mass, it is difficult to dissolve the silicon compound having a large hydrophobic group, and the silicon compound may remain undissolved.
  • the ratio of the solvent (a) to the solvent (b) is more preferably 70:30 to 95: 5 by mass ratio.
  • the content of the solvent (a) in 100% by mass of the non-aqueous solvent contained in the chemical solution is 70% by mass or more, excellent water repellency is imparted by the above-described reaction promoting effect even when the concentration of the silicon compound is particularly low. Since an effect is acquired, it is preferable. Further, it is preferable that the content of the solvent (a) is 95% by mass or less because the silicon compound is easily dissolved and there is no undissolved residue.
  • Examples of such a solvent (a) include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -nonanolactone, ⁇ -decanolactone, ⁇ -undecanolactone, ⁇ -dodecanolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -octanolactone, ⁇ -nonanolactone, ⁇ -decanolactone, ⁇ -undecanolactone, ⁇ -dodecanolactone, ⁇ -hexanolactone, etc.
  • Examples include lactone solvents and carbonate solvents such as propylene carbonate. Of these, lactone solvents are more preferable because of their high polarity and excellent reaction promotion effect.
  • the silicon compound is likely to react with a protic solvent, and as a result, the reactivity of the silicon compound is likely to be reduced. Therefore, the solvent (a) and the solvent (b) used as the non-aqueous solvent are: Both are preferably aprotic solvents.
  • Examples of the solvent (b) include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen elements having no NH bond.
  • a solvent is mentioned.
  • Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane.
  • Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, ethyl hexyl acetate, and ethyl acetoacetate.
  • Examples of the ethers include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
  • Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3- Hydrofluorocarbons such as tafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl Hydrofluoro ethers such as perfluoroisobutyl ether, Asahiklin AE-3000 (Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all manufactured
  • sulfoxide solvents include dimethyl sulfoxide and the like, polyhydric alcohols having no hydroxyl group
  • derivatives include diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene.
  • Glycol dimethyl ether diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol
  • nitrogen element-containing solvents that include dimethyl ether and have no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.
  • X in the general formula [1] is a reactive site having reactivity with a silanol group which is a reaction site of the wafer, the reactive site reacts with the silanol group of the wafer, and the silicon compound is bonded to the siloxane bond.
  • the protective film is formed by chemically bonding to the silicon element of the wafer via When cleaning the wafer using the cleaning liquid, when the cleaning liquid is removed from the concave portion of the wafer, that is, when the wafer is dried, if the protective film is formed on the surface of the concave portion, the capillary force acting on the concave portion is reduced. Pattern collapse is less likely to occur.
  • the monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is nitrogen, includes hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine, chlorine Further, elements such as bromine and iodine may be contained.
  • functional groups include isocyanate groups, amino groups, alkylamino groups, dialkylamino groups, isothiocyanate groups, azide groups, acetamide groups, —NHSi (CH 3 ) 3 groups, —NHSi (CH 3 ) 2 C 4.
  • H 9 group —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N (CH 3 ) C (O) CF 3 , —N ⁇ C (CH 3 ) OSi (CH 3 ) 3 , —N ⁇ C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , An imidazole ring (formula [4]), an oxazolidinone ring (formula [5]), a morpholine ring (formula [6]), —NH—C (O) —Si (CH 3 ) 3 , —N (H ) 2-b (Si (H ) c R 4 3-c) b (R 4 is a part or all of the hydrogen elements are replaced with fluorine element Monovalent hydrocarbon group which may
  • the monovalent functional group in which the element bonded to the silicon element which is an example of X in the general formula [1] is oxygen is hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine Further, elements such as chlorine, bromine and iodine may be contained.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.
  • halogen group which is an example of X in the general formula [1] includes a fluoro group, a chloro group, a bromo group, an iodo group, and the like. Of these, a chloro group is more preferred.
  • Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl,
  • the halogen element to be substituted is a fluorine element in consideration of water repellency. Preferably there is.
  • the water repellent protective film-forming chemical may contain two or more silicon compounds represented by the general formula [1].
  • the chemical solution for forming the water repellent protective film is in a state of being maintained at a temperature of 10 ° C. to 160 ° C.
  • the silicon compound is likely to be dissolved in the chemical solution, so that a more uniform chemical solution is obtained.
  • the temperature is preferably 50 to 120 ° C.
  • the chemical solution is maintained at a temperature of 10 ° C. to 160 ° C. because the protective film can be easily formed in a shorter time. In particular, 50 to 120 ° C. is preferable.
  • R 1 is one hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with halogen elements.
  • a compound composed of two methyl groups (that is, a compound represented by the following general formula [2]) is preferable because it has higher reactivity with the concavo-convex pattern surface and the silanol group on the wafer surface.
  • R 2 (CH 3 ) 2 SiX [2] [In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element.
  • the silicon compound is more preferably a silicon compound represented by the following general formula [3].
  • R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3] [In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
  • Examples of the silicon compound represented by the general formula [3] include C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 ( CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN
  • the silicon compound concentration in the chemical solution for forming a water repellent protective film is preferably 0.1 to 4% by mass.
  • excellent water repellency can be imparted to the wafer surface as long as the silicon compound concentration is 0.1% by mass or more due to the effect of promoting the silane coupling reaction by the solvent (a) as described above. This is preferable because it is possible.
  • the concentration of the silicon compound is preferably low, and the upper limit is preferably 4% by mass.
  • the chemical solution further contains an acid in order to promote the reaction between the silicon compound as the protective film forming agent and the silanol groups on the uneven pattern surface or the wafer surface.
  • an acid a water-free acid such as trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride and the like is preferable. Used for.
  • acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid may not contain moisture. preferable.
  • the reactivity of the silicon compound with respect to the silanol groups on the uneven pattern surface or the wafer surface may decrease due to steric hindrance.
  • an acid that does not contain water the reaction between the silanol group on the uneven pattern surface and the wafer surface and the silicon compound is promoted, which compensates for the decrease in reactivity due to steric hindrance of the hydrophobic group There is.
  • the addition amount of the acid is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound.
  • the addition amount of the acid is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass.
  • the amount of acid added to the total amount of the chemical solution is preferably 0.0001 to 50% by mass, more preferably 0.001 to 33% by mass, with respect to 100% by mass of the total amount of the chemical solution.
  • the present invention also provides a water-repellent protective film-forming chemical solution kit for obtaining the above-described water-repellent protective film-forming chemical solution, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent.
  • Water repellent characterized in that it comprises a treatment liquid A having (a) and / or a solvent (b), an acid, and a treatment liquid B having the solvent (a) and / or the solvent (b).
  • This is a chemical solution kit for forming a protective film.
  • medical solution kit is what makes the said chemical
  • medical solution for water-repellent protective film formation can be used.
  • the content ratio of the solvent (a) and the solvent (b) contained in the treatment liquids A and B is not particularly limited, but when the treatment liquid A and the treatment liquid B are mixed to obtain the chemical liquid, the chemical liquid
  • the solvent (a) and the solvent (b) contained in are prepared so as to be constituted by a mass ratio of 40:60 to 97: 3.
  • the solvent (a) used in the chemical solution kit is preferably a lactone solvent having high polarity and excellent in the reaction promoting effect.
  • the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [2].
  • the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [3].
  • the present invention provides a step shown below in the cleaning of a wafer having a concavo-convex pattern on the surface and containing silicon oxide on at least the concave surface of the concavo-convex pattern, Cleaning the wafer surface with a cleaning liquid, A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface; A drying process to remove the liquid on the wafer surface; A water-repellent protective film removing step for removing the water-repellent protective film from the surface of the recess, wherein the water-repellent protective film-forming chemical solution or the water-repellent protective film-forming chemical solution kit is included in the water-repellent protective film-forming step.
  • the wafer cleaning method is characterized by using the obtained chemical solution for forming a water-repellent protective film.
  • the water repellent protective film removing step is selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. It is preferable to carry out by at least one processing method.
  • the surface has few silanol groups.
  • a conventional silane coupling agent can quickly form a water-repellent protective film on the surface of a silicon-based wafer other than silicon oxide, which has been difficult to impart excellent water-repellent performance to the wafer surface, providing excellent water-repellent performance. Therefore, it succeeds in suppressing the pattern collapse during cleaning and drying of the wafer.
  • the surface has an uneven pattern. Since the water-repellent protective film can be quickly formed on the surface of the wafer containing silicon oxide on at least the concave surface of the concave-convex pattern, and more excellent water-repellent performance can be imparted. Succeeds in suppressing pattern collapse.
  • FIG. 2 is a schematic diagram showing a part of a cross section along a-a ′ in FIG. 1.
  • maintained the chemical
  • maintained at the recessed part 4 in which the water-repellent protective film 10 was formed.
  • a wafer having a concavo-convex pattern on its surface is often obtained by the following procedure.
  • corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist.
  • the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
  • the wafer includes a silicon wafer and a silicon wafer formed with a silicon nitride film, a polysilicon film, or a silicon carbide film by a CVD method or a sputtering method. Also, a wafer composed of a plurality of components including silicon, a silicon carbide wafer, and a wafer in which various films including a silicon element are formed on the wafer can be used as the wafer. Further, various films containing silicon elements may be formed on a wafer not containing silicon elements, such as sapphire wafers, various compound semiconductor wafers, and plastic wafers.
  • the chemical solution is a wafer surface containing silicon element, a film surface containing silicon element formed on the wafer, and a surface of a portion where silicon atoms are present in the wafer or the concavo-convex pattern surface formed in the film.
  • a protective film can be formed on the surface to make it water repellent.
  • the wafer having a concavo-convex pattern on the surface obtained as described above is cleaned in the cleaning step in order to remove particles and the like.
  • the wafer cleaning method of the present invention in order to perform efficient cleaning without causing pattern collapse, at least the cleaning step and the water-repellent protective film forming step are always held at least in the recesses of the wafer. In the state.
  • the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state.
  • cleaning liquid As long as the cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer, the cleaning liquid, chemical liquid, and other liquid supply methods (hereinafter, these methods are generically referred to). In some cases, “cleaning method” may be described).
  • a wafer cleaning method a single wafer represented by spin cleaning (processing) in which a wafer is cleaned (processed) one by one by supplying liquid to the vicinity of the center of rotation while holding and rotating the wafer substantially horizontal. Examples thereof include a batch system in which a plurality of wafers are immersed and cleaned (processed) in a cleaning tank.
  • the form of the cleaning liquid, the chemical liquid, and the other liquid when supplying the cleaning liquid, the chemical liquid, and the other liquid to at least the concave portion of the concave / convex pattern of the wafer may be a liquid when held in the concave portion.
  • cleaning liquid used in the cleaning step examples include water, water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed as a main component (for example, water
  • a main component for example, water
  • an aqueous cleaning liquid or an organic solvent for example, water
  • the aqueous cleaning liquid is held at least in the recess and comes into contact with the surface of the recess.
  • part of the silicon nitride or polysilicon is oxidized and silanol groups are formed by contact with the aqueous cleaning solution. Since the silicon compound contained in the chemical solution for forming a water-repellent protective film of the present invention has a large hydrophobic group, it reacts with a silanol group slightly formed by oxidation as described above to form a protective film. In addition, it is possible to exhibit excellent water repellency on the concave surface of the wafer.
  • Oxidation of the wafer surface as described above proceeds even when pure water at room temperature is used as the aqueous cleaning liquid, but if a strongly acidic aqueous solution is used as the aqueous cleaning liquid or the temperature of the aqueous cleaning liquid is increased, Since it tends to proceed, an acid may be added to the aqueous cleaning solution for the purpose of promoting the oxidation, or the temperature of the aqueous cleaning solution may be increased. Further, hydrogen peroxide or ozone may be added for the purpose of promoting the oxidation.
  • organic solvent which is one of the preferable examples of the cleaning liquid
  • examples of the organic solvent which is one of the preferable examples of the cleaning liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. And derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
  • examples of acids that can be mixed with the aqueous cleaning liquid include inorganic acids and organic acids.
  • examples of inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc.
  • examples of organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like.
  • Examples of the alkali that may be mixed in the aqueous cleaning liquid include ammonia and choline.
  • Examples of the oxidizing agent that may be mixed in the aqueous cleaning liquid include ozone and hydrogen peroxide.
  • a plurality of cleaning liquids may be used as the cleaning liquid.
  • a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution and the organic solvent may be used as the cleaning solution, and the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution ⁇ the organic solvent.
  • the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkali aqueous solution ⁇ an aqueous cleaning solution ⁇ the organic solvent.
  • the cleaning liquid may be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid.
  • the cleaning liquid contains an aqueous acid solution, particularly preferably a solution containing an aqueous acid solution and an organic solvent having a boiling point of 100 ° C. or higher
  • the protective film can be formed in a short time by increasing the temperature of the cleaning liquid to around the boiling point of the cleaning liquid. It is preferable because it is easy to form.
  • FIG. 1 is a schematic view of a wafer 1 whose surface is a surface having a concavo-convex pattern 2.
  • FIG. 2 shows a part of the a-a ′ cross section in FIG.
  • the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3
  • the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done.
  • Pattern collapse tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
  • FIG. 3 is a schematic view showing a state in which the recess 4 holds the protective film forming chemical 8 in the water repellent protective film forming step.
  • the wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1.
  • the protective film-forming chemical solution is held in the recess 4, and a protective film is formed on the surface of the recess 4, thereby making the surface water repellent.
  • the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
  • the chemical solution held at least in the concave portion of the concave / convex pattern may be replaced with a rinse solution different from the chemical solution and then transferred to a drying step.
  • the rinsing liquid include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, a mixture of the aqueous cleaning liquid and an organic solvent, and a mixture of at least one of an acid, an alkali, and a surfactant.
  • organic solvent which is one of preferred examples of the rinsing liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. , Derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
  • a plurality of cleaning liquids may be used as the rinsing liquid.
  • an organic solvent preferably containing a water-soluble organic solvent
  • an aqueous cleaning solution can be used in succession.
  • FIG. 4 shows a schematic diagram when the liquid 9 is held in the recess 4 that has been made water-repellent by the chemical solution for forming a water-repellent protective film.
  • the wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG.
  • a water repellent protective film 10 is formed on the surface of the recess 4.
  • the liquid 9 held in the recess 4 may be the chemical liquid, a rinse liquid after replacement from the chemical liquid, or a liquid in the middle of replacement (mixed liquid of the chemical liquid and the rinse liquid).
  • the water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
  • the contact angle when assuming that water is held on the surface is larger than the capillary force formula described in the background art. Since the capillary force acting on the concave portion is small, pattern collapse is less likely to occur, which is preferable.
  • a drying process is performed.
  • the liquid held on the uneven pattern surface is removed by drying.
  • the drying is performed by a known drying method such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, air drying, hot air drying, vacuum drying, and the like. Preferably it is done.
  • the liquid held in the recess before the drying step is the chemical solution, the rinse solution, or a mixed solution of the chemical solution and the rinse solution.
  • the liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the rinse liquid, or may be a liquid mixture obtained by previously mixing the chemical liquid with the rinse liquid.
  • the retained liquid may be drained and removed, and then the remaining liquid may be dried.
  • the water repellent protective film removing step is performed.
  • removing the protective film 10 it is effective to cut the C—C bond and C—F bond in the protective film.
  • the method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
  • the protective film 10 When the protective film 10 is removed by light irradiation, it is effective to cut the C—C bond and C—F bond in the protective film 10, and for this purpose, their binding energy is 83 kcal / mol. It is preferable to irradiate ultraviolet rays including wavelengths shorter than 340 nm and 240 nm, which are energy corresponding to 116 kcal / mol.
  • a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
  • the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable.
  • the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10.
  • a low-pressure mercury lamp is preferable because it emits ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
  • ozone is generated at the same time as the constituent components of the protective film 10 are decomposed by ultraviolet rays, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone.
  • this light source a low-pressure mercury lamp or an excimer lamp is used. Further, the wafer may be heated while irradiating light.
  • heating the wafer it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C.
  • the heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes.
  • ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
  • the method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
  • ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface.
  • the wafer may be irradiated with light while being exposed to ozone, or may be heated.
  • a wafer having a concavo-convex pattern on its surface is often obtained by the following procedure.
  • corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist.
  • the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
  • examples of the wafer include a silicon wafer and a silicon wafer on which a silicon oxide film is formed by a thermal oxidation method, a CVD method, a sputtering method, or the like. Further, a wafer composed of a plurality of components including silicon oxide, a silicon carbide wafer, and a wafer in which a silicon oxide film is formed on the wafer can be used as the wafer. Furthermore, a silicon oxide film may be formed on a wafer that does not contain silicon elements, such as a sapphire wafer, various compound semiconductor wafers, and a plastic wafer.
  • the chemical solution is protected on the surface of the wafer containing silicon oxide, the surface of the silicon oxide film formed on the wafer, and the surface of the wafer or the portion of the concavo-convex pattern formed on the film where silicon oxide exists.
  • a film can be formed to make it water repellent.
  • the wafer having a concavo-convex pattern on the surface obtained as described above is cleaned in the cleaning step in order to remove particles and the like.
  • the wafer cleaning method of the present invention in order to perform efficient cleaning without causing pattern collapse, at least the cleaning step and the water-repellent protective film forming step are always held at least in the recesses of the wafer. In the state.
  • the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state.
  • cleaning method a single wafer represented by spin cleaning (processing) in which a wafer is cleaned (processed) one by one by supplying liquid to the vicinity of the center of rotation while holding and rotating the wafer substantially horizontal. Examples thereof include a batch system in which a plurality of wafers are immersed and cleaned (processed) in a cleaning tank.
  • the form of the cleaning liquid, the chemical liquid, and the other liquid when supplying the cleaning liquid, the chemical liquid, and the other liquid to at least the concave portion of the concave / convex pattern of the wafer may be a liquid when held in the concave portion.
  • cleaning liquid used in the cleaning step examples include water, water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed as a main component (for example, water
  • a main component for example, water
  • an aqueous cleaning liquid or an organic solvent for example, water
  • the aqueous cleaning liquid is held at least in the recess and comes into contact with the surface of the recess.
  • silanol groups are formed on a part of the surface by contact with an aqueous cleaning solution. Since the silicon compound contained in the chemical solution for forming a water-repellent protective film of the present invention has a large hydrophobic group, when forming a protective film by reacting with the silanol group formed as described above, the silicon compound is formed on the concave surface of the wafer. It is possible to exhibit excellent water repellency.
  • Oxidation of the wafer surface as described above proceeds even when pure water at room temperature is used as the aqueous cleaning liquid, but if a strongly acidic aqueous solution is used as the aqueous cleaning liquid or the temperature of the aqueous cleaning liquid is increased, Since it tends to proceed, an acid may be added to the aqueous cleaning solution for the purpose of promoting the oxidation, or the temperature of the aqueous cleaning solution may be increased. Further, hydrogen peroxide or ozone may be added for the purpose of promoting the oxidation.
  • organic solvent which is one of the preferable examples of the cleaning liquid
  • examples of the organic solvent which is one of the preferable examples of the cleaning liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. And derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
  • examples of acids that can be mixed with the aqueous cleaning liquid include inorganic acids and organic acids.
  • examples of inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc.
  • examples of organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like.
  • Examples of the alkali that may be mixed in the aqueous cleaning liquid include ammonia and choline.
  • Examples of the oxidizing agent that may be mixed in the aqueous cleaning liquid include ozone and hydrogen peroxide.
  • a plurality of cleaning liquids may be used as the cleaning liquid.
  • a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution and the organic solvent may be used as the cleaning solution, and the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution ⁇ the organic solvent.
  • the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkali aqueous solution ⁇ aqueous cleaning solution ⁇ the organic solvent.
  • the cleaning liquid may be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid.
  • the cleaning liquid contains an aqueous acid solution, particularly preferably a solution containing an aqueous acid solution and an organic solvent having a boiling point of 100 ° C. or higher
  • the protective film can be formed in a short time by increasing the temperature of the cleaning liquid to around the boiling point of the cleaning liquid. It is preferable because it is easy to form.
  • FIG. 1 is a schematic view of a wafer 1 whose surface is a surface having a concavo-convex pattern 2.
  • FIG. 2 shows a part of the a-a ′ cross section in FIG.
  • the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3
  • the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done.
  • Pattern collapse tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
  • FIG. 3 is a schematic view showing a state in which the recess 4 holds the protective film forming chemical 8 in the water repellent protective film forming step.
  • the wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1.
  • the protective film-forming chemical solution is held in the recess 4, and a protective film is formed on the surface of the recess 4, thereby making the surface water repellent.
  • the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
  • the chemical solution held at least in the concave portion of the concave / convex pattern may be replaced with a rinse solution different from the chemical solution and then transferred to a drying step.
  • the rinsing liquid include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, a mixture of the aqueous cleaning liquid and an organic solvent, and a mixture of at least one of an acid, an alkali, and a surfactant.
  • organic solvent which is one of preferred examples of the rinsing liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. , Derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
  • a plurality of cleaning liquids may be used as the rinsing liquid.
  • an organic solvent preferably containing a water-soluble organic solvent
  • an aqueous cleaning solution can be used in succession.
  • FIG. 4 shows a schematic diagram when the liquid 9 is held in the recess 4 that has been made water-repellent by the chemical solution for forming a water-repellent protective film.
  • the wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG.
  • a water repellent protective film 10 is formed on the surface of the recess 4.
  • the liquid 9 held in the recess 4 may be the chemical liquid, a rinse liquid after replacement from the chemical liquid, or a liquid in the middle of replacement (mixed liquid of the chemical liquid and the rinse liquid).
  • the water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
  • the contact angle when assuming that water is held on the surface is larger than the capillary force formula described in the background art. Since the capillary force acting on the concave portion is small, pattern collapse is less likely to occur, which is preferable.
  • a drying process is performed.
  • the liquid held on the uneven pattern surface is removed by drying.
  • the drying is performed by a known drying method such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, air drying, hot air drying, vacuum drying, and the like. Preferably it is done.
  • the liquid held in the recess before the drying step is the chemical solution, the rinse solution, or a mixed solution of the chemical solution and the rinse solution.
  • the liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the rinse liquid, or may be a liquid mixture obtained by previously mixing the chemical liquid with the rinse liquid.
  • the retained liquid may be drained and removed, and then the remaining liquid may be dried.
  • the water repellent protective film removing step is performed.
  • removing the protective film 10 it is effective to cut the C—C bond and C—F bond in the protective film.
  • the method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
  • the protective film 10 When the protective film 10 is removed by light irradiation, it is effective to cut the C—C bond and C—F bond in the protective film 10, and for this purpose, their binding energy is 83 kcal / mol. It is preferable to irradiate ultraviolet rays including wavelengths shorter than 340 nm and 240 nm, which are energy corresponding to 116 kcal / mol.
  • a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
  • the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable.
  • the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10.
  • a low-pressure mercury lamp is preferable because it emits ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
  • ozone is generated at the same time as the constituent components of the protective film 10 are decomposed by ultraviolet rays, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone.
  • this light source a low-pressure mercury lamp or an excimer lamp is used. Further, the wafer may be heated while irradiating light.
  • heating the wafer it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C.
  • the heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes.
  • ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
  • the method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
  • ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface.
  • the wafer may be irradiated with light while being exposed to ozone, or may be heated.
  • the protective film on the wafer surface can be efficiently removed by combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge.
  • the contact angle of the droplet and the capillary force acting on the concave portion which can be considered as equivalent to pattern collapse, have a correlation.
  • the capillary force may be derived from the evaluation of the contact angle of the droplet of the water repellent protective film 10 formed on the surface.
  • water which is a typical aqueous cleaning liquid, was used as the liquid.
  • the contact angle of water droplets is evaluated by dropping a few ⁇ l of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Test method for wettability of substrate glass surface”. This is done by measuring the angle.
  • the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
  • the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed.
  • the film 10 was considered and various evaluations were performed.
  • a “silicon wafer with SiN film” (indicated as SiN in the table) having a silicon nitride layer on a silicon wafer having a smooth surface was used as the wafer having a smooth surface.
  • evaluation method of wafer provided with chemical solution for forming protective film The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.
  • X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • Example I-1 (1) Preparation of chemical solution for forming protective film Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO ) 2 O]; 0.18 g, ⁇ -butyrolactone (hereinafter sometimes referred to as “GBL”) as solvent (a); 89.388 g and dipropylene glycol monomethyl ether acetate (hereinafter referred to as “GBL”) as solvent (b) DPGMEA ”may be described) [CH 3 CH (OCH 3 ) CH 2 OCH 2 CH (OCOCH 3 ) CH 3 ]; ,
  • the concentration of the silicon compound with respect to the total amount of the chemical solution for forming the protective film (hereinafter referred to as “silicon compound concentration”) is 0.5 mass%.
  • the acid concentration relative to the total amount (hereinafter referred to as “acid concentration relative to silicon compound”) is 36 mass%, and the acid concentration relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “acid concentration in the chemical solution”) is 0.
  • a chemical solution for forming a protective film having a mass ratio of the solvent (a) and the solvent (b) of 18% by mass and the solvent (b) was 90:10. It was confirmed by visual observation that the obtained chemical solution for forming a protective film had no insoluble component of the silicon compound and was a uniform solution at 20 ° C.
  • the appearance of the chemical solution as described above is described as “uniform” in Table 1, and there is an insoluble component of the silicon compound by visual observation. Describe.
  • a silicon wafer with a smooth silicon nitride film (a silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes at room temperature. Then, it is mixed with pure water for 1 minute, 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water at a volume ratio of 1: 1: 5, and then washed with a hot plate at a liquid temperature of 70 ° C. for 1 minute. It was immersed and immersed in pure water for 1 minute at room temperature and for 1 minute in 2-propanol.
  • the initial contact angle before the surface treatment was less than 10 °.
  • the contact angle after the surface treatment was 89 °, showing an excellent water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Examples I-2 to I-6 The surface treatment of the wafer was carried out by appropriately changing the silicon compound concentration, the type of solvent (b) used in Example I-1, the mass ratio of the solvent (a) and the solvent (b) in the non-aqueous solvent, The evaluation was performed. The results are shown in Table 1.
  • EHA means ethyl hexyl acetate
  • PGMEA means propylene glycol monomethyl ether acetate.
  • the temperature of the chemical solution when the appearance was evaluated was 20 ° C.
  • the treatment liquid A and the treatment liquid B are mixed at room temperature and stirred for about 5 minutes.
  • the silicon compound concentration is 0.5 mass%
  • the acid concentration with respect to the silicon compound is 36 mass%
  • the acid concentration in the chemical liquid is 0.18 mass. %
  • a chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Example I-1 A protective film-forming chemical was prepared by the same procedure as Example I-1 except that only GBL was used as the non-aqueous solvent. The obtained protective film-forming chemical was visually nonuniform at 20 ° C.
  • Example I-2 A chemical solution for forming a protective film was prepared in the same procedure as Example I-1 except that only DPGMEA was used as the non-aqueous solvent. In addition, it confirmed visually that the obtained chemical
  • Example 1-1 Thereafter, the wafer was surface-treated in the same manner as in Example 1-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 75. The contact angle was smaller than in Examples I-1 to I-4.
  • Example I-3 A chemical solution for forming a protective film was prepared by the same procedure as Example I-1 except that a non-aqueous solvent having a mass ratio of the solvent (a) to the solvent (b) of 15:85 was used. In addition, it confirmed visually that the obtained chemical
  • Example 1-1 Thereafter, the wafer was surface-treated in the same manner as in Example 1-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 76. The contact angle was smaller than in Examples I-1 to I-4.
  • Example I-1 Thereafter, the wafer was surface-treated in the same manner as in Example I-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 55. The contact angle was smaller than that of Example I-1.
