JP5716527B2 - Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution - Google Patents

Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution Download PDF

Info

Publication number
JP5716527B2
JP5716527B2 JP2011108634A JP2011108634A JP5716527B2 JP 5716527 B2 JP5716527 B2 JP 5716527B2 JP 2011108634 A JP2011108634 A JP 2011108634A JP 2011108634 A JP2011108634 A JP 2011108634A JP 5716527 B2 JP5716527 B2 JP 5716527B2
Authority
JP
Japan
Prior art keywords
wafer
protective film
water
repellent protective
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011108634A
Other languages
Japanese (ja)
Other versions
JP2012033881A (en
Inventor
真規 斎藤
真規 斎藤
崇 齋尾
崇 齋尾
忍 荒田
忍 荒田
公文 創一
創一 公文
七井 秀寿
秀寿 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011108634A priority Critical patent/JP5716527B2/en
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to PCT/JP2011/064370 priority patent/WO2012002243A1/en
Priority to KR1020137002349A priority patent/KR20130046431A/en
Priority to CN201180032637.3A priority patent/CN102971836B/en
Priority to KR1020157004348A priority patent/KR101572583B1/en
Priority to SG2012093423A priority patent/SG186761A1/en
Priority to TW100122721A priority patent/TWI461519B/en
Publication of JP2012033881A publication Critical patent/JP2012033881A/en
Priority to US13/667,236 priority patent/US20130146100A1/en
Application granted granted Critical
Publication of JP5716527B2 publication Critical patent/JP5716527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体デバイス製造などにおける基板ウェハの洗浄技術に関する。   The present invention relates to a substrate wafer cleaning technique in semiconductor device manufacturing or the like.

半導体チップの製造では、成膜、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細な凹凸パターンが形成され、その後、ウェハ表面を清浄なものとするために、水や有機溶媒を用いて洗浄がなされる。素子は微細化がなされる方向にあり、凹凸パターンの間隔は益々狭くなってきている。このため、水を用いて洗浄し、水をウェハ表面から乾燥させるときに毛細管現象により、凹凸パターンが倒れるという問題が生じやすくなってきている。この問題は、特に凹凸のパターン間隔がより狭くなった20nm台、10nm台世代の半導体チップにおいてはより顕著になってきている。   In the manufacture of semiconductor chips, a fine uneven pattern is formed on the surface of a silicon wafer through film formation, lithography, etching, and the like, and then cleaning is performed using water or an organic solvent to clean the wafer surface. The The elements are in the direction of miniaturization, and the interval between the concave and convex patterns is becoming narrower. For this reason, the problem that the concavo-convex pattern collapses due to the capillary phenomenon when washing with water and drying the water from the wafer surface is likely to occur. This problem has become more prominent particularly in semiconductor chips of the 20 nm and 10 nm generations where the pattern spacing of the unevenness is narrower.

パターンの倒れを防止しながらウェハ表面を洗浄する方法として、特許文献1は、ウェハ表面に残っている水をイソプロパノールなどに置換し、その後、乾燥させる方法を開示している。また、特許文献2は、ウェハ表面を水で洗浄した後、シリコンを含む凹凸パターン部に撥水性の保護膜を形成し、次いで水でリンスしてから乾燥を行う方法を開示している。この保護膜は最終的には除去される。水でリンスを行うときにパターン部が保護膜によって撥水化されているので、凹凸パターンの倒れを抑制することに効果を生じている。この方法はアスペクト比が8以上のパターンに対しても効果があるとされている。   As a method for cleaning the wafer surface while preventing the pattern from collapsing, Patent Document 1 discloses a method in which water remaining on the wafer surface is replaced with isopropanol and then dried. Patent Document 2 discloses a method in which after a wafer surface is washed with water, a water-repellent protective film is formed on a concavo-convex pattern portion containing silicon, followed by rinsing with water and drying. This protective film is finally removed. Since the pattern portion is rendered water-repellent by the protective film when rinsing with water, the effect of suppressing the collapse of the concavo-convex pattern is produced. This method is said to be effective even for patterns having an aspect ratio of 8 or more.

特開2003−45843号公報JP 2003-45843 A 特許第4403202号明細書Japanese Patent No. 4403202

凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、シリコンを含む凹凸パターン表面に撥水性保護膜を形成するためには、凹凸パターン表面やウェハ表面に存在する水酸基などの反応活性点と、保護膜を形成する化合物とを結合させる必要がある。シリコンを含む凹凸パターンは、その種類に応じて元々の水酸基量が異なることや、水や酸などによる表面処理の条件により水酸基の形成されやすさが異なることから、単位面積あたりの水酸基量に違いが生じることがある。従来の技術では、水酸基の形成が少ない基板に対して充分な撥水効果を付与できず、パターン倒れを有効に防止できない場合があった。本発明は、凹凸パターンの倒れを防止しながらウェハを洗浄する方法に関し、パターン表面に水酸基量の形成が少ない場合であっても効率的に洗浄することが可能な撥水性保護膜形成剤、及び、該剤を含有する撥水性保護膜形成用薬液、及び、該薬液を用いたウェハの洗浄方法を提供することを課題とする。   In order to prevent pattern collapse by making the surface of the concavo-convex pattern water repellent, in order to form a water-repellent protective film on the concavo-convex pattern surface containing silicon, a hydroxyl group or the like present on the concavo-convex pattern surface or the wafer surface It is necessary to bind the reaction active site of the compound and a compound that forms a protective film. The concavo-convex pattern containing silicon differs in the amount of hydroxyl groups per unit area because the amount of the original hydroxyl groups differs depending on the type and the ease of formation of hydroxyl groups varies depending on the conditions of surface treatment with water or acid. May occur. In the conventional technique, a sufficient water repellent effect cannot be imparted to a substrate with little hydroxyl group formation, and pattern collapse may not be effectively prevented. The present invention relates to a method for cleaning a wafer while preventing a concavo-convex pattern from falling over, and a water-repellent protective film forming agent capable of efficiently cleaning even when the amount of hydroxyl groups on the pattern surface is small, and It is an object of the present invention to provide a chemical solution for forming a water-repellent protective film containing the agent and a method for cleaning a wafer using the chemical solution.

本発明では、上記課題を達成するために、凹凸パターンの少なくとも凹部表面に撥水性保護膜(以下、単に「保護膜」と記載する場合がある)を形成するための撥水性保護膜形成用薬液(以下、「保護膜形成用薬液」または単に「薬液」と記載する場合がある)に含まれる撥水性保護膜形成剤(以下、「保護膜形成剤」と記載する場合がある)に着目した。つまり、本発明は、表面にシリコンを含む凹凸パターンを有するウェハが、凹凸パターンやウェハの種類により、水酸基の形成しやすさに違いがあっても、効果的に撥水性を生じせしめるような剤、すなわち前記薬液中に含まれる保護膜形成剤によって保護膜を形成することで、生産ロット毎の洗浄条件の変更幅を低減し工業的に有利にウェハの洗浄を行うものである。   In the present invention, in order to achieve the above-mentioned problem, a water-repellent protective film-forming chemical solution for forming a water-repellent protective film (hereinafter sometimes simply referred to as “protective film”) on at least the concave surface of the concave-convex pattern Focused on water-repellent protective film forming agent (hereinafter sometimes referred to as “protective film forming agent”) contained in (hereinafter sometimes referred to as “chemical liquid for forming protective film” or simply “chemical liquid”) . That is, the present invention is an agent that can effectively produce water repellency even if a wafer having a concavo-convex pattern containing silicon on the surface has a difference in the ease of formation of hydroxyl groups depending on the concavo-convex pattern or the type of wafer. That is, by forming a protective film with the protective film forming agent contained in the chemical solution, the width of change in the cleaning conditions for each production lot is reduced, and the wafer is cleaned industrially advantageously.

本発明者らは鋭意検討を行い、保護膜形成剤として、特定の疎水基を有するケイ素化合物を含有する薬液を用いることで、当該ウェハの凹凸パターン表面上に存在する水酸基の数量に依存しにくく良好な撥水性を生じせしめる保護膜を形成し、パターン表面に効率的に洗浄が行えることを見出した。   The present inventors have intensively studied, and by using a chemical solution containing a silicon compound having a specific hydrophobic group as a protective film forming agent, it is difficult to depend on the number of hydroxyl groups present on the uneven pattern surface of the wafer. It was found that a protective film capable of producing good water repellency was formed, and the pattern surface could be cleaned efficiently.

すなわち、以下の[発明1]〜[発明10]に記載する発明を提供する。   That is, the invention described in [Invention 1] to [Invention 10] below is provided.

[発明1]
表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物であることを特徴とする、撥水性保護膜形成剤。

Figure 0005716527
[Invention 1]
A water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer having a concave-convex pattern on the surface and containing silicon element on at least the concave surface of the concave-convex pattern, A water repellent protective film-forming agent, which is a silicon compound represented by the following general formula [1].
Figure 0005716527

[式中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したRの合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
[発明2]
表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物であることを特徴とする、撥水性保護膜形成剤。

Figure 0005716527
[Wherein, R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X is each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
[Invention 2]
A water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer having a concave-convex pattern on the surface and containing silicon nitride on at least the concave surface of the concave-convex pattern, A water repellent protective film-forming agent, which is a silicon compound represented by the following general formula [1].
Figure 0005716527

[式中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したRの合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
[発明3]
一般式[1]で表されるケイ素化合物が下記一般式[2]で表されることを特徴とする、発明1又は発明2に記載の撥水性保護膜形成剤。

Figure 0005716527
[Wherein, R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X is each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
[Invention 3]
The water repellent protective film forming agent according to invention 1 or invention 2, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [2].
Figure 0005716527

[式中、R、Xはそれぞれ一般式[1]と同様である。]
[発明4]
一般式[1]で表されるケイ素化合物が下記一般式[3]で表されることを特徴とする、発明1又は発明2に記載の撥水性保護膜形成剤。

Figure 0005716527
[Wherein R 1 and X are the same as those in the general formula [1]. ]
[Invention 4]
The water repellent protective film forming agent according to invention 1 or invention 2, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [3].
Figure 0005716527

[式中、Rは炭素数が4〜18の無置換、もしくはハロゲン原子が置換した炭化水素基であり、Xは一般式[1]と同様である。]
[発明5]
発明1〜発明4のいずれかに記載の撥水性保護膜形成剤を含有することを特徴とする撥水性保護膜形成用薬液。
[Wherein R 2 is an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is the same as in general formula [1]. ]
[Invention 5]
A chemical solution for forming a water-repellent protective film, comprising the water-repellent protective film-forming agent according to any one of Inventions 1 to 4.

[発明6]
酸を含有することを特徴とする、発明5に記載の撥水性保護膜形成用薬液。
[Invention 6]
The chemical solution for forming a water-repellent protective film according to the invention 5, characterized by containing an acid.

[発明7]
前記撥水性保護膜形成剤が、該撥水性保護膜形成用薬液の総量100質量%に対して0.1〜50質量%となるように混合されてなることを特徴とする、発明5又は発明6に記載の撥水性保護膜形成用薬液。
[Invention 7]
Invention 5 or invention characterized in that the water repellent protective film forming agent is mixed so that the water repellent protective film forming chemical solution is 0.1 to 50% by mass with respect to 100% by mass of the total amount of the water repellent protective film forming chemical. 6. A chemical solution for forming a water-repellent protective film according to 6.

[発明8]
表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含むウェハの洗浄において、以下に示す工程、
前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程、
前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
ウェハ表面の液体を除去する、液体除去工程、
前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程、
を含み、撥水性保護膜形成工程において発明5〜発明7のいずれかに記載の撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法。
[Invention 8]
In the cleaning of a wafer containing a silicon element on at least the concave surface of the concavo-convex pattern in the wafer having the concavo-convex pattern formed on the surface, the steps shown below,
Cleaning the wafer surface with an aqueous cleaning liquid, an aqueous cleaning liquid cleaning step;
A water repellent protective film forming step of holding a water repellent protective film forming chemical in at least the concave portion of the wafer and forming a water repellent protective film on the concave surface;
A liquid removal process for removing liquid on the wafer surface;
Removing the water-repellent protective film from the concave surface, a water-repellent protective film removing step,
A method for cleaning a wafer comprising using the chemical solution for forming a water-repellent protective film according to any one of Inventions 5 to 7 in the water-repellent protective film forming step.

[発明9]
前記ウェハが、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハであることを特徴とする、発明8に記載のウェハの洗浄方法。
[Invention 9]
9. The wafer cleaning method according to claim 8, wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern.

[発明10]
撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることを特徴とする、発明8又は発明9に記載のウェハの洗浄方法。
[Invention 10]
The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. characterized in that it is carried out in one processing method, the wafer cleaning method according to the invention 8 or invention 9.

本発明の撥水性保護膜形成剤を用いることで、凹部表面にシリコンを含むウェハの洗浄過程において、良好な撥水性を示す保護膜が形成され、凹凸パターン表面上に存在する水酸基の数量依存性を低減させることに奏功する。本発明を適用すれば、凹凸パターンの倒れを防止しながらウェハを安定的に洗浄でき、生産ロットに応じた洗浄条件の変更を少なくすることに奏功する。   By using the water-repellent protective film forming agent of the present invention, a protective film showing good water repellency is formed in the cleaning process of the wafer containing silicon on the concave surface, and the number dependency of the hydroxyl groups present on the concave-convex pattern surface It is effective in reducing By applying the present invention, it is possible to stably clean the wafer while preventing the concavo-convex pattern from collapsing, and it is possible to reduce changes in cleaning conditions according to production lots.

表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示す図である。It is a figure which shows a schematic diagram when the wafer 1 by which the surface was made into the surface which has the uneven | corrugated pattern 2 is seen. 図1中のa−a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図を示している。The recessed part 4 has shown the schematic diagram of the state holding the chemical | medical solution 8 for water-repellent protective film formation. 撥水性保護膜10が形成された凹部4に液体9が保持された状態の模式図を示す図である。It is a figure which shows the schematic diagram of the state by which the liquid 9 was hold | maintained at the recessed part 4 in which the water-repellent protective film 10 was formed.