  • Example I-1 Thereafter, when the surface treatment of the wafer was performed in the same manner as in Example I-1, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 61. The contact angle was smaller than that of Example I-1.
  • the contact angle of the droplet and the capillary force acting on the concave portion which can be considered as equivalent to pattern collapse, have a correlation.
  • the capillary force may be derived from the evaluation of the contact angle of the droplet of the water repellent protective film 10 formed on the surface.
  • water which is a typical aqueous cleaning liquid, was used as the liquid.
  • the contact angle of water droplets is evaluated by dropping a few ⁇ l of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Test method for wettability of substrate glass surface”. This is done by measuring the angle.
  • the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
  • the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed.
  • the film 10 was considered and various evaluations were performed.
  • a “silicon wafer with a SiO 2 film” (indicated as SiO 2 in the table) having a silicon oxide layer on a silicon wafer having a smooth surface was used as the wafer having a smooth surface.
  • evaluation method of wafer provided with chemical solution for forming protective film The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.
  • X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • Example II-1 (1) Preparation of chemical solution for forming protective film Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO ) 2 O]; 0.18 g, ⁇ -butyrolactone (hereinafter sometimes referred to as “GBL”) as solvent (a); 89.388 g and dipropylene glycol monomethyl ether acetate (hereinafter referred to as “GBL”) as solvent (b) DPGMEA ”may be described) [CH 3 CH (OCH 3 ) CH 2 OCH 2 CH (OCOCH 3 ) CH 3 ]; ,
  • the concentration of the silicon compound with respect to the total amount of the chemical solution for forming the protective film (hereinafter referred to as “silicon compound concentration”) is 0.5 mass%.
  • the acid concentration relative to the total amount (hereinafter referred to as “acid concentration relative to silicon compound”) is 36 mass%, and the acid concentration relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “acid concentration in the chemical solution”) is 0.
  • a chemical solution for forming a protective film having a mass ratio of the solvent (a) and the solvent (b) of 18% by mass and the solvent (b) was 90:10. It was confirmed by visual observation that the obtained chemical solution for forming a protective film had no insoluble component of the silicon compound and was a uniform solution at 20 ° C.
  • the appearance of the chemical solution as described above is described as “uniform” in Table 2, and there is an insoluble component of the silicon compound by visual observation. Describe.
  • a silicon wafer with a smooth silicon oxide film (a silicon wafer having a thermal oxide film layer having a thickness of 1 ⁇ m on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 minutes and then immersed in pure water It was immersed in 2-propanol for 1 minute for 1 minute.
  • the initial contact angle before the surface treatment was less than 10 ° as shown in Table 2.
  • the contact angle after the surface treatment was 103 °, showing an excellent water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Example II-2 to II-6 The surface treatment of the wafer was carried out by appropriately changing the type of the solvent (b) used in Example II-1 and the mass ratio of the solvent (a) to the solvent (b) in the non-aqueous solvent, and further evaluating it. It was. The results are shown in Table 2.
  • EHA means ethyl hexyl acetate
  • PGMEA means propylene glycol monomethyl ether acetate.
  • the temperature of the chemical solution when the appearance was evaluated was 20 ° C.
  • the treatment liquid A and the treatment liquid B are mixed at room temperature and stirred for about 5 minutes.
  • the silicon compound concentration is 0.5 mass%
  • the acid concentration with respect to the silicon compound is 36 mass%
  • the acid concentration in the chemical liquid is 0.18 mass. %
  • a chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Example II-1 A protective film-forming chemical was prepared in the same procedure as in Example II-1, except that only GBL was used as the non-aqueous solvent. The obtained protective film-forming chemical was visually nonuniform at 20 ° C.
  • Example II-1 Thereafter, the wafer was surface-treated in the same manner as in Example II-1. As shown in Table 2, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 87. The contact angle was smaller than that of Example II-1, although it showed excellent water repellency imparting effect.
  • Example II-1 Thereafter, the surface treatment of the wafer was performed in the same manner as in Example II-1. As shown in Table 2, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 92. The contact angle was smaller than that of Example II-1, although it showed excellent water repellency imparting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Disclosed is a chemical solution for forming a water-repellent protective film for forming, after the washing step and before the drying step, a water-repellent protective film on at least the concave surface of a silicon-based wafer, other than silicon oxide, that has a concave/convex pattern on the surface and contains elemental silicon on at least the concave surface of the concave/convex pattern, the chemical solution containing a silicon compound and a non-aqueous solvent; the chemical solution for forming a water-repellent protective film being characterized in that: the silicon compound is represented by general formula [1] R1 aSiX4-a; and the non-aqueous solvent comprises at least one type of solvent (a) selected from lactone-based solvents and carbonate-based solvents, as well as a solvent (b), other than solvent (a), capable of dissolving a silicon compound, with the mass ratio of solvent (a) and solvent (b) being 40:60 to 97:3.

Description

撥水性保護膜形成用薬液、撥水性保護膜形成用薬液キット、及びウェハの洗浄方法Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
 本発明は、半導体デバイス製造などにおける基板ウェハの洗浄技術に関する。 The present invention relates to a substrate wafer cleaning technique in semiconductor device manufacturing or the like.
 半導体チップの製造では、成膜、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細な凹凸パターンが形成され、その後、ウェハ表面を清浄なものとするために、水や有機溶媒等の洗浄液を用いて洗浄がなされる。素子は微細化がなされる方向にあり、凹凸パターンの間隔は益々狭くなってきている。このため、洗浄の後、洗浄液をウェハ表面から乾燥させるときにウェハの凹部に働く毛細管力により、凹凸パターンが倒れるという問題が生じやすくなってきている。この問題は、特に凹凸のパターン間隔がより狭くなった20nm台や10nm台世代の半導体チップにおいてはより顕著になってきている。 In the manufacture of semiconductor chips, a fine uneven pattern is formed on the surface of a silicon wafer through film formation, lithography, etching, etc., and then a cleaning liquid such as water or an organic solvent is used to clean the wafer surface. Cleaning is done. The elements are in the direction of miniaturization, and the interval between the concave and convex patterns is becoming narrower. For this reason, after the cleaning, when the cleaning liquid is dried from the wafer surface, a problem that the concave / convex pattern collapses due to the capillary force acting on the concave portion of the wafer is likely to occur. This problem has become more prominent particularly in semiconductor chips of the 20 nm and 10 nm generations where the uneven pattern spacing is narrower.
 このため、凹部に働く毛細管力を小さくすれば、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
For this reason, it can be expected that the pattern collapse will be eliminated if the capillary force acting on the concave portion is reduced. The magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing γ or cos θ.
P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
 パターンの倒れを防止しながらウェハ表面を洗浄する方法として、特許文献1は、ウェハ表面に残っている水をイソプロパノールなどに置換し、その後、乾燥させる方法を開示している。また、特許文献2は、ウェハ表面を水で洗浄した後、シリコンを含む凹凸パターン部に、シランカップリング剤などにより、撥水性の保護膜を形成し、次いで水でリンスしてから乾燥を行う方法を開示している。この保護膜は最終的には除去される。水でリンスを行うときにパターン部が保護膜によって撥水化されているので、凹凸パターンの倒れを抑制することに効果を生じている。この方法はアスペクト比が8以上のパターンに対しても効果があるとされている。さらに、特許文献3は撥水性の保護膜を効率的に形成できる表面処理剤として、ジシラザン構造を有する少なくとも1種の化合物を含むシリル化剤と、5又は6員環のラクトン化合物を含む溶剤とを含有する表面処理剤を使用することが開示されている。 As a method for cleaning the wafer surface while preventing pattern collapse, Patent Document 1 discloses a method in which water remaining on the wafer surface is replaced with isopropanol and then dried. In Patent Document 2, after cleaning the wafer surface with water, a water-repellent protective film is formed on the concavo-convex pattern portion containing silicon with a silane coupling agent, and then rinsed with water and then dried. A method is disclosed. This protective film is finally removed. Since the pattern portion is rendered water-repellent by the protective film when rinsing with water, the effect of suppressing the collapse of the concavo-convex pattern is produced. This method is said to be effective even for patterns having an aspect ratio of 8 or more. Furthermore, Patent Document 3 discloses a silylating agent containing at least one compound having a disilazane structure as a surface treatment agent capable of efficiently forming a water-repellent protective film, and a solvent containing a 5- or 6-membered lactone compound. It is disclosed to use a surface treatment agent containing
特開2003-45843号公報JP 2003-45843 A 特許第4403202号明細書Japanese Patent No. 4403202 特開2011-91349号公報JP 2011-91349 A
 <発明の第1の見地からの課題> <Problems from the first viewpoint of the invention>
 ウェハの凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、撥水化後の表面に水が保持されたと仮定したときの接触角がより大きいと、背景技術で述べた毛細管力の式より算出される凹部に働く毛細管力が小さくなるため、従来のシランカップリング剤よりも優れた撥水性がウェハ表面に付与されることが望まれている。一般的に、表面に酸化ケイ素膜や酸化ケイ素部分を多く有するウェハにおいては該表面に反応活性点であるシラノール基が多数存在して、撥水性能を付与しやすい。一方、表面に窒化ケイ素膜や窒化ケイ素部分を多く有するウェハやポリシリコン膜やポリシリコン部分を多く有するウェハ、或いはシリコンウェハ(以降、「酸化ケイ素以外のケイ素系ウェハ」または単に「ウェハ」と記載する場合がある)においては、該表面にシラノール基が少なく、従来のシランカップリング剤では当該ウェハ表面に優れた撥水性能を付与するのが難しかった。 As described in the background art, when trying to prevent pattern collapse by making the surface of the concave / convex pattern of the wafer water repellent, the contact angle when assuming that water is retained on the surface after water repellent is larger. Since the capillary force acting on the concave portion calculated from the equation of capillary force is reduced, it is desired that water repellency superior to conventional silane coupling agents is imparted to the wafer surface. In general, in a wafer having a silicon oxide film or a silicon oxide portion on the surface, a large number of silanol groups that are reactive sites exist on the surface, and water repellency is easily imparted. On the other hand, a wafer having a silicon nitride film or a silicon nitride portion on the surface, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer (hereinafter referred to as “silicon wafer other than silicon oxide” or simply “wafer”) In some cases, there are few silanol groups on the surface, and it has been difficult to impart excellent water repellency to the wafer surface with a conventional silane coupling agent.
 また、ウェハの洗浄工程上、前記撥水化にはウェハ表面に撥水性保護膜を速やかに形成する必要がある。速やかに撥水性保護膜を形成し、より優れた撥水性を付与するために、シランカップリング剤と凹凸パターン表面やウェハ表面に存在するシラノール基などの反応活性点との反応性を上げるべく、ラクトン化合物などの溶媒を用いることが有効であるが、特に疎水性基に多くの炭素原子を含むシランカップリング剤を用いた場合には前記のような溶媒に溶解しにくく、不溶解成分の存在により前記凹凸パターンが損傷する恐れがあるという問題点があった。本発明は、凹凸パターンの倒れを防止しながら液体を用いて酸化ケイ素以外のケイ素系ウェハを洗浄する方法において、撥水性保護膜を形成するために疎水性基が大きなケイ素化合物を用いても、不溶解成分が発生することがなく凹凸パターン表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成し、ウェハ表面により優れた撥水性を付与することが可能な撥水性保護膜形成用薬液(以降、単に「保護膜形成用薬液」又は「薬液」と記載する場合がある)、該薬液を得るための撥水性保護膜形成用薬液キット(以降、単に「薬液キット」と記載する場合がある)、及び、前記薬液又は前記薬液キットから得られる薬液を用いたウェハの洗浄方法を提供することを課題とする。
 <発明の第2の見地からの課題>
Further, in the wafer cleaning process, it is necessary to quickly form a water-repellent protective film on the wafer surface for the water repellency. In order to quickly form a water-repellent protective film and to give better water repellency, in order to increase the reactivity between the silane coupling agent and reactive sites such as silanol groups present on the uneven pattern surface and wafer surface, It is effective to use a solvent such as a lactone compound, but in particular when a silane coupling agent containing a large number of carbon atoms in the hydrophobic group is used, it is difficult to dissolve in such a solvent and the presence of insoluble components. Therefore, there is a problem that the uneven pattern may be damaged. In the method of cleaning a silicon-based wafer other than silicon oxide using a liquid while preventing the collapse of the uneven pattern, the present invention uses a silicon compound having a large hydrophobic group to form a water-repellent protective film, A water-repellent protective film (hereinafter sometimes simply referred to as “protective film”) may be formed on the surface of the concave / convex pattern without generating an insoluble component, thereby imparting superior water repellency to the wafer surface. A chemical solution for forming a water-repellent protective film (hereinafter sometimes simply referred to as “chemical solution for forming a protective film” or “chemical solution”), a chemical solution kit for forming a water-repellent protective film for obtaining the chemical solution (hereinafter simply referred to as “chemical solution”) It is an object of the present invention to provide a wafer cleaning method using the chemical solution or the chemical solution obtained from the chemical solution kit.
<Problem from the second aspect of the invention>
 ウェハの凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、撥水化後の表面に水が保持されたと仮定したときの接触角がより大きいと、背景技術で述べた毛細管力の式より算出される凹部に働く毛細管力が小さくなるため、従来のシランカップリング剤よりも優れた撥水性がウェハ表面に付与されることが望まれている。ウェハの洗浄工程上、前記撥水化にはウェハ表面に撥水性保護膜を速やかに形成する必要がある。速やかに撥水性保護膜を形成し、より優れた撥水性を付与するために、シランカップリング剤とウェハ表面に存在するシラノール基などの反応活性点との反応性を上げるべく、ラクトン化合物などの溶媒を用いることが有効であるが、特に疎水性基に多くの炭素原子を含むシランカップリング剤を用いた場合には前記のような溶媒に溶解しにくく、不溶解成分の存在により前記凹凸パターンが損傷する恐れがあるという問題点があった。本発明は、凹凸パターンの倒れを防止しながら液体を用いて表面に酸化ケイ素を含むウェハ(以降、単に「ウェハ」と記載する場合がある)を洗浄する方法において、不溶解成分が発生することがなく、凹凸パターン表面により優れた撥水性を付与する撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成することが可能な撥水性保護膜形成用薬液(以降、単に「保護膜形成用薬液」又は「薬液」と記載する場合がある)、該薬液を得るための撥水性保護膜形成用薬液キット(以降、単に「薬液キット」と記載する場合がある)、及び、前記薬液又は前記薬液キットから得られる薬液を用いたウェハの洗浄方法を提供することを課題とする。 As described in the background art, when trying to prevent pattern collapse by making the surface of the concave / convex pattern of the wafer water repellent, the contact angle when assuming that water is retained on the surface after water repellent is larger. Since the capillary force acting on the concave portion calculated from the equation of capillary force is reduced, it is desired that water repellency superior to conventional silane coupling agents is imparted to the wafer surface. In the wafer cleaning process, it is necessary to quickly form a water-repellent protective film on the wafer surface for the water repellency. In order to quickly form a water-repellent protective film and to give better water repellency, in order to increase the reactivity between the silane coupling agent and reactive sites such as silanol groups present on the wafer surface, It is effective to use a solvent. However, particularly when a silane coupling agent containing a large number of carbon atoms in the hydrophobic group is used, it is difficult to dissolve in the solvent as described above, and the uneven pattern is caused by the presence of an insoluble component. There was a problem that there was a risk of damage. According to the present invention, an insoluble component is generated in a method of cleaning a wafer containing silicon oxide on the surface (hereinafter, sometimes simply referred to as “wafer”) using a liquid while preventing collapse of the concavo-convex pattern. A water repellent protective film forming chemical that can form a water repellent protective film (hereinafter, sometimes simply referred to as “protective film”) that imparts excellent water repellency to the uneven pattern surface (hereinafter referred to as “water repellent protective film”). Simply “protective film-forming chemical solution” or “chemical solution”), a water-repellent protective film-forming chemical solution kit for obtaining the chemical solution (hereinafter sometimes simply referred to as “chemical solution kit”), It is another object of the present invention to provide a method for cleaning a wafer using a chemical solution obtained from the chemical solution or the chemical solution kit.
 <発明の第1の見地からの課題を解決するための手段> <Means for solving the problem from the first aspect of the invention>
 本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。 In the present invention, the water-repellent protective film refers to a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency. In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
 本発明の薬液を用いてウェハの処理を行うと、洗浄液等の液体がウェハの凹凸パターンの凹部から除去されるとき、すなわち、乾燥されるとき、少なくとも凹部表面に前記保護膜が形成されているので、該凹部に働く毛細管力が小さくなり、パターン倒れが生じにくくなる。 When the wafer is processed using the chemical solution of the present invention, when the liquid such as the cleaning liquid is removed from the concave portion of the concave / convex pattern of the wafer, that is, when dried, the protective film is formed at least on the concave surface. Therefore, the capillary force acting on the concave portion is reduced, and the pattern collapse hardly occurs.
 本発明は、表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含む酸化ケイ素以外のケイ素系ウェハの洗浄工程の後、乾燥工程の前において、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成用薬液であり、前記薬液はケイ素化合物と非水溶媒とが含まれる薬液であって、前記ケイ素化合物が下記一般式[1]で表され、前記非水溶媒が、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されることを特徴とする、撥水性保護膜形成用薬液である。
            R1 aSiX4-a [1]
[式[1]中、R1は、それぞれ互いに独立して、水素基、一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基からなる群から選ばれる少なくとも1つの基であり、ケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計は6以上である。また、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
The present invention has a concavo-convex pattern on the surface and repels at least the concave surface of the wafer after a cleaning step of a silicon-based wafer other than silicon oxide containing silicon element at least on the concave surface of the concavo-convex pattern and before a drying step. A water-repellent protective film-forming chemical solution for forming an aqueous protective film, wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, and the silicon compound is represented by the following general formula [1], The non-aqueous solvent is 40:60 by mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a). It is a chemical solution for forming a water-repellent protective film, characterized in that it is constituted by ˜97: 3.
R 1 a SiX 4-a [1]
[In the formula [1], R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements. The total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more. X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
 ケイ素化合物は、凹凸パターンやウェハ表面のシラノール基と化学的に反応することが可能であり、その結果、前記ケイ素化合物のケイ素元素は、凹凸パターンやウェハ表面のケイ素元素とシロキサン結合を介して化学的に結合し、撥水性保護膜を形成し、前記表面に撥水性を発現することができる。前記一般式[1]のR1で表される炭化水素基は疎水性基であり、該疎水性基が大きなもの、すなわちケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計が6以上のもの(言い換えると、R1 aで表される、a個のR1基において含まれる合計炭素数が6以上のもの)で保護膜を形成すると、ウェハ表面に良好な撥水性を発現させることができる。特に、窒化ケイ素などの、単位面積あたりの反応活性点であるシラノール基数量が少ない材料を含む凹凸パターンやウェハ表面であっても、十分に撥水性能を生じせしめる保護膜を形成することができる。従って、本発明の薬液を用いれば、ケイ素元素を含む酸化ケイ素以外のケイ素系ウェハのうち、例えば、シリコン、窒化ケイ素等の複数種類の化合物が表面に存在するウェハに対して、一度に撥水性保護膜を形成することも可能であり、効率的に、短時間で撥水性を発現させることが可能であり、生産ロットに応じた表面処理条件の変更を少なくすることに奏功する。 The silicon compound can chemically react with the concavo-convex pattern and the silanol group on the wafer surface. As a result, the silicon element of the silicon compound is chemically reacted with the concavo-convex pattern and the silicon element on the wafer surface via a siloxane bond. Can be bonded to each other to form a water-repellent protective film, and the surface can exhibit water repellency. The hydrocarbon group represented by R 1 in the general formula [1] is a hydrophobic group, and the hydrophobic group is large, that is, the total number of carbon atoms contained in all the hydrocarbon groups bonded to silicon element. When the protective film is formed with a thickness of 6 or more (in other words, the total number of carbon atoms contained in a R 1 groups represented by R 1 a is 6 or more), the wafer surface has good water repellency. Can be expressed. In particular, even a concavo-convex pattern or a wafer surface containing a material with a small number of silanol groups, which is a reactive site per unit area, such as silicon nitride, can form a protective film that sufficiently produces water repellency. . Therefore, if the chemical solution of the present invention is used, among silicon-based wafers other than silicon oxide containing silicon element, for example, a wafer having a plurality of types of compounds such as silicon and silicon nitride present on the surface at one time. A protective film can also be formed, water repellency can be expressed efficiently in a short time, and the change in surface treatment conditions according to the production lot can be reduced.
 前記薬液に含まれる溶媒は非水溶媒である。前記薬液に含まれる溶媒が水であると、水により薬液中のケイ素化合物の反応性部位(前記一般式[1]のX)が加水分解してシラノール基(Si-OH)が生成し、該反応性部位は、このシラノール基とも反応するために、ケイ素化合物同士が結合して2量体が生成する。この2量体は、凹凸パターン表面やウェハ表面のシラノール基との反応性が低いため、凹凸パターン表面やウェハ表面に十分に撥水性を付与することができない、あるいは、撥水性を付与するのに要する時間が長くなる問題がある。そのため、前記薬液の原料や、後述する薬液を得るための薬液キットの原料は、水の含有量が少ないものが好ましい。 The solvent contained in the chemical solution is a non-aqueous solvent. When the solvent contained in the chemical solution is water, the reactive site of the silicon compound in the chemical solution (X in the general formula [1]) is hydrolyzed with water to form a silanol group (Si—OH), Since the reactive site also reacts with this silanol group, silicon compounds are bonded to each other to form a dimer. This dimer has a low reactivity with the silanol group on the uneven pattern surface or wafer surface, and therefore cannot sufficiently impart water repellency to the uneven pattern surface or wafer surface, or to impart water repellency. There is a problem that it takes a long time. Therefore, the raw material of the chemical solution and the raw material of the chemical solution kit for obtaining the chemical solution described later preferably have a low water content.
 前記薬液に含まれる非水溶媒は、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されるものである。溶媒(a)を用いる理由は、上述したケイ素化合物とシラノール基とのシランカップリング反応において、該シランカップリング反応を促進する傾向があるためである。前記反応促進効果は、溶媒(a)を用いた場合、ウェハ表面の反応点であるシラノール基が溶媒和しないため、より反応活性になるために起こると考えられる。 The non-aqueous solvent contained in the chemical solution is a mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a). 40:60 to 97: 3. The reason for using the solvent (a) is that the silane coupling reaction tends to be promoted in the silane coupling reaction between the silicon compound and the silanol group described above. The reaction promoting effect is considered to occur because, when the solvent (a) is used, the silanol group, which is a reaction point on the wafer surface, is not solvated and thus becomes more reactive.
 しかし、溶媒(a)は疎水性基の大きなケイ素化合物を溶解させにくい。そこで、本発明者らは、かかる課題に鑑み、鋭意研究した結果、溶媒(a)に溶媒(b)を加えることで、ケイ素化合物の溶解性を改善しつつ、より優れた反応促進効果が得られ、またケイ素化合物濃度が低くても優れた撥水性付与効果を得られることを見出し、本発明に至った。溶媒(a)と溶媒(b)は、質量比で40:60~97:3で構成される。前記薬液に含まれる非水溶媒100質量%中の溶媒(a)の含有率が40質量%未満であると、溶媒(a)を用いることによる反応促進効果のメリットが得にくく、一方、前記の溶媒(a)の含有率が97質量%超であると、疎水性基の大きなケイ素化合物を溶解させにくく、ケイ素化合物の溶け残りが存在する場合がある。溶媒(a)と溶媒(b)の比率は、より好ましくは質量比で70:30~95:5である。前記薬液に含まれる非水溶媒100質量%中の溶媒(a)の含有率が70質量%以上であると、特にケイ素化合物の濃度が低くても、前記の反応促進効果によって優れた撥水性付与効果が得られるため好ましい。また、前記の溶媒(a)の含有率が95質量%以下であると、ケイ素化合物を溶解させ易く、溶け残りが存在しないため好ましい。 However, the solvent (a) is difficult to dissolve a silicon compound having a large hydrophobic group. Therefore, the present inventors have conducted extensive research in view of such problems, and as a result, by adding the solvent (b) to the solvent (a), a better reaction promoting effect is obtained while improving the solubility of the silicon compound. In addition, the inventors have found that an excellent water repellency imparting effect can be obtained even when the silicon compound concentration is low, and the present invention has been achieved. The solvent (a) and the solvent (b) are constituted by a mass ratio of 40:60 to 97: 3. When the content of the solvent (a) in 100% by mass of the nonaqueous solvent contained in the chemical solution is less than 40% by mass, it is difficult to obtain the merit of the reaction promoting effect by using the solvent (a). When the content of the solvent (a) is more than 97% by mass, it is difficult to dissolve the silicon compound having a large hydrophobic group, and the silicon compound may remain undissolved. The ratio of the solvent (a) to the solvent (b) is more preferably 70:30 to 95: 5 by mass ratio. When the content of the solvent (a) in 100% by mass of the non-aqueous solvent contained in the chemical solution is 70% by mass or more, excellent water repellency is imparted by the above-described reaction promoting effect even when the concentration of the silicon compound is particularly low. Since an effect is acquired, it is preferable. Further, it is preferable that the content of the solvent (a) is 95% by mass or less because the silicon compound is easily dissolved and there is no undissolved residue.
 このような溶媒(a)として、γ-ブチロラクトン、γ-バレロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、γ-ドデカノラクトン、δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、ε-ヘキサノラクトン等のラクトン系溶媒や、プロピレンカーボネートなどのカーボネート系溶媒が挙げられる。この中でも、極性が高く、前記の反応促進効果に優れる、ラクトン系溶媒がより好ましい。 Examples of such a solvent (a) include γ-butyrolactone, γ-valerolactone, γ-hexanolactone, γ-heptanolactone, γ-octanolactone, γ-nonanolactone, γ-decanolactone, γ-undecanolactone, γ-dodecanolactone, δ-valerolactone, δ-hexanolactone, δ-octanolactone, δ-nonanolactone, δ-decanolactone, δ-undecanolactone, δ-dodecanolactone, ε-hexanolactone, etc. Examples include lactone solvents and carbonate solvents such as propylene carbonate. Of these, lactone solvents are more preferable because of their high polarity and excellent reaction promotion effect.
 また、前記ケイ素化合物は、プロトン性溶媒と反応しやすく、その結果、ケイ素化合物の反応性が低下しやすいため、前記非水溶媒として用いられる、前記溶媒(a)、及び溶媒(b)は、いずれも非プロトン性溶媒であることが好ましい。 In addition, the silicon compound is likely to react with a protic solvent, and as a result, the reactivity of the silicon compound is likely to be reduced. Therefore, the solvent (a) and the solvent (b) used as the non-aqueous solvent are: Both are preferably aprotic solvents.
 前記の溶媒(b)としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N-H結合を持たない窒素元素含有溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸エチルヘキシル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン株式会社製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子株式会社製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれもスリーエム社製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、N-H結合を持たない窒素元素含有溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トリエチルアミン、ピリジンなどがある。 Examples of the solvent (b) include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen elements having no NH bond. A solvent is mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, ethyl hexyl acetate, and ethyl acetoacetate. Examples of the ethers include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane. Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3- Hydrofluorocarbons such as tafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl Hydrofluoro ethers such as perfluoroisobutyl ether, Asahiklin AE-3000 (Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all manufactured by 3M), and chlorocarbons such as tetrachloromethane , Hydrochlorocarbons such as chloroform, chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2 3,3,3-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro- There are hydrochlorofluorocarbons such as 3,3,3-trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide and the like, polyhydric alcohols having no hydroxyl group Examples of derivatives include diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene. Glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol Examples of nitrogen element-containing solvents that include dimethyl ether and have no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.