以下、本発明につきさらに詳しく説明する。まず、本発明で提供する撥水性保護膜形成剤は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にシリコンを含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成剤であり、前記剤は下記一般式[1]で表されるケイ素化合物である。

Figure 0005716527
Hereinafter, the present invention will be described in more detail. First, the water-repellent protective film-forming agent provided in the present invention has a water-repellent property on at least the concave surface of the wafer when cleaning the wafer containing silicon on at least the concave surface of the concave-convex pattern on the wafer having the concave-convex pattern formed on the surface. It is a water repellent protective film forming agent for forming a protective film, and the agent is a silicon compound represented by the following general formula [1].
Figure 0005716527

[式中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したRの合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
で表される炭化水素基は疎水性基であり、疎水性基が大きなもので保護膜を形成すると、処理した後のウェハ表面は良好な撥水性を示す。Rの合計炭素数が、6以上であれば、ケイ素元素を含む凹凸パターンの単位面積あたりの水酸基数量が少なくても、十分に撥水性能を生ぜせしめる撥水膜を形成することができる。
[Wherein, R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X is each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
The hydrocarbon group represented by R 1 is a hydrophobic group. When a protective film is formed with a large hydrophobic group, the surface of the wafer after processing exhibits good water repellency. If the total carbon number of R 1 is 6 or more, a water-repellent film capable of sufficiently producing water-repellent performance can be formed even if the number of hydroxyl groups per unit area of the concavo-convex pattern containing silicon element is small.

前記ケイ素化合物は、凹凸パターンやウェハ表面の水酸基と化学的に反応することが可能であり、結果、前記ケイ素化合物のケイ素元素は凹凸パターンやウェハ表面のケイ素元素と化学的に結合し、撥水性保護膜を形成するため、保護膜形成後の水や溶媒による洗浄に対して、該保護膜を前記ウェハ表面上に保持することが可能である。   The silicon compound can chemically react with the concavo-convex pattern and the hydroxyl group on the wafer surface. As a result, the silicon element of the silicon compound is chemically bonded to the concavo-convex pattern and the silicon element on the wafer surface, and the water repellency. Since the protective film is formed, the protective film can be held on the wafer surface against washing with water or a solvent after the protective film is formed.

一般式[1]で示されるケイ素化合物としては、例えば、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C19(CHSiCl、C1021(CHSiCl、C1123(CHSiCl、C1225(CHSiCl、C1327(CHSiCl、C1429(CHSiCl、C1531(CHSiCl、C1633(CHSiCl、C1735(CHSiCl、C1837(CHSiCl、C11(CH)HSiCl、C13(CH)HSiCl、C15(CH)HSiCl、C17(CH)HSiCl、C19(CH)HSiCl、C1021(CH)HSiCl、C1123(CH)HSiCl、C1225(CH)HSiCl、C1327(CH)HSiCl、C1429(CH)HSiCl、C1531(CH)HSiCl、C1633(CH)HSiCl、C1735(CH)HSiCl、C1837(CH)HSiCl、C(CHSiCl、C(CHSiCl、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、CF(CSiCl、C(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C19(CH)SiCl、C1021(CH)SiCl、C1123(CH)SiCl、C1225(CH)SiCl、C1327(CH)SiCl、C1429(CH)SiCl、C1531(CH)SiCl、C1633(CH)SiCl、C1735(CH)SiCl、C1837(CH)SiCl、C(CH)SiCl、C(CH)SiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C13SiCl、C15SiCl、C17SiCl、C19SiCl、C1021SiCl、C1123SiCl、C1225SiCl、C1327SiCl、C1429SiCl、C1531SiCl、C1633SiCl、C1735SiCl、C1837SiCl、CSiCl、C11SiCl、C13SiCl、C15SiCl、C17SiClなどのクロロシラン系化合物が挙げられる。 Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3) HSiCl , C 7 H 15 (CH 3) HSiCl, C 8 H 17 (CH 3) HSiCl, C 9 H 19 (CH 3) HSiCl, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl , C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl , C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl , C 4 F 9 C 2 H 4 (CH 3) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3) 2 SiC , C 6 F 13 C 2 H 4 (CH 3) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3) 2 SiCl, (C 2 H 5 ) 3 SiCl, C 3 H 7 (C 2 H 5 ) 2 SiCl, C 4 H 9 (C 2 H 5 ) 2 SiCl, C 5 H 11 (C 2 H 5 ) 2 SiCl, C 6 H 13 (C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 (C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9 ) 2 SiCl, C 6 H 13 (C 4 H 9 ) 2 SiCl, C 7 H 15 (C 4 H 9 ) 2 SiCl C 8 H 17 (C 4 H 9 ) 2 SiCl, C 9 H 19 (C 4 H 9 ) 2 SiCl, C 10 H 21 (C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9 ) 2 SiCl, C 15 H 31 (C 4 H 9 ) 2 SiCl, C 16 H 33 (C 4 H 9) 2 SiCl, C 17 H 35 (C 4 H 9) 2 SiCl, C 18 H 37 (C 4 H 9) 2 SiCl, CF 3 C 2 H 4 (C 4 H 9) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 7 F 15 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 H 11 (CH 3 ) SiCl 2 , C 6 H 13 (CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) SiCl 2, C 8 H 17 (CH 3) SiCl , C 9 H 19 (CH 3 ) SiCl 2, C 10 H 21 (CH 3) SiCl 2, C 11 H 23 (CH 3) SiCl 2, C 12 H 25 (CH 3) SiCl 2, C 13 H 27 ( CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) SiCl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3) SiCl 2, C 3 F 7 C 2 H 4 (CH 3) SiCl 2, C 4 F 9 C 2 H 4 (CH 3) SiCl 2, C 5 F 11 C 2 H 4 ( CH 3) SiCl 2, C 6 F 13 C 2 H 4 (CH 3) SiCl 2, C 7 F 15 C 2 H 4 (CH 3) SiCl 2, C 8 F 17 C 2 H 4 (CH 3) iCl 2, C 6 H 13 SiCl 3, C 7 H 15 SiCl 3, C 8 H 17 SiCl 3, C 9 H 19 SiCl 3, C 10 H 21 SiCl 3, C 11 H 23 SiCl 3, C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , C 4 F 9 C 2 H 4 SiCl 3 , C 5 F 11 C 2 H 4 SiCl 3 , C 6 F 13 C 2 H 4 SiCl 3 , C 7 F 15 C 2 H 4 SiCl 3 , C 8 F 17 C 2 H 4 SiCl 3, etc. A chlorosilane type compound is mentioned.