 前記一般式[1]のXは、ウェハの反応サイトであるシラノール基に対して反応性を有する反応性部位であり、該反応性部位とウェハのシラノール基とが反応し、ケイ素化合物がシロキサン結合を介してウェハのケイ素元素と化学的に結合することによって前記保護膜が形成される。洗浄液を用いたウェハの洗浄に際して、ウェハの凹部から洗浄液が除去されるとき、すなわち、乾燥されるとき、前記凹部表面に前記保護膜が形成されていると、該凹部に働く毛細管力が小さくなり、パターン倒れが生じにくくなる。 X in the general formula [1] is a reactive site having reactivity with a silanol group which is a reaction site of the wafer, the reactive site reacts with the silanol group of the wafer, and the silicon compound is bonded to the siloxane bond. The protective film is formed by chemically bonding to the silicon element of the wafer via When cleaning the wafer using the cleaning liquid, when the cleaning liquid is removed from the concave portion of the wafer, that is, when the wafer is dried, if the protective film is formed on the surface of the concave portion, the capillary force acting on the concave portion is reduced. Pattern collapse is less likely to occur.
 前記一般式[1]のXの一例であるケイ素元素に結合する元素が窒素の1価の官能基には、水素、炭素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素が含まれていても良い。該官能基の例としては、イソシアネート基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、イソチオシアネート基、アジド基、アセトアミド基、-NHSi(CH33基、-NHSi(CH3249基、-NHSi(CH32817基、-N(CH3)C(O)CH3、-N(CH3)C(O)CF3、-N=C(CH3)OSi(CH33、-N=C(CF3)OSi(CH33、-NHC(O)-OSi(CH33、-NHC(O)-NH-Si(CH33、イミダゾール環(下式[4])、オキサゾリジノン環(下式[5])、モルホリン環(下式[6])、-NH-C(O)-Si(CH33、-N(H)2-b(Si(H)c4 3-cb(R4は、一部又は全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基、bは1又は2、cは0~2の整数)などがある。
Figure JPOXMLDOC01-appb-C000001
The monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is nitrogen, includes hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine, chlorine Further, elements such as bromine and iodine may be contained. Examples of such functional groups include isocyanate groups, amino groups, alkylamino groups, dialkylamino groups, isothiocyanate groups, azide groups, acetamide groups, —NHSi (CH 3 ) 3 groups, —NHSi (CH 3 ) 2 C 4. H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N (CH 3 ) C (O) CF 3 , —N═C (CH 3 ) OSi (CH 3 ) 3 , —N═C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , An imidazole ring (formula [4]), an oxazolidinone ring (formula [5]), a morpholine ring (formula [6]), —NH—C (O) —Si (CH 3 ) 3 , —N (H ) 2-b (Si (H ) c R 4 3-c) b (R 4 is a part or all of the hydrogen elements are replaced with fluorine element Monovalent hydrocarbon group which may carbon atoms also 1 ~ 18, b is 1 or 2, c is an integer of 0 to 2), and the like.
Figure JPOXMLDOC01-appb-C000001
 また、前記一般式[1]のXの一例であるケイ素元素に結合する元素が酸素の1価の官能基には、水素、炭素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素が含まれていても良い。該官能基の例としては、アルコキシ基、-OC(CH3)=CHCOCH3、-OC(CH3)=N-Si(CH33、-OC(CF3)=N-Si(CH33、-O-CO-R5(R5は、一部又は全ての水素元素がフッ素元素等で置換されていても良い炭素数が1乃至18の1価の炭化水素基)、一部又は全ての水素元素がフッ素元素等で置換されていても良いアルキルスルホネート基などがある。 In addition, the monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is oxygen is hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine Further, elements such as chlorine, bromine and iodine may be contained. Examples of the functional group, an alkoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3, -OC (CF 3) = N-Si (CH 3 ) 3 , —O—CO—R 5 (R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.), some Alternatively, there is an alkyl sulfonate group in which all hydrogen elements may be substituted with fluorine element or the like.
 また、前記一般式[1]のXの一例であるハロゲン基には、フルオロ基、クロロ基、ブロモ基、ヨード基などがある。中でもクロロ基がより好ましい。 In addition, the halogen group which is an example of X in the general formula [1] includes a fluoro group, a chloro group, a bromo group, an iodo group, and the like. Of these, a chloro group is more preferred.
 前記一般式[1]で表されるケイ素化合物としては、例えば、C49(CH32SiCl、C511(CH32SiCl、C613(CH32SiCl、C715(CH32SiCl、C817(CH32SiCl、C919(CH32SiCl、C1021(CH32SiCl、C1123(CH32SiCl、C1225(CH32SiCl、C1327(CH32SiCl、C1429(CH32SiCl、C1531(CH32SiCl、C1633(CH32SiCl、C1735(CH32SiCl、C1837(CH32SiCl、C511(CH3)HSiCl、C613(CH3)HSiCl、C715(CH3)HSiCl、C817(CH3)HSiCl、C919(CH3)HSiCl、C1021(CH3)HSiCl、C1123(CH3)HSiCl、C1225(CH3)HSiCl、C1327(CH3)HSiCl、C1429(CH3)HSiCl、C1531(CH3)HSiCl、C1633(CH3)HSiCl、C1735(CH3)HSiCl、C1837(CH3)HSiCl、C2524(CH32SiCl、C3724(CH32SiCl、C4924(CH32SiCl、C51124(CH32SiCl、C61324(CH32SiCl、C71524(CH32SiCl、C81724(CH32SiCl、(C253SiCl、C37(C252SiCl、C49(C252SiCl、C511(C252SiCl、C613(C252SiCl、C715(C252SiCl、C817(C252SiCl、C919(C252SiCl、C1021(C252SiCl、C1123(C252SiCl、C1225(C252SiCl、C1327(C252SiCl、C1429(C252SiCl、C1531(C252SiCl、C1633(C252SiCl、C1735(C252SiCl、C1837(C252SiCl、(C493SiCl、C511(C492SiCl、C613(C492SiCl、C715(C492SiCl、C817(C492SiCl、C919(C492SiCl、C1021(C492SiCl、C1123(C492SiCl、C1225(C492SiCl、C1327(C492SiCl、C1429(C492SiCl、C1531(C492SiCl、C1633(C492SiCl、C1735(C492SiCl、C1837(C492SiCl、CF324(C492SiCl、C2524(C492SiCl、C3724(C492SiCl、C4924(C492SiCl、C51124(C492SiCl、C61324(C492SiCl、C71524(C492SiCl、C81724(C492SiCl、C511(CH3)SiCl2、C613(CH3)SiCl2、C715(CH3)SiCl2、C817(CH3)SiCl2、C919(CH3)SiCl2、C1021(CH3)SiCl2、C1123(CH3)SiCl2、C1225(CH3)SiCl2、C1327(CH3)SiCl2、C1429(CH3)SiCl2、C1531(CH3)SiCl2、C1633(CH3)SiCl2、C1735(CH3)SiCl2、C1837(CH3)SiCl2、C3724(CH3)SiCl2、C4924(CH3)SiCl2、C51124(CH3)SiCl2、C61324(CH3)SiCl2、C71524(CH3)SiCl2、C81724(CH3)SiCl2、C613SiCl3、C715SiCl3、C817SiCl3、C919SiCl3、C1021SiCl3、C1123SiCl3、C1225SiCl3、C1327SiCl3、C1429SiCl3、C1531SiCl3、C1633SiCl3、C1735SiCl3、C1837SiCl3、C4924SiCl3、C51124SiCl3、C61324SiCl3、C71524SiCl3、C81724SiCl3などのクロロシラン化合物、あるいは、前記クロロシラン化合物のクロロ基を、メトキシ基やエトキシ基などの炭素数が1~18のアルコキシ基や、-OC(CH3)=CHCOCH3、-OC(CH3)=N-Si(CH33、-OC(CF3)=N-Si(CH33、-O-CO-R5(R5は、一部又は全ての水素元素がフッ素元素等で置換されていても良い炭素数が1乃至18の1価の炭化水素基)、一部又は全ての水素元素がフッ素元素等で置換されていても良いアルキルスルホネート基、イソシアネート基、イソチオシアネート基、アジド基、アセトアミド基、-NHSi(CH33基、-NHSi(CH3249基、-NHSi(CH32817基、-N(CH3)C(O)CH3、-N(CH3)C(O)CF3、-N=C(CH3)OSi(CH33、-N=C(CF3)OSi(CH33、-NHC(O)-OSi(CH33、-NHC(O)-NH-Si(CH33、イミダゾール環、オキサゾリジノン環、モルホリン環、-NH-C(O)-Si(CH33、-N(H)2-b(Si(H)c4 3-cb(R4は一部又は全ての水素元素がフッ素元
素に置き換えられていても良い炭素数が1~18の1価の炭化水素基、bは1又は2、cは0~2の整数)、フルオロ基、ブロモ基、ヨード基、ニトリル基、または、-CO-NH-Si(CH33に置き換えた化合物などが挙げられる。
Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl, C 7 H 15 (CH 3 ) HSiCl, C 8 H 17 (CH 3 ) HSiCl, C 9 H 19 (CH 3 ) HS iCl, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl, C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl, C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3 ) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3 ) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3 ) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, (C 2 H 5) 3 SiCl, C 3 H 7 (C 2 H 5) 2 SiCl, C 4 H 9 (C 2 H 5) 2 SiCl, C 5 H 11 (C 2 H 5 2 SiCl, C 6 H 13 ( C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5 ) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl, C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 (C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9 ) 2 SiCl, C 6 H 13 (C 4 H 9 ) 2 SiCl, C 7 H 15 (C 4 H 9 ) 2 SiCl, C 8 H 17 (C 4 H 9 ) 2 SiCl, C 9 H 19 (C 4 H 9 ) 2 SiCl, C 10 H 21 (C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9 ) 2 SiCl C 15 H 31 (C 4 H 9 ) 2 SiCl, C 16 H 33 (C 4 H 9 ) 2 SiCl, C 17 H 35 (C 4 H 9 ) 2 SiCl, C 18 H 37 (C 4 H 9 ) 2 SiCl, CF 3 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 7 F 15 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 H 11 (CH 3 ) SiCl 2 , C 6 H 13 (CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) S iCl 2 , C 8 H 17 (CH 3 ) SiCl 2 , C 9 H 19 (CH 3 ) SiCl 2 , C 10 H 21 (CH 3 ) SiCl 2 , C 11 H 23 (CH 3 ) SiCl 2 , C 12 H 25 (CH 3 ) SiCl 2 , C 13 H 27 (CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) SiCl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3 ) SiCl 2 , C 3 F 7 C 2 H 4 (CH 3 ) SiCl 2 , C 4 F 9 C 2 H 4 (CH 3 ) SiCl 2 , C 5 F 11 C 2 H 4 (CH 3 ) SiCl 2 , C 6 F 13 C 2 H 4 (CH 3 ) SiCl 2 , C 7 F 15 C 2 H 4 (CH 3 ) SiCl 2 , C 8 F 17 C 2 H 4 (CH 3 ) SiCl 2 , C 6 H 13 SiCl 3 , C 7 H 15 SiCl 3 , C 8 H 17 SiCl 3 , C 9 H 19 SiCl 3 , C 10 H 21 SiCl 3 , C 11 H 23 SiCl 3 , C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , C 4 F 9 C 2 H 4 SiCl 3 , C 5 F 11 C 2 H 4 SiCl 3 , C 6 F 13 C 2 H 4 SiCl 3 , C 7 F 15 A chlorosilane compound such as C 2 H 4 SiCl 3 and C 8 F 17 C 2 H 4 SiCl 3 , or a chloro group of the chlorosilane compound, an alkoxy group having 1 to 18 carbon atoms such as a methoxy group or an ethoxy group, -OC (CH 3 ) = CHCOCH 3 , -OC (CH 3 ) = N-Si (CH 3 ) 3 , -OC (CF 3 ) = N-Si (CH 3 ) 3 , -O-CO-R 5 ( R 5 is, some or all of the hydrogen elements may be substituted by fluorine element or the like coal A monovalent hydrocarbon group having a number of 1 to 18), an alkyl sulfonate group, an isocyanate group, an isothiocyanate group, an azide group, an acetamide group, a part or all of which may be substituted with fluorine elements, NHSi (CH 3 ) 3 group, —NHSi (CH 3 ) 2 C 4 H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N ( CH 3 ) C (O) CF 3 , —N═C (CH 3 ) OSi (CH 3 ) 3 , —N═C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , imidazole ring, oxazolidinone ring, morpholine ring, —NH—C (O) —Si (CH 3 ) 3 , —N (H) 2 -b (Si (H) c R 4 3-c ) b (R 4 is a part or all of hydrogen elements replaced with fluorine elements. A monovalent hydrocarbon group having 1 to 18 carbon atoms, b is an integer of 1 or 2, and c is an integer of 0 to 2), a fluoro group, a bromo group, an iodo group, a nitrile group, or —CO And compounds substituted with —NH—Si (CH 3 ) 3 .
 上記のケイ素化合物のうち、前記一般式[1]のR1で表される炭化水素基の水素元素がハロゲン元素で置換される場合、撥水性能を考慮すると置換するハロゲン元素としてはフッ素元素であることが好ましい。 Among the above silicon compounds, when the hydrogen element of the hydrocarbon group represented by R 1 in the general formula [1] is substituted with a halogen element, the halogen element to be substituted is a fluorine element in consideration of water repellency. Preferably there is.
 また、前記撥水性保護膜形成用薬液は、前記一般式[1]で表されるケイ素化合物を2種以上含有するものであっても良い。 The water repellent protective film-forming chemical may contain two or more silicon compounds represented by the general formula [1].
 また、前記撥水性保護膜形成用薬液は、10℃乃至160℃の温度で保持された状態のものであると、前記ケイ素化合物が薬液中に溶解された状態になりやすく、より均一な薬液になりやすいため好ましく、該温度は、特には50~120℃が好ましい。なお、後述する保護膜形成工程においても、該薬液が、10℃乃至160℃の温度で保持された状態のものであると、より短時間で前記保護膜を形成しやすいため好ましく、該温度は、特には50~120℃が好ましい。 Further, when the chemical solution for forming the water repellent protective film is in a state of being maintained at a temperature of 10 ° C. to 160 ° C., the silicon compound is likely to be dissolved in the chemical solution, so that a more uniform chemical solution is obtained. The temperature is preferably 50 to 120 ° C. In the protective film forming step described later, it is preferable that the chemical solution is maintained at a temperature of 10 ° C. to 160 ° C. because the protective film can be easily formed in a shorter time. In particular, 50 to 120 ° C. is preferable.
 前記一般式[1]において4-aで表されるケイ素化合物のXの数が1であると(すなわちa=3であると)、前記保護膜を均質に形成できるのでより好ましい。また、一般式[1]で表されるケイ素化合物のうち、R1が、炭素数が4~18の、一部又は全ての水素元素がハロゲン元素に置換されていても良い炭化水素基1個と、メチル基2個からなるもの(つまり、下記一般式[2]で表される化合物)は、凹凸パターン表面やウェハ表面のシラノール基との反応性がより高いので好ましい。これは、疎水性基による立体障害が、凹凸パターン表面やウェハ表面のシラノール基に対するケイ素化合物の反応性に大きな影響を与えるためであり、ケイ素元素に結合する炭化水素基は最も長い一つを除く残り二つは短い方が好ましいからである。
          R2(CH32SiX [2]
[式[2]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基である。]
It is more preferable that the number of X of the silicon compound represented by 4-a in the general formula [1] is 1 (that is, a = 3) because the protective film can be formed uniformly. Further, in the silicon compound represented by the general formula [1], R 1 is one hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with halogen elements. A compound composed of two methyl groups (that is, a compound represented by the following general formula [2]) is preferable because it has higher reactivity with the concavo-convex pattern surface and the silanol group on the wafer surface. This is because the steric hindrance due to the hydrophobic group has a great influence on the reactivity of the silicon compound with the silanol group on the uneven pattern surface or wafer surface, and the hydrocarbon group bonded to the silicon element excludes the longest one. This is because the remaining two are preferably shorter.
R 2 (CH 3 ) 2 SiX [2]
[In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element. From the group consisting of a monovalent functional group in which the element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and —CO—NH—Si (CH 3 ) 3 At least one group selected. ]
 また、ウェハ表面のシラノール基に対するケイ素化合物の反応性を考慮すると、前記ケイ素化合物は下記一般式[3]で表されるケイ素化合物であることがより好ましい。
        R2(CH32Si-N(R32 [3]
[式[3]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、R3はメチル基、エチル基、プロピル基、又はブチル基である。]
In consideration of the reactivity of the silicon compound with respect to the silanol group on the wafer surface, the silicon compound is more preferably a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3]
[In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
 前記一般式[3]で表されるケイ素化合物としては、例えば、C49(CH32SiN(CH32、C511(CH32SiN(CH32、C613(CH32SiN(CH32、C715(CH32SiN(CH32、C817(CH32SiN(CH32、C919(CH32SiN(CH32、C1021(CH32SiN(CH32、C1123(CH32SiN(CH32、C1225(CH32SiN(CH32、C1327(CH32SiN(CH32、C1429(CH32SiN(CH32、C1531(CH32SiN(CH32、C1633(CH32SiN(CH32、C1735(CH32SiN(CH32、C1837(CH32SiN(CH32、C511(CH3)HSiN(CH32、C613(CH3)HSiN(CH32、C715(CH3)HSiN(CH32、C817(CH3)HSiN(CH32、C919(CH3)HSiN(CH32、C1021(CH3)HSiN(CH32、C1123(CH3)HSiN(CH32、C1225(CH3)HSiN(CH32、C1327(CH3)HSiN(CH32、C1429(CH3)HSiN(CH32、C1531(CH3)HSiN(CH32、C1633(CH3)HSiN(CH32、C1735(CH3)HSiN(CH32、C1837(CH3)HSiN(CH32、C2524(CH32SiN(CH32、C3724(CH32SiN(CH32、C4924(CH32SiN(CH32、C51124(CH32SiN(CH32、C61324(CH32SiN(CH32、C71524(CH32SiN(CH32、C81724(CH32SiN(CH32、(C253SiN(CH32、C37(C252SiN(CH32、C49(C252SiN(CH32、C511(C252SiN(CH32、C613(C252SiN(CH32、C715(C252SiN(CH32、C817(C252SiN(CH32、C919(C252SiN(CH32、C1021(C252SiN(CH32、C1123(C252SiN(CH32、C1225(C252SiN(CH32、C1327(C252SiN(CH32、C1429(C252SiN(CH32、C1531(C252SiN(CH32、C1633(C252SiN(CH32、C1735(C252SiN(CH32、C1837(C252SiN(CH32、(C493SiN(CH32、C511(C492SiN(CH32、C613(C492SiN(CH32、C715(C492SiN(CH32、C817(C492SiN(CH32、C919(C492SiN(CH32、C1021(C492SiN(CH32、C1123(C492SiN(CH32、C1225(C492SiN(CH32、C1327(C492SiN(CH32、C1429(C492SiN(CH32、C1531(C492SiN(CH32、C1633(C492SiN(CH32、C1735(C492SiN(CH32、C1837(C492SiN(CH32、C511(CH3)Si[N(CH322、C613(CH3)Si[N(CH322、C715(CH3)Si[N(CH322、C817(CH3)Si[N(CH322、C919(CH3)Si[N(CH322、C1021(CH3)Si[N(CH322、C1123(CH3)Si[N(CH322、C1225(CH3)Si[N(CH322、C1327(CH3)Si[N(CH322、C1429(CH3)Si[N(CH322、C1531(CH3)Si[N(CH322、C1633(CH3)Si[N(CH322、C1735(CH3)Si[N(CH322、C1837(CH3)Si[N(CH322、C3724(CH3)Si[N(CH322、C4924(CH3)Si[N(CH322、C51124(CH3)Si[N(CH322、C61324(CH3)Si[N(CH322、C71524(CH3)Si[N(CH322、C81724(CH3)Si[N(CH322、C613Si[N(CH323、C715Si[N(CH323、C817Si[N(CH323、C919Si[N(CH323、C1021Si[N(CH323、C1123Si[N(CH323、C
1225Si[N(CH323、C1327Si[N(CH323、C1429Si[N(CH323、C1531Si[N(CH323、C1633Si[N(CH323、C1735Si[N(CH323、C1837Si[N(CH323、C4924Si[N(CH323、C51124Si[N(CH323、C61324Si[N(CH323、C71524Si[N(CH323、C81724Si[N(CH323、C49(CH32SiN(C252、C511(CH32SiN(C252、C613(CH32SiN(C252、C715(CH32SiN(C252、C817(CH32SiN(C252、C919(CH32SiN(C252、C1021(CH32SiN(C252、C1123(CH32SiN(C252、C1225(CH32SiN(C252、C1327(CH32SiN(C252、C1429(CH32SiN(C252、C1531(CH32SiN(C252、C1633(CH32SiN(C252、C1735(CH32SiN(C252、C1837(CH32SiN(C252、C4924(CH32SiN(C252、C4924(CH32SiN(C252、C51124(CH32SiN(C252、C61324(CH32SiN(C252、C71524(CH32SiN(C252、C81724(CH32SiN(C252、(C253SiN(C252、C37(C252SiN(C252、C49(C252SiN(C252、C511(C252SiN(C252、C613(C252SiN(C252、C715(C252SiN(C252、C817(C252SiN(C252、C919(C252SiN(C252、C1021(C252SiN(C252、C1123(C252SiN(C252、C1225(C252SiN(C252、C1327(C252SiN(C252、C1429(C252SiN(C252、C1531(C252SiN(C252、C1633(C252SiN(C252、C1735(C252SiN(C252、C1837(C252SiN(C252、(C493SiN(C252、C511(C492SiN(C252、C613(C492SiN(C252、C715(C492SiN(C252、C817(C492SiN(C252、C919(C492SiN(C252、C1021(C492SiN(C252、C1123(C492SiN(C252、C1225(C492SiN(C252、C1327(C492SiN(C252、C1429(C492SiN(C252、C1531(C492SiN(C252、C1633(C492SiN(C252、C1735(C492SiN(C252、C1837(C492SiN(C252などの化合物や、上記の窒素元素に結合したメチル基やエチル基がプロピル基やブチル基に置き換わった化合物が挙げられる。
Examples of the silicon compound represented by the general formula [3] include C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 ( CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 2, C 5 H 11 (CH 3) HSiN (CH 3) 2, C 6 H 13 (CH 3) HSiN (CH 3) 2, C 7 H 15 (CH 3) HSiN (CH 3) 2, C 8 H 17 (CH 3 ) HSiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) HSiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) HSiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) HSiN (CH 3) 2, C 12 H 25 (CH 3) HSiN (CH 3) 2, C 13 H 27 (CH 3) HSiN (CH 3) 2, C 14 H 29 (CH 3) HSiN (CH 3) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) HSiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) HSiN (CH 3 ) 2 , C 18 H 37 (CH 3) HSiN (CH 3) 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (C 3) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, (C 2 H 5) 3 SiN (CH 3) 2, C 3 H 7 (C 2 H 5) 2 SiN (CH 3) 2, C 4 H 9 (C 2 H 5) 2 SiN (CH 3 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 2 H 5) 2 SiN (CH 3) 2, C 11 H 23 (C 2 H 5) 2 SiN (CH 3) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 4 H 9) 2 SiN (CH 3) 2, C 12 H 25 (C 4 H 9) 2 S N (CH 3) 2, C 13 H 27 (C 4 H 9) 2 SiN (CH 3) 2, C 14 H 29 (C 4 H 9) 2 SiN (CH 3) 2, C 15 H 31 (C 4 H 9) 2 SiN (CH 3 ) 2, C 16 H 33 (C 4 H 9) 2 SiN (CH 3) 2, C 17 H 35 (C 4 H 9) 2 SiN (CH 3) 2, C 18 H 37 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 H 15 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 H 17 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 9 H 19 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 10 H 21 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 11 H 23 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 12 H 25 (CH 3) Si [ N (CH 3) 2] 2, C 13 H 27 (CH 3) Si [N ( H 3) 2] 2, C 14 H 29 (CH 3) Si [N (CH 3) 2] 2, C 15 H 31 (CH 3) Si [N (CH 3) 2] 2, C 16 H 33 ( CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 17 H 35 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 Si [N (CH 3 ) 2] 3, C 7 H 15 Si [N (CH 3) 2] 3, C 8 H 17 Si [N (CH 3) 2] 3, C 9 H 19 Si [N (CH 3 ) 2 ] 3 , C 10 H 21 Si [N (CH 3 ) 2 ] 3 , C 11 H 23 Si [N (CH 3 ) 2 ] 3 , C
12 H 25 Si [N (CH 3) 2] 3, C 13 H 27 Si [N (CH 3) 2] 3, C 14 H 29 Si [N (CH 3) 2] 3, C 15 H 31 Si [ N (CH 3 ) 2 ] 3 , C 16 H 33 Si [N (CH 3 ) 2 ] 3 , C 17 H 35 Si [N (CH 3 ) 2 ] 3 , C 18 H 37 Si [N (CH 3 ) 2] 3, C 4 F 9 C 2 H 4 Si [N (CH 3) 2] 3, C 5 F 11 C 2 H 4 Si [N (CH 3) 2] 3, C 6 F 13 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 7 F 15 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 8 F 17 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 4 H 9 (CH 3) 2 SiN (C 2 H 5) 2, C 5 H 11 (CH 3) 2 SiN (C 2 H 5) 2, C 6 H 13 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 7 F 15 C 2 H 4 (CH 3) 2 iN (C 2 H 5) 2 , C 8 F 17 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, (C 2 H 5) 3 SiN (C 2 H 5) 2, C 3 H 7 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN ( C 2 H 5 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN ( C 2 H 5 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 15 H 31 (C 2 H 5 2 SiN (C 2 H 5) 2, C 16 H 33 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 18 H 37 (C 2 H 5) 2 SiN (C 2 H 5) 2, (C 4 H 9) 3 SiN (C 2 H 5) 2, C 5 H 11 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 6 H 13 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 7 H 15 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (C 2 H 5) 2, C 11 H 23 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 12 H 25 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 13 H 27 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 15 H 31 (C 4 H 9 2 SiN (C 2 H 5) 2, C 16 H 33 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 4 H 9) 2 SiN (C 2 H 5) 2, Examples thereof include compounds such as C 18 H 37 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 and compounds in which a methyl group or an ethyl group bonded to the nitrogen element is replaced with a propyl group or a butyl group.
 また、前記撥水性保護膜形成用薬液中のケイ素化合物濃度は、0.1~4質量%であることが好ましい。本発明の薬液では、前述のように溶媒(a)によるシランカップリング反応の促進効果により、ケイ素化合物濃度が0.1質量%以上であれば、ウェハ表面に優れた撥水性を付与することができるため好ましい。また、該薬液のコストを考慮すれば、ケイ素化合物の濃度は低いほうが好ましく、その上限は4質量%が好ましい。 Further, the silicon compound concentration in the chemical solution for forming a water repellent protective film is preferably 0.1 to 4% by mass. In the chemical solution of the present invention, excellent water repellency can be imparted to the wafer surface as long as the silicon compound concentration is 0.1% by mass or more due to the effect of promoting the silane coupling reaction by the solvent (a) as described above. This is preferable because it is possible. In consideration of the cost of the chemical solution, the concentration of the silicon compound is preferably low, and the upper limit is preferably 4% by mass.