また、例えば、C(CHSiOCH、C11(CHSiOCH、C13(CHSiOCH、C15(CHSiOCH、C17(CHSiOCH、C19(CHSiOCH、C1021(CHSiOCH、C1123(CHSiOCH、C1225(CHSiOCH、C1327(CHSiOCH、C1429(CHSiOCH、C1531(CHSiOCH、C1633(CHSiOCH、C1735(CHSiOCH、C1837(CHSiOCH、C11(CH)HSiOCH、C13(CH)HSiOCH、C15(CH)HSiOCH、C17(CH)HSiOCH、C19(CH)HSiOCH、C1021(CH)HSiOCH、C1123(CH)HSiOCH、C1225(CH)HSiOCH、C1327(CH)HSiOCH、C1429(CH)HSiOCH、C1531(CH)HSiOCH、C1633(CH)HSiOCH、C1735(CH)HSiOCH、C1837(CH)HSiOCH、C(CHSiOCH、C(CHSiOCH、C(CHSiOCH、C11(CHSiOCH、C13(CHSiOCH、C15(CHSiOCH、C17(CHSiOCH、(CSiOCH、C(CSiOCH、C(CSiOCH、C11(CSiOCH、C13(CSiOCH、C15(CSiOCH、C17(CSiOCH、C19(CSiOCH、C1021(CSiOCH、C1123(CSiOCH、C1225(CSiOCH、C1327(CSiOCH、C1429(CSiOCH、C1531(CSiOCH、C1633(CSiOCH、C1735(CSiOCH、C1837(CSiOCH、(CSiOCH、C11(CSiOCH、C13(CSiOCH、C15(CSiOCH、C17(CSiOCH、C19(CSiOCH、C1021(CSiOCH、C1123(CSiOCH、C1225(CSiOCH、C1327(CSiOCH、C1429(CSiOCH、C1531(CSiOCH、C1633(CSiOCH、C1735(CSiOCH、C1837(CSiOCH、C11(CH)Si(OCH、C13(CH)Si(OCH、C15(CH)Si(OCH、C17(CH)Si(OCH、C19(CH)Si(OCH、C1021(CH)Si(OCH、C1123(CH)Si(OCH、C1225(CH)Si(OCH、C1327(CH)Si(OCH、C1429(CH)Si(OCH、C1531(CH)Si(OCH、C1633(CH)Si(OCH、C1735(CH)Si(OCH、C1837(CH)Si(OCH、C(CH)Si(OCH、C(CH)Si(OCH、C11(CH)Si(OCH、C13(CH)Si(OCH、C15(CH)Si(OCH、C17(CH)Si(OCH、C13Si(OCH、C15Si(OCH、C17Si(OCH、C19Si(OCH、C1021Si(OCH、C1123Si(OCH、C1225Si(OCH、C1327Si(OCH、C1429Si(OCH、C1531Si(OCH、C1633Si(OCH、C1735Si(OCH、C1837Si(OCH、CSi(OCH、C11Si(OCH、C13Si(OCH、C15Si(OCH、C17Si(OCH
、C(CHSiOC、C11(CHSiOC、C13(CHSiOC、C15(CHSiOC、C17(CHSiOC、C19(CHSiOC、C1021(CHSiOC、C1123(CHSiOC、C1225(CHSiOC、C1327(CHSiOC、C1429(CHSiOC、C1531(CHSiOC、C1633(CHSiOC、C1735(CHSiOC、C1837(CHSiOC、C(CHSiOC、C(CHSiOC、C(CHSiOC、C11(CHSiOC、C13(CHSiOC、C15(CHSiOC、C17(CHSiOC、(CSiOC、C(CSiOC、C(CSiOC、C11(CSiOC、C13(CSiOC、C15(CSiOC、C17(CSiOC、C19(CSiOC、C1021(CSiOC、C1123(CSiOC、C1225(CSiOC、C1327(CSiOC、C1429(CSiOC、C1531(CSiOC、C1633(CSiOC、C1735(CSiOC、C1837(CSiOC、(CSiOC、C11(CSiOC、C13(CSiOC、C15(CSiOC、C17(CSiOC、C19(CSiOC、C1021(CSiOC、C1123(CSiOC、C1225(CSiOC、C1327(CSiOC、C1429(CSiOC、C1531(CSiOC、C1633(CSiOC、C1735(CSiOC、C1837(CSiOC、C11(CH)Si(OC、C13(CH)Si(OC、C15(CH)Si(OC、C17(CH)Si(OC、C19(CH)Si(OC、C1021(CH)Si(OC、C1123(CH)Si(OC、C1225(CH)Si(OC、C1327(CH)Si(OC、C1429(CH)Si(OC、C1531(CH)Si(OC、C1633(CH)Si(OC、C1735(CH)Si(OC、C1837(CH)Si(OC、C(CH)Si(OC、C(CH)Si(OC、C11(CH)Si(OC、C13(CH)Si(OC、C15(CH)Si(OC、C17(CH)Si(OC、C13Si(OC、C15Si(OC、C17Si(OC、C19Si(OC、C1021Si(OC、C1123Si(OC、C1225Si(OC、C1327Si(OC、C1429Si(OC、C1531Si(OC、C1633Si(OC、C1735Si(OC、C1837Si(OC、CSi(OC、C11Si(OC、C13Si(OC、C15Si(OC、C17
Si(OCなどのアルコキシシラン系化合物が挙げられる。
Also, for example, C 4 H 9 (CH 3 ) 2 SiOCH 3 , C 5 H 11 (CH 3 ) 2 SiOCH 3 , C 6 H 13 (CH 3 ) 2 SiOCH 3 , C 7 H 15 (CH 3 ) 2 SiOCH 3 , C 8 H 17 (CH 3 ) 2 SiOCH 3 , C 9 H 19 (CH 3 ) 2 SiOCH 3 , C 10 H 21 (CH 3 ) 2 SiOCH 3 , C 11 H 23 (CH 3 ) 2 SiOCH 3 , C 12 H 25 (CH 3) 2 SiOCH 3, C 13 H 27 (CH 3) 2 SiOCH 3, C 14 H 29 (CH 3) 2 SiOCH 3, C 15 H 31 (CH 3) 2 SiOCH 3, C 16 H 33 (CH 3) 2 SiOCH 3, C 17 H 35 (CH 3) 2 SiOCH 3, C 18 H 37 (CH 3) 2 SiOCH , C 5 H 11 (CH 3 ) HSiOCH 3, C 6 H 13 (CH 3) HSiOCH 3, C 7 H 15 (CH 3) HSiOCH 3, C 8 H 17 (CH 3) HSiOCH 3, C 9 H 19 ( CH 3 ) HSiOCH 3 , C 10 H 21 (CH 3 ) HSiOCH 3 , C 11 H 23 (CH 3 ) HSiOCH 3 , C 12 H 25 (CH 3 ) HSiOCH 3 , C 13 H 27 (CH 3 ) HSiOCH 3 , C 14 H 29 (CH 3) HSiOCH 3, C 15 H 31 (CH 3) HSiOCH 3, C 16 H 33 (CH 3) HSiOCH 3, C 17 H 35 (CH 3) HSiOCH 3, C 18 H 37 (CH 3) HSiOCH 3, C 2 F 5 C 2 H 4 (CH 3) 2 SiOCH 3, C 3 F 7 C 2 H 4 (CH 3) 2 SiOCH 3, C 4 F 9 C 2 H 4 (CH 3) 2 SiOCH 3, C 5 F 11 C 2 H 4 (CH 3) 2 SiOCH 3, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiOCH 3 , (C 2 H 5 ) 3 SiOCH 3 , C 3 H 7 (C 2 H 5) 2 SiOCH 3, C 4 H 9 (C 2 H 5) 2 SiOCH 3, C 5 H 11 (C 2 H 5) 2 SiOCH 3, C 6 H 13 (C 2 H 5 ) 2 SiOCH 3 , C 7 H 15 (C 2 H 5 ) 2 SiOCH 3 , C 8 H 17 (C 2 H 5 ) 2 SiOCH 3 , C 9 H 19 (C 2 H 5 ) 2 SiOCH 3 , C 10 H 21 (C 2 H 5 ) 2 SiOCH 3 , C 11 H 23 (C 2 H 5 ) 2 SiOCH 3 , C 12 H 25 (C 2 H 5 ) 2 SiOCH 3 , C 13 H 27 (C 2 H 5 ) 2 SiOCH 3 , C 14 H 29 (C 2 H 5 ) 2 SiOCH 3 , C 15 H 31 (C 2 H 5 ) 2 SiOCH 3 , C 16 H 33 (C 2 H 5 ) 2 SiOCH 3 , C 17 H 35 (C 2 H 5) 2 SiOCH 3, C 18 H 37 (C 2 H 5) 2 SiOCH 3, (C 4 H 9) 3 SiOCH 3, C 5 H 11 (C 4 H 9) 2 SiOCH 3, C 6 H 13 (C 4 H 9) 2 SiOCH 3, C 7 H 15 (C 4 H 9) 2 SiOCH 3, C 8 H 17 (C 4 H 9) 2 SiOCH 3, C 9 H 19 (C 4 H 9) 2 iOCH 3, C 10 H 21 ( C 4 H 9) 2 SiOCH 3, C 11 H 23 (C 4 H 9) 2 SiOCH 3, C 12 H 25 (C 4 H 9) 2 SiOCH 3, C 13 H 27 ( C 4 H 9) 2 SiOCH 3 , C 14 H 29 (C 4 H 9) 2 SiOCH 3, C 15 H 31 (C 4 H 9) 2 SiOCH 3, C 16 H 33 (C 4 H 9) 2 SiOCH 3 , C 17 H 35 (C 4 H 9 ) 2 SiOCH 3 , C 18 H 37 (C 4 H 9 ) 2 SiOCH 3 , C 5 H 11 (CH 3 ) Si (OCH 3 ) 2 , C 6 H 13 (CH 3) Si (OCH 3) 2 , C 7 H 15 (CH 3) Si (OCH 3) 2, C 8 H 17 (CH 3) Si (OCH 3) 2, C 9 H 19 (CH 3) Si (OC H 3) 2, C 10 H 21 (CH 3) Si (OCH 3) 2, C 11 H 23 (CH 3) Si (OCH 3) 2, C 12 H 25 (CH 3) Si (OCH 3) 2, C 13 H 27 (CH 3) Si (OCH 3) 2, C 14 H 29 (CH 3) Si (OCH 3) 2, C 15 H 31 (CH 3) Si (OCH 3) 2, C 16 H 33 ( CH 3 ) Si (OCH 3 ) 2 , C 17 H 35 (CH 3 ) Si (OCH 3 ) 2 , C 18 H 37 (CH 3 ) Si (OCH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3) Si (OCH 3) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (OCH 3) 2, C 5 F 11 C 2 H 4 (CH 3) Si (OCH 3) 2, C 6 F 13 C 2 H 4 (CH 3 ) Si (OCH ) 2, C 7 F 15 C 2 H 4 (CH 3) Si (OCH 3) 2, C 8 F 17 C 2 H 4 (CH 3) Si (OCH 3) 2, C 6 H 13 Si (OCH 3) 3 , C 7 H 15 Si (OCH 3 ) 3 , C 8 H 17 Si (OCH 3 ) 3 , C 9 H 19 Si (OCH 3 ) 3 , C 10 H 21 Si (OCH 3 ) 3 , C 11 H 23 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 13 H 27 Si (OCH 3 ) 3 , C 14 H 29 Si (OCH 3 ) 3 , C 15 H 31 Si (OCH 3 ) 3 C 16 H 33 Si (OCH 3 ) 3 , C 17 H 35 Si (OCH 3 ) 3 , C 18 H 37 Si (OCH 3 ) 3 , C 4 F 9 C 2 H 4 Si (OCH 3 ) 3 , C 5 F 11 C 2 H Si (OCH 3) 3, C 6 F 13 C 2 H 4 Si (OCH 3) 3, C 7 F 15 C 2 H 4 Si (OCH 3) 3, C 8 F 17 C 2 H 4 Si (OCH 3
) 3 , C 4 H 9 (CH 3 ) 2 SiOC 2 H 5 , C 5 H 11 (CH 3 ) 2 SiOC 2 H 5 , C 6 H 13 (CH 3 ) 2 SiOC 2 H 5 , C 7 H 15 ( CH 3) 2 SiOC 2 H 5 , C 8 H 17 (CH 3) 2 SiOC 2 H 5, C 9 H 19 (CH 3) 2 SiOC 2 H 5, C 10 H 21 (CH 3) 2 SiOC 2 H 5 C 11 H 23 (CH 3 ) 2 SiOC 2 H 5 , C 12 H 25 (CH 3 ) 2 SiOC 2 H 5 , C 13 H 27 (CH 3 ) 2 SiOC 2 H 5 , C 14 H 29 (CH 3 ) 2 SiOC 2 H 5, C 15 H 31 (CH 3) 2 SiOC 2 H 5, C 16 H 33 (CH 3) 2 SiOC 2 H 5, C 17 H 35 (CH 3) 2 SiOC 2 H 5, 18 H 37 (CH 3) 2 SiOC 2 H 5, C 2 F 5 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 3 F 7 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 4 F 9 C 2 H 4 ( CH 3) 2 SiOC 2 H 5, C 5 F 11 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 6 F 13 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 7 F 15 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 8 F 17 C 2 H 4 (CH 3) 2 SiOC 2 H 5, (C 2 H 5) 3 SiOC 2 H 5 , C 3 H 7 (C 2 H 5) 2 SiOC 2 H 5, C 4 H 9 (C 2 H 5) 2 SiOC 2 H 5, C 5 H 11 (C 2 H 5) 2 SiOC 2 H 5, C 6 H 13 (C 2 H 5 ) 2 SiOC 2 H 5 C 7 H 15 (C 2 H 5) 2 SiOC 2 H 5, C 8 H 17 (C 2 H 5) 2 SiOC 2 H 5, C 9 H 19 (C 2 H 5) 2 SiOC 2 H 5, C 10 H 21 (C 2 H 5) 2 SiOC 2 H 5, C 11 H 23 (C 2 H 5) 2 SiOC 2 H 5, C 12 H 25 (C 2 H 5) 2 SiOC 2 H 5, C 13 H 27 (C 2 H 5) 2 SiOC 2 H 5, C 14 H 29 (C 2 H 5) 2 SiOC 2 H 5, C 15 H 31 (C 2 H 5) 2 SiOC 2 H 5, C 16 H 33 (C 2 H 5) 2 SiOC 2 H 5, C 17 H 35 (C 2 H 5) 2 SiOC 2 H 5, C 18 H 37 (C 2 H 5) 2 SiOC 2 H 5, (C 4 H 9) 3 SiOC 2 H 5 , C 5 H 11 (C 4 H 9 ) 2 SiOC 2 H 5 , C 6 H 13 (C 4 H 9 ) 2 SiOC 2 H 5 , C 7 H 15 (C 4 H 9 ) 2 SiOC 2 H 5 , C 8 H 17 (C 4 H 9 ) 2 SiOC 2 H 5 , C 9 H 19 (C 4 H 9 ) 2 SiOC 2 H 5 , C 10 H 21 (C 4 H 9 ) 2 SiOC 2 H 5 , C 11 H 23 (C 4 H 9 ) 2 SiOC 2 H 5, C 12 H 25 (C 4 H 9) 2 SiOC 2 H 5, C 13 H 27 (C 4 H 9) 2 SiOC 2 H 5, C 14 H 29 (C 4 H 9) 2 SiOC 2 H 5, C 15 H 31 ( C 4 H 9) 2 SiOC 2 H 5, C 16 H 33 (C 4 H 9) 2 SiOC 2 H 5, C 17 H 35 (C 4 H 9) 2 SiOC 2 H 5 , C 18 H 37 (C 4 H 9 2 SiOC 2 H 5, C 5 H 11 (CH 3) Si (OC 2 H 5) 2, C 6 H 13 (CH 3) Si (OC 2 H 5) 2, C 7 H 15 (CH 3) Si ( OC 2 H 5) 2, C 8 H 17 (CH 3) Si (OC 2 H 5) 2, C 9 H 19 (CH 3) Si (OC 2 H 5) 2, C 10 H 21 (CH 3) Si (OC 2 H 5 ) 2 , C 11 H 23 (CH 3 ) Si (OC 2 H 5 ) 2 , C 12 H 25 (CH 3 ) Si (OC 2 H 5 ) 2 , C 13 H 27 (CH 3 ) Si (OC 2 H 5 ) 2 , C 14 H 29 (CH 3 ) Si (OC 2 H 5 ) 2 , C 15 H 31 (CH 3 ) Si (OC 2 H 5 ) 2 , C 16 H 33 (CH 3 ) Si (OC 2 H 5 ) 2 , C 17 H 35 (CH 3 ) Si (OC 2 H 5 ) 2 , C 18 H 37 (CH 3 ) Si (OC 2 H 5 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (OC 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) Si (OC 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) Si (OC 2 H 5 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 6 H 13 Si (OC 2 H 5) 3, C 7 H 15 Si (OC 2 H 5) 3, C 8 H 17 Si (OC 2 H 5) 3, C 9 H 19 Si (OC 2 H 5 ) 3, C 10 H 21 Si (OC 2 H 5) 3, C 11 H 23 Si (OC 2 H 5) , C 12 H 25 Si (OC 2 H 5) 3, C 13 H 27 Si (OC 2 H 5) 3, C 14 H 29 Si (OC 2 H 5) 3, C 15 H 31 Si (OC 2 H 5 ) 3 , C 16 H 33 Si (OC 2 H 5 ) 3 , C 17 H 35 Si (OC 2 H 5 ) 3 , C 18 H 37 Si (OC 2 H 5 ) 3 , C 4 F 9 C 2 H 4 Si (OC 2 H 5) 3 , C 5 F 11 C 2 H 4 Si (OC 2 H 5) 3, C 6 F 13 C 2 H 4 Si (OC 2 H 5) 3, C 7 F 15 C 2 H 4 Si (OC 2 H 5 ) 3 , C 8 F 17
Examples thereof include alkoxysilane compounds such as C 2 H 4 Si (OC 2 H 5 ) 3 .