 また、前記薬液には、保護膜形成剤であるケイ素化合物と、凹凸パターン表面やウェハ表面のシラノール基との反応を促進させるために、さらに酸が含まれることが好ましい。このような酸として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸が好適に用いられる。特に、反応促進効果を考慮すると、トリフルオロ酢酸、無水トリフルオロ酢酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。 In addition, it is preferable that the chemical solution further contains an acid in order to promote the reaction between the silicon compound as the protective film forming agent and the silanol groups on the uneven pattern surface or the wafer surface. As such an acid, a water-free acid such as trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride and the like is preferable. Used for. In particular, in consideration of the reaction promoting effect, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid may not contain moisture. preferable.
 特に、一般式[1]における疎水性基R1の炭素数が大きくなると、立体障害のために、凹凸パターン表面やウェハ表面のシラノール基に対するケイ素化合物の反応性が低下する場合がある。この場合は、水を含まない酸を添加することで、凹凸パターン表面やウェハ表面のシラノール基とケイ素化合物との反応が促進され、疎水性基の立体障害による反応性の低下を補ってくれる場合がある。 In particular, when the carbon number of the hydrophobic group R 1 in the general formula [1] increases, the reactivity of the silicon compound with respect to the silanol groups on the uneven pattern surface or the wafer surface may decrease due to steric hindrance. In this case, by adding an acid that does not contain water, the reaction between the silanol group on the uneven pattern surface and the wafer surface and the silicon compound is promoted, which compensates for the decrease in reactivity due to steric hindrance of the hydrophobic group There is.
 酸の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01~100質量%が好ましい。添加量が少なくなると反応促進効果が得られにくい。また、過剰に添加しても反応促進効果は向上せず、逆に反応促進効果が低下する場合もある。さらに、不純物として凹凸パターン表面やウェハ表面に残留する懸念もある。このため、前記酸の添加量は、0.01~100質量%が好ましく、より好ましくは0.1~50質量%である。これを考慮すると、酸の前記薬液総量に対する添加量は、前記薬液の総量100質量%に対して、0.0001~50質量%が好ましく、より好ましくは0.001~33質量%である。 The addition amount of the acid is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. When the amount added is small, it is difficult to obtain a reaction promoting effect. Moreover, even if it adds excessively, the reaction promotion effect will not improve, and conversely, the reaction promotion effect may fall. Further, there is a concern that the impurities remain on the surface of the concave / convex pattern or the wafer surface as impurities. For this reason, the addition amount of the acid is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass. Considering this, the amount of acid added to the total amount of the chemical solution is preferably 0.0001 to 50% by mass, more preferably 0.001 to 33% by mass, with respect to 100% by mass of the total amount of the chemical solution.
 また、本発明は、上記の撥水性保護膜形成用薬液を得るための撥水性保護膜形成用薬液キットであり、該薬液キットが、前記一般式[1]で表されるケイ素化合物と、溶媒(a)及び/又は溶媒(b)とを有する処理液Aと、酸と、前記の溶媒(a)及び/又は溶媒(b)とを有する処理液Bからなることを特徴とする、撥水性保護膜形成用薬液キットである。 The present invention also provides a water-repellent protective film-forming chemical solution kit for obtaining the above-described water-repellent protective film-forming chemical solution, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent. Water repellent, characterized in that it comprises a treatment liquid A having (a) and / or a solvent (b), an acid, and a treatment liquid B having the solvent (a) and / or the solvent (b). This is a chemical solution kit for forming a protective film.
 前記薬液キットは、別々に保管された処理液Aと処理液Bとを混合することで、前記薬液とするものであり、ケイ素化合物、溶媒(a)、及び、溶媒(b)は、前述の撥水性保護膜形成用薬液で記載したものと同様のものを用いることができる。なお、処理液A及びBに含まれる溶媒(a)と溶媒(b)の含有比率は特に限定されないが、処理液Aと処理液Bとを混合して前記薬液を得た際に、該薬液に含まれる溶媒(a)と溶媒(b)が、質量比で40:60~97:3で構成されるように調製される。 The said chemical | medical solution kit is what makes the said chemical | medical solution by mixing the processing liquid A and the processing liquid B which were stored separately, and a silicon compound, a solvent (a), and a solvent (b) are the above-mentioned. The thing similar to what was described with the chemical | medical solution for water-repellent protective film formation can be used. In addition, the content ratio of the solvent (a) and the solvent (b) contained in the treatment liquids A and B is not particularly limited, but when the treatment liquid A and the treatment liquid B are mixed to obtain the chemical liquid, the chemical liquid The solvent (a) and the solvent (b) contained in are prepared so as to be constituted by a mass ratio of 40:60 to 97: 3.
 また、前記薬液キットで用いられる溶媒(a)は、極性が高く、前記の反応促進効果に優れる、ラクトン系溶媒であることが好ましい。 Further, the solvent (a) used in the chemical solution kit is preferably a lactone solvent having high polarity and excellent in the reaction promoting effect.
 また、前記薬液キットで用いられるケイ素化合物は前記一般式[2]で表されるケイ素化合物であることが好ましい。 The silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [2].
 また、前記薬液キットで用いられるケイ素化合物は前記一般式[3]で表されるケイ素化合物であることが好ましい。 Further, the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [3].
 また、本発明は、表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含む酸化ケイ素以外のケイ素系ウェハの洗浄において、以下に示す工程、
  前記ウェハ表面を洗浄液で洗浄する、洗浄工程、
  前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
  ウェハ表面の液体を除去する、乾燥工程、
  前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
を含み、撥水性保護膜形成工程において上記の撥水性保護膜形成用薬液、又は上記の撥水性保護膜形成用薬液キットから得られる撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法である。
In the cleaning of a silicon-based wafer other than silicon oxide having a concavo-convex pattern on the surface and containing silicon element at least on the surface of the concavo-convex pattern, the present invention includes the following steps:
Cleaning the wafer surface with a cleaning liquid,
A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
A drying process to remove the liquid on the wafer surface;
A water-repellent protective film removing step for removing the water-repellent protective film from the surface of the recess, wherein the water-repellent protective film-forming chemical solution or the water-repellent protective film-forming chemical solution kit is included in the water-repellent protective film-forming step. The wafer cleaning method is characterized by using the obtained chemical solution for forming a water-repellent protective film.
 また、前記ウェハは、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハであることが好ましい。 Further, it is preferable that the wafer is a wafer containing silicon nitride on at least the concave surface of the concave / convex pattern.
 また、撥水性保護膜除去工程は、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることが好ましい。
 <発明の第2の見地からの課題を解決するための手段>
Further, the water repellent protective film removing step is selected from light irradiation of the wafer surface, heating of the wafer, irradiation of the wafer surface with plasma, exposure of the wafer surface to ozone, and corona discharge of the wafer. It is preferable to carry out by at least one processing method.
<Means for Solving the Problems from the Second Viewpoint of the Invention>
 本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。 In the present invention, the water-repellent protective film refers to a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency. In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
 本発明の薬液を用いてウェハの処理を行うと、洗浄液等の液体がウェハの凹凸パターンの凹部から除去されるとき、すなわち、乾燥されるとき、少なくとも凹部表面に前記保護膜が形成されているので、該凹部に働く毛細管力が小さくなり、パターン倒れが生じにくくなる。 When the wafer is processed using the chemical solution of the present invention, when the liquid such as the cleaning liquid is removed from the concave portion of the concave / convex pattern of the wafer, that is, when dried, the protective film is formed at least on the concave surface. Therefore, the capillary force acting on the concave portion is reduced, and the pattern collapse hardly occurs.
 本発明は、表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に酸化ケイ素を含むウェハの洗浄工程の後、乾燥工程の前において、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成用薬液であり、前記薬液はケイ素化合物と非水溶媒とが含まれる薬液であって、前記ケイ素化合物が下記一般式[1]で表され、前記非水溶媒が、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されることを特徴とする、撥水性保護膜形成用薬液である。
            R1 aSiX4-a [1]
[式[1]中、R1は、それぞれ互いに独立して、水素基、一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基からなる群から選ばれる少なくとも1つの基であり、ケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計は6以上である。また、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
The present invention forms a water-repellent protective film on at least the concave surface of the wafer after the step of cleaning the wafer having a concave-convex pattern on the surface and containing silicon oxide on at least the concave surface of the concave-convex pattern and before the drying step. A chemical solution for forming a water-repellent protective film, wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, wherein the silicon compound is represented by the following general formula [1], A mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a) is 40:60 to 97: 3 A chemical solution for forming a water repellent protective film.
R 1 a SiX 4-a [1]
[In the formula [1], R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements. The total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more. X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
 ケイ素化合物は、凹凸パターンやウェハ表面のシラノール基と化学的に反応することが可能であり、その結果、前記ケイ素化合物のケイ素元素は、凹凸パターンやウェハ表面のケイ素元素とシロキサン結合を介して化学的に結合し、撥水性保護膜を形成し、前記表面に撥水性を発現することができる。前記一般式[1]のR1で表される炭化水素基は疎水性基であり、該疎水性基が大きなもの、すなわちケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計が6以上のもの(言い換えると、R1 aで表される、a個のR1基において含まれる合計炭素数が6以上のもの)で保護膜を形成すると、ウェハ表面により優れた撥水性を付与することができる。 The silicon compound can chemically react with the concavo-convex pattern and the silanol group on the wafer surface. As a result, the silicon element of the silicon compound is chemically reacted with the concavo-convex pattern and the silicon element on the wafer surface via a siloxane bond. Can be bonded to each other to form a water-repellent protective film, and the surface can exhibit water repellency. The hydrocarbon group represented by R 1 in the general formula [1] is a hydrophobic group, and the hydrocarbon group is large, that is, the total number of carbon atoms contained in all the hydrocarbon groups bonded to silicon element. When the protective film is formed with a number of 6 or more (in other words, the number of carbon atoms contained in a number of R 1 groups represented by R 1 a is 6 or more), the wafer surface has better water repellency. Can be granted.
 前記薬液に含まれる溶媒は非水溶媒である。前記薬液に含まれる溶媒が水であると、水により薬液中のケイ素化合物の反応性部位(前記一般式[1]のX)が加水分解してシラノール基(Si-OH)が生成し、該反応性部位は、このシラノール基とも反応するために、ケイ素化合物同士が結合して2量体が生成する。この2量体は、凹凸パターン表面やウェハ表面のシラノール基との反応性が低いため、凹凸パターン表面やウェハ表面に十分に撥水性を付与することができない、あるいは、撥水性を付与するのに要する時間が長くなる問題がある。そのため、前記薬液の原料や、後述する薬液を得るための薬液キットの原料は、水の含有量が少ないものが好ましい。 The solvent contained in the chemical solution is a non-aqueous solvent. When the solvent contained in the chemical solution is water, the reactive site of the silicon compound in the chemical solution (X in the general formula [1]) is hydrolyzed with water to form a silanol group (Si—OH), Since the reactive site also reacts with this silanol group, silicon compounds are bonded to each other to form a dimer. This dimer has a low reactivity with the silanol group on the uneven pattern surface or wafer surface, and therefore cannot sufficiently impart water repellency to the uneven pattern surface or wafer surface, or to impart water repellency. There is a problem that it takes a long time. Therefore, the raw material of the chemical solution and the raw material of the chemical solution kit for obtaining the chemical solution described later preferably have a low water content.
 前記薬液に含まれる非水溶媒は、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されるものである。溶媒(a)を用いる理由は、上述したケイ素化合物とシラノール基とのシランカップリング反応において、該シランカップリング反応を促進する傾向があるためである。前記反応促進効果は、溶媒(a)を用いた場合、ウェハ表面の反応点であるシラノール基が溶媒和しないため、より反応活性になるために起こると考えられる。 The non-aqueous solvent contained in the chemical solution is a mass ratio of at least one solvent (a) selected from a lactone solvent and a carbonate solvent and a solvent (b) soluble in a silicon compound other than the solvent (a). 40:60 to 97: 3. The reason for using the solvent (a) is that the silane coupling reaction tends to be promoted in the silane coupling reaction between the silicon compound and the silanol group described above. The reaction promoting effect is considered to occur because, when the solvent (a) is used, the silanol group, which is a reaction point on the wafer surface, is not solvated and thus becomes more reactive.
 しかし、溶媒(a)は疎水性基の大きなケイ素化合物を溶解させにくい。そこで、本発明者らは、かかる課題に鑑み、鋭意研究した結果、溶媒(a)に溶媒(b)を加えることで、ケイ素化合物の溶解性を改善しつつ、より優れた反応促進効果が得られ、またケイ素化合物濃度が低くても優れた撥水性付与効果を得られることを見出し、本発明に至った。溶媒(a)と溶媒(b)は、質量比で40:60~97:3で構成される。前記薬液に含まれる非水溶媒100質量%中の溶媒(a)の含有率が40質量%未満であると、溶媒(a)を用いることによる反応促進効果のメリットが得にくく、一方、前記の溶媒(a)の含有率が97質量%超であると、疎水性基の大きなケイ素化合物を溶解させにくく、ケイ素化合物の溶け残りが存在する場合がある。溶媒(a)と溶媒(b)の比率は、より好ましくは質量比で70:30~95:5である。前記薬液に含まれる非水溶媒100質量%中の溶媒(a)の含有率が70質量%以上であると、特にケイ素化合物の濃度が低くても、前記の反応促進効果によって優れた撥水性付与効果が得られるため好ましい。また、前記の溶媒(a)の含有率が95質量%以下であると、ケイ素化合物を溶解させ易く、溶け残りが存在しないため好ましい。 However, the solvent (a) is difficult to dissolve a silicon compound having a large hydrophobic group. Therefore, the present inventors have conducted extensive research in view of such problems, and as a result, by adding the solvent (b) to the solvent (a), a better reaction promoting effect is obtained while improving the solubility of the silicon compound. In addition, the inventors have found that an excellent water repellency imparting effect can be obtained even when the silicon compound concentration is low, and the present invention has been achieved. The solvent (a) and the solvent (b) are constituted by a mass ratio of 40:60 to 97: 3. When the content of the solvent (a) in 100% by mass of the nonaqueous solvent contained in the chemical solution is less than 40% by mass, it is difficult to obtain the merit of the reaction promoting effect by using the solvent (a). When the content of the solvent (a) is more than 97% by mass, it is difficult to dissolve the silicon compound having a large hydrophobic group, and the silicon compound may remain undissolved. The ratio of the solvent (a) to the solvent (b) is more preferably 70:30 to 95: 5 by mass ratio. When the content of the solvent (a) in 100% by mass of the non-aqueous solvent contained in the chemical solution is 70% by mass or more, excellent water repellency is imparted by the above-described reaction promoting effect even when the concentration of the silicon compound is particularly low. Since an effect is acquired, it is preferable. Further, it is preferable that the content of the solvent (a) is 95% by mass or less because the silicon compound is easily dissolved and there is no undissolved residue.
 このような溶媒(a)として、γ-ブチロラクトン、γ-バレロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、γ-ドデカノラクトン、δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、ε-ヘキサノラクトン等のラクトン系溶媒や、プロピレンカーボネートなどのカーボネート系溶媒が挙げられる。この中でも、極性が高く、前記の反応促進効果に優れる、ラクトン系溶媒がより好ましい。 Examples of such a solvent (a) include γ-butyrolactone, γ-valerolactone, γ-hexanolactone, γ-heptanolactone, γ-octanolactone, γ-nonanolactone, γ-decanolactone, γ-undecanolactone, γ-dodecanolactone, δ-valerolactone, δ-hexanolactone, δ-octanolactone, δ-nonanolactone, δ-decanolactone, δ-undecanolactone, δ-dodecanolactone, ε-hexanolactone, etc. Examples include lactone solvents and carbonate solvents such as propylene carbonate. Of these, lactone solvents are more preferable because of their high polarity and excellent reaction promotion effect.
 また、前記ケイ素化合物は、プロトン性溶媒と反応しやすく、その結果、ケイ素化合物の反応性が低下しやすいため、前記非水溶媒として用いられる、前記溶媒(a)、及び溶媒(b)は、いずれも非プロトン性溶媒であることが好ましい。 In addition, the silicon compound is likely to react with a protic solvent, and as a result, the reactivity of the silicon compound is likely to be reduced. Therefore, the solvent (a) and the solvent (b) used as the non-aqueous solvent are: Both are preferably aprotic solvents.
 前記の溶媒(b)としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N-H結合を持たない窒素元素含有溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸エチルヘキシル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン株式会社製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子株式会社製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれもスリーエム社製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、N-H結合を持たない窒素元素含有溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トリエチルアミン、ピリジンなどがある。 Examples of the solvent (b) include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen elements having no NH bond. A solvent is mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, ethyl hexyl acetate, and ethyl acetoacetate. Examples of the ethers include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane. Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3- Hydrofluorocarbons such as tafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl Hydrofluoro ethers such as perfluoroisobutyl ether, Asahiklin AE-3000 (Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all manufactured by 3M), and chlorocarbons such as tetrachloromethane , Hydrochlorocarbons such as chloroform, chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2 3,3,3-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro- There are hydrochlorofluorocarbons such as 3,3,3-trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide and the like, polyhydric alcohols having no hydroxyl group Examples of derivatives include diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene. Glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol Examples of nitrogen element-containing solvents that include dimethyl ether and have no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.
 前記一般式[1]のXは、ウェハの反応サイトであるシラノール基に対して反応性を有する反応性部位であり、該反応性部位とウェハのシラノール基とが反応し、ケイ素化合物がシロキサン結合を介してウェハのケイ素元素と化学的に結合することによって前記保護膜が形成される。洗浄液を用いたウェハの洗浄に際して、ウェハの凹部から洗浄液が除去されるとき、すなわち、乾燥されるとき、前記凹部表面に前記保護膜が形成されていると、該凹部に働く毛細管力が小さくなり、パターン倒れが生じにくくなる。 X in the general formula [1] is a reactive site having reactivity with a silanol group which is a reaction site of the wafer, the reactive site reacts with the silanol group of the wafer, and the silicon compound is bonded to the siloxane bond. The protective film is formed by chemically bonding to the silicon element of the wafer via When cleaning the wafer using the cleaning liquid, when the cleaning liquid is removed from the concave portion of the wafer, that is, when the wafer is dried, if the protective film is formed on the surface of the concave portion, the capillary force acting on the concave portion is reduced. Pattern collapse is less likely to occur.
 前記一般式[1]のXの一例であるケイ素元素に結合する元素が窒素の1価の官能基には、水素、炭素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素が含まれていても良い。該官能基の例としては、イソシアネート基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、イソチオシアネート基、アジド基、アセトアミド基、-NHSi(CH33基、-NHSi(CH3249基、-NHSi(CH32817基、-N(CH3)C(O)CH3、-N(CH3)C(O)CF3、-N=C(CH3)OSi(CH33、-N=C(CF3)OSi(CH33、-NHC(O)-OSi(CH33、-NHC(O)-NH-Si(CH33、イミダゾール環(下式[4])、オキサゾリジノン環(下式[5])、モルホリン環(下式[6])、-NH-C(O)-Si(CH33、-N(H)2-b(Si(H)c4 3-cb(R4は、一部又は全ての水素元素がフッ素元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基、bは1又は2、cは0~2の整数)などがある。
Figure JPOXMLDOC01-appb-C000002
The monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is nitrogen, includes hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine, chlorine Further, elements such as bromine and iodine may be contained. Examples of such functional groups include isocyanate groups, amino groups, alkylamino groups, dialkylamino groups, isothiocyanate groups, azide groups, acetamide groups, —NHSi (CH 3 ) 3 groups, —NHSi (CH 3 ) 2 C 4. H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N (CH 3 ) C (O) CF 3 , —N═C (CH 3 ) OSi (CH 3 ) 3 , —N═C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , An imidazole ring (formula [4]), an oxazolidinone ring (formula [5]), a morpholine ring (formula [6]), —NH—C (O) —Si (CH 3 ) 3 , —N (H ) 2-b (Si (H ) c R 4 3-c) b (R 4 is a part or all of the hydrogen elements are replaced with fluorine element Monovalent hydrocarbon group which may carbon atoms also 1 ~ 18, b is 1 or 2, c is an integer of 0 to 2), and the like.
Figure JPOXMLDOC01-appb-C000002
 また、前記一般式[1]のXの一例であるケイ素元素に結合する元素が酸素の1価の官能基には、水素、炭素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素が含まれていても良い。該官能基の例としては、アルコキシ基、-OC(CH3)=CHCOCH3、-OC(CH3)=N-Si(CH33、-OC(CF3)=N-Si(CH33、-O-CO-R5(R5は、一部又は全ての水素元素がフッ素元素等で置換されていても良い炭素数が1乃至18の1価の炭化水素基)、一部又は全ての水素元素がフッ素元素等で置換されていても良いアルキルスルホネート基などがある。 In addition, the monovalent functional group in which the element bonded to the silicon element, which is an example of X in the general formula [1], is oxygen is hydrogen, carbon, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine Further, elements such as chlorine, bromine and iodine may be contained. Examples of the functional group, an alkoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3, -OC (CF 3) = N-Si (CH 3 ) 3 , —O—CO—R 5 (R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with fluorine elements, etc.), some Alternatively, there is an alkyl sulfonate group in which all hydrogen elements may be substituted with fluorine element or the like.
 また、前記一般式[1]のXの一例であるハロゲン基には、フルオロ基、クロロ基、ブロモ基、ヨード基などがある。中でもクロロ基がより好ましい。 In addition, the halogen group which is an example of X in the general formula [1] includes a fluoro group, a chloro group, a bromo group, an iodo group, and the like. Of these, a chloro group is more preferred.
 前記一般式[1]で表されるケイ素化合物としては、例えば、C49(CH32SiCl、C511(CH32SiCl、C613(CH32SiCl、C715(CH32SiCl、C817(CH32SiCl、C919(CH32SiCl、C1021(CH32SiCl、C1123(CH32SiCl、C1225(CH32SiCl、C1327(CH32SiCl、C1429(CH32SiCl、C1531(CH32SiCl、C1633(CH32SiCl、C1735(CH32SiCl、C1837(CH32SiCl、C511(CH3)HSiCl、C613(CH3)HSiCl、C715(CH3)HSiCl、C817(CH3)HSiCl、C919(CH3)HSiCl、C1021(CH3)HSiCl、C1123(CH3)HSiCl、C1225(CH3)HSiCl、C1327(CH3)HSiCl、C1429(CH3)HSiCl、C1531(CH3)HSiCl、C1633(CH3)HSiCl、C1735(CH3)HSiCl、C1837(CH3)HSiCl、C2524(CH32SiCl、C3724(CH32SiCl、C4924(CH32SiCl、C51124(CH32SiCl、C61324(CH32SiCl、C71524(CH32SiCl、C81724(CH32SiCl、(C253SiCl、C37(C252SiCl、C49(C252SiCl、C511(C252SiCl、C613(C252SiCl、C715(C252SiCl、C817(C252SiCl、C919(C252SiCl、C1021(C252SiCl、C1123(C252SiCl、C1225(C252SiCl、C1327(C252SiCl、C1429(C252SiCl、C1531(C252SiCl、C1633(C252SiCl、C1735(C252SiCl、C1837(C252SiCl、(C493SiCl、C511(C492SiCl、C613(C492SiCl、C715(C492SiCl、C817(C492SiCl、C919(C492SiCl、C1021(C492SiCl、C1123(C492SiCl、C1225(C492SiCl、C1327(C492SiCl、C1429(C492SiCl、C1531(C492SiCl、C1633(C492SiCl、C1735(C492SiCl、C1837(C492SiCl、CF324(C492SiCl、C2524(C492SiCl、C3724(C492SiCl、C4924(C492SiCl、C51124(C492SiCl、C61324(C492SiCl、C71524(C492SiCl、C81724(C492SiCl、C511(CH3)SiCl2、C613(CH3)SiCl2、C715(CH3)SiCl2、C817(CH3)SiCl2、C919(CH3)SiCl2、C1021(CH3)SiCl2、C1123(CH3)SiCl2、C1225(CH3)SiCl2、C1327(CH3)SiCl2、C1429(CH3)SiCl2、C1531(CH3)SiCl2、C1633(CH3)SiCl2、C1735(CH3)SiCl2、C1837(CH3)SiCl2、C3724(CH3)SiCl2、C4924(CH3)SiCl2、C51124(CH3)SiCl2、C61324(CH3)SiCl2、C71524(CH3)SiCl2、C81724(CH3)SiCl2、C613SiCl3、C715SiCl3、C817SiCl3、C919SiCl3、C1021SiCl3、C1123SiCl3、C1225SiCl3、C1327SiCl3、C1429SiCl3、C1531SiCl3、C1633SiCl3、C1735SiCl3、C1837SiCl3、C4924SiCl3、C51124SiCl3、C61324SiCl3、C71524SiCl3、C81724SiCl3などのクロロシラン化合物、あるいは、前記クロロシラン化合物のクロロ基を、メトキシ基やエトキシ基などの炭素数が1~18のアルコキシ基や、-OC(CH3)=CHCOCH3、-OC(CH3)=N-Si(CH33、-OC(CF3)=N-Si(CH33、-O-CO-R5(R5は、一部又は全ての水素元素がフッ素元素等で置換されていても良い炭素数が1乃至18の1価の炭化水素基)、一部又は全ての水素元素がフッ素元素等で置換されていても良いアルキルスルホネート基、イソシアネート基、イソチオシアネート基、アジド基、アセトアミド基、-NHSi(CH33基、-NHSi(CH3249基、-NHSi(CH32817基、-N(CH3)C(O)CH3、-N(CH3)C(O)CF3、-N=C(CH3)OSi(CH33、-N=C(CF3)OSi(CH33、-NHC(O)-OSi(CH33、-NHC(O)-NH-Si(CH33、イミダゾール環、オキサゾリジノン環、モルホリン環、-NH-C(O)-Si(CH33、-N(H)2-b(Si(H)c4 3-cb(R4は一部又は全ての水素元素がフッ素元
素に置き換えられていても良い炭素数が1~18の1価の炭化水素基、bは1又は2、cは0~2の整数)、フルオロ基、ブロモ基、ヨード基、ニトリル基、または、-CO-NH-Si(CH33に置き換えた化合物などが挙げられる。
Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl, C 7 H 15 (CH 3 ) HSiCl, C 8 H 17 (CH 3 ) HSiCl, C 9 H 19 (CH 3 ) HS iCl, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl, C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl, C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3 ) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3 ) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3 ) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, (C 2 H 5) 3 SiCl, C 3 H 7 (C 2 H 5) 2 SiCl, C 4 H 9 (C 2 H 5) 2 SiCl, C 5 H 11 (C 2 H 5 2 SiCl, C 6 H 13 ( C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5 ) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl, C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 (C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9 ) 2 SiCl, C 6 H 13 (C 4 H 9 ) 2 SiCl, C 7 H 15 (C 4 H 9 ) 2 SiCl, C 8 H 17 (C 4 H 9 ) 2 SiCl, C 9 H 19 (C 4 H 9 ) 2 SiCl, C 10 H 21 (C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9 ) 2 SiCl C 15 H 31 (C 4 H 9 ) 2 SiCl, C 16 H 33 (C 4 H 9 ) 2 SiCl, C 17 H 35 (C 4 H 9 ) 2 SiCl, C 18 H 37 (C 4 H 9 ) 2 SiCl, CF 3 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 7 F 15 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 H 11 (CH 3 ) SiCl 2 , C 6 H 13 (CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) S iCl 2 , C 8 H 17 (CH 3 ) SiCl 2 , C 9 H 19 (CH 3 ) SiCl 2 , C 10 H 21 (CH 3 ) SiCl 2 , C 11 H 23 (CH 3 ) SiCl 2 , C 12 H 25 (CH 3 ) SiCl 2 , C 13 H 27 (CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) SiCl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3 ) SiCl 2 , C 3 F 7 C 2 H 4 (CH 3 ) SiCl 2 , C 4 F 9 C 2 H 4 (CH 3 ) SiCl 2 , C 5 F 11 C 2 H 4 (CH 3 ) SiCl 2 , C 6 F 13 C 2 H 4 (CH 3 ) SiCl 2 , C 7 F 15 C 2 H 4 (CH 3 ) SiCl 2 , C 8 F 17 C 2 H 4 (CH 3 ) SiCl 2 , C 6 H 13 SiCl 3 , C 7 H 15 SiCl 3 , C 8 H 17 SiCl 3 , C 9 H 19 SiCl 3 , C 10 H 21 SiCl 3 , C 11 H 23 SiCl 3 , C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , C 4 F 9 C 2 H 4 SiCl 3 , C 5 F 11 C 2 H 4 SiCl 3 , C 6 F 13 C 2 H 4 SiCl 3 , C 7 F 15 A chlorosilane compound such as C 2 H 4 SiCl 3 and C 8 F 17 C 2 H 4 SiCl 3 , or a chloro group of the chlorosilane compound, an alkoxy group having 1 to 18 carbon atoms such as a methoxy group or an ethoxy group, -OC (CH 3 ) = CHCOCH 3 , -OC (CH 3 ) = N-Si (CH 3 ) 3 , -OC (CF 3 ) = N-Si (CH 3 ) 3 , -O-CO-R 5 ( R 5 is, some or all of the hydrogen elements may be substituted by fluorine element or the like coal A monovalent hydrocarbon group having a number of 1 to 18), an alkyl sulfonate group, an isocyanate group, an isothiocyanate group, an azide group, an acetamide group, a part or all of which may be substituted with fluorine elements, NHSi (CH 3 ) 3 group, —NHSi (CH 3 ) 2 C 4 H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) C (O) CH 3 , —N ( CH 3 ) C (O) CF 3 , —N═C (CH 3 ) OSi (CH 3 ) 3 , —N═C (CF 3 ) OSi (CH 3 ) 3 , —NHC (O) —OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , imidazole ring, oxazolidinone ring, morpholine ring, —NH—C (O) —Si (CH 3 ) 3 , —N (H) 2 -b (Si (H) c R 4 3-c ) b (R 4 is a part or all of hydrogen elements replaced with fluorine elements. A monovalent hydrocarbon group having 1 to 18 carbon atoms, b is an integer of 1 or 2, and c is an integer of 0 to 2), a fluoro group, a bromo group, an iodo group, a nitrile group, or —CO And compounds substituted with —NH—Si (CH 3 ) 3 .
 上記のケイ素化合物のうち、前記一般式[1]のR1で表される炭化水素基の水素元素がハロゲン元素で置換される場合、撥水性能を考慮すると置換するハロゲン元素としてはフッ素元素であることが好ましい。 Among the above silicon compounds, when the hydrogen element of the hydrocarbon group represented by R 1 in the general formula [1] is substituted with a halogen element, the halogen element to be substituted is a fluorine element in consideration of water repellency. Preferably there is.
 また、前記撥水性保護膜形成用薬液は、前記一般式[1]で表されるケイ素化合物を2種以上含有するものであっても良い。 The water repellent protective film-forming chemical may contain two or more silicon compounds represented by the general formula [1].
 また、前記撥水性保護膜形成用薬液は、10℃乃至160℃の温度で保持された状態のものであると、前記ケイ素化合物が薬液中に溶解された状態になりやすく、より均一な薬液になりやすいため好ましく、該温度は、特には50~120℃が好ましい。なお、後述する保護膜形成工程においても、該薬液が、10℃乃至160℃の温度で保持された状態のものであると、より短時間で前記保護膜を形成しやすいため好ましく、該温度は、特には50~120℃が好ましい。 Further, when the chemical solution for forming the water repellent protective film is in a state of being maintained at a temperature of 10 ° C. to 160 ° C., the silicon compound is likely to be dissolved in the chemical solution, so that a more uniform chemical solution is obtained. The temperature is preferably 50 to 120 ° C. In the protective film forming step described later, it is preferable that the chemical solution is maintained at a temperature of 10 ° C. to 160 ° C. because the protective film can be easily formed in a shorter time. In particular, 50 to 120 ° C. is preferable.
 前記一般式[1]において4-aで表されるケイ素化合物のXの数が1であると(すなわちa=3であると)、前記保護膜を均質に形成できるのでより好ましい。また、一般式[1]で表されるケイ素化合物のうち、R1が、炭素数が4~18の、一部又は全ての水素元素がハロゲン元素に置換されていても良い炭化水素基1個と、メチル基2個からなるもの(つまり、下記一般式[2]で表される化合物)は、凹凸パターン表面やウェハ表面のシラノール基との反応性がより高いので好ましい。これは、疎水性基による立体障害が、凹凸パターン表面やウェハ表面のシラノール基に対するケイ素化合物の反応性に大きな影響を与えるためであり、ケイ素元素に結合する炭化水素基は最も長い一つを除く残り二つは短い方が好ましいからである。
          R2(CH32SiX [2]
[式[2]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基である。]
It is more preferable that the number of X of the silicon compound represented by 4-a in the general formula [1] is 1 (that is, a = 3) because the protective film can be formed uniformly. Further, in the silicon compound represented by the general formula [1], R 1 is one hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be substituted with halogen elements. A compound composed of two methyl groups (that is, a compound represented by the following general formula [2]) is preferable because it has higher reactivity with the concavo-convex pattern surface and the silanol group on the wafer surface. This is because the steric hindrance due to the hydrophobic group has a great influence on the reactivity of the silicon compound with the silanol group on the uneven pattern surface or wafer surface, and the hydrocarbon group bonded to the silicon element excludes the longest one. This is because the remaining two are preferably shorter.
R 2 (CH 3 ) 2 SiX [2]
[In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element. From the group consisting of a monovalent functional group in which the element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and —CO—NH—Si (CH 3 ) 3 At least one group selected. ]
 また、ウェハ表面のシラノール基に対するケイ素化合物の反応性を考慮すると、前記ケイ素化合物は下記一般式[3]で表されるケイ素化合物であることがより好ましい。
        R2(CH32Si-N(R32 [3]
[式[3]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、R3はメチル基、エチル基、プロピル基、又はブチル基である。]
In consideration of the reactivity of the silicon compound with respect to the silanol group on the wafer surface, the silicon compound is more preferably a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3]
[In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
 前記一般式[3]で表されるケイ素化合物としては、例えば、C49(CH32SiN(CH32、C511(CH32SiN(CH32、C613(CH32SiN(CH32、C715(CH32SiN(CH32、C817(CH32SiN(CH32、C919(CH32SiN(CH32、C1021(CH32SiN(CH32、C1123(CH32SiN(CH32、C1225(CH32SiN(CH32、C1327(CH32SiN(CH32、C1429(CH32SiN(CH32、C1531(CH32SiN(CH32、C1633(CH32SiN(CH32、C1735(CH32SiN(CH32、C1837(CH32SiN(CH32、C511(CH3)HSiN(CH32、C613(CH3)HSiN(CH32、C715(CH3)HSiN(CH32、C817(CH3)HSiN(CH32、C919(CH3)HSiN(CH32、C1021(CH3)HSiN(CH32、C1123(CH3)HSiN(CH32、C1225(CH3)HSiN(CH32、C1327(CH3)HSiN(CH32、C1429(CH3)HSiN(CH32、C1531(CH3)HSiN(CH32、C1633(CH3)HSiN(CH32、C1735(CH3)HSiN(CH32、C1837(CH3)HSiN(CH32、C2524(CH32SiN(CH32、C3724(CH32SiN(CH32、C4924(CH32SiN(CH32、C51124(CH32SiN(CH32、C61324(CH32SiN(CH32、C71524(CH32SiN(CH32、C81724(CH32SiN(CH32、(C253SiN(CH32、C37(C252SiN(CH32、C49(C252SiN(CH32、C511(C252SiN(CH32、C613(C252SiN(CH32、C715(C252SiN(CH32、C817(C252SiN(CH32、C919(C252SiN(CH32、C1021(C252SiN(CH32、C1123(C252SiN(CH32、C1225(C252SiN(CH32、C1327(C252SiN(CH32、C1429(C252SiN(CH32、C1531(C252SiN(CH32、C1633(C252SiN(CH32、C1735(C252SiN(CH32、C1837(C252SiN(CH32、(C493SiN(CH32、C511(C492SiN(CH32、C613(C492SiN(CH32、C715(C492SiN(CH32、C817(C492SiN(CH32、C919(C492SiN(CH32、C1021(C492SiN(CH32、C1123(C492SiN(CH32、C1225(C492SiN(CH32、C1327(C492SiN(CH32、C1429(C492SiN(CH32、C1531(C492SiN(CH32、C1633(C492SiN(CH32、C1735(C492SiN(CH32、C1837(C492SiN(CH32、C511(CH3)Si[N(CH322、C613(CH3)Si[N(CH322、C715(CH3)Si[N(CH322、C817(CH3)Si[N(CH322、C919(CH3)Si[N(CH322、C1021(CH3)Si[N(CH322、C1123(CH3)Si[N(CH322、C1225(CH3)Si[N(CH322、C1327(CH3)Si[N(CH322、C1429(CH3)Si[N(CH322、C1531(CH3)Si[N(CH322、C1633(CH3)Si[N(CH322、C1735(CH3)Si[N(CH322、C1837(CH3)Si[N(CH322、C3724(CH3)Si[N(CH322、C4924(CH3)Si[N(CH322、C51124(CH3)Si[N(CH322、C61324(CH3)Si[N(CH322、C71524(CH3)Si[N(CH322、C81724(CH3)Si[N(CH322、C613Si[N(CH323、C715Si[N(CH323、C817Si[N(CH323、C919Si[N(CH323、C1021Si[N(CH323、C1123Si[N(CH323、C
1225Si[N(CH323、C1327Si[N(CH323、C1429Si[N(CH323、C1531Si[N(CH323、C1633Si[N(CH323、C1735Si[N(CH323、C1837Si[N(CH323、C4924Si[N(CH323、C51124Si[N(CH323、C61324Si[N(CH323、C71524Si[N(CH323、C81724Si[N(CH323、C49(CH32SiN(C252、C511(CH32SiN(C252、C613(CH32SiN(C252、C715(CH32SiN(C252、C817(CH32SiN(C252、C919(CH32SiN(C252、C1021(CH32SiN(C252、C1123(CH32SiN(C252、C1225(CH32SiN(C252、C1327(CH32SiN(C252、C1429(CH32SiN(C252、C1531(CH32SiN(C252、C1633(CH32SiN(C252、C1735(CH32SiN(C252、C1837(CH32SiN(C252、C4924(CH32SiN(C252、C4924(CH32SiN(C252、C51124(CH32SiN(C252、C61324(CH32SiN(C252、C71524(CH32SiN(C252、C81724(CH32SiN(C252、(C253SiN(C252、C37(C252SiN(C252、C49(C252SiN(C252、C511(C252SiN(C252、C613(C252SiN(C252、C715(C252SiN(C252、C817(C252SiN(C252、C919(C252SiN(C252、C1021(C252SiN(C252、C1123(C252SiN(C252、C1225(C252SiN(C252、C1327(C252SiN(C252、C1429(C252SiN(C252、C1531(C252SiN(C252、C1633(C252SiN(C252、C1735(C252SiN(C252、C1837(C252SiN(C252、(C493SiN(C252、C511(C492SiN(C252、C613(C492SiN(C252、C715(C492SiN(C252、C817(C492SiN(C252、C919(C492SiN(C252、C1021(C492SiN(C252、C1123(C492SiN(C252、C1225(C492SiN(C252、C1327(C492SiN(C252、C1429(C492SiN(C252、C1531(C492SiN(C252、C1633(C492SiN(C252、C1735(C492SiN(C252、C1837(C492SiN(C252などの化合物や、上記の窒素元素に結合したメチル基やエチル基がプロピル基やブチル基に置き換わった化合物が挙げられる。
Examples of the silicon compound represented by the general formula [3] include C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 ( CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 2, C 5 H 11 (CH 3) HSiN (CH 3) 2, C 6 H 13 (CH 3) HSiN (CH 3) 2, C 7 H 15 (CH 3) HSiN (CH 3) 2, C 8 H 17 (CH 3 ) HSiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) HSiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) HSiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) HSiN (CH 3) 2, C 12 H 25 (CH 3) HSiN (CH 3) 2, C 13 H 27 (CH 3) HSiN (CH 3) 2, C 14 H 29 (CH 3) HSiN (CH 3) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) HSiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) HSiN (CH 3 ) 2 , C 18 H 37 (CH 3) HSiN (CH 3) 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (C 3) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, (C 2 H 5) 3 SiN (CH 3) 2, C 3 H 7 (C 2 H 5) 2 SiN (CH 3) 2, C 4 H 9 (C 2 H 5) 2 SiN (CH 3 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 2 H 5) 2 SiN (CH 3) 2, C 11 H 23 (C 2 H 5) 2 SiN (CH 3) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 4 H 9) 2 SiN (CH 3) 2, C 12 H 25 (C 4 H 9) 2 S N (CH 3) 2, C 13 H 27 (C 4 H 9) 2 SiN (CH 3) 2, C 14 H 29 (C 4 H 9) 2 SiN (CH 3) 2, C 15 H 31 (C 4 H 9) 2 SiN (CH 3 ) 2, C 16 H 33 (C 4 H 9) 2 SiN (CH 3) 2, C 17 H 35 (C 4 H 9) 2 SiN (CH 3) 2, C 18 H 37 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 H 15 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 H 17 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 9 H 19 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 10 H 21 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 11 H 23 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 12 H 25 (CH 3) Si [ N (CH 3) 2] 2, C 13 H 27 (CH 3) Si [N ( H 3) 2] 2, C 14 H 29 (CH 3) Si [N (CH 3) 2] 2, C 15 H 31 (CH 3) Si [N (CH 3) 2] 2, C 16 H 33 ( CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 17 H 35 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 Si [N (CH 3 ) 2] 3, C 7 H 15 Si [N (CH 3) 2] 3, C 8 H 17 Si [N (CH 3) 2] 3, C 9 H 19 Si [N (CH 3 ) 2 ] 3 , C 10 H 21 Si [N (CH 3 ) 2 ] 3 , C 11 H 23 Si [N (CH 3 ) 2 ] 3 , C
12 H 25 Si [N (CH 3) 2] 3, C 13 H 27 Si [N (CH 3) 2] 3, C 14 H 29 Si [N (CH 3) 2] 3, C 15 H 31 Si [ N (CH 3 ) 2 ] 3 , C 16 H 33 Si [N (CH 3 ) 2 ] 3 , C 17 H 35 Si [N (CH 3 ) 2 ] 3 , C 18 H 37 Si [N (CH 3 ) 2] 3, C 4 F 9 C 2 H 4 Si [N (CH 3) 2] 3, C 5 F 11 C 2 H 4 Si [N (CH 3) 2] 3, C 6 F 13 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 7 F 15 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 8 F 17 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 4 H 9 (CH 3) 2 SiN (C 2 H 5) 2, C 5 H 11 (CH 3) 2 SiN (C 2 H 5) 2, C 6 H 13 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 7 F 15 C 2 H 4 (CH 3) 2 iN (C 2 H 5) 2 , C 8 F 17 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, (C 2 H 5) 3 SiN (C 2 H 5) 2, C 3 H 7 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN ( C 2 H 5 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN ( C 2 H 5 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 15 H 31 (C 2 H 5 2 SiN (C 2 H 5) 2, C 16 H 33 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 18 H 37 (C 2 H 5) 2 SiN (C 2 H 5) 2, (C 4 H 9) 3 SiN (C 2 H 5) 2, C 5 H 11 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 6 H 13 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 7 H 15 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (C 2 H 5) 2, C 11 H 23 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 12 H 25 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 13 H 27 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 15 H 31 (C 4 H 9 2 SiN (C 2 H 5) 2, C 16 H 33 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 4 H 9) 2 SiN (C 2 H 5) 2, Examples thereof include compounds such as C 18 H 37 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 and compounds in which a methyl group or an ethyl group bonded to the nitrogen element is replaced with a propyl group or a butyl group.
 また、前記撥水性保護膜形成用薬液中のケイ素化合物濃度は、0.1~4質量%であることが好ましい。本発明の薬液では、前述のように溶媒(a)によるシランカップリング反応の促進効果により、ケイ素化合物濃度が0.1質量%以上であれば、ウェハ表面に優れた撥水性を付与することができるため好ましい。また、該薬液のコストを考慮すれば、ケイ素化合物の濃度は低いほうが好ましく、その上限は4質量%が好ましい。 Further, the silicon compound concentration in the chemical solution for forming a water repellent protective film is preferably 0.1 to 4% by mass. In the chemical solution of the present invention, excellent water repellency can be imparted to the wafer surface as long as the silicon compound concentration is 0.1% by mass or more due to the effect of promoting the silane coupling reaction by the solvent (a) as described above. This is preferable because it is possible. In consideration of the cost of the chemical solution, the concentration of the silicon compound is preferably low, and the upper limit is preferably 4% by mass.
 また、前記薬液には、保護膜形成剤であるケイ素化合物と、凹凸パターン表面やウェハ表面のシラノール基との反応を促進させるために、さらに酸が含まれることが好ましい。このような酸として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸が好適に用いられる。特に、反応促進効果を考慮すると、トリフルオロ酢酸、無水トリフルオロ酢酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。 In addition, it is preferable that the chemical solution further contains an acid in order to promote the reaction between the silicon compound as the protective film forming agent and the silanol groups on the uneven pattern surface or the wafer surface. As such an acid, a water-free acid such as trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride and the like is preferable. Used for. In particular, in consideration of the reaction promoting effect, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid may not contain moisture. preferable.
 特に、一般式[1]における疎水性基R1の炭素数が大きくなると、立体障害のために、凹凸パターン表面やウェハ表面のシラノール基に対するケイ素化合物の反応性が低下する場合がある。この場合は、水を含まない酸を添加することで、凹凸パターン表面やウェハ表面のシラノール基とケイ素化合物との反応が促進され、疎水性基の立体障害による反応性の低下を補ってくれる場合がある。 In particular, when the carbon number of the hydrophobic group R 1 in the general formula [1] increases, the reactivity of the silicon compound with respect to the silanol groups on the uneven pattern surface or the wafer surface may decrease due to steric hindrance. In this case, by adding an acid that does not contain water, the reaction between the silanol group on the uneven pattern surface and the wafer surface and the silicon compound is promoted, which compensates for the decrease in reactivity due to steric hindrance of the hydrophobic group There is.
 酸の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01~100質量%が好ましい。添加量が少なくなると反応促進効果が得られにくい。また、過剰に添加しても反応促進効果は向上せず、逆に反応促進効果が低下する場合もある。さらに、不純物として凹凸パターン表面やウェハ表面に残留する懸念もある。このため、前記酸の添加量は、0.01~100質量%が好ましく、より好ましくは0.1~50質量%である。これを考慮すると、酸の前記薬液総量に対する添加量は、前記薬液の総量100質量%に対して、0.0001~50質量%が好ましく、より好ましくは0.001~33質量%である。 The addition amount of the acid is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. When the amount added is small, it is difficult to obtain a reaction promoting effect. Moreover, even if it adds excessively, the reaction promotion effect will not improve, and conversely, the reaction promotion effect may fall. Further, there is a concern that the impurities remain on the surface of the concave / convex pattern or the wafer surface as impurities. For this reason, the addition amount of the acid is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass. Considering this, the amount of acid added to the total amount of the chemical solution is preferably 0.0001 to 50% by mass, more preferably 0.001 to 33% by mass, with respect to 100% by mass of the total amount of the chemical solution.
 また、本発明は、上記の撥水性保護膜形成用薬液を得るための撥水性保護膜形成用薬液キットであり、該薬液キットが、前記一般式[1]で表されるケイ素化合物と、溶媒(a)及び/又は溶媒(b)とを有する処理液Aと、酸と、前記の溶媒(a)及び/又は溶媒(b)とを有する処理液Bからなることを特徴とする、撥水性保護膜形成用薬液キットである。 The present invention also provides a water-repellent protective film-forming chemical solution kit for obtaining the above-described water-repellent protective film-forming chemical solution, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent. Water repellent, characterized in that it comprises a treatment liquid A having (a) and / or a solvent (b), an acid, and a treatment liquid B having the solvent (a) and / or the solvent (b). This is a chemical solution kit for forming a protective film.
 前記薬液キットは、別々に保管された処理液Aと処理液Bとを混合することで、前記薬液とするものであり、ケイ素化合物、溶媒(a)、及び、溶媒(b)は、前述の撥水性保護膜形成用薬液で記載したものと同様のものを用いることができる。なお、処理液A及びBに含まれる溶媒(a)と溶媒(b)の含有比率は特に限定されないが、処理液Aと処理液Bとを混合して前記薬液を得た際に、該薬液に含まれる溶媒(a)と溶媒(b)が、質量比で40:60~97:3で構成されるように調製される。 The said chemical | medical solution kit is what makes the said chemical | medical solution by mixing the processing liquid A and the processing liquid B which were stored separately, and a silicon compound, a solvent (a), and a solvent (b) are the above-mentioned. The thing similar to what was described with the chemical | medical solution for water-repellent protective film formation can be used. In addition, the content ratio of the solvent (a) and the solvent (b) contained in the treatment liquids A and B is not particularly limited, but when the treatment liquid A and the treatment liquid B are mixed to obtain the chemical liquid, the chemical liquid The solvent (a) and the solvent (b) contained in are prepared so as to be constituted by a mass ratio of 40:60 to 97: 3.
 また、前記薬液キットで用いられる溶媒(a)は、極性が高く、前記の反応促進効果に優れる、ラクトン系溶媒であることが好ましい。 Further, the solvent (a) used in the chemical solution kit is preferably a lactone solvent having high polarity and excellent in the reaction promoting effect.
 また、前記薬液キットで用いられるケイ素化合物は前記一般式[2]で表されるケイ素化合物であることが好ましい。 The silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [2].
 また、前記薬液キットで用いられるケイ素化合物は前記一般式[3]で表されるケイ素化合物であることが好ましい。 Further, the silicon compound used in the chemical solution kit is preferably a silicon compound represented by the general formula [3].
 また、本発明は、表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に酸化ケイ素を含むウェハの洗浄において、以下に示す工程、
  前記ウェハ表面を洗浄液で洗浄する、洗浄工程、
  前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
  ウェハ表面の液体を除去する、乾燥工程、
  前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
を含み、撥水性保護膜形成工程において上記の撥水性保護膜形成用薬液、又は上記の撥水性保護膜形成用薬液キットから得られる撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法である。
Further, the present invention provides a step shown below in the cleaning of a wafer having a concavo-convex pattern on the surface and containing silicon oxide on at least the concave surface of the concavo-convex pattern,
Cleaning the wafer surface with a cleaning liquid,
A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
A drying process to remove the liquid on the wafer surface;
A water-repellent protective film removing step for removing the water-repellent protective film from the surface of the recess, wherein the water-repellent protective film-forming chemical solution or the water-repellent protective film-forming chemical solution kit is included in the water-repellent protective film-forming step. The wafer cleaning method is characterized by using the obtained chemical solution for forming a water-repellent protective film.
 また、撥水性保護膜除去工程は、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることが好ましい。 Further, the water repellent protective film removing step is selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. It is preferable to carry out by at least one processing method.
 <発明の第1の見地からの効果> <Effects of the first aspect of the invention>
 本発明の撥水性保護膜形成用薬液、該薬液を得るための薬液キット、及び、前記薬液又は前記薬液キットから得られる薬液を用いたウェハの洗浄方法を用いることで、表面にシラノール基が少なく、従来のシランカップリング剤では当該ウェハ表面に優れた撥水性能を付与するのが難しかった酸化ケイ素以外のケイ素系ウェハ表面に撥水性保護膜を速やかに形成でき、優れた撥水性能を付与することができるため、ひいてはウェハの洗浄・乾燥時のパターン倒れを抑制することに奏功する。本発明を適用すれば、撥水性保護膜を形成するために疎水性基が大きなケイ素化合物を用いても、不溶解成分が発生することがなく、均一な撥水性保護膜形成用薬液を得ることができるとともに、ウェハ表面により優れた撥水性を付与することが可能である。
 <発明の第2の見地からの効果>
By using the chemical solution for forming a water-repellent protective film of the present invention, a chemical solution kit for obtaining the chemical solution, and a wafer cleaning method using the chemical solution or a chemical solution obtained from the chemical solution kit, the surface has few silanol groups. A conventional silane coupling agent can quickly form a water-repellent protective film on the surface of a silicon-based wafer other than silicon oxide, which has been difficult to impart excellent water-repellent performance to the wafer surface, providing excellent water-repellent performance. Therefore, it succeeds in suppressing the pattern collapse during cleaning and drying of the wafer. By applying the present invention, even when a silicon compound having a large hydrophobic group is used to form a water-repellent protective film, an insoluble component is not generated, and a uniform chemical solution for forming a water-repellent protective film can be obtained. In addition, it is possible to impart excellent water repellency to the wafer surface.
<Effects of the second aspect of the invention>
 本発明の撥水性保護膜形成用薬液、該薬液を得るための薬液キット、及び、前記薬液又は前記薬液キットから得られる薬液を用いたウェハの洗浄方法を用いることで、表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に酸化ケイ素を含むウェハの該表面に撥水性保護膜を速やかに形成でき、より優れた撥水性能を付与することができるため、ひいてはウェハの洗浄・乾燥時のパターン倒れを抑制することに奏功する。本発明を適用すれば、撥水性保護膜を形成するために疎水性基が大きなケイ素化合物を用いても、不溶解成分が発生することがなく、均一な撥水性保護膜形成用薬液を得ることができるとともに、ウェハ表面により優れた撥水性を付与することが可能である。 By using the chemical solution for forming a water-repellent protective film of the present invention, a chemical kit for obtaining the chemical solution, and a wafer cleaning method using the chemical solution or a chemical solution obtained from the chemical solution kit, the surface has an uneven pattern. Since the water-repellent protective film can be quickly formed on the surface of the wafer containing silicon oxide on at least the concave surface of the concave-convex pattern, and more excellent water-repellent performance can be imparted. Succeeds in suppressing pattern collapse. By applying the present invention, even when a silicon compound having a large hydrophobic group is used to form a water-repellent protective film, an insoluble component is not generated, and a uniform chemical solution for forming a water-repellent protective film can be obtained. In addition, it is possible to impart excellent water repellency to the wafer surface.
表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図。The schematic diagram when the wafer 1 by which the surface was made into the surface which has the uneven | corrugated pattern 2 is seen. 図1中のa-a’断面の一部を示した模式図。FIG. 2 is a schematic diagram showing a part of a cross section along a-a ′ in FIG. 1. 撥水性保護膜形成工程にて凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図。The schematic diagram of the state in which the recessed part 4 hold | maintained the chemical | medical solution 8 for water-repellent protective film formation in the water-repellent protective film formation process. 撥水性保護膜10が形成された凹部4に液体9が保持された状態の模式図。The schematic diagram of the state by which the liquid 9 was hold | maintained at the recessed part 4 in which the water-repellent protective film 10 was formed.