また、例えば、C(CHSiNCO、C11(CHSiNCO、C13(CHSiNCO、C15(CHSiNCO、C17(CHSiNCO、C19(CHSiNCO、C1021(CHSiNCO、C1123(CHSiNCO、C1225(CHSiNCO、C1327(CHSiNCO、C1429(CHSiNCO、C1531(CHSiNCO、C1633(CHSiNCO、C1735(CHSiNCO、C1837(CHSiNCO、C(CHSiNCO、C(CHSiNCO、C(CHSiNCO、C11(CHSiNCO、C13(CHSiNCO、C15(CHSiNCO、C17(CHSiNCO、(CSiNCO、C(CSiNCO、C(CSiNCO、C11(CSiNCO、C13(CSiNCO、C15(CSiNCO、C17(CSiNCO、C19(CSiNCO、C1021(CSiNCO、C1123(CSiNCO、C1225(CSiNCO、C1327(CSiNCO、C1429(CSiNCO、C1531(CSiNCO、C1633(CSiNCO、C1735(CSiNCO、C1837(CSiNCO、(CSiNCO、C11(CSiNCO、C13(CSiNCO、C15(CSiNCO、C17(CSiNCO、C19(CSiNCO、C1021(CSiNCO、C1123(CSiNCO、C1225(CSiNCO、C1327(CSiNCO、C1429(CSiNCO、C1531(CSiNCO、C1633(CSiNCO、C1735(CSiNCO、C1837(CSiNCO、C11(CH)Si(NCO)、C13(CH)Si(NCO)、C15(CH)Si(NCO)、C17(CH)Si(NCO)、C19(CH)Si(NCO)、C1021(CH)Si(NCO)、C1123(CH)Si(NCO)、C1225(CH)Si(NCO)、C1327(CH)Si(NCO)、C1429(CH)Si(NCO)、C1531(CH)Si(NCO)、C1633(CH)Si(NCO)、C1735(CH)Si(NCO)、C1837(CH)Si(NCO)、C(CH)Si(NCO)、C(CH)Si(NCO)、C11(CH)Si(NCO)、C13(CH)Si(NCO)、C15(CH)Si(NCO)、C17(CH)Si(NCO)、C13Si(NCO)、C15Si(NCO)、C17Si(NCO)、C19Si(NCO)、C1021Si(NCO)、C1123Si(NCO)、C1225Si(NCO)、C1327Si(NCO)、C1429Si(NCO)、C1531Si(NCO)、C1633Si(NCO)、C1735Si(NCO)、C1837Si(NCO)、CSi(NCO)、C11Si(NCO)、C13Si(NCO)、C15Si(NCO)、C17Si(NCO)などのイソシアネートシラン系化合物が挙げられる。 Also, for example, C 4 H 9 (CH 3 ) 2 SiNCO, C 5 H 11 (CH 3 ) 2 SiNCO, C 6 H 13 (CH 3 ) 2 SiNCO, C 7 H 15 (CH 3 ) 2 SiNCO, C 8 H 17 (CH 3) 2 SiNCO , C 9 H 19 (CH 3) 2 SiNCO, C 10 H 21 (CH 3) 2 SiNCO, C 11 H 23 (CH 3) 2 SiNCO, C 12 H 25 (CH 3) 2 SiNCO, C 13 H 27 (CH 3 ) 2 SiNCO, C 14 H 29 (CH 3 ) 2 SiNCO, C 15 H 31 (CH 3 ) 2 SiNCO, C 16 H 33 (CH 3 ) 2 SiNCO, C 17 H 35 (CH 3) 2 SiNCO, C 18 H 37 (CH 3) 2 SiNCO, C 2 F 5 C 2 H 4 (CH 3) 2 SiNCO C 3 F 7 C 2 H 4 (CH 3) 2 SiNCO, C 4 F 9 C 2 H 4 (CH 3) 2 SiNCO, C 5 F 11 C 2 H 4 (CH 3) 2 SiNCO, C 6 F 13 C 2 H 4 (CH 3) 2 SiNCO, C 7 F 15 C 2 H 4 (CH 3) 2 SiNCO, C 8 F 17 C 2 H 4 (CH 3) 2 SiNCO, (C 2 H 5) 3 SiNCO, C 3 H 7 (C 2 H 5 ) 2 SiNCO, C 4 H 9 (C 2 H 5) 2 SiNCO, C 5 H 11 (C 2 H 5) 2 SiNCO, C 6 H 13 (C 2 H 5) 2 SiNCO , C 7 H 15 (C 2 H 5) 2 SiNCO, C 8 H 17 (C 2 H 5) 2 SiNCO, C 9 H 19 (C 2 H 5) 2 SiNCO, C 10 H 21 (C 2 H 5) 2 SiNCO, C 11 H 23 (C 2 H 5) 2 SiNCO, C 12 H 25 (C 2 H 5) 2 SiNCO, C 13 H 27 (C 2 H 5) 2 SiNCO, C 14 H 29 (C 2 H 5) 2 SiNCO, C 15 H 31 (C 2 H 5 ) 2 SiNCO, C 16 H 33 (C 2 H 5 ) 2 SiNCO, C 17 H 35 (C 2 H 5 ) 2 SiNCO, C 18 H 37 (C 2 H 5 ) 2 SiNCO, (C 4 H 9 ) 3 SiNCO, C 5 H 11 (C 4 H 9 ) 2 SiNCO, C 6 H 13 (C 4 H 9 ) 2 SiNCO, C 7 H 15 (C 4 H 9 ) 2 SiNCO, C 8 H 17 (C 4 H 9 ) 2 SiNCO, C 9 H 19 (C 4 H 9 ) 2 SiNCO, C 10 H 21 (C 4 H 9 ) 2 SiNCO, C 11 H 23 (C 4 H 9 ) 2 SiNCO, C 12 H 25 (C 4 H 9 ) 2 SiNCO, C 13 H 27 (C 4 H 9 ) 2 SiNCO, C 14 H 29 (C 4 H 9 ) 2 SiNCO, C 15 H 31 ( C 4 H 9) 2 SiNCO, C 16 H 33 (C 4 H 9) 2 SiNCO, C 17 H 35 (C 4 H 9) 2 SiNCO, C 18 H 37 (C 4 H 9) 2 SiNCO, C 5 H 11 (CH 3 ) Si (NCO) 2 , C 6 H 13 (CH 3 ) Si (NCO) 2 , C 7 H 15 (CH 3 ) Si (NCO) 2 , C 8 H 17 (CH 3 ) Si (NCO) ) 2 , C 9 H 19 (CH 3 ) Si (NCO) 2 , C 10 H 21 (CH 3 ) Si (NCO) 2 , C 11 H 23 (CH 3 ) Si (NCO) 2 , C 12 H 25 ( CH 3 ) Si (NCO) 2 , C 13 H 27 (CH 3 ) Si (NCO) 2 , C 14 H 29 (CH 3 ) Si (NCO) 2 , C 15 H 31 (CH 3 ) Si (NCO) 2 , C 16 H 33 (CH 3 ) Si (NCO) 2 , C 17 H 35 (CH 3 ) Si (NCO) 2 , C 18 H 37 (CH 3 ) Si (NCO) 2 , C 3 F 7 C 2 H 4 ( CH 3) Si (NCO) 2 , C 4 F 9 C 2 H 4 (CH 3) Si (NCO) 2, C 5 F 11 C 2 H 4 (CH 3) Si (NCO) 2, C 6 F 13 C 2 H 4 (CH 3) Si (NCO) 2, C 7 F 15 C 2 H 4 (CH 3) Si (NCO) 2, C 8 F 17 C 2 H 4 (CH 3) Si (NCO) 2, C 6 H 13 Si (NCO) 3 , C 7 H 15 Si (N CO) 3 , C 8 H 17 Si (NCO) 3 , C 9 H 19 Si (NCO) 3 , C 10 H 21 Si (NCO) 3 , C 11 H 23 Si (NCO) 3 , C 12 H 25 Si ( NCO) 3 , C 13 H 27 Si (NCO) 3 , C 14 H 29 Si (NCO) 3 , C 15 H 31 Si (NCO) 3 , C 16 H 33 Si (NCO) 3 , C 17 H 35 Si ( NCO) 3, C 18 H 37 Si (NCO) 3, C 4 F 9 C 2 H 4 Si (NCO) 3, C 5 F 11 C 2 H 4 Si (NCO) 3, C 6 F 13 C 2 H 4 Examples include isocyanate silane compounds such as Si (NCO) 3 , C 7 F 15 C 2 H 4 Si (NCO) 3 , and C 8 F 17 C 2 H 4 Si (NCO) 3 .

また、例えば、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、C19(CHSiNH、C1021(CHSiNH、C1123(CHSiNH、C1225(CHSiNH、C1327(CHSiNH、C1429(CHSiNH、C1531(CHSiNH、C1633(CHSiNH、C1735(CHSiNH、C1837(CHSiNH、C(CHSiNH、C(CHSiNH、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[C19(CHSi]NH、[C1021(CHSi]NH、[C1123(CHSi]NH、[C1225(CHSi]NH、[C1327(CHSi]NH、[C1429(CHSi]NH、[C1531(CHSi]NH、[C1633(CHSi]NH、[C1735(CHSi]NH、[C1837(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[(CSi]NH、[C(CSi]NH、[C(CSi]NH、[C11(CSi]NH、[C13(CSi]NH、[C15(CSi]NH、[C17(CSi]NH、[C19(CSi]NH、[C1021(CSi]NH、[C1123(CSi]NH、[C1225(CSi]NH、[C1327(CSi]NH、[C1429(CSi]NH、[C1531(CSi]NH、[C1633(CSi]NH、[C1735(CSi]NH、[C1837(CSi]NH、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、[C19(CHSi]N、[C1021(CHSi]N、[C1123(CHSi]N、[C1225(CHSi]N、[C1327(CHSi]N、[C1429(CHSi]N、[C1531(CHSi]N、[C1633(CHSi]N、[C1735(CHSi]N、[C1837(CHSi]N、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、C19(CHSiN(CH、C1021(CHSiN(CH、C1123(CHSiN(CH、C1225(CHSiN(CH、C1327(CHSiN(CH、C1429(CHSiN(CH、C1531(CHSiN(CH、C1633(CHSiN(CH、C1735(CHSiN(CH、C1837(CHSiN(CH、C11(CH)HSiN(CH、C13(CH)HSiN(CH、C15(CH)HSiN(CH、C17(CH)HSiN(CH
、C19(CH)HSiN(CH、C1021(CH)HSiN(CH、C1123(CH)HSiN(CH、C1225(CH)HSiN(CH、C1327(CH)HSiN(CH、C1429(CH)HSiN(CH、C1531(CH)HSiN(CH、C1633(CH)HSiN(CH、C1735(CH)HSiN(CH、C1837(CH)HSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、(CSiN(CH、C(CSiN(CH、C(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C19(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C19(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C19(CH)Si[N(CH、C1021(CH)Si[N(CH、C1123(CH)Si[N(CH、C1225(CH)Si[N(CH、C1327(CH)Si[N(CH、C1429(CH)Si[N(CH、C1531(CH)Si[N(CH、C1633(CH)Si[N(CH、C1735(CH)Si[N(CH、C1837(CH)Si[N(CH、C(CH)Si[N(CH、C(CH)Si[N(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH、C19Si[N(CH、C1021Si[N(CH、C1123Si[N(CH、C1225Si[N(CH、C1327Si[N(CH、C1429Si[N(CH、C1531Si[N(CH、C1633Si[N(CH、C1735Si[N(CH、C1837Si[N(CH、CSi[N(CH、C11Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH、C(CHSiN(C、C11(CHSiN(C
、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、C19(CHSiN(C、C1021(CHSiN(C、C1123(CHSiN(C、C1225(CHSiN(C、C1327(CHSiN(C、C1429(CHSiN(C、C1531(CHSiN(C、C1633(CHSiN(C、C1735(CHSiN(C、C1837(CHSiN(C、C(CHSiN(C、C(CHSiN(C、C11(CHSiN(C、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、(CSiN(C、C(CSiN(C、C(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(CSiN(C、C1735(CSiN(C、C1837(CSiN(C、(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(CSiN(C、C1735(CSiN(C、C1837(CSiN(Cなどのアミノシラン系化合物が挙げられる。
Further, for example, C 4 H 9 (CH 3 ) 2 SiNH 2 , C 5 H 11 (CH 3 ) 2 SiNH 2 , C 6 H 13 (CH 3 ) 2 SiNH 2 , C 7 H 15 (CH 3 ) 2 SiNH 2 , C 8 H 17 (CH 3 ) 2 SiNH 2 , C 9 H 19 (CH 3 ) 2 SiNH 2 , C 10 H 21 (CH 3 ) 2 SiNH 2 , C 11 H 23 (CH 3 ) 2 SiNH 2 , C 12 H 25 (CH 3) 2 SiNH 2, C 13 H 27 (CH 3) 2 SiNH 2, C 14 H 29 (CH 3) 2 SiNH 2, C 15 H 31 (CH 3) 2 SiNH 2, C 16 H 33 (CH 3) 2 SiNH 2, C 17 H 35 (CH 3) 2 SiNH 2, C 18 H 37 (CH 3) 2 SiNH 2, C 2 F 5 C 2 H 4 (C 3) 2 SiNH 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiNH 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiNH 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiNH 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiNH 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiNH 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiNH 2 , [C 4 H 9 (CH 3 ) 2 Si] 2 NH, [C 5 H 11 (CH 3 ) 2 Si] 2 NH, [C 6 H 13 (CH 3 ) 2 Si] 2 NH, [C 7 H 15 (CH 3 ) 2 Si] 2 NH, [C 8 H 17 (CH 3 ) 2 Si] 2 NH, [C 9 H 19 (CH 3 ) 2 Si] 2 NH, [C 10 H 21 (CH 3 ) 2 Si] 2 NH, [ C 11 H 23 (CH 3 2 Si] 2 NH, [C 12 H 25 (CH 3) 2 Si] 2 NH, [C 13 H 27 (CH 3) 2 Si] 2 NH, [C 14 H 29 (CH 3) 2 Si] 2 NH [C 15 H 31 (CH 3 ) 2 Si] 2 NH, [C 16 H 33 (CH 3 ) 2 Si] 2 NH, [C 17 H 35 (CH 3 ) 2 Si] 2 NH, [C 18 H 37 (CH 3 ) 2 Si] 2 NH, [C 2 F 5 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [C 3 F 7 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [ C 4 F 9 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 5 F 11 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 6 F 13 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 2 H, [C 8 F 17 C 2 H 4 (CH 3) 2 Si] 2 NH, [(C 2 H 5) 3 Si] 2 NH, [C 3 H 7 (C 2 H 5) 2 Si] 2 NH , [C 4 H 9 (C 2 H 5) 2 Si] 2 NH, [C 5 H 11 (C 2 H 5) 2 Si] 2 NH, [C 6 H 13 (C 2 H 5) 2 Si] 2 NH, [C 7 H 15 ( C 2 H 5) 2 Si] 2 NH, [C 8 H 17 (C 2 H 5) 2 Si] 2 NH, [C 9 H 19 (C 2 H 5) 2 Si] 2 NH, [C 10 H 21 (C 2 H 5 ) 2 Si] 2 NH, [C 11 H 23 (C 2 H 5 ) 2 Si] 2 NH, [C 12 H 25 (C 2 H 5 ) 2 Si ] 2 NH, [C 13 H 27 (C 2 H 5 ) 2 Si] 2 NH, [C 14 H 29 (C 2 H 5 ) 2 Si ] 2 NH, [C 15 H 31 (C 2 H 5 ) 2 Si] 2 NH, [C 16 H 33 (C 2 H 5 ) 2 Si] 2 NH, [C 17 H 35 (C 2 H 5 ) 2 Si] 2 NH, [C 18 H 37 (C 2 H 5) 2 Si] 2 NH, [C 4 H 9 (CH 3) 2 Si] 3 N, [C 5 H 11 (CH 3) 2 Si] 3 N, [C 6 H 13 (CH 3 ) 2 Si] 3 N, [C 7 H 15 (CH 3 ) 2 Si] 3 N, [C 8 H 17 (CH 3 ) 2 Si] 3 N, [C 9 H 19 (CH 3 ) 2 Si] 3 N, [C 10 H 21 (CH 3 ) 2 Si] 3 N, [C 11 H 23 (CH 3 ) 2 Si] 3 N, [C 12 H 25 (CH 3 ) 2 Si] 3 N, [C 13 H 27 (CH 3 ) 2 Si] 3 N, [C 14 H 29 (CH 3) 2 Si] 3 N, [C 15 H 31 (CH 3) 2 Si] 3 N, [C 16 H 33 (CH 3) 2 Si] 3 N, [C 17 H 35 (CH 3) 2 Si] 3 N, [C 18 H 37 (CH 3) 2 Si] 3 N, [C 4 F 9 C 2 H 4 (CH 3) 2 Si] 3 N, [C 5 F 11 C 2 H 4 (CH 3) 2 Si] 3 N, [C 6 F 13 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 7 F 15 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 8 F 17 C 2 H 4 (CH 3) 2 Si] 3 N, C 4 H 9 (CH 3) 2 SiN (CH 3) 2, C 5 H 11 (CH 3) 2 SiN (CH 3) 2, C 6 H 13 ( CH 3) 2 SiN (CH 3 ) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3) 2 SiN (CH 3) 2, C 10 H 21 (CH 3) 2 SiN (CH 3) 2, C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) HSiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) HSiN (CH 3 ) 2 , C 7 H 15 (CH 3) HSiN ( CH 3) 2, C 8 H 17 (CH 3) HSiN (CH 3)
2 , C 9 H 19 (CH 3 ) HSiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) HSiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) HSiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) HSiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) HSiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) HSiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3) 2, C 16 H 33 (CH 3) HSiN (CH 3) 2, C 17 H 35 (CH 3) HSiN (CH 3) 2, C 18 H 37 (CH 3) HSiN (CH 3) 2 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 Si N (CH 3 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN ( CH 3 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 2 H 5) 2 SiN (CH 3) 2, C 16 H 33 (C 2 H 5) 2 SiN (CH 3) 2, C 17 H 35 (C 2 H 5) 2 SiN (CH 3) 2, C 18 H 37 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 4 H 9) 2 SiN (CH 3) 2, C 8 H 17 (C 4 H 9) 2 SiN (CH 3) 2, C 9 H 19 (C 4 H 9) 2 SiN (CH 3) 2, C 10 H 21 (C 4 H 9) 2 SiN (CH 3) 2, C 11 H 23 (C 4 H 9) 2 SiN (CH 3) 2, C 12 H 25 (C 4 H 9) 2 SiN (CH 3) 2 , C 13 H 27 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 4 H 9) 2 SiN (CH 3) 2, C 5 H 11 (CH 3) i [N (CH 3) 2 ] 2, C 6 H 13 (CH 3) Si [N (CH 3) 2] 2, C 7 H 15 (CH 3) Si [N (CH 3) 2] 2, C 8 H 17 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 9 H 19 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 10 H 21 (CH 3 ) Si [N (CH 3) 2] 2, C 11 H 23 (CH 3) Si [N (CH 3) 2] 2, C 12 H 25 (CH 3) Si [N (CH 3) 2] 2, C 13 H 27 (CH 3) Si [N (CH 3 ) 2] 2, C 14 H 29 (CH 3) Si [N (CH 3) 2] 2, C 15 H 31 (CH 3) Si [N (CH 3) 2] 2 , C 16 H 33 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 17 H 35 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 F 13 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2, C 7 F 15 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2, C 8 F 17 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 Si [N (CH 3 ) 2 ] 3 , C 7 H 15 Si [N (CH 3 ) 2 ] 3 , C 8 H 17 Si [N (CH 3) 2] 3, C 9 H 19 Si [N (CH 3) 2] 3, C 10 H 21 Si [N (CH ) 2] 3, C 11 H 23 Si [N (CH 3) 2] 3, C 12 H 25 Si [N (CH 3) 2] 3, C 13 H 27 Si [N (CH 3) 2] 3, C 14 H 29 Si [N ( CH 3) 2] 3, C 15 H 31 Si [N (CH 3) 2] 3, C 16 H 33 Si [N (CH 3) 2] 3, C 17 H 35 Si [N (CH 3) 2] 3, C 18 H 37 Si [N (CH 3) 2] 3, C 4 F 9 C 2 H 4 Si [N (CH 3) 2] 3, C 5 F 11 C 2 H 4 Si [N (CH 3 ) 2] 3, C 6 F 13 C 2 H 4 Si [N (CH 3) 2] 3, C 7 F 15 C 2 H 4 Si [N (CH 3) 2] 3 , C 8 F 17 C 2 H 4 Si [N (CH 3) 2] 3, C 4 H 9 (CH 3) 2 Si (C 2 H 5) 2, C 5 H 11 (CH 3) 2 SiN (C 2
H 5 ) 2 , C 6 H 13 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 ( CH 3) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (C 2 H 5 ) 2 C 18 H 37 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 ( CH 3) 2 SiN (C 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN ( C 2 H 5) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2 , (C 2 H 5) 3 SiN (C 2 H 5) 2, C 3 H 7 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 4 H 9 (C 2 H 5) 2 SiN ( C 2 H 5 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 7 H 15 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 2 H 5) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , (C 4 H 9 ) 3 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 9 H 19 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 10 H 21 (C 4 H 9) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 14 H 29 (C 4 H 9) 2 S N (C 2 H 5) 2 , C 15 H 31 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 16 H 33 (C 4 H 9) 2 SiN (C 2 H 5) 2, C Examples thereof include aminosilane compounds such as 17 H 35 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 and C 18 H 37 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 .