 <発明の第1の見地を実施するための形態> <Mode for carrying out the first aspect of the invention>
 表面に凹凸パターンを有するウェハは、以下のような手順で得られる場合が多い。まず、平滑なウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、又は、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分に対応するウェハ表面が選択的にエッチングされる。最後に、レジストを剥離すると、凹凸パターンを有するウェハが得られる。 A wafer having a concavo-convex pattern on its surface is often obtained by the following procedure. First, after applying a resist to a smooth wafer surface, the resist is exposed through a resist mask, and the resist having a desired concavo-convex pattern is produced by etching away the exposed resist or the resist that has not been exposed. To do. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
 なお、前記ウェハとしては、シリコンウェハや、シリコンウェハ上にCVD法やスパッタ法などにより窒化ケイ素膜やポリシリコン膜や炭化ケイ素膜が形成されたものも含まれる。また、シリコンを含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、及びウェハ上にケイ素元素を含む各種膜が形成されたものも、ウェハとして用いることができる。さらには、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどケイ素元素を含まないウェハ上に、ケイ素元素を含む各種膜が形成されたものであっても良い。なお、前記薬液はケイ素元素を含むウェハ表面、ウェハ上に形成されたケイ素元素を含む膜表面、及び、前記ウェハ、或いは前記膜において形成された凹凸パターン表面のうちケイ素原子が存在する部分の表面に保護膜を形成し撥水化することができる。 The wafer includes a silicon wafer and a silicon wafer formed with a silicon nitride film, a polysilicon film, or a silicon carbide film by a CVD method or a sputtering method. Also, a wafer composed of a plurality of components including silicon, a silicon carbide wafer, and a wafer in which various films including a silicon element are formed on the wafer can be used as the wafer. Further, various films containing silicon elements may be formed on a wafer not containing silicon elements, such as sapphire wafers, various compound semiconductor wafers, and plastic wafers. The chemical solution is a wafer surface containing silicon element, a film surface containing silicon element formed on the wafer, and a surface of a portion where silicon atoms are present in the wafer or the concavo-convex pattern surface formed in the film. A protective film can be formed on the surface to make it water repellent.
 上記のように得られた、表面に凹凸パターンを有するウェハは、パーティクル等を除去するために、前記洗浄工程において洗浄される。本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、少なくとも、前記洗浄工程及び前記撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行う。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成用薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。本発明において、ウェハの凹凸パターンの少なくとも凹部に前記洗浄液、前記薬液やその他の液体を保持できるのであれば、前記の洗浄液、薬液や、その他の液体の供給方式(以降、これらの方式を総称して「洗浄方式」と記載する場合がある)は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄(処理)するようなスピン洗浄(処理)に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄(処理)するようなバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記洗浄液、前記薬液やその他の液体を供給するときの該洗浄液や薬液やその他の液体の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、例えば、液体、蒸気などがある。 The wafer having a concavo-convex pattern on the surface obtained as described above is cleaned in the cleaning step in order to remove particles and the like. In the wafer cleaning method of the present invention, in order to perform efficient cleaning without causing pattern collapse, at least the cleaning step and the water-repellent protective film forming step are always held at least in the recesses of the wafer. In the state. In addition, when the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state. In the present invention, as long as the cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer, the cleaning liquid, chemical liquid, and other liquid supply methods (hereinafter, these methods are generically referred to). In some cases, “cleaning method” may be described). As a wafer cleaning method, a single wafer represented by spin cleaning (processing) in which a wafer is cleaned (processed) one by one by supplying liquid to the vicinity of the center of rotation while holding and rotating the wafer substantially horizontal. Examples thereof include a batch system in which a plurality of wafers are immersed and cleaned (processed) in a cleaning tank. It should be noted that the form of the cleaning liquid, the chemical liquid, and the other liquid when supplying the cleaning liquid, the chemical liquid, and the other liquid to at least the concave portion of the concave / convex pattern of the wafer may be a liquid when held in the concave portion. For example, there are liquid and vapor.
 前記洗浄工程において用いられる洗浄液の例としては、水、水に有機溶媒、酸、アルカリ、界面活性剤、過酸化水素、オゾンのうち少なくとも1種以上が混合された水を主成分(例えば、水の含有率が50質量%以上)とする水系洗浄液、又は、有機溶媒などが挙げられる。 Examples of the cleaning liquid used in the cleaning step include water, water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed as a main component (for example, water For example, an aqueous cleaning liquid or an organic solvent.
 前記洗浄工程において、洗浄液として水を含む水系洗浄液を用いた場合、水系洗浄液が少なくとも凹部に保持されて該凹部表面に接触する。凹部表面に窒化ケイ素やポリシリコンを含むウェハの場合、水系洗浄液との接触により、窒化ケイ素やポリシリコンの一部が酸化され、シラノール基が形成される。本発明の撥水性保護膜形成用薬液に含まれるケイ素化合物は大きな疎水性基をもつため、上記のように酸化によってわずかに形成されたシラノール基と反応して保護膜を形成する場合であっても、前記ウェハの凹部表面に優れた撥水性を発現することが可能である。 In the cleaning step, when an aqueous cleaning liquid containing water is used as the cleaning liquid, the aqueous cleaning liquid is held at least in the recess and comes into contact with the surface of the recess. In the case of a wafer containing silicon nitride or polysilicon on the concave surface, part of the silicon nitride or polysilicon is oxidized and silanol groups are formed by contact with the aqueous cleaning solution. Since the silicon compound contained in the chemical solution for forming a water-repellent protective film of the present invention has a large hydrophobic group, it reacts with a silanol group slightly formed by oxidation as described above to form a protective film. In addition, it is possible to exhibit excellent water repellency on the concave surface of the wafer.
 前記のようなウェハ表面の酸化は、水系洗浄液として室温の純水を用いた場合であっても進行するが、水系洗浄液として強酸性水溶液を用いたり、水系洗浄液の温度を高くしたりすると、より進行しやすいため、該酸化を促進させる目的で水系洗浄液に酸を添加したり、水系洗浄液の温度を高くしても良い。また、前記酸化を促進させる目的で、過酸化水素やオゾンなどを添加しても良い。 Oxidation of the wafer surface as described above proceeds even when pure water at room temperature is used as the aqueous cleaning liquid, but if a strongly acidic aqueous solution is used as the aqueous cleaning liquid or the temperature of the aqueous cleaning liquid is increased, Since it tends to proceed, an acid may be added to the aqueous cleaning solution for the purpose of promoting the oxidation, or the temperature of the aqueous cleaning solution may be increased. Further, hydrogen peroxide or ozone may be added for the purpose of promoting the oxidation.
 また、前記洗浄液の好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent which is one of the preferable examples of the cleaning liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. And derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
 また、前記水系洗浄液に混合されることのある酸としては、無機酸や有機酸がある。無機酸の例としては、フッ酸、バッファードフッ酸、硫酸、硝酸、塩酸、リン酸など、有機酸の例としては、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸などが挙げられる。該水系洗浄液に混合されることのあるアルカリとしては、アンモニア、コリンなどが挙げられる。該水系洗浄液に混合されることのある酸化剤としては、オゾン、過酸化水素などが挙げられる。 In addition, examples of acids that can be mixed with the aqueous cleaning liquid include inorganic acids and organic acids. Examples of inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc. Examples of organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like. Examples of the alkali that may be mixed in the aqueous cleaning liquid include ammonia and choline. Examples of the oxidizing agent that may be mixed in the aqueous cleaning liquid include ozone and hydrogen peroxide.
 また、前記洗浄液として、複数の洗浄液を用いても良い。例えば、酸水溶液あるいはアルカリ水溶液を含む洗浄液と前記有機溶媒の2種類を洗浄液に用い、酸水溶液あるいはアルカリ水溶液を含む洗浄液→前記有機溶媒の順で洗浄することができる。また、例えば、酸水溶液あるいはアルカリ水溶液を含む洗浄液→水系洗浄液→前記有機溶媒の順で洗浄することもできる。 Further, a plurality of cleaning liquids may be used as the cleaning liquid. For example, a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution and the organic solvent may be used as the cleaning solution, and the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution → the organic solvent. Further, for example, the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkali aqueous solution → an aqueous cleaning solution → the organic solvent.
 また、前記洗浄工程において、洗浄液を、10℃以上、洗浄液の沸点未満の温度で保持しても良い。例えば、洗浄液が酸水溶液を含む、特に好ましくは酸水溶液と沸点が100℃以上の有機溶媒を含む溶液を用いる場合、洗浄液の温度を該洗浄液の沸点付近に高くすると、前記保護膜が短時間で形成しやすくなるので好ましい。 In the cleaning step, the cleaning liquid may be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid. For example, when the cleaning liquid contains an aqueous acid solution, particularly preferably a solution containing an aqueous acid solution and an organic solvent having a boiling point of 100 ° C. or higher, the protective film can be formed in a short time by increasing the temperature of the cleaning liquid to around the boiling point of the cleaning liquid. It is preferable because it is easy to form.
 前記洗浄工程の後で、用いた洗浄液をそのまま乾燥等によりウェハ表面から除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa-a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。パターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。 When the used cleaning solution is removed from the wafer surface by drying or the like after the cleaning step, pattern collapse is likely to occur when the width of the concave portion is small and the aspect ratio of the convex portion is large. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view of a wafer 1 whose surface is a surface having a concavo-convex pattern 2. FIG. 2 shows a part of the a-a ′ cross section in FIG. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
 前記洗浄工程でウェハの凹凸パターンの少なくとも凹部に保持された洗浄液は、撥水性保護膜形成工程において撥水性保護膜形成用薬液に置換される。図3は、撥水性保護膜形成工程にて凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa-a’断面の一部を示すものである。保護膜形成用薬液が凹部4に保持され、該凹部4の表面に保護膜が形成されることにより、該表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。 In the cleaning step, the cleaning liquid held in at least the concave portion of the concave / convex pattern of the wafer is replaced with the chemical solution for forming the water repellent protective film in the water repellent protective film forming step. FIG. 3 is a schematic view showing a state in which the recess 4 holds the protective film forming chemical 8 in the water repellent protective film forming step. The wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. The protective film-forming chemical solution is held in the recess 4, and a protective film is formed on the surface of the recess 4, thereby making the surface water repellent. Note that the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
 前記撥水性保護膜形成工程の後で、該凹凸パターンの少なくとも凹部に保持された前記薬液を該薬液とは異なるリンス液に置換した後に、乾燥工程に移ってもよい。このリンス液の例としては、水系溶液からなる水系洗浄液、または、有機溶媒、または、前記水系洗浄液と有機溶媒の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、またはそれらに保護膜形成用薬液に含まれるケイ素化合物や酸が該薬液よりも低濃度になるように添加されたもの等が挙げられる。 After the water-repellent protective film forming step, the chemical solution held at least in the concave portion of the concave / convex pattern may be replaced with a rinse solution different from the chemical solution and then transferred to a drying step. Examples of the rinsing liquid include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, a mixture of the aqueous cleaning liquid and an organic solvent, and a mixture of at least one of an acid, an alkali, and a surfactant. Or a compound in which a silicon compound or an acid contained in the chemical solution for forming a protective film is added so as to have a lower concentration than the chemical solution.
 また、該リンス液の好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent which is one of preferred examples of the rinsing liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. , Derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
 前記リンス液として水を用いると、前記薬液によって撥水化された凹凸パターンの少なくとも凹部表面の該液との接触角θが大きくなって該凹部に働く毛細管力が小さくなり、さらに乾燥後にウェハ表面に汚れが残りにくくなるので好ましい。また、前記リンス液として、複数の洗浄液を用いても良い。例えば、有機溶媒(好ましくは水溶性有機溶媒を含む)と水系洗浄液を順次置換して用いることができる。 When water is used as the rinsing liquid, at least the concave surface of the concavo-convex pattern made water repellent by the chemical liquid has a large contact angle θ with the liquid, and the capillary force acting on the concave part is reduced. This is preferable because dirt is less likely to remain on the surface. A plurality of cleaning liquids may be used as the rinsing liquid. For example, an organic solvent (preferably containing a water-soluble organic solvent) and an aqueous cleaning solution can be used in succession.
 撥水性保護膜形成用薬液により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa-a’断面の一部を示すものである。凹部4の表面には撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から置換した後のリンス液でもよいし、置換途中の液体(薬液とリンス液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。 FIG. 4 shows a schematic diagram when the liquid 9 is held in the recess 4 that has been made water-repellent by the chemical solution for forming a water-repellent protective film. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. A water repellent protective film 10 is formed on the surface of the recess 4. At this time, the liquid 9 held in the recess 4 may be the chemical liquid, a rinse liquid after replacement from the chemical liquid, or a liquid in the middle of replacement (mixed liquid of the chemical liquid and the rinse liquid). The water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
 図4の凹部4のように凹部表面に撥水性保護膜が存在すると、該凹部表面と該凹部に保持された液体との接触角が増大され、該凹部に働く毛細管力が低減される。 When a water-repellent protective film is present on the surface of the recess as in the recess 4 in FIG. 4, the contact angle between the surface of the recess and the liquid held in the recess is increased, and the capillary force acting on the recess is reduced.
 図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角はより大きいと、背景技術で述べた毛細管力の式より算出される凹部に働く毛細管力が小さくなるため、パターン倒れがより発生し難くなるため好ましい。 As shown in FIG. 4, when the protective film 10 is formed on the surface of the recess, the contact angle when assuming that water is held on the surface is larger than the capillary force formula described in the background art. Since the capillary force acting on the concave portion is small, pattern collapse is less likely to occur, which is preferable.
 次に、乾燥工程を行う。該工程では、凹凸パターン表面に保持された液体が乾燥により除去される。当該乾燥は、自然乾燥、エアー乾燥、N2ガス乾燥、スピン乾燥法、IPA(2-プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、送風乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。 Next, a drying process is performed. In this step, the liquid held on the uneven pattern surface is removed by drying. The drying is performed by a known drying method such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, air drying, hot air drying, vacuum drying, and the like. Preferably it is done.
 該乾燥工程の前に、前記凹部に保持されている液体は、前記薬液、リンス液、または、該薬液とリンス液の混合液である。なお、前記薬液を含む混合液は、前記薬液をリンス液に置換する途中の状態の液でもよいし、あらかじめ前記薬液をリンス液に混合して得た混合液でもよい。前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。 The liquid held in the recess before the drying step is the chemical solution, the rinse solution, or a mixed solution of the chemical solution and the rinse solution. The liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the rinse liquid, or may be a liquid mixture obtained by previously mixing the chemical liquid with the rinse liquid. In order to efficiently remove the liquid, the retained liquid may be drained and removed, and then the remaining liquid may be dried.
 次に、前記撥水性保護膜除去工程が行われる。前記保護膜10を除去する場合、該保護膜中のC-C結合、C-F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。 Next, the water repellent protective film removing step is performed. When removing the protective film 10, it is effective to cut the C—C bond and C—F bond in the protective film. The method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
 光照射で前記保護膜10を除去する場合、該保護膜10中のC-C結合、C-F結合を切断することが有効であり、このためには、それらの結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、メタルハライドランプであれば、例えば、照度計(コニカミノルタセンシング製照射強度計UM-10、受光部UM-360〔ピーク感度波長:365nm、測定波長範囲:310~400nm〕)の測定値で100mW/cm2以上が好ましく、200mW/cm2以上が特に好ましい。なお、照射強度が100mW/cm2未満では前記保護膜10を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で前記保護膜10を除去できるので好ましい。 When the protective film 10 is removed by light irradiation, it is effective to cut the C—C bond and C—F bond in the protective film 10, and for this purpose, their binding energy is 83 kcal / mol. It is preferable to irradiate ultraviolet rays including wavelengths shorter than 340 nm and 240 nm, which are energy corresponding to 116 kcal / mol. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. If the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable. When the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10. Further, a low-pressure mercury lamp is preferable because it emits ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
 また、光照射で前記保護膜10を除去する場合、紫外線で前記保護膜10の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜10の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源としては、低圧水銀ランプやエキシマランプが用いられる。また、光照射しながらウェハを加熱してもよい。 Further, when the protective film 10 is removed by light irradiation, ozone is generated at the same time as the constituent components of the protective film 10 are decomposed by ultraviolet rays, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone. Is particularly preferable. As this light source, a low-pressure mercury lamp or an excimer lamp is used. Further, the wafer may be heated while irradiating light.
 ウェハを加熱する場合、400~700℃、好ましくは、500~700℃でウェハの加熱を行うのが好ましい。この加熱時間は、1~60分間、好ましくは10~30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。 When heating the wafer, it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
 加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。 There are a method of removing the protective film by heating, a method of bringing the wafer into contact with a heat source, a method of placing the wafer in a heated atmosphere such as a heat treatment furnace, and the like. The method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
 ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。 When the wafer is exposed to ozone, ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.
 前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。
 <発明の第2の見地を実施するための形態>
By combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge, the protective film on the wafer surface can be efficiently removed.
<Mode for carrying out the second aspect of the invention>
 表面に凹凸パターンを有するウェハは、以下のような手順で得られる場合が多い。まず、平滑なウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、又は、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分に対応するウェハ表面が選択的にエッチングされる。最後に、レジストを剥離すると、凹凸パターンを有するウェハが得られる。 A wafer having a concavo-convex pattern on its surface is often obtained by the following procedure. First, after applying a resist to a smooth wafer surface, the resist is exposed through a resist mask, and the resist having a desired concavo-convex pattern is produced by etching away the exposed resist or the resist that has not been exposed. To do. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
 なお、前記ウェハとしては、シリコンウェハや、シリコンウェハ上に熱酸化法やCVD法、スパッタ法などにより酸化ケイ素膜が形成されたものが挙げられる。また、酸化ケイ素を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、及びウェハ上に酸化ケイ素膜が形成されたものも、ウェハとして用いることができる。さらには、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどケイ素元素を含まないウェハ上に、酸化ケイ素膜が形成されたものであっても良い。なお、前記薬液は酸化ケイ素を含むウェハ表面、ウェハ上に形成された酸化ケイ素膜表面、及び、前記ウェハ、或いは前記膜において形成された凹凸パターン表面のうち酸化ケイ素が存在する部分の表面に保護膜を形成し撥水化することができる。 Note that examples of the wafer include a silicon wafer and a silicon wafer on which a silicon oxide film is formed by a thermal oxidation method, a CVD method, a sputtering method, or the like. Further, a wafer composed of a plurality of components including silicon oxide, a silicon carbide wafer, and a wafer in which a silicon oxide film is formed on the wafer can be used as the wafer. Furthermore, a silicon oxide film may be formed on a wafer that does not contain silicon elements, such as a sapphire wafer, various compound semiconductor wafers, and a plastic wafer. The chemical solution is protected on the surface of the wafer containing silicon oxide, the surface of the silicon oxide film formed on the wafer, and the surface of the wafer or the portion of the concavo-convex pattern formed on the film where silicon oxide exists. A film can be formed to make it water repellent.
 上記のように得られた、表面に凹凸パターンを有するウェハは、パーティクル等を除去するために、前記洗浄工程において洗浄される。本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、少なくとも、前記洗浄工程及び前記撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行う。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成用薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。本発明において、ウェハの凹凸パターンの少なくとも凹部に前記洗浄液、前記薬液やその他の液体を保持できるのであれば、前記の洗浄液、薬液や、その他の液体の供給方式(以降、これらの方式を総称して「洗浄方式」と記載する場合がある)は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄(処理)するようなスピン洗浄(処理)に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄(処理)するようなバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記洗浄液、前記薬液やその他の液体を供給するときの該洗浄液や薬液やその他の液体の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、例えば、液体、蒸気などがある。 The wafer having a concavo-convex pattern on the surface obtained as described above is cleaned in the cleaning step in order to remove particles and the like. In the wafer cleaning method of the present invention, in order to perform efficient cleaning without causing pattern collapse, at least the cleaning step and the water-repellent protective film forming step are always held at least in the recesses of the wafer. In the state. In addition, when the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state. In the present invention, as long as the cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer, the cleaning liquid, chemical liquid, and other liquid supply methods (hereinafter, these methods are generically referred to) In some cases, “cleaning method” may be described). As a wafer cleaning method, a single wafer represented by spin cleaning (processing) in which a wafer is cleaned (processed) one by one by supplying liquid to the vicinity of the center of rotation while holding and rotating the wafer substantially horizontal. Examples thereof include a batch system in which a plurality of wafers are immersed and cleaned (processed) in a cleaning tank. It should be noted that the form of the cleaning liquid, the chemical liquid, and the other liquid when supplying the cleaning liquid, the chemical liquid, and the other liquid to at least the concave portion of the concave / convex pattern of the wafer may be a liquid when held in the concave portion. For example, there are liquid and vapor.
 前記洗浄工程において用いられる洗浄液の例としては、水、水に有機溶媒、酸、アルカリ、界面活性剤、過酸化水素、オゾンのうち少なくとも1種以上が混合された水を主成分(例えば、水の含有率が50質量%以上)とする水系洗浄液、又は、有機溶媒などが挙げられる。 Examples of the cleaning liquid used in the cleaning step include water, water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed as a main component (for example, water For example, an aqueous cleaning liquid or an organic solvent.
 前記洗浄工程において、洗浄液として水を含む水系洗浄液を用いた場合、水系洗浄液が少なくとも凹部に保持されて該凹部表面に接触する。凹部表面に酸化ケイ素を含むウェハの場合、水系洗浄液との接触により、該表面の一部にシラノール基が形成される。本発明の撥水性保護膜形成用薬液に含まれるケイ素化合物は大きな疎水性基をもつため、上記のように形成されたシラノール基と反応して保護膜を形成する場合、前記ウェハの凹部表面に優れた撥水性を発現することが可能である。 In the cleaning step, when an aqueous cleaning liquid containing water is used as the cleaning liquid, the aqueous cleaning liquid is held at least in the recess and comes into contact with the surface of the recess. In the case of a wafer containing silicon oxide on the concave surface, silanol groups are formed on a part of the surface by contact with an aqueous cleaning solution. Since the silicon compound contained in the chemical solution for forming a water-repellent protective film of the present invention has a large hydrophobic group, when forming a protective film by reacting with the silanol group formed as described above, the silicon compound is formed on the concave surface of the wafer. It is possible to exhibit excellent water repellency.
 前記のようなウェハ表面の酸化は、水系洗浄液として室温の純水を用いた場合であっても進行するが、水系洗浄液として強酸性水溶液を用いたり、水系洗浄液の温度を高くしたりすると、より進行しやすいため、該酸化を促進させる目的で水系洗浄液に酸を添加したり、水系洗浄液の温度を高くしても良い。また、前記酸化を促進させる目的で、過酸化水素やオゾンなどを添加しても良い。 Oxidation of the wafer surface as described above proceeds even when pure water at room temperature is used as the aqueous cleaning liquid, but if a strongly acidic aqueous solution is used as the aqueous cleaning liquid or the temperature of the aqueous cleaning liquid is increased, Since it tends to proceed, an acid may be added to the aqueous cleaning solution for the purpose of promoting the oxidation, or the temperature of the aqueous cleaning solution may be increased. Further, hydrogen peroxide or ozone may be added for the purpose of promoting the oxidation.
 また、前記洗浄液の好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent which is one of the preferable examples of the cleaning liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. And derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
 また、前記水系洗浄液に混合されることのある酸としては、無機酸や有機酸がある。無機酸の例としては、フッ酸、バッファードフッ酸、硫酸、硝酸、塩酸、リン酸など、有機酸の例としては、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸などが挙げられる。該水系洗浄液に混合されることのあるアルカリとしては、アンモニア、コリンなどが挙げられる。該水系洗浄液に混合されることのある酸化剤としては、オゾン、過酸化水素などが挙げられる。 In addition, examples of acids that can be mixed with the aqueous cleaning liquid include inorganic acids and organic acids. Examples of inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc. Examples of organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like. Examples of the alkali that may be mixed in the aqueous cleaning liquid include ammonia and choline. Examples of the oxidizing agent that may be mixed in the aqueous cleaning liquid include ozone and hydrogen peroxide.
 また、前記洗浄液として、複数の洗浄液を用いても良い。例えば、酸水溶液あるいはアルカリ水溶液を含む洗浄液と前記有機溶媒の2種類を洗浄液に用い、酸水溶液あるいはアルカリ水溶液を含む洗浄液→前記有機溶媒の順で洗浄することができる。また、例えば、酸水溶液あるいはアルカリ水溶液を含む洗浄液→水系洗浄液→前記有機溶媒の順で洗浄することもできる。 Further, a plurality of cleaning liquids may be used as the cleaning liquid. For example, a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution and the organic solvent may be used as the cleaning solution, and the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkaline aqueous solution → the organic solvent. Further, for example, the cleaning may be performed in the order of a cleaning solution containing an acid aqueous solution or an alkali aqueous solution → aqueous cleaning solution → the organic solvent.
 また、前記洗浄工程において、洗浄液を、10℃以上、洗浄液の沸点未満の温度で保持しても良い。例えば、洗浄液が酸水溶液を含む、特に好ましくは酸水溶液と沸点が100℃以上の有機溶媒を含む溶液を用いる場合、洗浄液の温度を該洗浄液の沸点付近に高くすると、前記保護膜が短時間で形成しやすくなるので好ましい。 In the cleaning step, the cleaning liquid may be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid. For example, when the cleaning liquid contains an aqueous acid solution, particularly preferably a solution containing an aqueous acid solution and an organic solvent having a boiling point of 100 ° C. or higher, the protective film can be formed in a short time by increasing the temperature of the cleaning liquid to around the boiling point of the cleaning liquid. It is preferable because it is easy to form.
 前記洗浄工程の後で、用いた洗浄液をそのまま乾燥等によりウェハ表面から除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa-a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。パターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。 When the used cleaning solution is removed from the wafer surface by drying or the like after the cleaning step, pattern collapse is likely to occur when the width of the concave portion is small and the aspect ratio of the convex portion is large. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view of a wafer 1 whose surface is a surface having a concavo-convex pattern 2. FIG. 2 shows a part of the a-a ′ cross section in FIG. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
 前記洗浄工程でウェハの凹凸パターンの少なくとも凹部に保持された洗浄液は、撥水性保護膜形成工程において撥水性保護膜形成用薬液に置換される。図3は、撥水性保護膜形成工程にて凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa-a’断面の一部を示すものである。保護膜形成用薬液が凹部4に保持され、該凹部4の表面に保護膜が形成されることにより、該表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。 In the cleaning step, the cleaning liquid held in at least the concave portion of the concave / convex pattern of the wafer is replaced with the chemical solution for forming the water repellent protective film in the water repellent protective film forming step. FIG. 3 is a schematic view showing a state in which the recess 4 holds the protective film forming chemical 8 in the water repellent protective film forming step. The wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. The protective film-forming chemical solution is held in the recess 4, and a protective film is formed on the surface of the recess 4, thereby making the surface water repellent. Note that the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
 前記撥水性保護膜形成工程の後で、該凹凸パターンの少なくとも凹部に保持された前記薬液を該薬液とは異なるリンス液に置換した後に、乾燥工程に移ってもよい。このリンス液の例としては、水系溶液からなる水系洗浄液、または、有機溶媒、または、前記水系洗浄液と有機溶媒の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、またはそれらに保護膜形成用薬液に含まれるケイ素化合物や酸が該薬液よりも低濃度になるように添加されたもの等が挙げられる。 After the water-repellent protective film forming step, the chemical solution held at least in the concave portion of the concave / convex pattern may be replaced with a rinse solution different from the chemical solution and then transferred to a drying step. Examples of the rinsing liquid include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, a mixture of the aqueous cleaning liquid and an organic solvent, and a mixture of at least one of an acid, an alkali, and a surfactant. Or a compound in which a silicon compound or an acid contained in the chemical solution for forming a protective film is added so as to have a lower concentration than the chemical solution.
 また、該リンス液の好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。 Examples of the organic solvent which is one of preferred examples of the rinsing liquid include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. , Derivatives of polyhydric alcohols, nitrogen element-containing solvents, and the like.
 前記リンス液として水を用いると、前記薬液によって撥水化された凹凸パターンの少なくとも凹部表面の該液との接触角θが大きくなって該凹部に働く毛細管力が小さくなり、さらに乾燥後にウェハ表面に汚れが残りにくくなるので好ましい。また、前記リンス液として、複数の洗浄液を用いても良い。例えば、有機溶媒(好ましくは水溶性有機溶媒を含む)と水系洗浄液を順次置換して用いることができる。 When water is used as the rinsing liquid, at least the concave surface of the concavo-convex pattern made water repellent by the chemical liquid has a large contact angle θ with the liquid, and the capillary force acting on the concave part is reduced. This is preferable because dirt is less likely to remain on the surface. A plurality of cleaning liquids may be used as the rinsing liquid. For example, an organic solvent (preferably containing a water-soluble organic solvent) and an aqueous cleaning solution can be used in succession.
 撥水性保護膜形成用薬液により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa-a’断面の一部を示すものである。凹部4の表面には撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から置換した後のリンス液でもよいし、置換途中の液体(薬液とリンス液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。 FIG. 4 shows a schematic diagram when the liquid 9 is held in the recess 4 that has been made water-repellent by the chemical solution for forming a water-repellent protective film. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. A water repellent protective film 10 is formed on the surface of the recess 4. At this time, the liquid 9 held in the recess 4 may be the chemical liquid, a rinse liquid after replacement from the chemical liquid, or a liquid in the middle of replacement (mixed liquid of the chemical liquid and the rinse liquid). The water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
 図4の凹部4のように凹部表面に撥水性保護膜が存在すると、該凹部表面と該凹部に保持された液体との接触角が増大され、該凹部に働く毛細管力が低減される。 When a water-repellent protective film is present on the surface of the recess as in the recess 4 in FIG. 4, the contact angle between the surface of the recess and the liquid held in the recess is increased, and the capillary force acting on the recess is reduced.
 図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角はより大きいと、背景技術で述べた毛細管力の式より算出される凹部に働く毛細管力が小さくなるため、パターン倒れがより発生し難くなるため好ましい。 As shown in FIG. 4, when the protective film 10 is formed on the surface of the recess, the contact angle when assuming that water is held on the surface is larger than the capillary force formula described in the background art. Since the capillary force acting on the concave portion is small, pattern collapse is less likely to occur, which is preferable.
 次に、乾燥工程を行う。該工程では、凹凸パターン表面に保持された液体が乾燥により除去される。当該乾燥は、自然乾燥、エアー乾燥、N2ガス乾燥、スピン乾燥法、IPA(2-プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、送風乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。 Next, a drying process is performed. In this step, the liquid held on the uneven pattern surface is removed by drying. The drying is performed by a known drying method such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, air drying, hot air drying, vacuum drying, and the like. Preferably it is done.
 該乾燥工程の前に、前記凹部に保持されている液体は、前記薬液、リンス液、または、該薬液とリンス液の混合液である。なお、前記薬液を含む混合液は、前記薬液をリンス液に置換する途中の状態の液でもよいし、あらかじめ前記薬液をリンス液に混合して得た混合液でもよい。前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。 The liquid held in the recess before the drying step is the chemical solution, the rinse solution, or a mixed solution of the chemical solution and the rinse solution. The liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the rinse liquid, or may be a liquid mixture obtained by previously mixing the chemical liquid with the rinse liquid. In order to efficiently remove the liquid, the retained liquid may be drained and removed, and then the remaining liquid may be dried.
 次に、前記撥水性保護膜除去工程が行われる。前記保護膜10を除去する場合、該保護膜中のC-C結合、C-F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。 Next, the water repellent protective film removing step is performed. When removing the protective film 10, it is effective to cut the C—C bond and C—F bond in the protective film. The method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
 光照射で前記保護膜10を除去する場合、該保護膜10中のC-C結合、C-F結合を切断することが有効であり、このためには、それらの結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、メタルハライドランプであれば、例えば、照度計(コニカミノルタセンシング製照射強度計UM-10、受光部UM-360〔ピーク感度波長:365nm、測定波長範囲:310~400nm〕)の測定値で100mW/cm2以上が好ましく、200mW/cm2以上が特に好ましい。なお、照射強度が100mW/cm2未満では前記保護膜10を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で前記保護膜10を除去できるので好ましい。 When the protective film 10 is removed by light irradiation, it is effective to cut the C—C bond and C—F bond in the protective film 10, and for this purpose, their binding energy is 83 kcal / mol. It is preferable to irradiate ultraviolet rays including wavelengths shorter than 340 nm and 240 nm, which are energy corresponding to 116 kcal / mol. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. If the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable. When the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10. Further, a low-pressure mercury lamp is preferable because it emits ultraviolet rays having a shorter wavelength, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.
 また、光照射で前記保護膜10を除去する場合、紫外線で前記保護膜10の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜10の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源としては、低圧水銀ランプやエキシマランプが用いられる。また、光照射しながらウェハを加熱してもよい。 Further, when the protective film 10 is removed by light irradiation, ozone is generated at the same time as the constituent components of the protective film 10 are decomposed by ultraviolet rays, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone. Is particularly preferable. As this light source, a low-pressure mercury lamp or an excimer lamp is used. Further, the wafer may be heated while irradiating light.
 ウェハを加熱する場合、400~700℃、好ましくは、500~700℃でウェハの加熱を行うのが好ましい。この加熱時間は、1~60分間、好ましくは10~30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。 When heating the wafer, it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
 加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。 There are a method of removing the protective film by heating, a method of bringing the wafer into contact with a heat source, a method of placing the wafer in a heated atmosphere such as a heat treatment furnace, and the like. The method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
 ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。 When the wafer is exposed to ozone, ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.
 前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。 The protective film on the wafer surface can be efficiently removed by combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge.
 <発明の第1の見地からの実施例> <Example from the first aspect of the invention>
 ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本実施例では、前記保護膜形成用薬液の評価を中心に行った。 Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Thus, in this example, the evaluation was mainly performed on the protective film forming chemical solution.
 背景技術で述べた式
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
から明らかなようにパターン倒れを引き起こす毛細管力Pの絶対値は、ウェハ表面に対する液体の接触角、すなわち液滴の接触角と、該液体の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された液体の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式と、凹部表面に形成された撥水性保護膜10の液滴の接触角の評価から、毛細管力を導き出してもよい。なお、実施例において、前記液体として、水系洗浄液の代表的なものである水を用いた。
Formula described in the background art P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
As is apparent from the above, the absolute value of the capillary force P causing the pattern collapse greatly depends on the contact angle of the liquid with respect to the wafer surface, that is, the contact angle of the droplet and the surface tension of the liquid. In the case of the liquid held in the concave portion 4 of the concave-convex pattern 2, the contact angle of the droplet and the capillary force acting on the concave portion, which can be considered as equivalent to pattern collapse, have a correlation. The capillary force may be derived from the evaluation of the contact angle of the droplet of the water repellent protective film 10 formed on the surface. In the examples, water, which is a typical aqueous cleaning liquid, was used as the liquid.
 水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)の表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。そのため、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。 The contact angle of water droplets is evaluated by dropping a few μl of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Test method for wettability of substrate glass surface”. This is done by measuring the angle. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
 そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に窒化ケイ素層を有する「SiN膜付きシリコンウェハ」(表中でSiNと表記)を用いた。 Therefore, in this embodiment, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed. The film 10 was considered and various evaluations were performed. In this example, a “silicon wafer with SiN film” (indicated as SiN in the table) having a silicon nitride layer on a silicon wafer having a smooth surface was used as the wafer having a smooth surface.
 詳細を下記に述べる。以下では、保護膜形成用薬液が供されたウェハの評価方法、該保護膜形成用薬液の調製、そして、ウェハに該保護膜形成用薬液を供した後の評価結果が述べられる。 Details are described below. In the following, a method for evaluating a wafer provided with a chemical solution for forming a protective film, preparation of the chemical solution for forming the protective film, and an evaluation result after providing the chemical solution for forming a protective film on the wafer are described.
〔保護膜形成用薬液が供されたウェハの評価方法〕
 保護膜形成用薬液が供されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
[Evaluation method of wafer provided with chemical solution for forming protective film]
The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.
(1)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定し接触角とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). The contact angle was measured with Interface Science: CA-X type.
(2)保護膜の除去性
 以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを合格とした。
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions. A sample in which the contact angle of water droplets was 10 ° or less after irradiation was regarded as acceptable.
・ Lamp: PL 2003N-10 made by Sen Special Light Source
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3)保護膜除去後のウェハの表面平滑性評価
 原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。保護膜を除去した後のウェハ表面のRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格とした。
Figure JPOXMLDOC01-appb-M000003
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
(3) Evaluation of surface smoothness of wafer after removal of protective film The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the center line average surface roughness: Ra (nm) Asked. Note that Ra is a three-dimensional extension of the center line average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value on the wafer surface after removing the protective film was 1 nm or less, the wafer surface was not eroded by the cleaning, and no residue of the protective film was present on the wafer surface.
Figure JPOXMLDOC01-appb-M000003
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and has a value of (X R −X L ) × (Y B −Y T ). F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
[実施例I-1]
(1)保護膜形成用薬液の調製
 ケイ素化合物としてオクチルジメチルジメチルアミノシラン〔C817(CH32SiN(CH32〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてγ-ブチロラクトン(以降、「GBL」と記載する場合がある);89.388gと溶媒(b)としてジプロピレングリコールモノメチルエーテルアセテート(以降、「DPGMEA」と記載する場合がある)〔CH3CH(OCH3)CH2OCH2CH(OCOCH3)CH3〕;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、保護膜形成用薬液の総量に対するケイ素化合物の濃度(以降「ケイ素化合物濃度」と記載する)が0.5質量%、ケイ素化合物の総量に対する酸の濃度(以降「ケイ素化合物に対する酸濃度」と記載する)が36質量%、保護膜形成用薬液の総量に対する酸の濃度(以降「薬液中の酸濃度」と記載する)が0.18質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。得られた保護膜形成用薬液は、20℃において、目視観察でケイ素化合物の不溶解成分がなく、均一な溶液であることを確認した。なお、前記のような薬液の外観を、表1において「均一」と記載し、目視観察でケイ素化合物の不溶解成分があり、不均一な溶液であるものを、表1において「不均一」と記載する。
[Example I-1]
(1) Preparation of chemical solution for forming protective film Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO ) 2 O]; 0.18 g, γ-butyrolactone (hereinafter sometimes referred to as “GBL”) as solvent (a); 89.388 g and dipropylene glycol monomethyl ether acetate (hereinafter referred to as “GBL”) as solvent (b) DPGMEA ”may be described) [CH 3 CH (OCH 3 ) CH 2 OCH 2 CH (OCOCH 3 ) CH 3 ]; , The concentration of the silicon compound with respect to the total amount of the chemical solution for forming the protective film (hereinafter referred to as “silicon compound concentration”) is 0.5 mass%. The acid concentration relative to the total amount (hereinafter referred to as “acid concentration relative to silicon compound”) is 36 mass%, and the acid concentration relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “acid concentration in the chemical solution”) is 0. A chemical solution for forming a protective film having a mass ratio of the solvent (a) and the solvent (b) of 18% by mass and the solvent (b) was 90:10. It was confirmed by visual observation that the obtained chemical solution for forming a protective film had no insoluble component of the silicon compound and was a uniform solution at 20 ° C. In addition, the appearance of the chemical solution as described above is described as “uniform” in Table 1, and there is an insoluble component of the silicon compound by visual observation. Describe.
(2)ウェハの洗浄
 LP-CVDで作製した平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素層を有するシリコンウェハ)を室温で1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合し、ホットプレートで液温を70℃とした洗浄液に1分間浸漬し、室温で純水に1分間、2-プロパノールに1分間浸漬した。
(2) Cleaning of wafer A silicon wafer with a smooth silicon nitride film (a silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes at room temperature. Then, it is mixed with pure water for 1 minute, 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water at a volume ratio of 1: 1: 5, and then washed with a hot plate at a liquid temperature of 70 ° C. for 1 minute. It was immersed and immersed in pure water for 1 minute at room temperature and for 1 minute in 2-propanol.
(3)ウェハ表面への保護膜形成用薬液による表面処理
 前記窒化ケイ素膜付きシリコンウェハを、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分間浸漬させた。その後、室温でウェハを2-プロパノールに1分間浸漬し、次いで、純水に1分間浸漬した。最後に、ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment with a protective film forming chemical on the wafer surface The silicon wafer with the silicon nitride film was added to the protective film forming chemical prepared in the above “(1) Preparation of protective film forming chemical” at 20 ° C. Immerse for a minute. Thereafter, the wafer was immersed in 2-propanol at room temperature for 1 minute, and then immersed in pure water for 1 minute. Finally, the wafer was taken out from the pure water and air was blown to remove the pure water on the surface.
 得られたウェハを上記「保護膜形成用薬液が供されたウェハの評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は89°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 When the obtained wafer was evaluated in the manner described in “Method for evaluating wafer provided with protective film forming chemical solution”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. However, the contact angle after the surface treatment was 89 °, showing an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例I-2~I-6]
 実施例I-1で用いたケイ素化合物濃度、溶媒(b)の種類、非水溶媒中の溶媒(a)と溶媒(b)の質量比を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、EHAは酢酸エチルヘキシル、PGMEAはプロピレングリコールモノメチルエーテルアセテートを意味する。なお、すべての実施例、比較例において、外観を評価したときの薬液の温度は20℃である。
[Examples I-2 to I-6]
The surface treatment of the wafer was carried out by appropriately changing the silicon compound concentration, the type of solvent (b) used in Example I-1, the mass ratio of the solvent (a) and the solvent (b) in the non-aqueous solvent, The evaluation was performed. The results are shown in Table 1. In Table 1, EHA means ethyl hexyl acetate and PGMEA means propylene glycol monomethyl ether acetate. In all examples and comparative examples, the temperature of the chemical solution when the appearance was evaluated was 20 ° C.
 [実施例I-7]
 ケイ素化合物としてオクチルジメチルジメチルアミノシラン〔C817(CH32SiN(CH32〕;0.5g、溶媒(a)としてGBL;44.694gと溶媒(b)としてDPGMEA;4.966gが混合された非水溶媒を用いて、室温ですべてを混合し、処理液Aを調製した。また、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;44.694gと溶媒(b)としてDPGMEA;4.966gが混合された非水溶媒を用いて、室温ですべてを混合し、処理液Bを調製した。処理液A及び処理液Bを室温で混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、ケイ素化合物に対する酸濃度が36質量%、薬液中の酸濃度が0.18質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。得られた保護膜形成用薬液を用いて実施例I-1と同様にウェハの表面処理を行ったところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は89°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。
[Example I-7]
Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, GBL as the solvent (a); 44.694 g and DPGMEA as the solvent (b); 4.966 g All were mixed at room temperature using a non-aqueous solvent mixed with to prepare a treatment solution A. Further, trifluoroacetic anhydride [(CF 3 CO) 2 O]; 0.18 g as an acid, GBL as a solvent (a); 44.694 g, and DPGMEA as a solvent (b); All were mixed at room temperature to prepare a treatment solution B. The treatment liquid A and the treatment liquid B are mixed at room temperature and stirred for about 5 minutes. The silicon compound concentration is 0.5 mass%, the acid concentration with respect to the silicon compound is 36 mass%, and the acid concentration in the chemical liquid is 0.18 mass. %, A chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained. When the surface treatment of the wafer was performed in the same manner as in Example I-1 using the obtained protective film forming chemical, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. The contact angle after the surface treatment was 89 °, showing an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 [比較例I-1]
 非水溶媒としてGBLのみを用いた以外は実施例I-1と同じ手順で保護膜形成用薬液を調製した。得られた保護膜形成用薬液は、20℃において、目視で不均一であった。
[Comparative Example I-1]
A protective film-forming chemical was prepared by the same procedure as Example I-1 except that only GBL was used as the non-aqueous solvent. The obtained protective film-forming chemical was visually nonuniform at 20 ° C.
 [比較例I-2]
 非水溶媒としてDPGMEAのみを用いた以外は実施例I-1と同じ手順で保護膜形成用薬液を調製した。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example I-2]
A chemical solution for forming a protective film was prepared in the same procedure as Example I-1 except that only DPGMEA was used as the non-aqueous solvent. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例I-1と同様にウェハの表面処理を行ったところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は75°となり、実施例I-1~I-4に比べて接触角が小さかった。 Thereafter, the wafer was surface-treated in the same manner as in Example 1-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 75. The contact angle was smaller than in Examples I-1 to I-4.
 [比較例I-3]
 溶媒(a)と溶媒(b)の質量比が15:85である非水溶媒を用いた以外は実施例I-1と同じ手順で保護膜形成用薬液を調製した。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example I-3]
A chemical solution for forming a protective film was prepared by the same procedure as Example I-1 except that a non-aqueous solvent having a mass ratio of the solvent (a) to the solvent (b) of 15:85 was used. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例I-1と同様にウェハの表面処理を行ったところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は76°となり、実施例I-1~I-4に比べて接触角が小さかった。 Thereafter, the wafer was surface-treated in the same manner as in Example 1-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 76. The contact angle was smaller than in Examples I-1 to I-4.
 [比較例I-4]
 ケイ素化合物としてトリメチルシリルジメチルアミン〔(CH33SiN(CH32〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;89.388gと溶媒(b)としてDPGMEA;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example I-4]
Trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ] as a silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO) 2 O] as an acid; 0.18 g, GBL as a solvent (a) 89.388 g and DPGMEA as solvent (b); using non-aqueous solvent mixed with 9.932 g, all were mixed at room temperature and stirred for about 5 minutes to have a silicon compound concentration of 0.5% by mass; A chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例I-1と同様にウェハの表面処理を行ったところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は55°となり、実施例I-1に比べて接触角が小さかった。 Thereafter, the wafer was surface-treated in the same manner as in Example I-1. As shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 55. The contact angle was smaller than that of Example I-1.
 [比較例I-5]
 ケイ素化合物としてトリフルオロプロピルジメチルジシラザン〔[CF3(CH22(CH32Si]2NH〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;89.388gと溶媒(b)としてDPGMEA;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、非水溶媒の溶媒(a)と溶媒(b)としての質量比が90:10の保護膜形成用薬液を得た。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example I-5]
Trifluoropropyldimethyldisilazane [[CF 3 (CH 2 ) 2 (CH 3 ) 2 Si] 2 NH] as a silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO) 2 O] as an acid; 0 .18 g, GBL as solvent (a); non-aqueous solvent mixed with 89.388 g and DPGMEA as solvent (b); 9.932 g, all mixed at room temperature, stirred for about 5 minutes, A protective film-forming chemical solution having a compound concentration of 0.5 mass% and a mass ratio of 90:10 as the solvent (a) and the solvent (b) of the nonaqueous solvent was obtained. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例I-1と同様にウェハの表面処理を行ったところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は61°となり、実施例I-1に比べて接触角が小さかった。 Thereafter, when the surface treatment of the wafer was performed in the same manner as in Example I-1, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 61. The contact angle was smaller than that of Example I-1.
 前記非水溶媒としてラクトン系溶媒である溶媒(a)のみを用いた、比較例I-1では、疎水性基に多くの炭素原子を含むケイ素化合物が完全には溶解されずに、不溶解成分が存在し、得られた薬液は不均一なものであった。これに対し、上記の実施例では、前記の溶媒(a)と溶媒(b)を適切な比で含有した非水溶媒を用いているため、いずれも前記のような不溶解成分が存在せず、均一なものであった。 In Comparative Example I-1 using only the lactone solvent (a) as the non-aqueous solvent, the silicon compound containing many carbon atoms in the hydrophobic group was not completely dissolved, but the insoluble component was not dissolved. The obtained chemical solution was non-uniform. On the other hand, in the above examples, since the non-aqueous solvent containing the solvent (a) and the solvent (b) in an appropriate ratio is used, none of the above insoluble components exist. It was uniform.
 さらに、上記の実施例では、前記の溶媒(a)と溶媒(b)を適切な比で含有した非水溶媒を用いているため、該比率から外れる比較例I-2、I-3に比べて、より優れた撥水性をウェハに付与することができた。 Further, in the above examples, since a non-aqueous solvent containing the solvent (a) and the solvent (b) in an appropriate ratio is used, compared with Comparative Examples I-2 and I-3 that deviate from the ratio. Thus, it was possible to impart better water repellency to the wafer.
 また、上記の実施例では、疎水性基に多くの炭素原子を含むケイ素化合物を用いているため、該ケイ素化合物を用いていない比較例I-4、I-5に比べて、より優れた撥水性をウェハに付与することができた。 Further, in the above examples, since a silicon compound containing many carbon atoms in the hydrophobic group is used, it is more excellent in repellent properties than Comparative Examples I-4 and I-5 which do not use the silicon compound. Aqueous water could be imparted to the wafer.
 従って、本発明を適用することにより、撥水性保護膜を形成するために疎水性基が大きなケイ素化合物を用いても、不溶解成分が発生することがなく、均一な撥水性保護膜形成用薬液を得ることができ、さらに、ウェハに対してより優れた撥水性を付与することが可能である。
 <発明の第2の見地からの実施例>
Therefore, by applying the present invention, even when a silicon compound having a large hydrophobic group is used to form a water-repellent protective film, an insoluble component is not generated, and a uniform chemical solution for forming a water-repellent protective film is formed. Further, it is possible to impart more excellent water repellency to the wafer.
<Example from the second aspect of the invention>
 ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本実施例では、前記保護膜形成用薬液の評価を中心に行った。 Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Thus, in this example, the evaluation was mainly performed on the protective film forming chemical solution.
 背景技術で述べた式
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
から明らかなようにパターン倒れを引き起こす毛細管力Pの絶対値は、ウェハ表面に対する液体の接触角、すなわち液滴の接触角と、該液体の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された液体の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式と、凹部表面に形成された撥水性保護膜10の液滴の接触角の評価から、毛細管力を導き出してもよい。なお、実施例において、前記液体として、水系洗浄液の代表的なものである水を用いた。
Formula described in the background art P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
As is apparent from the above, the absolute value of the capillary force P causing the pattern collapse greatly depends on the contact angle of the liquid with respect to the wafer surface, that is, the contact angle of the droplet and the surface tension of the liquid. In the case of the liquid held in the concave portion 4 of the concave-convex pattern 2, the contact angle of the droplet and the capillary force acting on the concave portion, which can be considered as equivalent to pattern collapse, have a correlation. The capillary force may be derived from the evaluation of the contact angle of the droplet of the water repellent protective film 10 formed on the surface. In the examples, water, which is a typical aqueous cleaning liquid, was used as the liquid.
 水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)の表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。そのため、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。 The contact angle of water droplets is evaluated by dropping a few μl of water droplets on the surface of the sample (base material) as described in JIS R 3257 “Test method for wettability of substrate glass surface”. This is done by measuring the angle. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
 そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に酸化ケイ素層を有する「SiO2膜付きシリコンウェハ」(表中でSiO2と表記)を用いた。 Therefore, in this embodiment, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed. The film 10 was considered and various evaluations were performed. In this example, a “silicon wafer with a SiO 2 film” (indicated as SiO 2 in the table) having a silicon oxide layer on a silicon wafer having a smooth surface was used as the wafer having a smooth surface.
 詳細を下記に述べる。以下では、保護膜形成用薬液が供されたウェハの評価方法、該保護膜形成用薬液の調製、そして、ウェハに該保護膜形成用薬液を供した後の評価結果が述べられる。 Details are described below. In the following, a method for evaluating a wafer provided with a chemical solution for forming a protective film, preparation of the chemical solution for forming the protective film, and an evaluation result after providing the chemical solution for forming a protective film on the wafer are described.
〔保護膜形成用薬液が供されたウェハの評価方法〕
 保護膜形成用薬液が供されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
[Evaluation method of wafer provided with chemical solution for forming protective film]
The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.
(1)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定し接触角とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). The contact angle was measured with Interface Science: CA-X type.
(2)保護膜の除去性
 以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを合格とした。
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions. A sample in which the contact angle of water droplets was 10 ° or less after irradiation was regarded as acceptable.
・ Lamp: PL 2003N-10 made by Sen Special Light Source
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3)保護膜除去後のウェハの表面平滑性評価
 原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。保護膜を除去した後のウェハ表面のRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格とした。
Figure JPOXMLDOC01-appb-M000005
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
(3) Evaluation of surface smoothness of wafer after removal of protective film The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the center line average surface roughness: Ra (nm) Asked. Note that Ra is a three-dimensional extension of the center line average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value on the wafer surface after removing the protective film was 1 nm or less, the wafer surface was not eroded by the cleaning, and no residue of the protective film was present on the wafer surface.
Figure JPOXMLDOC01-appb-M000005
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and has a value of (X R −X L ) × (Y B −Y T ). F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
[実施例II-1]
(1)保護膜形成用薬液の調製
 ケイ素化合物としてオクチルジメチルジメチルアミノシラン〔C817(CH32SiN(CH32〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてγ-ブチロラクトン(以降、「GBL」と記載する場合がある);89.388gと溶媒(b)としてジプロピレングリコールモノメチルエーテルアセテート(以降、「DPGMEA」と記載する場合がある)〔CH3CH(OCH3)CH2OCH2CH(OCOCH3)CH3〕;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、保護膜形成用薬液の総量に対するケイ素化合物の濃度(以降「ケイ素化合物濃度」と記載する)が0.5質量%、ケイ素化合物の総量に対する酸の濃度(以降「ケイ素化合物に対する酸濃度」と記載する)が36質量%、保護膜形成用薬液の総量に対する酸の濃度(以降「薬液中の酸濃度」と記載する)が0.18質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。得られた保護膜形成用薬液は、20℃において、目視観察でケイ素化合物の不溶解成分がなく、均一な溶液であることを確認した。なお、前記のような薬液の外観を、表2において「均一」と記載し、目視観察でケイ素化合物の不溶解成分があり、不均一な溶液であるものを、表2において「不均一」と記載する。
[Example II-1]
(1) Preparation of chemical solution for forming protective film Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO ) 2 O]; 0.18 g, γ-butyrolactone (hereinafter sometimes referred to as “GBL”) as solvent (a); 89.388 g and dipropylene glycol monomethyl ether acetate (hereinafter referred to as “GBL”) as solvent (b) DPGMEA ”may be described) [CH 3 CH (OCH 3 ) CH 2 OCH 2 CH (OCOCH 3 ) CH 3 ]; , The concentration of the silicon compound with respect to the total amount of the chemical solution for forming the protective film (hereinafter referred to as “silicon compound concentration”) is 0.5 mass%. The acid concentration relative to the total amount (hereinafter referred to as “acid concentration relative to silicon compound”) is 36 mass%, and the acid concentration relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “acid concentration in the chemical solution”) is 0. A chemical solution for forming a protective film having a mass ratio of the solvent (a) and the solvent (b) of 18% by mass and the solvent (b) was 90:10. It was confirmed by visual observation that the obtained chemical solution for forming a protective film had no insoluble component of the silicon compound and was a uniform solution at 20 ° C. In addition, the appearance of the chemical solution as described above is described as “uniform” in Table 2, and there is an insoluble component of the silicon compound by visual observation. Describe.
(2)ウェハの洗浄
 平滑な酸化ケイ素膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するシリコンウェハ)を室温で1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、2-プロパノールに1分間浸漬した。
(2) Cleaning of wafer A silicon wafer with a smooth silicon oxide film (a silicon wafer having a thermal oxide film layer having a thickness of 1 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 minutes and then immersed in pure water It was immersed in 2-propanol for 1 minute for 1 minute.