これらのケイ素化合物のうち、炭化水素基の水素原子がハロゲン原子で置換される場合、撥水性能を考慮すると置換するハロゲン原子としてはフッ素原子であることが好ましい。   Among these silicon compounds, when a hydrogen atom of a hydrocarbon group is substituted with a halogen atom, the halogen atom to be substituted is preferably a fluorine atom in consideration of water repellency.

また、一般式[1]のXで表される、ケイ素元素と結合する元素が窒素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素から、構成される官能基であれば良く、例えば、−NHSi(CH基、−NHSi(CH基、−NHSi(CH17基、−N(CH基、−N(C基、−N(C基、−N(CH)(C)基、−NH(C)基、−NCO基、イミダゾール基、アセトアミド基などが挙げられる。 In addition, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , chlorine, bromine, from the elements such as iodine, may be a configured functional groups, for example, -NHSi (CH 3) 3 group, -NHSi (CH 3) 2 C 4 H 9 group, -NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) 2 group, —N (C 2 H 5 ) 2 group, —N (C 3 H 7 ) 2 group, —N (CH 3 ) (C 2 H 5 ) Group, —NH (C 2 H 5 ) group, —NCO group, imidazole group, acetamide group and the like.

さらに、一般式[1]のXで表される、ケイ素元素と結合する元素が酸素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素の元素から構成される官能基であれば良く、例えば、−OCH基、−OC基、−OC基、−OCOCH基、−OCOCF基などが挙げられる。 Furthermore, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine and iodine functional groups, for example, —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group, etc. Is mentioned.

また、一般式[1]のXで表される、ハロゲン基としては−F基、−Cl基、−Br基、−I基などが挙げられる。なかでも−Cl基がより好ましい。   Examples of the halogen group represented by X in the general formula [1] include -F group, -Cl group, -Br group, and -I group. Of these, a -Cl group is more preferred.

また、一般式[1]のaは1〜3の整数であればよいが、aが1又は2である場合、前記撥水性保護膜形成剤、或いは前記薬液を長期保存すると、水分の混入などにより、ケイ素化合物の重合が発生し、保存可能期間が短くなる可能性がある。これを考慮すると、一般式[1]のaが3のものが好ましい。   Further, a in the general formula [1] may be an integer of 1 to 3, but when a is 1 or 2, if the water-repellent protective film forming agent or the chemical solution is stored for a long period of time, mixing of moisture, etc. As a result, polymerization of the silicon compound occurs, and the storage period may be shortened. Considering this, it is preferable that a in the general formula [1] is 3.

また、一般式[1]で表されるケイ素化合物のうち、Rが炭素数が4〜18の無置換もしくはハロゲン原子が置換した炭化水素基1個とメチル基2個からなるもの(つまり、一般式[3]で表される化合物)は、凹凸パターン表面やウェハ表面の水酸基との反応速度が速くなるので好ましい。これは、凹凸パターン表面やウェハ表面の水酸基と前記ケイ素化合物との反応において、疎水性基による立体障害が反応速度に大きな影響を与えるためであり、ケイ素元素に結合するアルキル鎖は最も長い一つを除く残り二つは短い方が好ましいからである。 Among the silicon compounds represented by the general formula [1], R 1 is composed of one hydrocarbon group having 4 to 18 carbon atoms which is unsubstituted or substituted with a halogen atom and two methyl groups (that is, The compound represented by the general formula [3] is preferable because the reaction rate with the hydroxyl group on the uneven pattern surface or wafer surface is increased. This is because the steric hindrance by the hydrophobic group has a great influence on the reaction rate in the reaction of the hydroxyl group on the uneven pattern surface or the wafer surface with the silicon compound, and the longest alkyl chain bonded to the silicon element is This is because the remaining two except for are preferably shorter.

これらのことから、前述した一般式[1]で示されるケイ素化合物の中でも特に好ましい化合物としては、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C19(CHSiCl、C1021(CHSiCl、C1123(CHSiCl、C1225(CHSiCl、C1327(CHSiCl、C1429(CHSiCl、C1531(CHSiCl、C1633(CHSiCl、C1735(CHSiCl、C1837(CHSiCl、C(CHSiCl、C(CHSiCl、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、C19(CHSiN(CH、C1021(CHSiN(CH、C1123(CHSiN(CH、C1225(CHSiN(CH、C1327(CHSiN(CH、C1429(CHSiN(CH、C1531(CHSiN(CH、C1633(CHSiN(CH、C1735(CHSiN(CH、C1837(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CHが挙げられる。 Therefore, among the silicon compounds represented by the general formula [1] described above, particularly preferable compounds include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, and C 6 H. 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3) 2 SiCl, C 16 H 33 (CH 3) 2 SiCl, C 17 H 35 (CH 3) 2 SiCl, C 18 H 37 (CH 3) 2 Si l, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) 2 SiN ( CH 3 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 Si N (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN ( CH 3) 2, C 14 H 29 (CH 3) 2 SiN (CH 3) 2, C 15 H 31 (CH 3) 2 SiN (CH 3) 2, C 16 H 33 (CH 3) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 ) 2 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiN ( CH 3) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3) 2 SiN (CH 3) 2 and the like.

さらには、前記撥水性保護膜形成剤は、前記一般式[1]で表されるケイ素化合物を2種以上含有するものであっても良いし、前記一般式[1]で表されるケイ素化合物と前記一般式[1]で表されるケイ素化合物以外のケイ素化合物を含有するものであっても良い。   Further, the water repellent protective film forming agent may contain two or more types of silicon compounds represented by the general formula [1], or the silicon compound represented by the general formula [1]. And a silicon compound other than the silicon compound represented by the general formula [1].

次に本発明の撥水性保護膜形成用薬液について説明する。該薬液には、少なくとも前記撥水性保護膜形成剤が含有されていればよく、該薬液には溶媒として有機溶媒を用いることができる。該有機溶媒は、前記保護膜形成剤を溶解するものであれば良く、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などが好適に使用される。水を溶媒として用いた場合、水により薬液中のケイ素化合物の反応性部位(前記一般式[1]のX)が加水分解してシラノール基(Si−OH)が生成し、該反応性部位は、このシラノール基とも反応するために、ケイ素化合物同士が結合して2量体が生成する。この2量体は、凹凸パターン表面やウェハ表面の水酸基との反応性が低いため、凹凸パターン表面やウェハ表面を撥水化するのに要する時間が長くなることから、水を溶媒として使用することは好ましくない。   Next, the water repellent protective film forming chemical solution of the present invention will be described. The chemical solution only needs to contain at least the water-repellent protective film forming agent, and an organic solvent can be used as the solvent for the chemical solution. The organic solvent only needs to dissolve the protective film forming agent. For example, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives. Nitrogen-containing compound solvents are preferably used. When water is used as a solvent, the reactive site of the silicon compound in the chemical solution (X in the general formula [1]) is hydrolyzed with water to form a silanol group (Si—OH). In order to react with this silanol group, silicon compounds are bonded to each other to form a dimer. Since this dimer has low reactivity with the concavo-convex pattern surface and the hydroxyl group on the wafer surface, it takes a long time to make the concavo-convex pattern surface and the wafer surface water-repellent, so use water as a solvent. Is not preferred.

さらに、前記ケイ素化合物は、プロトン性溶媒と反応しやすいため、前記有機溶媒として、非プロトン性溶媒を用いると、短時間で撥水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N−H結合を持たない含窒素化合物溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン株式会社製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子株式会社製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれもスリーエム社製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、N−H結合を持たない含窒素化合物溶媒の例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、トリエチルアミン、ピリジンなどがある。   Furthermore, since the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because water repellency is easily developed in a short time. The aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent. Examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no N—H bond. Compound solvents are mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone. Examples of halogen solvents include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentafluorobutane, Hydrofluorocarbons such as Kutafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon Co., Ltd.), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether Asahi Clin AE-3000 (manufactured by Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all manufactured by 3M Corporation), hydrofluoroethers such as tetrachloromethane, chlorocarbons such as tetrachloromethane, and chloroform Hydrochlorocarbons, chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pentaph Oropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoro There are hydrochlorofluorocarbons such as propene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of the polyhydric alcohol derivatives having no hydroxyl group include diethylene glycol mono Ethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl Ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc. Examples of the nitrogen-containing compound solvent having no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.

また、有機溶媒には、微量の水分であれば存在してもよい。ただし、この水分が溶媒に大量に含まれると、ケイ素化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記ケイ素化合物と混合したときに、該ケイ素化合物に対して、モル比で1モル倍未満とすることが好ましく、0.5モル倍未満にすることが特に好ましい。   The organic solvent may be present as long as it is a trace amount of water. However, when this moisture is contained in a large amount in the solvent, the silicon compound may be hydrolyzed by the moisture to reduce the reactivity. For this reason, it is preferable to reduce the amount of water in the solvent, and the amount of water is preferably less than 1 mole in terms of molar ratio to the silicon compound when mixed with the silicon compound. It is particularly preferable to make it less than 5 mole times.

また、前記薬液には、保護膜形成剤であるケイ素化合物と、凹凸パターン表面やウェハ表面の水酸基との反応を促進させるために、触媒が添加されても良い。このような触媒として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸、アンモニア、アルキルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、トリエチレンジアミン、ジメチルアニリン、ピリジン、ピペラジン、N−アルキルモルホリンなどの塩基硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、および、スズ、アルミニウム、チタンなどの金属錯体や金属塩が好適に用いられる。特に、触媒効果を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。   In addition, a catalyst may be added to the chemical solution in order to promote the reaction between the silicon compound, which is a protective film forming agent, and the hydroxyl group on the uneven pattern surface or the wafer surface. Such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, etc. Bases such as alkylamine, N, N, N ′, N′-tetramethylethylenediamine, triethylenediamine, dimethylaniline, pyridine, piperazine, N-alkylmorpholine, potassium acetate, potassium salt, methylhydroxyamine hydrochloride, And metal complexes and metal salts, such as tin, aluminum, and titanium, are used suitably. In particular, considering the catalytic effect, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid does not contain moisture. Is preferred.

特に、一般式[1]における疎水性基Rの炭素数が大きくなると、立体障害のために凹凸パターン表面やウェハ表面の水酸基との反応速度が低下する場合がある。この場合は、水を含まない酸を触媒として添加することで、凹凸パターン表面やウェハ表面の水酸基とケイ素化合物との反応が促進され、疎水性基による立体障害による反応速度の低下を補ってくれる場合がある。 In particular, when the number of carbon atoms of the hydrophobic group R 1 in the general formula [1] increases, the reaction rate with the concavo-convex pattern surface or the hydroxyl group on the wafer surface may decrease due to steric hindrance. In this case, by adding an acid that does not contain water as a catalyst, the reaction between the surface of the concave / convex pattern and the surface of the wafer and the silicon compound is promoted, which compensates for a decrease in reaction rate due to steric hindrance due to hydrophobic groups. There is a case.