(3)ウェハ表面への保護膜形成用薬液による表面処理
 前記酸化ケイ素膜付きシリコンウェハを、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分間浸漬させた。その後、室温でウェハを2-プロパノールに1分間浸漬し、次いで、純水に1分間浸漬した。最後に、ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment of the wafer surface with a chemical solution for forming a protective film The silicon wafer with the silicon oxide film is added to the chemical solution for forming a protective film prepared in “(1) Preparation of chemical solution for forming a protective film” at 20 ° C. Immerse for a minute. Thereafter, the wafer was immersed in 2-propanol at room temperature for 1 minute, and then immersed in pure water for 1 minute. Finally, the wafer was taken out from the pure water and air was blown to remove the pure water on the surface.
 得られたウェハを上記「保護膜形成用薬液が供されたウェハの評価方法」に記載した要領で評価したところ、表2に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は103°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 When the obtained wafer was evaluated in the manner described in “Method for evaluating wafer provided with chemical for forming protective film”, the initial contact angle before the surface treatment was less than 10 ° as shown in Table 2. However, the contact angle after the surface treatment was 103 °, showing an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [実施例II-2~II-6]
 実施例II-1で用いた溶媒(b)の種類、非水溶媒中の溶媒(a)と溶媒(b)の質量比を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表2に示す。なお、表2中で、EHAは酢酸エチルヘキシル、PGMEAはプロピレングリコールモノメチルエーテルアセテートを意味する。なお、すべての実施例、比較例において、外観を評価したときの薬液の温度は20℃である。
[Examples II-2 to II-6]
The surface treatment of the wafer was carried out by appropriately changing the type of the solvent (b) used in Example II-1 and the mass ratio of the solvent (a) to the solvent (b) in the non-aqueous solvent, and further evaluating it. It was. The results are shown in Table 2. In Table 2, EHA means ethyl hexyl acetate and PGMEA means propylene glycol monomethyl ether acetate. In all examples and comparative examples, the temperature of the chemical solution when the appearance was evaluated was 20 ° C.
 [実施例II-7]
 ケイ素化合物としてオクチルジメチルジメチルアミノシラン〔C817(CH32SiN(CH32〕;0.5g、溶媒(a)としてGBL;44.694gと溶媒(b)としてDPGMEA;4.966gが混合された非水溶媒を用いて、室温ですべてを混合し、処理液Aを調製した。また、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;44.694gと溶媒(b)としてDPGMEA;4.966gが混合された非水溶媒を用いて、室温ですべてを混合し、処理液Bを調製した。処理液A及び処理液Bを室温で混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、ケイ素化合物に対する酸濃度が36質量%、薬液中の酸濃度が0.18質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。得られた保護膜形成用薬液を用いて実施例II-1と同様にウェハの表面処理を行ったところ、表2に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は103°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。
[Example II-7]
Octyldimethyldimethylaminosilane [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as the silicon compound; 0.5 g, GBL as the solvent (a); 44.694 g and DPGMEA as the solvent (b); 4.966 g All were mixed at room temperature using a non-aqueous solvent mixed with to prepare a treatment solution A. Further, trifluoroacetic anhydride [(CF 3 CO) 2 O]; 0.18 g as an acid, GBL as a solvent (a); 44.694 g, and DPGMEA as a solvent (b); All were mixed at room temperature to prepare a treatment solution B. The treatment liquid A and the treatment liquid B are mixed at room temperature and stirred for about 5 minutes. The silicon compound concentration is 0.5 mass%, the acid concentration with respect to the silicon compound is 36 mass%, and the acid concentration in the chemical liquid is 0.18 mass. %, A chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained. When the surface treatment of the wafer was performed in the same manner as in Example II-1 using the obtained protective film forming chemical, as shown in Table 2, the initial contact angle before the surface treatment was less than 10 °. The contact angle after the surface treatment was 103 °, showing an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 [比較例II-1]
 非水溶媒としてGBLのみを用いた以外は実施例II-1と同じ手順で保護膜形成用薬液を調製した。得られた保護膜形成用薬液は、20℃において、目視で不均一であった。
[Comparative Example II-1]
A protective film-forming chemical was prepared in the same procedure as in Example II-1, except that only GBL was used as the non-aqueous solvent. The obtained protective film-forming chemical was visually nonuniform at 20 ° C.
 [比較例II-2]
 ケイ素化合物としてトリメチルシリルジメチルアミン〔(CH33SiN(CH32〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;89.388gと溶媒(b)としてDPGMEA;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、非水溶媒の溶媒(a)と溶媒(b)の質量比が90:10の保護膜形成用薬液を得た。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example II-2]
Trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ] as a silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO) 2 O] as an acid; 0.18 g, GBL as a solvent (a) 89.388 g and DPGMEA as solvent (b); using non-aqueous solvent mixed with 9.932 g, all were mixed at room temperature and stirred for about 5 minutes to have a silicon compound concentration of 0.5% by mass; A chemical solution for forming a protective film having a mass ratio of the nonaqueous solvent (a) to the solvent (b) of 90:10 was obtained. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例II-1と同様にウェハの表面処理を行ったところ、表2に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は87°となり、優れた撥水性付与効果を示したものの、実施例II-1に比べて接触角が小さかった。 Thereafter, the wafer was surface-treated in the same manner as in Example II-1. As shown in Table 2, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 87. The contact angle was smaller than that of Example II-1, although it showed excellent water repellency imparting effect.
 [比較例II-3]
 ケイ素化合物としてトリフルオロプロピルジメチルジシラザン〔[CF3(CH22(CH32Si]2NH〕;0.5g、酸として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18g、溶媒(a)としてGBL;89.388gと溶媒(b)としてDPGMEA;9.932gが混合された非水溶媒を用いて、室温ですべてを混合し、約5分間撹拌して、ケイ素化合物濃度が0.5質量%、非水溶媒の溶媒(a)と溶媒(b)としての質量比が90:10の保護膜形成用薬液を得た。なお、得られた保護膜形成用薬液は、20℃において、均一であることを目視で確認した。
[Comparative Example II-3]
Trifluoropropyldimethyldisilazane [[CF 3 (CH 2 ) 2 (CH 3 ) 2 Si] 2 NH] as a silicon compound; 0.5 g, trifluoroacetic anhydride [(CF 3 CO) 2 O] as an acid; 0 .18 g, GBL as solvent (a); non-aqueous solvent mixed with 89.388 g and DPGMEA as solvent (b); 9.932 g, all mixed at room temperature, stirred for about 5 minutes, A protective film-forming chemical solution having a compound concentration of 0.5 mass% and a mass ratio of 90:10 as the solvent (a) and the solvent (b) of the nonaqueous solvent was obtained. In addition, it confirmed visually that the obtained chemical | medical solution for protective film formation was uniform in 20 degreeC.
 その後、実施例II-1と同様にウェハの表面処理を行ったところ、表2に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は92°となり、優れた撥水性付与効果を示したものの、実施例II-1に比べて接触角が小さかった。 Thereafter, the surface treatment of the wafer was performed in the same manner as in Example II-1. As shown in Table 2, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 92. The contact angle was smaller than that of Example II-1, although it showed excellent water repellency imparting effect.
 前記非水溶媒としてラクトン系溶媒である溶媒(a)のみを用いた、比較例II-1では、疎水性基に多くの炭素原子を含むケイ素化合物が完全には溶解されずに、不溶解成分が存在し、得られた薬液は不均一なものであった。これに対し、上記の実施例では、前記の溶媒(a)と溶媒(b)を適切な比で含有した非水溶媒を用いているため、いずれも前記のような不溶解成分が存在せず、均一なものであった。 In Comparative Example II-1 using only the lactone solvent (a) as the non-aqueous solvent, the silicon compound containing many carbon atoms in the hydrophobic group was not completely dissolved, but the insoluble component was not dissolved. The obtained chemical solution was non-uniform. On the other hand, in the above examples, since the non-aqueous solvent containing the solvent (a) and the solvent (b) in an appropriate ratio is used, none of the above insoluble components exist. It was uniform.
 また、上記の実施例では、疎水性基に多くの炭素原子を含むケイ素化合物を用いているため、該ケイ素化合物を用いていない比較例II-2、II-3に比べて、より優れた撥水性をウェハに付与することができた。 Further, in the above examples, since a silicon compound containing a large number of carbon atoms in the hydrophobic group is used, it is more excellent in repellent properties than Comparative Examples II-2 and II-3 in which the silicon compound is not used. Aqueous water could be imparted to the wafer.
 従って、本発明を適用することにより、撥水性保護膜を形成するために疎水性基が大きなケイ素化合物を用いても、不溶解成分が発生することがなく、均一な撥水性保護膜形成用薬液を得ることができ、さらに、ウェハに対してより優れた撥水性を付与することが可能である。 Therefore, by applying the present invention, even when a silicon compound having a large hydrophobic group is used to form a water repellent protective film, an insoluble component is not generated, and a uniform chemical solution for forming a water repellent protective film is formed. Further, it is possible to impart more excellent water repellency to the wafer.
1  ウェハ
2  ウェハ表面の凹凸パターン
3  パターンの凸部
4  パターンの凹部
5  凹部の幅
6  凸部の高さ
7  凸部の幅
8  撥水性保護膜形成用薬液
9  液体
10 撥水性保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Convex / concave pattern on wafer surface 3 Pattern convex part 4 Pattern concave part 5 Concave width 6 Convex part height 7 Convex part width 8 Water repellent protective film forming chemical 9 Liquid 10 Water repellent protective film

Claims (29)

  1. 表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含む酸化ケイ素以外のケイ素系ウェハの洗浄工程の後、乾燥工程の前において、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成用薬液であり、前記薬液はケイ素化合物と非水溶媒とが含まれる薬液であって、前記ケイ素化合物が下記一般式[1]で表され、前記非水溶媒が、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されることを特徴とする、撥水性保護膜形成用薬液。
                R1 aSiX4-a [1]
    [式[1]中、R1は、それぞれ互いに独立して、水素基、一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基からなる群から選ばれる少なくとも1つの基であり、ケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計は6以上である。また、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
    After the cleaning step of the silicon-based wafer other than silicon oxide containing silicon element on at least the concave surface of the concave-convex pattern on the surface, a water-repellent protective film is formed on at least the concave surface of the wafer before the drying step A chemical solution for forming a water-repellent protective film for forming, wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, and the silicon compound is represented by the following general formula [1], and the non-aqueous solvent However, the mass ratio of at least one solvent (a) selected from lactone solvents and carbonate solvents and a solvent (b) soluble in a silicon compound other than the solvent (a) is 40:60 to 97: 3 A chemical solution for forming a water-repellent protective film, characterized by comprising:
    R 1 a SiX 4-a [1]
    [In the formula [1], R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements. The total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more. X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
  2. 前記撥水性保護膜形成用薬液中の非水溶媒が、前記溶媒(a)と前記溶媒(b)が質量比で70:30~95:5で構成されることを特徴とする、請求項1に記載の撥水性保護膜形成用薬液。 2. The non-aqueous solvent in the chemical solution for forming a water repellent protective film is characterized in that the solvent (a) and the solvent (b) are formed in a mass ratio of 70:30 to 95: 5. A chemical solution for forming a water-repellent protective film according to 1.
  3. 前記溶媒(a)がラクトン系溶媒であることを特徴とする、請求項1又は請求項2に記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water-repellent protective film according to claim 1 or 2, wherein the solvent (a) is a lactone solvent.
  4. 前記撥水性保護膜形成用薬液が、10℃乃至160℃の温度で保持された状態のものであることを特徴とする、請求項1乃至請求項3のいずれかに記載の撥水性保護膜形成用薬液。 The water-repellent protective film formation according to any one of claims 1 to 3, wherein the water-repellent protective film-forming chemical solution is maintained at a temperature of 10 ° C to 160 ° C. Chemical solution.
  5. 前記ケイ素化合物が下記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項1乃至請求項4のいずれかに記載の撥水性保護膜形成用薬液。
              R2(CH32SiX [2]
    [式[2]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基である。]
    The chemical solution for forming a water-repellent protective film according to any one of claims 1 to 4, wherein the silicon compound is a silicon compound represented by the following general formula [2].
    R 2 (CH 3 ) 2 SiX [2]
    [In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element. From the group consisting of a monovalent functional group in which the element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and —CO—NH—Si (CH 3 ) 3 At least one group selected. ]
  6. 前記ケイ素化合物が下記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項1乃至請求項5のいずれかに記載の撥水性保護膜形成用薬液。
            R2(CH32Si-N(R32 [3]
    [式[3]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、R3はメチル基、エチル基、プロピル基、又はブチル基である。]
    The chemical solution for forming a water-repellent protective film according to any one of claims 1 to 5, wherein the silicon compound is a silicon compound represented by the following general formula [3].
    R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3]
    [In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
  7. 前記撥水性保護膜形成用薬液中のケイ素化合物濃度が、0.1~4質量%であることを特徴とする、請求項1乃至請求項6のいずれかに記載の撥水性保護膜形成用薬液。 7. The chemical solution for forming a water-repellent protective film according to claim 1, wherein the concentration of the silicon compound in the chemical solution for forming a water-repellent protective film is 0.1 to 4% by mass. .
  8. 前記撥水性保護膜形成用薬液に、さらに酸が含まれることを特徴とする、請求項1乃至請求項7のいずれかに記載の撥水性保護膜形成用薬液。 8. The water repellent protective film-forming chemical solution according to claim 1, further comprising an acid in the water-repellent protective film-forming chemical solution.
  9. 請求項8に記載の撥水性保護膜形成用薬液を得るための撥水性保護膜形成用薬液キットであり、該薬液キットが、前記一般式[1]で表されるケイ素化合物と、溶媒(a)及び/又は溶媒(b)とを有する処理液Aと、酸と、前記の溶媒(a)及び/又は溶媒(b)とを有す処理液Bからなることを特徴とする、撥水性保護膜形成用薬液キット。 A water-repellent protective film-forming chemical solution kit for obtaining the water-repellent protective film-forming chemical solution according to claim 8, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent (a ) And / or a solvent (b), an acid, and a treatment liquid B having the solvent (a) and / or the solvent (b). Chemical solution kit for film formation.
  10. 前記溶媒(a)がラクトン系溶媒であることを特徴とする、請求項9に記載の撥水性保護膜形成用薬液キット。 The chemical kit for forming a water-repellent protective film according to claim 9, wherein the solvent (a) is a lactone solvent.
  11. 前記ケイ素化合物が前記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項9又は請求項10に記載の撥水性保護膜形成用薬液キット。 The chemical kit for forming a water-repellent protective film according to claim 9 or 10, wherein the silicon compound is a silicon compound represented by the general formula [2].
  12. 前記ケイ素化合物が前記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項9乃至請求項11のいずれかに記載の撥水性保護膜形成用薬液キット。 The chemical kit for forming a water-repellent protective film according to any one of claims 9 to 11, wherein the silicon compound is a silicon compound represented by the general formula [3].
  13. 表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含む酸化ケイ素以外のケイ素系ウェハの洗浄において、以下に示す工程、
      前記ウェハ表面を洗浄液で洗浄する、洗浄工程、
      前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
      ウェハ表面の液体を除去する、乾燥工程、
      前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
    を含み、撥水性保護膜形成工程において請求項1乃至請求項8のいずれかに記載の撥水性保護膜形成用薬液、又は請求項9乃至請求項12のいずれかに記載の撥水性保護膜形成用薬液キットから得られる撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法。
    In the cleaning of silicon-based wafers other than silicon oxide having a concavo-convex pattern on the surface and containing silicon element at least on the surface of the concavo-convex pattern, the following steps are shown:
    Cleaning the wafer surface with a cleaning liquid,
    A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
    A drying process to remove the liquid on the wafer surface;
    A chemical solution for forming a water-repellent protective film according to any one of claims 1 to 8, comprising a water-repellent protective film removing step of removing the water-repellent protective film from the concave surface, A method for cleaning a wafer, comprising using a water-repellent protective film-forming chemical obtained from the water-repellent protective film-forming chemical liquid kit according to any one of claims 9 to 12.
  14. 前記ウェハが、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハであることを特徴とする、請求項13に記載のウェハの洗浄方法。 The method for cleaning a wafer according to claim 13, wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern.
  15. 撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることを特徴とする、請求項13又は請求項14に記載のウェハの洗浄方法。 The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. 15. The wafer cleaning method according to claim 13, wherein the wafer cleaning method is performed by one processing method.
  16. 表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に酸化ケイ素を含むウェハの洗浄工程の後、乾燥工程の前において、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成用薬液であり、前記薬液はケイ素化合物と非水溶媒とが含まれる薬液であって、前記ケイ素化合物が下記一般式[1]で表され、前記非水溶媒が、ラクトン系溶媒及びカーボネート系溶媒から選ばれる少なくとも1種の溶媒(a)と、該溶媒(a)以外のケイ素化合物を可溶な溶媒(b)が質量比で40:60~97:3で構成されることを特徴とする、撥水性保護膜形成用薬液。
                R1 aSiX4-a [1]
    [式[1]中、R1は、それぞれ互いに独立して、水素基、一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が1~18の1価の炭化水素基からなる群から選ばれる少なくとも1つの基であり、ケイ素元素と結合する全ての前記炭化水素基に含まれる炭素数の合計は6以上である。また、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
    A water repellency for forming a water repellent protective film on at least the concave surface of the wafer after the cleaning step and before the drying step of the wafer having a concave and convex pattern on the surface and containing silicon oxide on at least the concave surface of the concave and convex pattern A chemical solution for forming a protective film, wherein the chemical solution is a chemical solution containing a silicon compound and a non-aqueous solvent, wherein the silicon compound is represented by the following general formula [1], and the non-aqueous solvent is a lactone solvent and A mass ratio of at least one solvent (a) selected from carbonate-based solvents and a solvent (b) capable of dissolving a silicon compound other than the solvent (a) is 40:60 to 97: 3. A chemical solution for forming a water-repellent protective film.
    R 1 a SiX 4-a [1]
    [In the formula [1], R 1 s are each independently a hydrogen group, a monovalent hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements. The total number of carbon atoms contained in all the hydrocarbon groups bonded to the silicon element is at least one group selected from the group consisting of 6 or more. X is independently of each other a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and , —CO—NH—Si (CH 3 ) 3, and at least one group selected from the group consisting of —CO—NH—Si (CH 3 ) 3 . ]
  17. 前記撥水性保護膜形成用薬液中の非水溶媒が、前記溶媒(a)と前記溶媒(b)が質量比で70:30~95:5で構成されることを特徴とする、請求項16に記載の撥水性保護膜形成用薬液。 The nonaqueous solvent in the chemical solution for forming a water-repellent protective film is characterized in that the solvent (a) and the solvent (b) are configured in a mass ratio of 70:30 to 95: 5. A chemical solution for forming a water-repellent protective film according to 1.
  18. 前記溶媒(a)がラクトン系溶媒であることを特徴とする、請求項16又は請求項17に記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water repellent protective film according to claim 16, wherein the solvent (a) is a lactone solvent.
  19. 前記撥水性保護膜形成用薬液が、10℃乃至160℃の温度で保持された状態のものであることを特徴とする、請求項16乃至請求項18のいずれかに記載の撥水性保護膜形成用薬液。 19. The water repellent protective film formation according to claim 16, wherein the chemical solution for forming the water repellent protective film is in a state of being maintained at a temperature of 10 ° C. to 160 ° C. Chemical solution.
  20. 前記ケイ素化合物が下記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項16乃至請求項19のいずれかに記載の撥水性保護膜形成用薬液。
              R2(CH32SiX [2]
    [式[2]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、ハロゲン基、ニトリル基、および、-CO-NH-Si(CH33からなる群から選ばれる少なくとも1つの基である。]
    20. The chemical solution for forming a water-repellent protective film according to claim 16, wherein the silicon compound is a silicon compound represented by the following general formula [2].
    R 2 (CH 3 ) 2 SiX [2]
    [In the formula [2], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and X is bonded to the silicon element. From the group consisting of a monovalent functional group in which the element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, a halogen group, a nitrile group, and —CO—NH—Si (CH 3 ) 3 At least one group selected. ]
  21. 前記ケイ素化合物が下記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項16乃至請求項20のいずれかに記載の撥水性保護膜形成用薬液。
            R2(CH32Si-N(R32 [3]
    [式[3]中、R2は一部又は全ての水素元素がハロゲン元素に置き換えられていても良い炭素数が4~18の1価の炭化水素基であり、R3はメチル基、エチル基、プロピル基、又はブチル基である。]
    The chemical solution for forming a water-repellent protective film according to any one of claims 16 to 20, wherein the silicon compound is a silicon compound represented by the following general formula [3].
    R 2 (CH 3 ) 2 Si—N (R 3 ) 2 [3]
    [In the formula [3], R 2 is a monovalent hydrocarbon group having 4 to 18 carbon atoms in which some or all of the hydrogen elements may be replaced by halogen elements, and R 3 is a methyl group, ethyl Group, propyl group, or butyl group. ]
  22. 前記撥水性保護膜形成用薬液中のケイ素化合物濃度が、0.1~4質量%であることを特徴とする、請求項16乃至請求項21のいずれかに記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water-repellent protective film according to any one of claims 16 to 21, wherein a concentration of the silicon compound in the chemical solution for forming a water-repellent protective film is 0.1 to 4% by mass. .
  23. 前記撥水性保護膜形成用薬液に、さらに酸が含まれることを特徴とする、請求項16乃至請求項22のいずれかに記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water-repellent protective film according to any one of claims 16 to 22, wherein the chemical solution for forming a water-repellent protective film further contains an acid.
  24. 請求項23に記載の撥水性保護膜形成用薬液を得るための撥水性保護膜形成用薬液キットであり、該薬液キットが、前記一般式[1]で表されるケイ素化合物と、溶媒(a)及び/又は溶媒(b)とを有する処理液Aと、酸と、前記の溶媒(a)及び/又は溶媒(b)とを有する処理液Bからなることを特徴とする、撥水性保護膜形成用薬液キット。 A water-repellent protective film-forming chemical solution kit for obtaining the water-repellent protective film-forming chemical solution according to claim 23, wherein the chemical solution kit comprises a silicon compound represented by the general formula [1] and a solvent (a ) And / or solvent (b), acid, and treatment liquid B having the solvent (a) and / or solvent (b). Chemical solution kit for formation.
  25. 前記溶媒(a)がラクトン系溶媒であることを特徴とする、請求項24に記載の撥水性保護膜形成用薬液キット。 The chemical solution kit for forming a water-repellent protective film according to claim 24, wherein the solvent (a) is a lactone solvent.
  26. 前記ケイ素化合物が前記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項24又は請求項25に記載の撥水性保護膜形成用薬液キット。 The chemical solution kit for forming a water-repellent protective film according to claim 24 or 25, wherein the silicon compound is a silicon compound represented by the general formula [2].
  27. 前記ケイ素化合物が前記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項24乃至請求項26のいずれかに記載の撥水性保護膜形成用薬液キット。 27. The chemical solution kit for forming a water-repellent protective film according to claim 24, wherein the silicon compound is a silicon compound represented by the general formula [3].
  28. 表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に酸化ケイ素を含むウェハの洗浄において、以下に示す工程、
      前記ウェハ表面を洗浄液で洗浄する、洗浄工程、
      前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
      ウェハ表面の液体を除去する、乾燥工程、
      前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
    を含み、撥水性保護膜形成工程において請求項16乃至請求項23のいずれかに記載の撥水性保護膜形成用薬液、又は請求項24乃至請求項27のいずれかに記載の撥水性保護膜形成用薬液キットから得られる撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法。
    In the cleaning of a wafer having a concavo-convex pattern on the surface and containing silicon oxide on at least the concave surface of the concavo-convex pattern, the steps shown below,
    Cleaning the wafer surface with a cleaning liquid,
    A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
    A drying process to remove the liquid on the wafer surface;
    24. A chemical solution for forming a water-repellent protective film according to any one of claims 16 to 23, comprising a water-repellent protective film removing step of removing the water-repellent protective film from the concave surface, 28. A method for cleaning a wafer, comprising using a water-repellent protective film-forming chemical solution obtained from the water-repellent protective film-forming chemical solution kit according to any one of claims 24 to 27.
  29. 撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることを特徴とする、請求項28に記載のウェハの洗浄方法。 The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. 29. The wafer cleaning method according to claim 28, wherein the wafer cleaning method is performed by one processing method.
PCT/JP2013/051256 2012-02-01 2013-01-23 Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer WO2013115021A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012020368A JP5974515B2 (en) 2012-02-01 2012-02-01 Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP2012-020347 2012-02-01
JP2012020347A JP5974514B2 (en) 2012-02-01 2012-02-01 Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP2012-020368 2012-02-01

Publications (1)

Publication Number Publication Date
WO2013115021A1 true WO2013115021A1 (en) 2013-08-08

Family

ID=48905063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051256 WO2013115021A1 (en) 2012-02-01 2013-01-23 Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer

Country Status (2)

Country Link
TW (1) TWI484023B (en)
WO (1) WO2013115021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138153A (en) * 2013-01-18 2014-07-28 Toshiba Corp Method for manufacturing semiconductor device and semiconductor manufacturing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate
JP2011091349A (en) * 2009-09-28 2011-05-06 Tokyo Ohka Kogyo Co Ltd Surface treatment agent, and surface treatment method
WO2011145500A1 (en) * 2010-05-19 2011-11-24 セントラル硝子株式会社 Chemical for forming protective film
JP2012015335A (en) * 2010-06-30 2012-01-19 Central Glass Co Ltd Chemical for forming protective film, and cleaning method of wafer surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947293B2 (en) * 2007-02-23 2012-06-06 信越化学工業株式会社 Pattern formation method
KR20110086028A (en) * 2008-10-21 2011-07-27 도오꾜오까고오교 가부시끼가이샤 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate
JP2011091349A (en) * 2009-09-28 2011-05-06 Tokyo Ohka Kogyo Co Ltd Surface treatment agent, and surface treatment method
WO2011145500A1 (en) * 2010-05-19 2011-11-24 セントラル硝子株式会社 Chemical for forming protective film
JP2012015335A (en) * 2010-06-30 2012-01-19 Central Glass Co Ltd Chemical for forming protective film, and cleaning method of wafer surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138153A (en) * 2013-01-18 2014-07-28 Toshiba Corp Method for manufacturing semiconductor device and semiconductor manufacturing device
US9818627B2 (en) 2013-01-18 2017-11-14 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus
US10032658B2 (en) 2013-01-18 2018-07-24 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
TW201341517A (en) 2013-10-16
TWI484023B (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6032338B2 (en) Chemical solution for protective film formation
JP5708191B2 (en) Chemical solution for protective film formation
JP5482192B2 (en) Silicon wafer cleaning agent
JP5533178B2 (en) Silicon wafer cleaning agent
KR101535200B1 (en) Chemical solution for forming protective film
JP5446848B2 (en) Silicon wafer cleaning agent
US9481858B2 (en) Silicon wafer cleaning agent
US9281178B2 (en) Cleaning agent for silicon wafer
KR101425543B1 (en) Chemical solution for forming water-repellent protective film and method for cleaning of wafer using the same
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
JP5974514B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
WO2013115021A1 (en) Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP5974515B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP2012178431A (en) Wafer cleaning method
WO2010084826A1 (en) Silicon wafer cleaning agent
JP5712670B2 (en) Water repellent protective film forming chemical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13742853

Country of ref document: EP

Kind code of ref document: A1