触媒の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01〜100質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に添加しても触媒効果は向上せず、ケイ素化合物よりも多くすると、逆に触媒効果が低下する場合もある。さらに、不純物として凹凸パターン表面やウェハ表面に残留する懸念もある。このため、前記触媒添加量は、0.01〜100質量%が好ましく、より好ましくは0.1〜50質量%である。   The addition amount of the catalyst is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Further, there is a concern that the impurities remain on the surface of the concave / convex pattern or the wafer surface as impurities. For this reason, 0.01-100 mass% is preferable, and, as for the said catalyst addition amount, More preferably, it is 0.1-50 mass%.

さらに、該ケイ素化合物は、前記薬液の総量100質量%に対して0.1〜50質量%となるように混合されていれば好ましく、より好適には前記薬液の総量100質量%に対して0.3〜20質量%である。ケイ素化合物が0.1質量%未満では、有機溶媒中に微量に含まれる水分などと反応して失活してしまうため、撥水性保護膜を形成する能力が乏しく、凹凸パターン表面やウェハ表面を充分に撥水化することができない。一方、50質量%より多い場合、凹凸パターン表面やウェハ表面に不純物として残留する懸念があること、またコスト的な観点から見ても好ましくない。   Further, the silicon compound is preferably mixed so as to be 0.1 to 50% by mass with respect to 100% by mass of the total amount of the chemical solution, and more preferably 0% with respect to 100% by mass of the total amount of the chemical solution. 3 to 20% by mass. When the silicon compound is less than 0.1% by mass, it reacts with moisture contained in a trace amount in the organic solvent and deactivates. Therefore, the ability to form a water-repellent protective film is poor, and the uneven pattern surface or wafer surface is It cannot be sufficiently water-repellent. On the other hand, when it is more than 50% by mass, there is a concern that it may remain as an impurity on the surface of the concavo-convex pattern or the wafer, and it is not preferable from the viewpoint of cost.

本発明の薬液は、前記ケイ素化合物と前記触媒が最初から混合されて含まれる1液タイプでもよいし、前記ケイ素化合物を含む液と前記触媒を含む液の2液タイプとして、使用する際に混合するものであってもよい。   The chemical solution of the present invention may be a one-component type in which the silicon compound and the catalyst are mixed from the beginning, or a two-component type in which the silicon compound and the catalyst are mixed. You may do.

続いて、本発明のウェハの洗浄方法について説明する。   Next, the wafer cleaning method of the present invention will be described.

本発明の薬液を用いて洗浄するシリコンを含むウェハは、一般的には、ウェハ表面を凹凸パターンを有する面とする前処理工程を経たものを用いることが多い。   In general, a wafer containing silicon to be cleaned using the chemical solution of the present invention is often one that has undergone a pretreatment step in which the wafer surface is a surface having an uneven pattern.

前記前処理工程によって、ウェハ表面にパターンを形成できるのであればその方法は限定されない。一般的方法としては、ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分に相当するウェハ表面が選択的にエッチングされる。最後に、レジストを剥離すると、凹凸パターンを有するシリコンウェハが得られる。 The method is not limited as long as a pattern can be formed on the wafer surface by the pretreatment step. As a general method, after applying a resist on the wafer surface, the resist is exposed through a resist mask, and the exposed resist or the resist having a desired uneven pattern is removed by etching away the unexposed resist. Is made. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a silicon wafer having a concavo-convex pattern is obtained.

なお、前記ウェハとしては、シリコンウェハや、シリコンウェハ上に熱酸化法やCVD法、スパッタ法などにより酸化ケイ素膜が形成されたもの、あるいは、CVD法やスパッタ法などにより窒化ケイ素膜やポリシリコン膜が形成されたもの、さらにはこれら窒化ケイ素膜やポリシリコン膜、或いはシリコンウェハ表面が自然酸化したものも含まれる。また、シリコンおよび/または酸化ケイ素を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、及びウェハ上にケイ素元素を含む各種膜が形成されたものも、ウェハとして用いることができる。さらには、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどケイ素元素を含まないウェハ上に、ケイ素元素を含む各種膜が形成されたものであっても良い。なお、前記薬液はケイ素元素を含むウェハ表面、ウェハ上に形成されたケイ素元素を含む膜表面、及び前記ウェハ、或いは前記膜から形成されたケイ素元素を含む凹凸パターンの中のケイ素原子が存在する部分の表面に保護膜を形成し撥水化することができる。   The wafer may be a silicon wafer, a silicon oxide film formed on a silicon wafer by a thermal oxidation method, a CVD method, a sputtering method, or the like, or a silicon nitride film or polysilicon by a CVD method, a sputtering method, or the like. Those having a film formed thereon, and those silicon nitride films and polysilicon films, or those in which the silicon wafer surface is naturally oxidized are also included. Further, a wafer composed of a plurality of components containing silicon and / or silicon oxide, a silicon carbide wafer, and a wafer in which various films containing a silicon element are formed on the wafer can be used as the wafer. Further, various films containing silicon elements may be formed on a wafer not containing silicon elements, such as sapphire wafers, various compound semiconductor wafers, and plastic wafers. The chemical solution contains silicon atoms in a wafer surface containing silicon element, a film surface containing silicon element formed on the wafer, and a concavo-convex pattern containing silicon element formed from the wafer or the film. A protective film can be formed on the surface of the part to make it water repellent.

一般的に、表面に酸化ケイ素膜や酸化ケイ素部分を多く有するウェハにおいては該表面に反応活性点である水酸基が多数存在して、撥水性能を付与しやすい。一方、表面に窒化ケイ素膜や窒化ケイ素部分を多く有するウェハやポリシリコン膜やポリシリコン部分を多く有するウェハ、或いはシリコンウェハにおいては、該表面に水酸基が少なく、従来の技術では撥水性能を付与するのが難しかった。しかし、そのようなウェハであっても、本発明の薬液を用いるとウェハ表面に十分な撥水性を付与でき、ひいては洗浄時のパターン倒れを防止する効果を奏する。故に表面に酸化ケイ素膜や酸化ケイ素部分を多く有するウェハはもちろん、窒化ケイ素膜や窒化ケイ素部分を多く有するウェハやポリシリコン膜やポリシリコン部分を多く有するウェハ、或いはシリコンウェハは本発明の薬液を適用するのにふさわしく、好ましい基材であり、中でも窒化ケイ素膜や窒化ケイ素部分を多く有するウェハが特に好ましい。   In general, a wafer having a silicon oxide film or a silicon oxide portion on its surface has many hydroxyl groups that are reactive sites on the surface, so that water repellency is easily imparted. On the other hand, a wafer having a silicon nitride film or a silicon nitride portion on the surface, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer has few hydroxyl groups on the surface, and the conventional technology provides water repellency. It was difficult to do. However, even with such a wafer, when the chemical solution of the present invention is used, sufficient water repellency can be imparted to the wafer surface, and as a result, the effect of preventing pattern collapse during cleaning can be achieved. Therefore, not only a wafer having a silicon oxide film or a silicon oxide portion on the surface, but also a wafer having a silicon nitride film or a silicon nitride portion, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer is used for the chemical solution of the present invention. It is suitable for application and is a preferable base material, and a wafer having many silicon nitride films and silicon nitride portions is particularly preferable.

本発明は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含むウェハの洗浄方法であって、
前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程
前記ウェハ表面の少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
ウェハ表面の液体を除去する、液体除去工程
前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
を有する。
The present invention is a method for cleaning a wafer containing a silicon element on at least a concave surface of the concavo-convex pattern in a wafer having a concavo-convex pattern formed on the surface,
A water-based cleaning liquid cleaning step for cleaning the wafer surface with a water-based cleaning liquid. A liquid removing step of removing the liquid on the wafer surface; a water repellent protective film removing step of removing the water repellent protective film from the surface of the recess.

前記水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリ、界面活性剤、過酸化水素、オゾンのうち少なくとも1種以上が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。   Examples of the aqueous cleaning liquid include water or water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed in water as a main component (for example, containing water). And a ratio of 50% by mass or more).

前記水系洗浄液による洗浄において、レジストを除去し、ウェハ表面のパーティクル等を除去した後に、乾燥等により水系洗浄液を除去する際に、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa−a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。   In the cleaning with the aqueous cleaning liquid, after removing the resist and removing particles on the wafer surface, when removing the aqueous cleaning liquid by drying or the like, the pattern collapses if the width of the concave portion is small and the aspect ratio of the convex portion is large. Is likely to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view of a wafer 1 whose surface has a concavo-convex pattern 2 as viewed from the perspective, and FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.

さらに、水系洗浄液洗浄工程において、水系洗浄液が保持されて接触する、窒化ケイ素やポリシリコンを含む部位では、水系洗浄液との接触により、表面の一部が酸化され、水酸基が形成される。本発明で供する撥水性保護膜形成剤は強い疎水基をもつため、酸化されて形成された一部の水酸基と反応する撥水性保護膜形成剤が少量であっても、優れた撥水性保護膜を形成することが可能である。   Furthermore, in the aqueous cleaning liquid cleaning step, in the portion containing silicon nitride or polysilicon where the aqueous cleaning liquid is held and contacted, a part of the surface is oxidized and a hydroxyl group is formed by contact with the aqueous cleaning liquid. Since the water-repellent protective film forming agent provided in the present invention has a strong hydrophobic group, an excellent water-repellent protective film is formed even if a small amount of the water-repellent protective film-forming agent reacts with some of the hydroxyl groups formed by oxidation. Can be formed.

このウェハ表面の酸化は、水系洗浄液が室温の純水であっても進行するが、水系洗浄液の酸性が強かったり、水系洗浄液の温度が高かったりすると、より進行しやすいため、酸化を促進させる目的で水系洗浄液に酸を添加したり、水系洗浄液の温度を高くしても良い。さらには、酸化を促進させる目的で、過酸化水素やオゾンなどを添加しても良い。   This oxidation of the wafer surface proceeds even if the aqueous cleaning solution is pure water at room temperature, but it tends to proceed more easily if the aqueous cleaning solution is strongly acidic or the temperature of the aqueous cleaning solution is high. The acid may be added to the aqueous cleaning solution, or the temperature of the aqueous cleaning solution may be increased. Furthermore, hydrogen peroxide or ozone may be added for the purpose of promoting oxidation.

本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、前記水系洗浄液洗浄工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成用薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。なお、本発明において、ウェハの凹凸パターンの少なくとも凹部に前記水系洗浄液、前記薬液やその他の液体を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記水系洗浄液、前記薬液やその他の液体を供給するときの前記水系洗浄液、前記薬液やその他の液体の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。 In the wafer cleaning method of the present invention, in order to perform efficient cleaning without causing pattern collapse, the water-repellent protective film forming step from the water-based cleaning solution cleaning step is always held in at least the concave portion of the wafer. It is preferable to carry out in the state. In addition, when the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state. In the present invention, the cleaning method of the wafer is not particularly limited as long as the aqueous cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer. As a wafer cleaning method, a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank. One example is a batch system in which a single wafer is immersed and washed. Incidentally, the aqueous cleaning solution at least concave portions of the concavo-convex pattern of the wafer, the aqueous cleaning solution at the time of supplying the drug solution or other liquid, the form of the drug solution or other liquid becomes liquid when it is held in the recess There is no particular limitation as long as it is, and examples thereof include liquid and vapor.

次に、撥水性保護膜形成工程について説明する。前記水系洗浄液洗浄工程から撥水性保護膜形成工程への移行は、水系洗浄液洗浄工程においてウェハの凹凸パターンの少なくとも凹部に保持されていた水系洗浄液から、撥水性保護膜形成用薬液に置換されることで行われる。この水系洗浄液から撥水性保護膜形成用薬液への置換においては、直接置換されても良いし、異なる洗浄液A(以降、単に「洗浄液A」と記載する場合がある)に一度以上置換された後に、撥水性保護膜形成用薬液に置換されても良い。前記洗浄液Aの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Next, the water repellent protective film forming step will be described. The transition from the water-based cleaning liquid cleaning step to the water-repellent protective film forming step is to replace the water-based cleaning liquid held in at least the concave portion of the concave / convex pattern of the wafer in the water-based cleaning liquid cleaning step with the chemical solution for forming the water-repellent protective film. Done in In the replacement of the water-based cleaning liquid with the water-repellent protective film-forming chemical liquid, it may be replaced directly or after being replaced once or more by a different cleaning liquid A (hereinafter sometimes simply referred to as “cleaning liquid A”). Alternatively, a chemical solution for forming a water repellent protective film may be substituted. Preferable examples of the cleaning liquid A include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.

前記撥水性保護膜形成工程における撥水性保護膜の形成は、ウェハの凹凸パターンの少なくとも凹部に撥水性保護膜形成用薬液を保持することにより行われる。図3は、凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa−a’断面の一部を示すものである。この撥水性保護膜形成工程の際に、撥水性保護膜形成用薬液が、凹凸パターン2が形成されたウェハ1に供される。この際、撥水性保護膜形成用薬液は図3に示したように少なくとも凹部4に保持された状態となり、凹部4の表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。   The formation of the water-repellent protective film in the water-repellent protective film forming step is performed by holding a water-repellent protective film-forming chemical solution in at least the concave portion of the concave-convex pattern of the wafer. FIG. 3 is a schematic view showing a state in which the concave portion 4 holds the chemical solution 8 for forming the water repellent protective film. The wafer in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. In the water repellent protective film forming step, a chemical solution for forming the water repellent protective film is supplied to the wafer 1 on which the concave / convex pattern 2 is formed. At this time, the water-repellent protective film-forming chemical solution is held in at least the concave portion 4 as shown in FIG. 3, and the surface of the concave portion 4 is water-repellent. Note that the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.

また、保護膜形成工程では、薬液の温度を高くすると、より短時間で前記保護膜を形成しやすいが、撥水性保護膜形成用薬液の沸騰や蒸発などにより該薬液の安定性が損なわれる恐れがあるため、前記薬液は10〜160℃で保持されることが好ましく、特には15〜120℃が好ましい。   Further, in the protective film forming step, if the temperature of the chemical solution is increased, the protective film can be easily formed in a shorter time, but the stability of the chemical solution may be impaired due to boiling or evaporation of the chemical solution for forming the water repellent protective film. Therefore, the chemical solution is preferably held at 10 to 160 ° C., particularly preferably 15 to 120 ° C.

撥水性保護膜形成用薬液により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa−a’断面の一部を示すものである。凹部4の表面には撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から異なる洗浄液B(以降、単に「洗浄液B」と記載する場合がある)に置換した後の液体(洗浄液B)でもよいし、置換途中の液体(薬液と洗浄液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。 FIG. 4 shows a schematic diagram in the case where the liquid 9 is held in the recess 4 that has been made water-repellent by the water-repellent protective film forming chemical. The wafer in the schematic diagram of FIG. 4 shows a part of the aa ′ cross section of FIG. A water repellent protective film 10 is formed on the surface of the recess 4. At this time, the liquid 9 held in the recess 4 may be the above-described chemical liquid or a liquid (cleaning liquid B) after the chemical liquid is replaced with a different cleaning liquid B (hereinafter sometimes simply referred to as “cleaning liquid B”). , A liquid in the middle of substitution (mixed liquid of the chemical solution and the cleaning solution B ) may be used. The water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.

前記洗浄液Bの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコール類、多価アルコール類の誘導体、含窒素化合物溶媒等が挙げられる。   Preferable examples of the cleaning liquid B include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols, many And derivatives of polyhydric alcohols, nitrogen-containing compound solvents, and the like.

前記凹凸パターンを有するウェハの凹部に液体が保持されると、該凹部に毛細管力が働く。この毛細管力の大きさは、以下に示される式で求められるPの絶対値である。   When the liquid is held in the concave portion of the wafer having the concave / convex pattern, a capillary force acts on the concave portion. The magnitude of this capillary force is the absolute value of P obtained by the following formula.

P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
図4の凹部4のように凹部表面に撥水性保護膜が存在すると、θが増大され、Pの絶対値が低減される。パターン倒れの抑制の観点から、Pの絶対値は小さいほど好ましく、除去される液体との接触角を90°付近に調整して毛細管力を限りなく0.0MN/mに近づけることが理想的である。
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
When a water-repellent protective film exists on the surface of the recess as in the recess 4 of FIG. 4, θ is increased and the absolute value of P is decreased. From the viewpoint of suppressing pattern collapse, the smaller the absolute value of P, the better. It is ideal to adjust the contact angle with the liquid to be removed to around 90 ° to bring the capillary force as close as possible to 0.0 MN / m 2. It is.

図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は65〜115°であると、パターン倒れが発生し難いため好ましい。接触角は90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、70〜110°が特に好ましい。   As shown in FIG. 4, when the protective film 10 is formed on the surface of the recess, the contact angle on the assumption that water is held on the surface is preferably 65 to 115 ° because pattern collapse hardly occurs. The closer the contact angle is to 90 °, the smaller the capillary force acting on the recess and the more difficult the pattern collapse occurs, so 70 to 110 ° is particularly preferable.

続いて、前記液体除去工程について説明する。なお、凹部に保持されている液体は、前記薬液、洗浄液B、または、該薬液と洗浄液Bの混合液である。前記液体を除去する方法として、自然乾燥、エアー乾燥、Nガス乾燥、スピン乾燥法、IPA(2−プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。 Next, the liquid removal process will be described. The liquid held in the recess is the chemical liquid, the cleaning liquid B, or a mixed liquid of the chemical liquid and the cleaning liquid B. As a method for removing the liquid, known drying methods such as natural drying, air drying, N 2 gas drying, spin drying method, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, vacuum drying, etc. It is preferable to carry out by. In order to efficiently remove the liquid, the retained liquid may be drained and removed, and then the remaining liquid may be dried.

最後に、撥水性保護膜除去工程について説明する。前記撥水性保護膜を除去する場合、該保護膜中のC−C結合、C−F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。   Finally, the water repellent protective film removing step will be described. When removing the water-repellent protective film, it is effective to cut the C—C bond and C—F bond in the protective film. The method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.

光照射で前記保護膜を除去する場合、該保護膜中のC−C結合、C−F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。   When the protective film is removed by light irradiation, wavelengths shorter than 340 nm and 240 nm, which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energies of C—C bonds and C—F bonds in the protective film. It is preferable to irradiate ultraviolet rays containing. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.

また、光照射で前記保護膜を除去する場合、紫外線で前記保護膜の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどを用いてもよい。また、光照射しながらウェハを加熱してもよい。   Further, when the protective film is removed by light irradiation, if the constituent components of the protective film are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable. As this light source, a low-pressure mercury lamp, an excimer lamp, or the like may be used. Further, the wafer may be heated while irradiating light.

ウェハを加熱する場合、400〜700℃、好ましくは、500〜700℃でウェハの加熱を行うのが好ましい。この加熱時間は、1〜60分間、好ましくは10〜30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。   When the wafer is heated, it is preferable to heat the wafer at 400 to 700 ° C, preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.

加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。   Methods for removing the protective film by heating include a method of bringing a wafer into contact with a heat source and a method of placing the wafer in a heated atmosphere such as a heat treatment furnace. The method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.

ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。   When the wafer is exposed to ozone, ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage may be provided to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.

前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。   By combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge, the protective film on the wafer surface can be efficiently removed.

ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本実施例では、前記保護膜形成用薬液の評価を中心に行った。   Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Thus, in this example, the evaluation was mainly performed on the protective film forming chemical solution.

凹凸パターンの凹部に働く毛細管力は、以下の式で表される。   The capillary force acting on the concave portion of the concave / convex pattern is represented by the following formula.

P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
この式から明らかなようにパターン倒れを引き起こす毛細管力Pは、洗浄液のウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式と撥水性保護膜10の液滴の接触角の評価から毛細管力を導き出すことができる。なお、実施例において、前記洗浄液として、水系洗浄液の代表的なものである水を用いた。上記の式より、接触角が90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが発生し難くなるため、前記保護膜表面に水が保持されたと仮定したときの接触角は65〜115°が好ましく、70〜110°が特に好ましい。
P = 2 × γ × cos θ / S
(Wherein γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
As is apparent from this equation, the capillary force P that causes pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid. For cleaning liquid retained in the recess 4 of the uneven pattern 2, and the contact angle of the droplet, since the capillary force exerted on it recess which considered as equivalent to a pattern collapse are correlated, the formula and water-repellent The capillary force can be derived from the evaluation of the contact angle of the droplet of the protective film 10. In the examples, water, which is a typical aqueous cleaning solution, was used as the cleaning solution. From the above formula, as the contact angle is closer to 90 °, the capillary force acting on the concave portion becomes smaller and the pattern collapse hardly occurs. Therefore, the contact angle when assuming that water is held on the surface of the protective film is 65 ˜115 ° is preferable, and 70 to 110 ° is particularly preferable.

水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル基材の表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。そのため、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。   As described in JIS R 3257 “Test method for wettability of substrate glass surface”, the contact angle of water droplets was evaluated by dropping several μl of water droplets on the surface of the sample substrate, and measuring the angle between the water droplet and the substrate surface. Made by measurement. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.

そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に酸化ケイ素層を有する「SiO膜付きシリコンウェハ」(表中でSiOと表記)、及び、表面が平滑なシリコンウェハ上に窒化ケイ素層を有する「SiN膜付きシリコンウェハ」(表中でSiNと表記)を用いた。 Therefore, in this embodiment, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed. The film 10 was considered and various evaluations were performed. In this example, the wafer having a smooth surface is a “silicon wafer with a SiO 2 film” (expressed as SiO 2 in the table) having a silicon oxide layer on a silicon wafer having a smooth surface, and the surface is smooth. A “SiN film-attached silicon wafer” (expressed as SiN in the table) having a silicon nitride layer on a silicon wafer was used.

詳細を下記に述べる。以下では、保護膜形成用薬液が供されたウェハの評価方法、該保護膜形成用薬液の調製、そして、ウェハに該保護膜形成用薬液を供した後の評価結果が述べられる。   Details are described below. In the following, a method for evaluating a wafer provided with a chemical solution for forming a protective film, preparation of the chemical solution for forming the protective film, and an evaluation result after providing the chemical solution for forming a protective film on the wafer are described.

〔保護膜形成用薬液が供されたウェハの評価方法〕
保護膜形成用薬液が供されたウェハの評価方法として、以下の(1)〜(3)の評価を行った。
[Evaluation method of wafer provided with chemical solution for forming protective film]
The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.

(1)ウェハ表面に形成された保護膜の接触角評価
保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角を接触角計(協和界面科学製:CA−X型)で測定し接触角とした。ここでは保護膜の接触角が65〜115°の範囲であったものを合格とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the wafer surface on which the protective film is formed, and the angle between the water droplet and the wafer surface is measured by a contact angle meter (manufactured by Kyowa Interface Science: CA-X type) was used as the contact angle. Here, the protective film having a contact angle in the range of 65 to 115 ° was regarded as acceptable.

(2)保護膜の除去性
以下の条件で低圧水銀灯のUV光をサンプルに1分間照射、撥水性保護膜除去工程における保護膜の除去性を評価した。照射後に水滴の接触角が10°以下となったものを合格(表中で○と表記)とした。
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions to evaluate the removability of the protective film in the water-repellent protective film removal step. A sample having a water droplet contact angle of 10 ° or less after irradiation was regarded as acceptable (denoted as “◯” in the table).

・ランプ:セン特殊光源製PL2003N−10
・照度:15mW/cm(光源からサンプルまでの距離は10mm)
(3)保護膜除去後のウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ−電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの差の絶対値を平均した値」として次式で算出した。保護膜を除去した後のウェハ表面のRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格(表中で○と表記)とした
・ Lamp: Sen Special Light Source PL2003N-10
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3) Evaluation of surface smoothness of wafer after removal of protective film Surface observation was performed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and centerline average surface roughness: Ra (nm) was determined. Asked. Ra is a three-dimensional extension of the centerline average roughness defined in JIS B 0601 applied to the measurement surface. “The absolute value of the difference from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value of the wafer surface after removing the protective film is 1 nm or less, the wafer surface is not eroded by cleaning, and the residue of the protective film is not present on the wafer surface. Notation) .

formula

Figure 0005716527
ここで、X、X、Y、Yは、それぞれ、X座標、Y座標の測定範囲を示す。Sは、測定面が理想的にフラットであるとした時の面積であり、(X−X)×(Y−Y)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Zは、測定面内の平均高さを表す。
Figure 0005716527
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and is a value of (X R −X L ) × (Y B −Y T ). Moreover, F (X, Y) is, the measurement point (X, Y) in height, Z 0 represents the average height within the measurement surface.

[実施例1]
(1)保護膜形成用薬液の調製
保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C(CH(CHSiCl〕;1g、有機溶媒としてハイドロフルオロエーテル(スリーエム社製HFE−7100);96g、プロピレングリコールモノメチルエーテルアセテート(PGMEA);3gを混合し(前記有機溶媒を表1中でHFE7100/PGMEAと表記する)、約5分間撹拌して、保護膜形成用薬液の総量に対する保護膜形成剤の濃度(以降「保護膜形成剤濃度」と記載する)が1質量%の保護膜形成用薬液を得た。
[Example 1]
(1) Preparation of chemical solution for forming protective film Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] as protective film forming agent; 1 g, hydrofluoroether (manufactured by 3M) as organic solvent HFE-7100); 96 g, propylene glycol monomethyl ether acetate (PGMEA); 3 g are mixed (the organic solvent is expressed as HFE7100 / PGMEA in Table 1), and stirred for about 5 minutes. A protective film forming chemical solution having a concentration of the protective film forming agent with respect to the total amount (hereinafter referred to as “protective film forming agent concentration”) of 1% by mass was obtained.

(2)ウェハの洗浄
平滑な酸化ケイ素膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、2−プロパノールに1分間浸漬した。また、LP−CVDで作製した窒化ケイ素膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合し、ホットプレートで液温を70℃とした洗浄液に1分間、純水に1分間、2−プロパノールに1分間浸漬した。
(2) Cleaning of wafer A silicon wafer with a smooth silicon oxide film (a silicon wafer having a thermal oxide film layer having a thickness of 1 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes and then in pure water for 1 minute. And immersed in 2-propanol for 1 minute. Further, a silicon wafer with a silicon nitride film (a silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD was immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes, and then immersed in pure water for 1 minute. 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water was mixed at a volume ratio of 1: 1: 5, and the temperature was set to 70 ° C. with a hot plate for 1 minute, with pure water for 1 minute, 2 -Soaked in propanol for 1 minute.

(3)ウェハ表面への保護膜形成用薬液による表面処理
前記酸化ケイ素膜付きシリコンウェハ、及び窒化ケイ素膜付きシリコンウェハを、それぞれ、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分間浸漬させた。その後、ウェハを2−プロパノールに1分間浸漬し、次いで、純水に1分間浸漬した。最後に、ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment with a chemical film for forming a protective film on the wafer surface The silicon wafer with a silicon oxide film and the silicon wafer with a silicon nitride film were prepared in the above-mentioned "(1) Preparation of chemical liquid for forming a protective film". It was immersed for 1 minute at 20 degreeC in the chemical | medical solution for protective film formation. Thereafter, the wafer was immersed in 2-propanol for 1 minute, and then immersed in pure water for 1 minute. Finally, the wafer was taken out from the pure water and air was blown to remove the pure water on the surface.

得られた各ウェハを上記「保護膜形成用薬液が供されたウェハの評価方法」に記載した要領で評価したところ、表1に示すとおり、酸化ケイ素膜付きシリコンウェハでは表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は101°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。   Each wafer obtained was evaluated in the manner described in “Method for evaluating wafer provided with chemical for forming protective film”. As shown in Table 1, in silicon wafer with silicon oxide film, initial contact before surface treatment was performed. Although the angle was less than 10 °, the contact angle after the surface treatment was 101 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.

一方、窒化ケイ素膜付きシリコンウェハでは表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は94°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。   On the other hand, in the silicon wafer with a silicon nitride film, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 94 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.

このように保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C(CH(CHSiCl〕を用いると、表面に水酸基の多い酸化ケイ素膜付きシリコンウェハ、水酸基の少ない窒化ケイ素膜付きシリコンウェハのどちらに対しても良好な撥水性付与効果が得られ、効率的に洗浄が行えることを確認した。

Figure 0005716527
As described above, when nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] is used as a protective film forming agent, a silicon wafer with a silicon oxide film having many hydroxyl groups on its surface, and nitriding with few hydroxyl groups It was confirmed that a good water repellency-imparting effect was obtained for both of the silicon wafers with a silicon film, and that cleaning could be performed efficiently.
Figure 0005716527

[実施例2〜3]
実施例1で用いた有機溶媒を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、CTFP/PGMEAは実施例1のHFE−7100の代わりに1−クロロ−3,3,3−トリフルオロプロペン(CTFP)を用いた有機溶媒を意味し、DCTFP/PGMEAは実施例1のHFE−7100の代わりにcis−1,2−ジクロロ−3,3,3−トリフルオロプロペン(DCTFP)を用いた有機溶媒を意味する。
[Examples 2-3]
The organic solvent used in Example 1 was appropriately changed to perform wafer surface treatment, and further evaluated. The results are shown in Table 1. In Table 1, CTFP / PGMEA means an organic solvent using 1-chloro-3,3,3-trifluoropropene (CTFP) instead of HFE-7100 of Example 1, and DCTFP / PGMEA is It means an organic solvent using cis-1,2-dichloro-3,3,3-trifluoropropene (DCTFP) in place of HFE-7100 in Example 1.

[実施例4]
保護膜形成剤としてブチルジメチルシリルジメチルアミン〔C(CHSiN(CH〕;1g、有機溶媒としてPGMEA;98.9g、さらに触媒としてトリフルオロ酢酸〔CFCOOH〕;0.1gを用いて保護膜形成用薬液を作製した。前記保護膜形成剤の総量100質量%に対する前記触媒の添加量(以下、触媒濃度と記載する)は10質量%である。さらに、各ウェハの保護膜形成用薬液への浸漬時間を10分間とした。それ以外は、すべて実施例1と同じである。
[Example 4]
1 g of butyldimethylsilyldimethylamine [C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 ] as a protective film forming agent, 98.9 g of PGMEA as an organic solvent, and trifluoroacetic acid [CF 3 COOH] as a catalyst A protective film forming chemical was prepared using 0.1 g. The amount of the catalyst added to the total amount of the protective film forming agent of 100% by mass (hereinafter referred to as catalyst concentration) is 10% by mass. Furthermore, the immersion time of each wafer in the chemical solution for forming the protective film was set to 10 minutes. The rest is the same as the first embodiment.

酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は87°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。   As shown in Table 1, the evaluation results of the silicon wafer with the silicon oxide film showed an excellent water repellency-imparting effect with a contact angle of 87 ° after the surface treatment. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.

一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は71°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。   On the other hand, as shown in Table 1, the evaluation results of the silicon wafer with the silicon nitride film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.

[実施例5〜26]
実施例4で用いた保護膜形成剤、保護膜形成剤濃度、触媒、触媒濃度、有機溶媒、各ウェハの保護膜形成用薬液への浸漬時間、及び、各ウェハの保護膜形成用薬液への浸漬温度を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、C17(CHSiN(CHはオクチルジメチルシリルジメチルアミンを意味し、C17Si〔N(CHはオクチルシリルトリスジメチルアミンを意味し、(CFCO)Oはトリフルオロ酢酸無水物を意味する。
[Examples 5 to 26]
The protective film forming agent, protective film forming agent concentration, catalyst, catalyst concentration, organic solvent, immersion time of each wafer in the protective film forming chemical solution used in Example 4, and each wafer in the protective film forming chemical solution The immersion temperature was changed as appropriate, the wafer was surface-treated, and further evaluated. The results are shown in Table 1. In Table 1, C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 means octyldimethylsilyldimethylamine, and C 8 H 17 Si [N (CH 3 ) 2 ] 3 represents octylsilyl tris. Dimethylamine means (CF 3 CO) 2 O means trifluoroacetic anhydride.

[比較例1]
保護膜形成剤として、トリメチルクロロシラン〔(CHSiCl〕;1gを用いた以外はすべて実施例1と同じとした。
[Comparative Example 1]
All were the same as Example 1 except that trimethylchlorosilane [(CH 3 ) 3 SiCl]; 1 g was used as the protective film forming agent.

酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は71°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。   As shown in Table 1, the evaluation results of the silicon wafer with a silicon oxide film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.

一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は41°となり、撥水性付与効果が充分では無かった。   On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with a silicon nitride film was 41 ° after the surface treatment, and the water repellency imparting effect was not sufficient.

[比較例2]
保護膜形成剤として、トリメチルシリルジメチルアミン〔(CHSiN(CH〕;1gを用いた以外はすべて実施例6と同じとした。
[Comparative Example 2]
All were the same as in Example 6 except that 1 g of trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 1 g was used as the protective film forming agent.

酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は91°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。   As shown in Table 1, the evaluation result of the silicon wafer with the silicon oxide film was 91 ° after the surface treatment, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.

一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は60°となり、撥水性付与効果が充分では無かった。   On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with the silicon nitride film was that the contact angle after the surface treatment was 60 °, and the water repellency imparting effect was not sufficient.

[比較例3]
保護膜形成剤として、1,3−ビス(3,3,3−トリフルオロプロピル)−1,1,3,3−テトラメチルシラザン〔〔CF(CH(CHSi〕NH〕;1gを用いた以外はすべて実施例6と同じとした。
[Comparative Example 3]
As a protective film forming agent, 1,3-bis (3,3,3-trifluoropropyl) -1,1,3,3-tetramethyldisiloxane silazane [[CF 3 (CH 2) 2 ( CH 3) 2 Si ] 2 NH]; everything was the same as Example 6 except 1 g was used.

酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は96°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。
As shown in Table 1, the evaluation results of the silicon wafer with the silicon oxide film showed a contact angle after the surface treatment of 96 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.

一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は62°となり、撥水性付与効果が充分では無かった。   On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with a silicon nitride film was that the contact angle after the surface treatment was 62 °, and the water repellency imparting effect was not sufficient.

このように比較例1〜3の化合物では、表面に水酸基の多い酸化ケイ素膜付きシリコンウェハの場合には良好な撥水性付与効果が得られたが、表面に水酸基の少ない窒化ケイ素膜付きシリコンウェハの場合には十分な撥水性付与効果が得られず、ウェハ種による水酸基の数に撥水性付与効果が大きく依存した。   Thus, in the compounds of Comparative Examples 1 to 3, a good water repellency imparting effect was obtained in the case of a silicon wafer with a silicon oxide film having many hydroxyl groups on the surface, but a silicon wafer with a silicon nitride film having few hydroxyl groups on the surface In this case, a sufficient water repellency imparting effect could not be obtained, and the water repellency imparting effect greatly depended on the number of hydroxyl groups depending on the wafer type.

本発明の保護膜形成剤、及び、該剤を含む保護膜形成用薬液、及び、該薬液を用いたウェハの洗浄方法は、電子産業の集積回路分野において、ウェハの種類に応じた表面の洗浄条件の変更や工程の追加を低減できるため、製造効率の向上に貢献する。数種のウェハを扱う場合はではとりわけ効率的な製造が可能である。   The protective film forming agent of the present invention, the chemical solution for forming the protective film containing the agent, and the wafer cleaning method using the chemical solution are used for cleaning the surface according to the type of wafer in the field of integrated circuits in the electronics industry. Because it can reduce the change of conditions and the addition of processes, it contributes to the improvement of manufacturing efficiency. Particularly efficient production is possible when dealing with several types of wafers.

1 ウェハ
2 ウェハ表面の凹凸パターン
3 パターンの凸部
4 パターンの凹部
5 凹部の幅
6 凸部の高さ
7 凸部の幅
8 凹部4に保持された撥水性保護膜形成用薬液
9 凹部4に保持された液体
10 撥水性保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Uneven | corrugated pattern on the wafer surface 3 Convex part 4 Pattern concave part 5 Concave width 6 Convex height 7 Convex width 8 Water repellent protective film forming chemical 9 held in the concave part Retained liquid 10 water repellent protective film

Claims (8)

表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面にケイ素元素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[]で表されるケイ素化合物であることを特徴とする、撥水性保護膜形成剤。
Figure 0005716527
[式中、 は炭素数が4〜18の無置換、もしくはハロゲン原子が置換した炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる基である。]
A water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer having a concave-convex pattern on the surface and containing silicon element on at least the concave surface of the concave-convex pattern, A water repellent protective film-forming agent, which is a silicon compound represented by the following general formula [ 3 ].
Figure 0005716527
[ Wherein R 2 is an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, monovalent functional group bonded to an element is oxygen, and a group Ru is selected from a halogen group. ]
表面に凹凸パターンを有し該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[]で表されるケイ素化合物であることを特徴とする、撥水性保護膜形成剤。
Figure 0005716527
[式中、 は炭素数が4〜18の無置換、もしくはハロゲン原子が置換した炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる基である。]
A water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer having a concave-convex pattern on the surface and containing silicon nitride on at least the concave surface of the concave-convex pattern, A water repellent protective film-forming agent, which is a silicon compound represented by the following general formula [ 3 ].
Figure 0005716527
[ Wherein R 2 is an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, monovalent functional group bonded to an element is oxygen, and a group Ru is selected from a halogen group. ]
請求項1又は請求項2に記載の撥水性保護膜形成剤を含有することを特徴とする撥水性保護膜形成用薬液。 A chemical solution for forming a water repellent protective film, comprising the water repellent protective film forming agent according to claim 1 . 酸を含有することを特徴とする、請求項に記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water-repellent protective film according to claim 3 , comprising an acid. 前記撥水性保護膜形成剤が、該撥水性保護膜形成用薬液の総量100質量%に対して0.1〜50質量%となるように混合されてなることを特徴とする、請求項又は請求項に記載の撥水性保護膜形成用薬液。 The water-repellent protective film forming agent, characterized in that formed by mixed so that 0.1 to 50 wt% based on 100 mass% of the water repellent protective film forming chemical, claim 3 or The chemical solution for forming a water-repellent protective film according to claim 4 . 表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含むウェハの洗浄において、以下に示す工程、
前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程、
前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
ウェハ表面の液体を除去する、液体除去工程、
前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程、
を含み、撥水性保護膜形成工程において請求項〜請求項のいずれかに記載の撥水性保護膜形成用薬液を用いることを特徴とする、ウェハの洗浄方法。
In the cleaning of a wafer containing a silicon element on at least the concave surface of the concavo-convex pattern in the wafer having the concavo-convex pattern formed on the surface, the steps shown below,
Cleaning the wafer surface with an aqueous cleaning liquid, an aqueous cleaning liquid cleaning step;
A water repellent protective film forming step of holding a water repellent protective film forming chemical in at least the concave portion of the wafer and forming a water repellent protective film on the concave surface;
A liquid removal process for removing liquid on the wafer surface;
Removing the water-repellent protective film from the concave surface, a water-repellent protective film removing step,
A method for cleaning a wafer, comprising using the chemical solution for forming a water-repellent protective film according to any one of claims 3 to 5 in the water-repellent protective film forming step.
前記ウェハが、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハであることを特徴とする、請求項に記載のウェハの洗浄方法。 The method for cleaning a wafer according to claim 6 , wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern. 撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われることを特徴とする、請求項又は請求項に記載のウェハの洗浄方法。 The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. characterized in that it is carried out in one processing method, the wafer cleaning method according to claim 6 or claim 7.
JP2011108634A 2010-06-28 2011-05-13 Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution Expired - Fee Related JP5716527B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011108634A JP5716527B2 (en) 2010-06-28 2011-05-13 Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
KR1020137002349A KR20130046431A (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
CN201180032637.3A CN102971836B (en) 2010-06-28 2011-06-23 Water repellency protecting film forming agent, water repellency protecting film formation chemical solution and use the cleaning method of wafer of this chemical solution
KR1020157004348A KR101572583B1 (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
PCT/JP2011/064370 WO2012002243A1 (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
SG2012093423A SG186761A1 (en) 2010-06-28 2011-06-23 Water repellent protective film forming agent, liquid chemical for forming water repellent protective film, and wafer cleaning method using liquid chemical
TW100122721A TWI461519B (en) 2010-06-28 2011-06-28 A water-repellent protective film-forming agent, a liquid for forming a water-repellent protective film, and a method for cleaning the wafer using the liquid
US13/667,236 US20130146100A1 (en) 2010-06-28 2012-11-02 Water Repellent Protective Film Forming Agent, Liquid Chemical for Forming Water Repellent Protective Film, and Wafer Cleaning Method Using Liquid Chemical

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010146655 2010-06-28
JP2010146655 2010-06-28
JP2011108634A JP5716527B2 (en) 2010-06-28 2011-05-13 Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution

Publications (2)

Publication Number Publication Date
JP2012033881A JP2012033881A (en) 2012-02-16
JP5716527B2 true JP5716527B2 (en) 2015-05-13

Family

ID=45846873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108634A Expired - Fee Related JP5716527B2 (en) 2010-06-28 2011-05-13 Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution

Country Status (1)

Country Link
JP (1) JP5716527B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942923B2 (en) * 2013-05-09 2016-06-29 信越化学工業株式会社 Silylation method using silylamine compound
JP6375688B2 (en) 2013-05-20 2018-08-22 セントラル硝子株式会社 Pumping container, storage method using the pumping container, and liquid transfer method using the pumping container
SG11201908617QA (en) 2017-03-24 2019-10-30 Fujifilm Electronic Materials Usa Inc Surface treatment methods and compositions therefor
WO2019135901A1 (en) 2018-01-05 2019-07-11 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment compositions and methods
KR102069345B1 (en) * 2018-03-06 2020-01-22 에스케이씨 주식회사 Composition for semiconductor process and semiconductor process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077072A (en) * 1999-09-08 2001-03-23 Sony Corp Substrate cleaning method
JP4939756B2 (en) * 2004-01-26 2012-05-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate

Also Published As

Publication number Publication date
JP2012033881A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP6032338B2 (en) Chemical solution for protective film formation
JP5533178B2 (en) Silicon wafer cleaning agent
JP5708191B2 (en) Chemical solution for protective film formation
JP5482192B2 (en) Silicon wafer cleaning agent
US9748092B2 (en) Liquid chemical for forming protecting film
US9481858B2 (en) Silicon wafer cleaning agent
JP5446848B2 (en) Silicon wafer cleaning agent
WO2012002145A1 (en) Chemical solution for forming water-repellent protective film
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
KR101572583B1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5974514B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5678720B2 (en) Wafer cleaning method
WO2012002200A1 (en) Wafer cleaning method
JP5712670B2 (en) Water repellent protective film forming chemical
TWI484023B (en) Water-borne protective film-forming liquid, water-repellent protective film-forming liquid pack and wafer cleaning method
WO2010084826A1 (en) Silicon wafer cleaning agent
JP5974515B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP2012033883A (en) Cleaning method of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5716527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees