JP2012015335A - Chemical for forming protective film, and cleaning method of wafer surface - Google Patents

Chemical for forming protective film, and cleaning method of wafer surface Download PDF

Info

Publication number
JP2012015335A
JP2012015335A JP2010150534A JP2010150534A JP2012015335A JP 2012015335 A JP2012015335 A JP 2012015335A JP 2010150534 A JP2010150534 A JP 2010150534A JP 2010150534 A JP2010150534 A JP 2010150534A JP 2012015335 A JP2012015335 A JP 2012015335A
Authority
JP
Japan
Prior art keywords
protective film
wafer
chemical solution
water
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010150534A
Other languages
Japanese (ja)
Inventor
Soichi Kumon
創一 公文
Takashi Saio
崇 齋尾
Shinobu Arata
忍 荒田
Masanori Saito
真規 斎藤
Atsushi Ryokawa
敦 両川
Shuhei Yamada
周平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010150534A priority Critical patent/JP2012015335A/en
Publication of JP2012015335A publication Critical patent/JP2012015335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical liquid for forming a protective film which reduces capillary force at an irregular pattern of a wafer in order to improve a cleaning step that tends to induce pattern collapse in a method of manufacturing a wafer where a fine irregular pattern is formed on the surface and silicon is contained at least partially in the irregular pattern.SOLUTION: The chemical liquid is used for forming a water-repellent protective film at least on the surface of recesses of an irregular pattern when cleaning a wafer having a fine irregular pattern containing silicon at least partially on the surface. The chemical contains 0.01-30 mass% of a silicon compound A represented by a general formula RSi(H)X, and an aprotic organic solvent.

Description

本発明は、半導体デバイス製造などにおいて、特に微細でアスペクト比の高い回路パターン化されたデバイスの製造歩留まりの向上を目的とした基板(ウェハ)の洗浄技術に関する。   The present invention relates to a substrate (wafer) cleaning technique for the purpose of improving the manufacturing yield of a device having a circuit pattern that is fine and has a high aspect ratio, particularly in the manufacture of semiconductor devices.

ネットワークやデジタル家電用の半導体デバイスにおいて、さらなる高性能・高機能化や低消費電力化が要求されている。そのため回路パターンの微細化が進行しており、それに伴い製造歩留まりの低下を引き起こすパーティクルサイズも微小化している。その結果、微小化したパーティクル等の汚染物質の除去を目的とした洗浄工程が多用されており、その結果、半導体製造工程全体の3〜4割にまで洗浄工程が占めている。   In semiconductor devices for networks and digital home appliances, higher performance, higher functionality, and lower power consumption are required. For this reason, circuit patterns are being miniaturized, and accordingly, the particle size that causes a reduction in manufacturing yield is also miniaturized. As a result, a cleaning process intended to remove contaminants such as micronized particles is frequently used, and as a result, the cleaning process accounts for 30 to 40% of the entire semiconductor manufacturing process.

その一方で、従来行われていたアンモニアの混合洗浄剤による洗浄では、回路パターンの微細化に伴い、その塩基性によるウェハへのダメージが問題となっている。そのため、よりダメージの少ない例えば希フッ酸系洗浄剤への代替が進んでいる。   On the other hand, in the conventional cleaning with the mixed ammonia cleaning agent, the damage to the wafer due to the basicity becomes a problem as the circuit pattern is miniaturized. For this reason, replacement with, for example, a dilute hydrofluoric acid-based cleaning agent with less damage is in progress.

これにより、洗浄によるウェハへのダメージの問題は改善されたが、半導体デバイスの微細化に伴うパターンのアスペクト比が高くなることによる問題が顕在化している。すなわち洗浄またはリンス後、気液界面がパターンを通過する時にパターンが倒れる現象を引き起こし、歩留まりが大幅に低下することが大きな問題となっている。   Thus, although the problem of damage to the wafer due to cleaning has been improved, the problem due to the increase in the aspect ratio of the pattern accompanying the miniaturization of the semiconductor device has become apparent. That is, after cleaning or rinsing, a phenomenon that the pattern collapses when the gas-liquid interface passes through the pattern causes a significant decrease in yield.

このパターン倒れは、ウェハを洗浄液またはリンス液から引き上げるときに生じる。これは、パターンのアスペクト比が高い部分と低い部分との間において、残液高さの差ができ、それによってパターンに作用する毛細管力に差が生じることが原因と言われている。尚、「倒れ」という表記は、以降「倒壊」ということがある。   This pattern collapse occurs when the wafer is pulled up from the cleaning liquid or the rinse liquid. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern. Note that the expression “falling” is sometimes referred to as “collapse”.

このため、毛細管力を小さくすれば、残液高さの違いによる毛細管力の差が低減し、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。
P=2×γ×cosθ/S(γ:表面張力、θ:接触角、S:パターン寸法)
For this reason, if the capillary force is reduced, it can be expected that the difference in capillary force due to the difference in the residual liquid height will be reduced and the pattern collapse will be eliminated. The magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing γ or cos θ.
P = 2 × γ × cos θ / S (γ: surface tension, θ: contact angle, S: pattern dimension)

特許文献1には、γを小さくしてパターン倒れを抑制する手法として気液界面を通過する前に洗浄液を水から2−プロパノールへ置換する技術が開示されている。しかし、この手法では、パターン倒れ防止に有効である一方、γが小さい2−プロパノール等の溶媒は通常の接触角も小さくなり、その結果、cosθが大きくなる傾向にある。そのため、対応できるパターンのアスペクト比が5以下である等、限界があると言われている。   Patent Document 1 discloses a technique for substituting the cleaning liquid from water to 2-propanol before passing through the gas-liquid interface as a technique for reducing γ and suppressing pattern collapse. However, while this method is effective for preventing pattern collapse, a solvent such as 2-propanol having a small γ tends to have a small normal contact angle and, as a result, tends to increase cos θ. Therefore, it is said that there is a limit, for example, the aspect ratio of the pattern that can be handled is 5 or less.

また、特許文献2には、cosθを小さくしてパターン倒れを抑制する手法として、レジストパターンを対象とする技術が開示されている。この手法は接触角を90°付近とすることで、cosθを0に近づけ毛細管力を極限まで下げることによって、パターン倒れを抑制する手法である。しかし、この開示された技術はレジストパターンを対象としており、レジスト自体を改質するものであり、さらに最終的にレジストと共に除去が可能であるため、乾燥後の処理剤の除去方法を想定する必要がなく、本目的には適用できない。   Patent Document 2 discloses a technique for resist patterns as a technique for reducing cos θ to suppress pattern collapse. This method is a method of suppressing pattern collapse by setting cos θ close to 0 and reducing the capillary force to the limit by setting the contact angle near 90 °. However, since the disclosed technique is intended for a resist pattern, it modifies the resist itself, and can be finally removed together with the resist. Therefore, it is necessary to assume a method for removing the treatment agent after drying. Is not applicable to this purpose.

また、特許文献3には、シリコンを含む膜により凹凸形状パターンを形成したウェハ表面を酸化等により表面改質し、該表面に水溶性界面活性剤又はシランカップリング剤を用いて撥水性保護膜を形成し、毛細管力を低減し、パターンの倒壊を防止する洗浄方法が開示されている。   Further, Patent Document 3 discloses that a wafer surface on which a concavo-convex pattern is formed by a film containing silicon is surface-modified by oxidation or the like, and a water-repellent protective film is formed on the surface using a water-soluble surfactant or silane coupling agent. A cleaning method is disclosed that reduces the capillary force and prevents the pattern from collapsing.

また、半導体デバイスのパターン倒れを防止する手法として、臨界流体の利用や液体窒素の利用等が提案されている。しかし、いずれも一定の効果があるものの、従来の洗浄プロセスよりもスループットが悪いなど、量産工程への適用が難しい。   In addition, as a technique for preventing pattern collapse of a semiconductor device, use of a critical fluid, use of liquid nitrogen, or the like has been proposed. However, although all have a certain effect, it is difficult to apply to a mass production process because the throughput is worse than the conventional cleaning process.

特開2008−198958号公報JP 2008-198958 A 特開平5−299336号公報Japanese Patent Laid-Open No. 5-299336 特許第4403202号Patent No. 4403202

半導体デバイスの製造時には、ウェハ表面は微細な凹凸パターンを有する面とされる。表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハ(以降、「シリコンウェハ」または単に「ウェハ」と記載する)の洗浄時において、ウェハの凹凸パターン部の毛細管力を低減させる撥水性保護膜(「保護膜」と表記される場合あり)は、シランカップリング剤などのケイ素化合物がウェハ表面に導入されたOH基と反応することで形成される。   At the time of manufacturing a semiconductor device, the wafer surface is a surface having a fine uneven pattern. Capillary force of the concavo-convex pattern portion of the wafer during cleaning of a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon (hereinafter referred to as “silicon wafer” or simply “wafer”) The water-repellent protective film (which may be referred to as “protective film”) is formed by the reaction of a silicon compound such as a silane coupling agent with an OH group introduced on the wafer surface.

洗浄過程の短縮化のためには、保護膜を効率よく形成させる必要があるが、保護膜の形成効率は、ウェハ表面に導入されたOH基とケイ素化合物との接触確率に依存する点がある。特許文献3は、シランカップリング剤(無希釈)の使用例を開示している。シランカップリング剤を、シンナーで希釈して用いてもよいとの示唆はあるものの、液温上昇や、紫外線照射などによるシランカップリング剤のエステル反応の促進、すなわちOH基との反応の促進の必要性を示唆している。   In order to shorten the cleaning process, it is necessary to efficiently form a protective film. However, the formation efficiency of the protective film depends on the contact probability between the OH group introduced on the wafer surface and the silicon compound. . Patent Document 3 discloses an example of using a silane coupling agent (undiluted). Although there is a suggestion that the silane coupling agent may be diluted with thinner, it is possible to promote the ester reaction of the silane coupling agent by increasing the liquid temperature or ultraviolet irradiation, that is, promoting the reaction with the OH group. Suggests the need.

OH基との反応の促進化を、薬液の観点からみると、ケイ素化合物の量を増やして、OH基とケイ素化合物との接触確率を増やす検討がなされる。これは、薬液中のケイ素化合物量を増加させることにつながり、たとえ、ケイ素化合物のシンナーによる希釈がなされたとしても、それほど希釈されるべきではないとの結論を導き出しやすい。   From the viewpoint of the chemical solution, the promotion of the reaction with the OH group is examined by increasing the amount of the silicon compound and increasing the contact probability between the OH group and the silicon compound. This leads to an increase in the amount of silicon compound in the chemical solution, and even if the silicon compound is diluted with thinner, it is easy to draw a conclusion that it should not be so diluted.

本発明は、パターン倒れを誘発しやすい洗浄工程を改善するための、ウェハの凹凸パターン部の毛細管力を低減させる保護膜形成用薬液に関し、特には薬液のコストを下げることに奏功する薬液、および、該薬液を用いてウェハ表面を洗浄する方法を提供することを課題とする。   The present invention relates to a chemical solution for forming a protective film for reducing a capillary force of a concave and convex pattern portion of a wafer for improving a cleaning process that easily induces pattern collapse, and in particular, a chemical solution that is effective in reducing the cost of the chemical solution, and An object of the present invention is to provide a method for cleaning a wafer surface using the chemical solution.

本発明のウェハの凹凸パターン部の毛細管力を低減させる保護膜形成用薬液(以降「保護膜形成用薬液」または単に「薬液」と記載する)は、表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハの洗浄時に、該凹凸パターンの少なくとも凹部表面に撥水性保護膜を形成するための薬液であり、下記一般式[1]で表されるケイ素化合物Aを0.01〜30質量%、および、非プロトン性有機溶媒を含むことを特徴とする保護膜形成用薬液。   The chemical solution for forming a protective film for reducing the capillary force of the uneven pattern portion of the wafer of the present invention (hereinafter referred to as “chemical solution for forming a protective film” or simply “chemical solution”) has a fine uneven pattern on the surface. A chemical solution for forming a water repellent protective film on at least the concave surface of the concavo-convex pattern at the time of cleaning a wafer in which at least a part of the pattern contains silicon, and the silicon compound A represented by the following general formula [1] is 0 A protective film-forming chemical solution comprising 0.01 to 30% by mass and an aprotic organic solvent.

Figure 2012015335
Figure 2012015335

ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、および、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Xは、それぞれ互いに独立して、Siと結合する元素が窒素である1価の有機基、Siと結合する元素が酸素である1価の有機基、および、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数、bは0〜2の整数であり、aとbの合計は1〜3である。 Here, R 1 is each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. X is at least one group selected from: a monovalent organic group in which the element bonded to Si is nitrogen, a monovalent organic group in which the element bonded to Si is oxygen, and , At least one group selected from halogen groups, a is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a and b is 1 to 3.

非プロトン性有機溶媒が薬液中の主成分を占める本発明の薬液の技術思想は、保護膜を形成するケイ素化合物Aの含有量が、0.01〜30質量%と少ない含有量であっても、意外にも保護膜の形成効率が良好であったとの新たな知見に基づいている。   The technical idea of the chemical solution of the present invention in which the aprotic organic solvent occupies the main component in the chemical solution is that the content of the silicon compound A forming the protective film is as small as 0.01 to 30% by mass. Surprisingly, it is based on a new finding that the formation efficiency of the protective film was good.

また、前記ケイ素化合物Aは、塩基性や酸性を示す場合がある。XがSiと結合する元素が窒素である1価の有機基の場合、塩基性を呈し、たとえば、ヘキサメチルジシラザンの場合、100%の状態で、pHが10となる。Xがハロゲン基の場合、酸性を呈し、たとえば、トリメチルクロロシランの場合、100%の状態で、pHが0となる。薬液は、半導体の洗浄に使用されるものであるから、高純度化のために精製される必要があるが、前記ケイ素化合物Aの塩基性度や酸性度が高い場合でも、本発明の薬液では、ケイ素化合物Aは、これら3割以下に希釈されていることから、薬液の塩基性度又は酸性度が緩和されたものとなり、イオン交換による精製を行いやすくなるなどの効果が生じることがわかった。このことは、薬液のコスト低減に奏功するであろう。また、本発明の好適な薬液は、非プロトン性有機溶媒の含有量が50〜99.99質量%と薬液の主成分となる量を占め、薬液の塩基性度又は酸性度が緩和という観点からより好ましいものとなる。   Further, the silicon compound A may show basicity or acidity. When X is a monovalent organic group in which the element bonded to Si is nitrogen, it exhibits basicity. For example, in the case of hexamethyldisilazane, the pH is 10 at 100%. When X is a halogen group, it exhibits acidity. For example, in the case of trimethylchlorosilane, the pH becomes 0 in a state of 100%. Since the chemical solution is used for semiconductor cleaning, it needs to be purified for high purity. However, even if the basicity and acidity of the silicon compound A are high, the chemical solution of the present invention Since the silicon compound A was diluted to 30% or less, it was found that the basicity or acidity of the chemical solution was relaxed and effects such as easy purification by ion exchange were produced. . This will succeed in reducing the cost of the chemical solution. Moreover, the suitable chemical | medical solution of this invention occupies the quantity used as the main component of a chemical | medical solution with content of an aprotic organic solvent 50-99.99 mass%, and it is from a viewpoint that the basicity or acidity of a chemical | medical solution eases. It becomes more preferable.

本明細書では、薬液の塩基性度又は酸性度を示す指標として、pHの値を用いてもよい。ここで、薬液のpHは、例えば、25℃でpH試験紙(ADVANTEC社製WR)を用いて測定できる。たとえば、ヘキサメチルジシラザンの場合、プロピレングリコールモノメチルエーテルアセテートを希釈溶媒として、ヘキサメチルジシラザンを20〜30質量%とすると、pHが9となる。   In the present specification, a pH value may be used as an index indicating the basicity or acidity of a chemical solution. Here, pH of a chemical | medical solution can be measured using a pH test paper (WR by ADVANTEC) at 25 degreeC, for example. For example, in the case of hexamethyldisilazane, the pH is 9 when the propylene glycol monomethyl ether acetate is used as a diluent solvent and the amount of hexamethyldisilazane is 20 to 30% by mass.

本発明の薬液において、前記ケイ素化合物Aの含有量は、0.01〜30質量%であることが好ましい。前記含有量が0.01質量%未満では、凹凸パターンの倒れ防止効果が不十分となり、30質量%超では凹凸パターンの倒れ防止効果はあまり増加せず材料費が増加するので好ましくない。より好ましくは0.05〜25質量%、さらに好ましくは0.1〜20質量%である。   In the chemical solution of the present invention, the content of the silicon compound A is preferably 0.01 to 30% by mass. If the content is less than 0.01% by mass, the effect of preventing the collapse of the concave / convex pattern becomes insufficient, and if it exceeds 30% by mass, the effect of preventing the collapse of the concave / convex pattern does not increase so much and the material cost increases. More preferably, it is 0.05-25 mass%, More preferably, it is 0.1-20 mass%.

本発明の薬液において、前記非プロトン性有機溶媒は、水100質量部に対する溶解度が5質量部以上であることが好ましい。この場合、薬液は、水との相溶性が良好であることから、表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハの洗浄時に、凹凸パターンの凹部に水が蓄えられた状態で、この水と薬液との置換を行うことができる。さらには、凹部に薬液が蓄えられた状態で、この薬液と水との置換も行うことができる。洗浄時の凹部での置換工程は、ケイ素化合物Aが水の相溶性が良くなかったとしても、「水→アルコール→薬液→アルコール→水」、「水→薬液→水」のいずれにも対応できることができる。非プロトン性有機溶媒の薬液中の含有量が小さくなると、薬液と水との置換が遅くなってスループットが低くなる、あるいは、薬液使用量が増えるため好ましくない。また、含有量が多くなるのに伴って前記ケイ素化合物Aの含有量が減少すると、凹凸パターンの倒れ防止効果が不十分となる。このため、前記薬液中の非プロトン性有機溶媒の含有量は50〜99.99質量%であることが好ましく、より好ましくは60〜99.95質量%、さらに好ましくは65〜99.9質量%である。   In the chemical solution of the present invention, the aprotic organic solvent preferably has a solubility in 100 parts by mass of water of 5 parts by mass or more. In this case, since the chemical solution has good compatibility with water, at the time of cleaning a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon, water is present in the concave portions of the concavo-convex pattern. This water and chemical solution can be replaced in the stored state. Furthermore, the chemical solution and water can be replaced while the chemical solution is stored in the recess. Even if the silicon compound A does not have good water compatibility, the replacement step with the recesses during cleaning can be compatible with either “water → alcohol → chemical solution → alcohol → water” or “water → chemical solution → water”. Can do. If the content of the aprotic organic solvent in the chemical solution is small, the replacement of the chemical solution with water is slowed, resulting in a low throughput or an increase in the amount of chemical solution used, which is not preferable. In addition, when the content of the silicon compound A is reduced as the content is increased, the effect of preventing the concave / convex pattern from being collapsed becomes insufficient. For this reason, it is preferable that content of the aprotic organic solvent in the said chemical | medical solution is 50-99.99 mass%, More preferably, it is 60-99.95 mass%, More preferably, it is 65-99.9 mass%. It is.

また、非プロトン性有機溶媒に対する水の溶解度が小さくなると、薬液と水との置換が遅くなってスループットが低くなる、あるいは、薬液使用量が増えるため好ましくない。このため、非プロトン性有機溶媒に対する水の溶解度は、水100質量部に対して5質量部以上であることが好ましく、より好ましくは20質量部以上である。   In addition, if the solubility of water in the aprotic organic solvent is reduced, the substitution between the chemical solution and water is delayed, resulting in a low throughput or an increase in the amount of chemical solution used, which is not preferable. For this reason, it is preferable that the solubility of water with respect to an aprotic organic solvent is 5 mass parts or more with respect to 100 mass parts of water, More preferably, it is 20 mass parts or more.

前記一般式[1]のRは、前記保護膜の表面エネルギーを低減させて、水やその他の液体と該保護膜表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。これにより、物品表面に対する液体の接触角を大きくすることができる。 R 1 in the general formula [1] reduces the surface energy of the protective film, and interacts between water or other liquid and the surface of the protective film (interface), for example, hydrogen bonding, intermolecular force. Etc. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. Thereby, the contact angle of the liquid with respect to the article | item surface can be enlarged.

前記保護膜は、前記一般式[1]のXがシリコンウェハのSiと化学的に結合することによって形成される。従って、前記シリコンウェハの凹部から洗浄液が除去されるとき、すなわち、乾燥されるとき、前記凹部表面に前記保護膜が形成されているので、該凹部表面の毛細管力が小さくなり、パターン倒れが生じにくくなる。   The protective film is formed by chemically bonding X in the general formula [1] with Si of the silicon wafer. Therefore, when the cleaning liquid is removed from the recess of the silicon wafer, that is, when it is dried, since the protective film is formed on the surface of the recess, the capillary force on the surface of the recess is reduced, and pattern collapse occurs. It becomes difficult.

また、前記ケイ素化合物A中のXが、Siと結合する元素が窒素である1価の有機基であり、薬液が酸Aを含むことが好ましい。この場合、前記ケイ素化合物AとシリコンウェハのSiとの反応が早く、撥水性保護膜を短時間で形成できるので好ましい。   Moreover, it is preferable that X in the silicon compound A is a monovalent organic group in which the element bonded to Si is nitrogen, and the chemical solution contains the acid A. This is preferable because the reaction between the silicon compound A and Si on the silicon wafer is fast and the water-repellent protective film can be formed in a short time.

なお、酸Aがブレンステッド酸であると、該酸が前記ケイ素化合物Aと反応して、ケイ素化合物Aが減少、あるいは、ケイ素化合物Aの反応性を低下させることがある。このため、該酸Aはルイス酸であることが好ましい。   In addition, when the acid A is a Bronsted acid, the acid may react with the silicon compound A to reduce the silicon compound A or reduce the reactivity of the silicon compound A. For this reason, the acid A is preferably a Lewis acid.

また、前記薬液は、沸点が70〜220℃にあることが好ましい。沸点がこの範囲であることは、特に、前記薬液がウェハの回転の遠心力によって微細な凹凸パターンを有するウェハ表面に供給されるものである場合に好ましい。沸点が低くなると、前記薬液がウェハ全面に濡れ広がる前に薬液が乾燥しやすくなるため好ましくない。一方、沸点が高くなると、薬液の粘度が高くなるため、前記薬液がウェハ全面に均一に濡れ広がり難くなるので好ましくない。このため、前記沸点は70〜220℃、特に75〜200℃が好ましい。   Moreover, it is preferable that the said chemical | medical solution has a boiling point in 70-220 degreeC. The boiling point within this range is particularly preferable when the chemical solution is supplied to the wafer surface having a fine concavo-convex pattern by the centrifugal force of the rotation of the wafer. A low boiling point is not preferable because the chemical solution is likely to dry before the chemical solution wets and spreads over the entire wafer surface. On the other hand, when the boiling point is high, the viscosity of the chemical solution is increased, and therefore, the chemical solution is difficult to uniformly spread over the entire wafer surface, which is not preferable. For this reason, the said boiling point is 70-220 degreeC, Especially 75-200 degreeC is preferable.

本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。   In the present invention, the water-repellent protective film is a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency. In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.

本発明では、洗浄液が凹部から除去されるとき、すなわち、乾燥されるとき、前記凹凸パターンの少なくとも凹部表面に前記保護膜が形成されているので、該凹部表面の毛細管力が小さくなり、パターン倒れが生じにくくなる。   In the present invention, when the cleaning liquid is removed from the recess, that is, when dried, the protective film is formed on at least the recess surface of the recess / protrusion pattern, so that the capillary force on the recess surface is reduced and the pattern collapses. Is less likely to occur.

本発明の保護膜形成用薬液は、凹凸パターンが形成されたウェハの洗浄工程において洗浄液を該薬液に置換して使用される。また、前記置換した薬液は他の洗浄液に置換されてもよい。   The chemical solution for forming a protective film of the present invention is used by replacing the cleaning solution with the chemical solution in the step of cleaning the wafer on which the uneven pattern is formed. Further, the replaced chemical liquid may be replaced with another cleaning liquid.

前記のように洗浄液を保護膜形成用薬液に置換し、凹凸パターンの少なくとも凹部表面に該薬液が保持されている間に、該凹凸パターンの少なくとも凹部表面に前記保護膜が形成される。本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。   As described above, the cleaning liquid is replaced with the protective film forming chemical solution, and the protective film is formed on at least the concave surface of the concave / convex pattern while the chemical liquid is held on at least the concave surface of the concave / convex pattern. The protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly. However, since it can impart better water repellency, it can be applied continuously and uniformly. More preferably, it is formed.

本発明の保護膜形成用薬液によって形成される保護膜は優れたパターン倒れ防止効果を示すので、該薬液を用いると、表面に微細な凹凸パターンを有するウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、本発明の保護膜形成用薬液を用いて行われる表面に微細な凹凸パターンを有するウェハの製造方法は、生産性が高いものとなる。   Since the protective film formed by the protective film-forming chemical solution of the present invention exhibits an excellent pattern collapse preventing effect, the cleaning step in the method of manufacturing a wafer having a fine concavo-convex pattern on the surface is possible when the chemical solution is used. Is improved without lowering. Therefore, the method for producing a wafer having a fine concavo-convex pattern on the surface, which is carried out using the chemical solution for forming a protective film of the present invention, has high productivity.

本発明の保護膜形成用薬液は、今後益々高くなると予想される例えば7以上のアスペクト比を有する凹凸パターンにも対応可能であり、より高密度化された半導体デバイス生産のコストダウンを可能とする。しかも従来の装置から大きな変更がなく対応でき、その結果、各種の半導体デバイスの製造に適用可能なものとなる。   The chemical solution for forming a protective film according to the present invention can cope with a concavo-convex pattern having an aspect ratio of, for example, 7 or more which is expected to become higher in the future, and can reduce the cost of production of higher-density semiconductor devices. . In addition, the conventional apparatus can be applied without significant change, and as a result, can be applied to the manufacture of various semiconductor devices.

表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示す図である。It is a figure which shows the schematic diagram when the wafer 1 made into the surface which has the fine uneven | corrugated pattern 2 on the surface is perspective. 図1中のa−a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 洗浄工程にて凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。The schematic diagram of the state in which the recessed part 4 hold | maintained the protective film formation chemical | medical solution 8 at the washing | cleaning process is shown. 撥水性保護膜が形成された凹部4に洗浄液および/または薬液が保持された状態の模式図を示す図である。It is a figure which shows the schematic diagram of the state by which the washing | cleaning liquid and / or the chemical | medical solution were hold | maintained at the recessed part 4 in which the water-repellent protective film was formed.

本発明の保護膜形成用薬液を用いる、表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハの好適な洗浄方法は、
(工程1)ウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液を当該面に供し、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持する工程、
(工程2)凹凸パターンの少なくとも凹部表面に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液Aで置換する工程、
(工程3)前記洗浄液Aを保護膜形成用薬液で置換し、該薬液を凹凸パターンの少なくとも凹部表面に保持する工程、
(工程4)乾燥により凹凸パターン表面から液体を除去する工程、
(工程5)ウェハ表面を光照射すること、ウェハを加熱すること、及び、ウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行うことにより、撥水性保護膜を除去する工程
を有する。
A suitable cleaning method for a wafer having a fine concavo-convex pattern on the surface and containing at least part of the concavo-convex pattern using the chemical solution for forming a protective film of the present invention,
(Step 1) A step of making the wafer surface a surface having a fine concavo-convex pattern, then subjecting the surface to an aqueous cleaning solution, and holding the aqueous cleaning solution on at least the concave surface of the concavo-convex pattern;
(Step 2) A step of replacing the aqueous cleaning liquid held on at least the concave surface of the concavo-convex pattern with a cleaning liquid A different from the aqueous cleaning liquid,
(Step 3) Replacing the cleaning liquid A with a protective film-forming chemical solution, and holding the chemical solution on at least the concave surface of the concave-convex pattern;
(Step 4) A step of removing liquid from the surface of the concavo-convex pattern by drying,
(Step 5) It includes a step of removing the water-repellent protective film by performing at least one treatment selected from irradiating the wafer surface with light, heating the wafer, and exposing the wafer to ozone.

さらに、保護膜形成用薬液を凹凸パターンの少なくとも凹部表面に保持する工程(工程3)の後で、該凹凸パターンの少なくとも凹部表面に保持された前記薬液を該薬液とは異なる洗浄液Bに置換した後に、乾燥により凹凸パターン表面から液体を除去する工程(工程4)に移ってもよい。また、前記洗浄液Bへの置換を経て、該凹凸パターンの少なくとも凹部表面に水系溶液からなる水系洗浄液を保持した後に、乾燥により凹凸パターン表面から液体を除去する工程(工程4)に移ってもよい。なお、前記(工程4)において除去される液体とは、洗浄液および/または薬液である。   Further, after the step (Step 3) of holding the chemical solution for forming the protective film on at least the concave surface of the concavo-convex pattern, the chemical solution held on at least the concave surface of the concavo-convex pattern was replaced with a cleaning liquid B different from the chemical solution. Later, the process may be shifted to a step of removing the liquid from the surface of the concavo-convex pattern by drying (step 4). In addition, after the replacement with the cleaning liquid B, an aqueous cleaning liquid composed of an aqueous solution is held on at least the concave surface of the concave / convex pattern, and then the process may be shifted to a step of removing the liquid from the concave / convex pattern surface by drying (step 4). . In addition, the liquid removed in the said (process 4) is a washing | cleaning liquid and / or a chemical | medical solution.

なお、本発明において、保護膜形成用薬液に含まれる非プロトン性有機溶媒が、水100質量部に対する溶解度が5質量部以上である場合、該保護膜形成用薬液は、水系洗浄液と置換可能であるので、前記洗浄液Aによる置換および前記洗浄液Bによる置換が省略できる。   In the present invention, when the aprotic organic solvent contained in the protective film-forming chemical solution has a solubility of 5 parts by mass or more with respect to 100 parts by mass of water, the protective film-forming chemical solution can be replaced with an aqueous cleaning liquid. Therefore, the replacement with the cleaning liquid A and the replacement with the cleaning liquid B can be omitted.

本発明において、ウェハの凹凸パターンの少なくとも凹部表面に前記薬液や洗浄液を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部表面に前記薬液や洗浄液を供給するときの該薬液や洗浄液の形態としては、該凹部表面に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。   In the present invention, the cleaning method of the wafer is not particularly limited as long as the chemical liquid or the cleaning liquid can be held on at least the concave surface of the concave / convex pattern of the wafer. As a wafer cleaning method, a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank. One example is a batch system in which a single wafer is immersed and washed. The form of the chemical solution or cleaning liquid when supplying the chemical solution or cleaning liquid to at least the concave surface of the concave / convex pattern of the wafer is not particularly limited as long as it becomes liquid when held on the concave surface, for example, , Liquid, vapor, etc.

前記薬液中のケイ素化合物Aは、下記一般式[1]で表される化合物であることが好ましい。   The silicon compound A in the chemical solution is preferably a compound represented by the following general formula [1].

Figure 2012015335
Figure 2012015335

ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、および、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Xは、それぞれ互いに独立して、Siと結合する元素が窒素である1価の有機基、Siと結合する元素が酸素である1価の有機基、および、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数、bは0〜2の整数であり、aとbの合計は1〜3である。 Here, R 1 is each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. X is at least one group selected from: a monovalent organic group in which the element bonded to Si is nitrogen, a monovalent organic group in which the element bonded to Si is oxygen, and , At least one group selected from halogen groups, a is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a and b is 1 to 3.

前記一般式[1]において、XとしてのSiに結合する元素が窒素や酸素の1価の有機基には、水素、炭素、窒素、酸素だけでなく、ケイ素、硫黄、ハロゲン元素などが含まれていても良い。Siと結合する元素が窒素の1価の有機基の例としては、イソシアネート基、アミノ基、ジアルキルアミノ基、イソチオシアネート基、アジド基、アセトアミド基、−N(CH)C(O)CH、−N(CH)C(O)CF、−N=C(CH)OSi(CH、−N=C(CF)OSi(CH、−NHC(O)−OSi(CH、−NHC(O)−NH−Si(CH、イミダゾール環(下式[2])、オキサゾリジノン環(下式[3])、モルホリン環(下式[4])、−NH−C(O)−Si(CH、−N(H)2−c(Si(H) 3−d(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜18の1価の炭化水素基、cは1または2、dは0〜2の整数)などがある。また、XとしてのSiと結合する元素が酸素の1価の有機基としては、Si−O−CやSi−O−SでSiと結合するものがあり、Si−O−Cで結合するものの例としては、アルコキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−OC(O)−R(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8のアルキル基)などがあり、Si−O−Sで結合するものの例としては、−OS(O)−R(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜18の1価の炭化水素基)などが挙げられる。さらに、Xとしてのハロゲン基の例としては、クロロ基、ブロモ基などが挙げられる。このようなケイ素化合物Aは、前記反応性部位がシリコンウェハの凹凸パターン表面のシラノール基と速やかに反応し、ケイ素化合物Aがシロキサン結合を介してシリコンウェハのSiと化学的に結合することによって、ウェハ表面を疎水性のR基で覆うことができるため、短時間で該ウェハの凹部表面の毛細管力を小さくできる。 In the general formula [1], the monovalent organic group in which the element bonded to Si as X is nitrogen or oxygen includes not only hydrogen, carbon, nitrogen, and oxygen, but also silicon, sulfur, and halogen elements. May be. Examples of the monovalent organic group in which the element bonded to Si is nitrogen include an isocyanate group, an amino group, a dialkylamino group, an isothiocyanate group, an azide group, an acetamide group, —N (CH 3 ) C (O) CH 3. , -N (CH 3) C ( O) CF 3, -N = C (CH 3) OSi (CH 3) 3, -N = C (CF 3) OSi (CH 3) 3, -NHC (O) - OSi (CH 3 ) 3 , —NHC (O) —NH—Si (CH 3 ) 3 , imidazole ring (lower formula [2]), oxazolidinone ring (lower formula [3]), morpholine ring (lower formula [4] ), —NH—C (O) —Si (CH 3 ) 3 , —N (H) 2 -c (Si (H) d R 2 3-d ) c (R 2 represents a part or all of hydrogen A monovalent hydrocarbon group having 1 to 18 carbon atoms which may be replaced by fluorine, c is 1 Et 2, d is like an integer) of 0-2. In addition, as the monovalent organic group of oxygen that is bonded to Si as X, there are those bonded to Si by Si—O—C or Si—O—S, and those bonded by Si—O—C. examples include alkoxy groups, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3, -OC (CF 3) = N-Si (CH 3) 3, - OC (O) —R 3 (R 3 is an alkyl group having 1 to 8 carbon atoms in which some or all of the hydrogen atoms may be replaced by fluorine atoms) and the like are bonded with Si—O—S. examples, -OS (O 2) -R 2 (R 2 is partially or carbon atoms, which may have all hydrogens replaced by fluorine monovalent hydrocarbon group having 1 to 18), and the like It is done. Furthermore, examples of the halogen group as X include a chloro group and a bromo group. In such a silicon compound A, the reactive site reacts quickly with silanol groups on the surface of the concave / convex pattern of the silicon wafer, and the silicon compound A chemically bonds with Si of the silicon wafer through a siloxane bond, Since the wafer surface can be covered with the hydrophobic R 1 group, the capillary force on the concave surface of the wafer can be reduced in a short time.

Figure 2012015335
Figure 2012015335

また、前記一般式[1]において4−a−bで表されるケイ素化合物AのXの数が1であると、前記保護膜を均質に形成できるのでより好ましい。   Moreover, it is more preferable that the number of X of the silicon compound A represented by 4-ab in the general formula [1] is 1 because the protective film can be formed uniformly.

前記一般式[1]におけるRは、それぞれ互いに独立して、C2m+1(m=1〜18)、および、C2n+1CHCH(n=1〜8)から選ばれる少なくとも1つの基であると、前記凹凸パターン表面に保護膜を形成した際に、該表面の濡れ性をより低くできる、すなわち、該表面により優れた撥水性を付与できるためより好ましい。また、mとnが1〜8であると、前記凹凸パターン表面に保護膜を短時間に形成できるためより好ましい。 R 1 in the general formula [1] is independently selected from C m H 2m + 1 (m = 1 to 18) and C n F 2n + 1 CH 2 CH 2 (n = 1 to 8). One group is more preferable because when the protective film is formed on the surface of the concavo-convex pattern, the wettability of the surface can be further reduced, that is, excellent water repellency can be imparted to the surface. Moreover, it is more preferable that m and n are 1 to 8 because a protective film can be formed on the surface of the concavo-convex pattern in a short time.

前記一般式[1]で表されるケイ素化合物Aとしては、例えば、CHSi(NH、CSi(NH、CSi(NH、CSi(NH、C11Si(NH、C13Si(NH、C15Si(NH、C17Si(NH、C19Si(NH、C1021Si(NH、C1123Si(NH、C1225Si(NH、C1327Si(NH、C1429Si(NH、C1531Si(NH、C1633Si(NH、C1735Si(NH、C1837Si(NH、(CHSi(NH、CSi(CH)(NH、(CSi(NH、CSi(CH)(NH、(CSi(NH、CSi(CH)(NH、(CSi(NH、C11Si(CH)(NH、C13Si(CH)(NH、C15Si(CH)(NH、C17Si(CH)(NH、C19Si(CH)(NH、C1021Si(CH)(NH、C1123Si(CH)(NH、C1225Si(CH)(NH、C1327Si(CH)(NH、C1429Si(CH)(NH、C1531Si(CH)(NH、C1633Si(CH)(NH、C1735Si(CH)(NH、C1837Si(CH)(NH、(CHSiNH、CSi(CHNH、(CSi(CH)NH、(CSiNH、CSi(CHNH、(CSi(CH)NH、(CSiNH、CSi(CHNH、(CSiNH、C11Si(CHNH、C13Si(CHNH、C15Si(CHNH、C17Si(CHNH、C19Si(CHNH、C1021Si(CHNH、C1123Si(CHNH、C1225Si(CHNH、C1327Si(CHNH、C1429Si(CHNH、C1531Si(CHNH、C1633Si(CHNH、C1735Si(CHNH、C1837Si(CHNH、(CHSi(H)NH、CHSi(H)NH、(CSi(H)NH、CSi(H)NH、CSi(CH)(H)NH、(CSi(H)NH、CSi(H)NH、CFCHCHSi(NH、CCHCHSi(NH、CCHCHSi(NH、CCHCHSi(NH、C11CHCHSi(NH、C13CHCHSi(NH、C15CHCHSi(NH、C17CHCHSi(NH、CFCHCHSi(CH)(NH、CCHCHSi(CH)(NH、CCHCHSi(CH)(NH、CCHCHSi(CH)(NH、C11CHCHSi(CH)(NH、C13CHCHSi(CH)(NH、C15CHCHSi(CH)(NH、C17CHCHSi(CH)(NH、CFCHCHSi(CHNH、CCHCHSi(CHNH、CCHCHSi(CHNH、CCHCHSi(CHNH、C11CHCHSi(CHNH、C13CHCHSi(CHNH、C15CHCHSi(CHNH、C17CHCHSi(CHNH、CFCHCHSi(CH)(H)NH等のアミノシラン、あるいは、前記アミノシランのアミノ基(−NH基)を、−N=C=O、−N(CH、−N(C、−N=C=S、−N、−NHC(O)CH、−N(CH)C(O)CH、−N(CH)C(O)CF、−N=C(CH)OSi(CH、−N=C(CF)OSi(CH、−NHC(O)−OSi(CH、−NHC(O)−NH−Si(CH、イミダゾール環、オキサゾリジノン環、モルホリン環、−NH−C(O)−Si(CH、−N(H)2−c(Si(H) 3−d(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜18の1価の炭化水素基、cは1または2、dは0〜2の整数)、アルコキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−OS(O)−R(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜18の1価の炭化水素基)、−OC(O)−R(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8のアルキル基)、クロロ基、ブロモ基に置き換えたものなどが挙げられる。 Examples of the silicon compound A represented by the general formula [1] include CH 3 Si (NH 2 ) 3 , C 2 H 5 Si (NH 2 ) 3 , C 3 H 7 Si (NH 2 ) 3 , C 4 H 9 Si (NH 2 ) 3 , C 5 H 11 Si (NH 2 ) 3 , C 6 H 13 Si (NH 2 ) 3 , C 7 H 15 Si (NH 2 ) 3 , C 8 H 17 Si (NH 2 ) 2 ) 3 , C 9 H 19 Si (NH 2 ) 3 , C 10 H 21 Si (NH 2 ) 3 , C 11 H 23 Si (NH 2 ) 3 , C 12 H 25 Si (NH 2 ) 3 , C 13 H 27 Si (NH 2 ) 3 , C 14 H 29 Si (NH 2 ) 3 , C 15 H 31 Si (NH 2 ) 3 , C 16 H 33 Si (NH 2 ) 3 , C 17 H 35 Si (NH 2) ) 3 , C 18 H 37 Si (NH 2 ) 3 , ( CH 3) 2 Si (NH 2 ) 2, C 2 H 5 Si (CH 3) (NH 2) 2, (C 2 H 5) 2 Si (NH 2) 2, C 3 H 7 Si (CH 3) ( NH 2) 2, (C 3 H 7) 2 Si (NH 2) 2, C 4 H 9 Si (CH 3) (NH 2) 2, (C 4 H 9) 2 Si (NH 2) 2, C 5 H 11 Si (CH 3 ) (NH 2 ) 2 , C 6 H 13 Si (CH 3 ) (NH 2 ) 2 , C 7 H 15 Si (CH 3 ) (NH 2 ) 2 , C 8 H 17 Si (CH 3 ) (NH 2 ) 2 , C 9 H 19 Si (CH 3 ) (NH 2 ) 2 , C 10 H 21 Si (CH 3 ) (NH 2 ) 2 , C 11 H 23 Si (CH 3 ) (NH 2 ) ) 2, C 12 H 25 Si (CH 3) (NH 2) 2, C 13 H 27 Si (CH ) (NH 2) 2, C 14 H 29 Si (CH 3) (NH 2) 2, C 15 H 31 Si (CH 3) (NH 2) 2, C 16 H 33 Si (CH 3) (NH 2) 2 , C 17 H 35 Si (CH 3 ) (NH 2 ) 2 , C 18 H 37 Si (CH 3 ) (NH 2 ) 2 , (CH 3 ) 3 SiNH 2 , C 2 H 5 Si (CH 3 ) 2 NH 2, (C 2 H 5 ) 2 Si (CH 3) NH 2, (C 2 H 5) 3 SiNH 2, C 3 H 7 Si (CH 3) 2 NH 2, (C 3 H 7) 2 Si ( CH 3 ) NH 2 , (C 3 H 7 ) 3 SiNH 2 , C 4 H 9 Si (CH 3 ) 2 NH 2 , (C 4 H 9 ) 3 SiNH 2 , C 5 H 11 Si (CH 3 ) 2 NH 2 , C 6 H 13 Si (CH 3 ) 2 NH 2 , C 7 H 15 Si (CH 3 ) 2 NH 2 , C 8 H 17 Si (CH 3 ) 2 NH 2 , C 9 H 19 Si (CH 3 ) 2 NH 2 , C 10 H 21 Si (CH 3 ) 2 NH 2 , C 11 H 23 Si (CH 3) 2 NH 2, C 12 H 25 Si (CH 3) 2 NH 2, C 13 H 27 Si (CH 3) 2 NH 2, C 14 H 29 Si (CH 3) 2 NH 2 , C 15 H 31 Si (CH 3 ) 2 NH 2 , C 16 H 33 Si (CH 3 ) 2 NH 2 , C 17 H 35 Si (CH 3 ) 2 NH 2 , C 18 H 37 Si (CH 3 ) 2 NH 2, (CH 3) 2 Si (H) NH 2, CH 3 Si (H) 2 NH 2, (C 2 H 5) 2 Si (H) NH 2, C 2 H 5 Si (H) 2 NH 2 , C 2 H 5 Si (CH 3 ) (H) N H 2, (C 3 H 7 ) 2 Si (H) NH 2, C 3 H 7 Si (H) 2 NH 2, CF 3 CH 2 CH 2 Si (NH 2) 3, C 2 F 5 CH 2 CH 2 Si (NH 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (NH 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (NH 2 ) 3 , C 5 F 11 CH 2 CH 2 Si (NH 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (NH 2 ) 3 , C 7 F 15 CH 2 CH 2 Si (NH 2 ) 3 , C 8 F 17 CH 2 CH 2 Si (NH 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 2 F 5 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 3 F 7 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 4 F 9 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 5 F 11 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 6 F 13 CH 2 CH 2 Si (CH 3) (NH 2) 2, C 7 F 15 CH 2 CH 2 Si (CH 3) (NH 2 ) 2, C 8 F 17 CH 2 CH 2 Si (CH 3) (NH 2) 2, CF 3 CH 2 CH 2 Si (CH 3) 2 NH 2, C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 NH 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 NH 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 NH 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 NH 2, C 6 F 13 CH 2 CH 2 Si (CH 3) 2 NH 2, C 7 F 15 CH 2 CH 2 Si (CH 3) 2 NH 2, C 8 F 17 CH 2 CH 2 Si (CH 3 ) An aminosilane such as 2 NH 2 , CF 3 CH 2 CH 2 Si (CH 3 ) (H) NH 2 , or an amino group (—NH 2 group) of the aminosilane is represented by —N═C═O, —N (CH 3) 2, -N (C 2 H 5) 2, -N = C = S, -N 3, -NHC (O) CH 3, -N (CH 3) C (O) CH 3, -N (CH 3) C (O) CF 3 , -N = C (CH 3) OSi (CH 3) 3, -N = C (CF 3) OSi (CH 3) 3, -NHC (O) -OSi (CH 3) 3, -NHC (O) -NH- Si (CH 3) 3, an imidazole ring, an oxazolidinone ring, morpholine ring, -NH-C (O) -Si (CH 3) 3, -N (H) 2-c ( Si (H) d R 2 3 -d) c (R 2 is not a part or all of the hydrogen replaced by fluorine Also a good monovalent hydrocarbon group having 1 to 18 carbon, c is 1 or 2, d is 0 to 2 integer), an alkoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3 ) 3 , -OC (CF 3 ) = N-Si (CH 3 ) 3 , -OS (O 2 ) -R 2 (R 2 is a part or all of hydrogen replaced with fluorine. And a monovalent hydrocarbon group having 1 to 18 carbon atoms), —OC (O) —R 3 (R 3 is a carbon number in which some or all of the hydrogen atoms may be replaced by fluorine atoms) Are alkyl groups of 1 to 8), chloro groups, bromo groups, and the like.

この中でも、前記一般式[1]の左辺のケイ素化合物AのXは、−N(CH、−NH、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CF、−NHC(O)−NH−Si(CH、イミダゾール環、−NH−C(O)−Si(CH、−N(H)2−r(Si(H) 3−s(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8の1価の炭化水素基、rは1または2、sは0〜2の整数)が好ましい。 Among these, X of the silicon compound A on the left side of the general formula [1] is —N (CH 3 ) 2 , —NH 2 , —N (C 2 H 5 ) 2 , —N (CH 3 ) C (O ) CH 3 , —N (CH 3 ) C (O) CF 3 , —NHC (O) —NH—Si (CH 3 ) 3 , imidazole ring, —NH—C (O) —Si (CH 3 ) 3 , -N (H) 2-r ( Si (H) j R 8 3-s) r (R 8 is a monovalent partially or carbon atoms, which may have all hydrogens replaced by fluorine 1-8 In which r is 1 or 2, and s is an integer of 0 to 2.

前記薬液は、非プロトン性有機溶媒を50〜99.99質量%含むことが好ましい。ここで、前記非プロトン性有機溶媒は、水100質量部に対する溶解度が5質量部以上であることが好ましい。なお、水に対する溶解度は20℃における値を指す。このような溶媒としては、例えば、エーテル類、ケトン類、スルホキシド系溶媒、OH基を持たない多価アルコールの誘導体、含窒素化合物溶媒などがある。前記エーテル類の例としては、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセチルアセトン、アセトン、シクロヘキサノンなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記多価アルコールの誘導体でOH基を持たないものの例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジアセテート、エチレングリコールジアセテート、エチレングリコールジメチルエーテルなど、含窒素化合物溶媒の例としては、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ピリジンなどがある。この中でも、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジアセテート、エチレングリコールジアセテート、エチレングリコールジメチルエーテル、シクロヘキサノンが好ましい。   The chemical solution preferably contains 50 to 99.99% by mass of an aprotic organic solvent. Here, the aprotic organic solvent preferably has a solubility in 100 parts by mass of water of 5 parts by mass or more. In addition, the solubility with respect to water points out the value in 20 degreeC. Examples of such solvents include ethers, ketones, sulfoxide solvents, polyhydric alcohol derivatives having no OH group, and nitrogen-containing compound solvents. Examples of the ethers include tetrahydrofuran, dioxane, etc., examples of the ketones include acetylacetone, acetone, cyclohexanone, etc., examples of the sulfoxide solvents include dimethyl sulfoxide, etc. Examples of alcohol derivatives having no OH group include diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diacetate, ethylene glycol diacetate, ethylene Examples of nitrogen-containing compound solvents such as glycol dimethyl ether include N, N-dimethylform Amides, N- methyl-2-pyrrolidone, pyridine, and the like. Among these, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diacetate, ethylene glycol diacetate, ethylene glycol dimethyl ether, and cyclohexanone are preferable.

上記のように、前記非プロトン性有機溶媒は、水100質量部に対する溶解度が5質量部以上であることが好ましいが、前記薬液には、水100質量部に対する溶解度が5質量部以上の非プロトン性有機溶媒以外の有機溶媒が含まれていても良い。そのような有機溶媒としては、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などがある。これらの中でも、非プロトン性の炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、多価アルコールの誘導体のうちOH基を持たないものを用いるのが好ましい。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルなどがあり、前記ケトン類の例としては、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記多価アルコールの誘導体でOH基を持たないものの例としては、エチレングリコールジブチルエーテルなどがある。また、前記薬液には、水100質量部に対する溶解度が5質量部以上の非プロトン性有機溶媒が含まれていなくても良い。   As described above, the aprotic organic solvent preferably has a solubility with respect to 100 parts by mass of water of 5 parts by mass or more, but the chemical solution has an aprotic with a solubility with respect to 100 parts by mass of water of 5 parts by mass or more. An organic solvent other than the organic solvent may be contained. Examples of such organic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, nitrogen-containing compound solvents, and the like. Among these, aprotic hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, and polyhydric alcohol derivatives having no OH group are preferably used. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, and dibutyl ether. Examples of the ketones include methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, and isophorone. Examples of the halogen-containing solvent include As perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1,3,3-pentafluorobutane, octafluorocyclopentane, , 3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon Co., Ltd.), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (Asahi Glass) ), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all manufactured by 3M), chlorocarbons such as tetrachloromethane, hydrochlorocarbons such as chloroform, and chlorofluorocarbons such as dichlorodifluoromethane. 1,1-dichloro-2,2,3,3,3-pentafluoropropane, 1,3-dichloro-1,1,2,2,3- There are hydrochlorofluorocarbons such as interfluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoropropene, perfluoroether, perfluoropolyether, etc. Examples of the polyhydric alcohol derivative having no OH group include ethylene glycol dibutyl ether. The chemical solution may not contain an aprotic organic solvent having a solubility in 100 parts by mass of water of 5 parts by mass or more.

また、前記薬液は、沸点が70〜220℃にあることが好ましい。沸点がこの範囲であることは、特に、前記薬液がウェハの回転の遠心力によって微細な凹凸パターンを有するウェハ表面に供給されるものである場合に好ましい。   Moreover, it is preferable that the said chemical | medical solution has a boiling point in 70-220 degreeC. The boiling point within this range is particularly preferable when the chemical solution is supplied to the wafer surface having a fine concavo-convex pattern by the centrifugal force of the rotation of the wafer.

また、前記ケイ素化合物A中のXが、Siと結合する元素が窒素である1価の有機基であり、薬液が酸Aを含むことが好ましい。この場合、前記ケイ素化合物AとシリコンウェハのSiとの反応が早く、撥水性保護膜を短時間で形成できるので好ましい。   Moreover, it is preferable that X in the silicon compound A is a monovalent organic group in which the element bonded to Si is nitrogen, and the chemical solution contains the acid A. This is preferable because the reaction between the silicon compound A and Si on the silicon wafer is fast and the water-repellent protective film can be formed in a short time.

前記酸Aの濃度は、前記ケイ素化合物Aの総量100質量%に対して0.01〜50質量%であることが好ましい。添加量が少ないと酸の触媒効果が低下するので好ましくなく、過剰に多くしても触媒効果は向上せず、逆に、ウェハ表面を浸食したり、不純物としてウェハに残留する懸念もある。このため、酸Aの濃度は、前記ケイ素化合物Aの総量100質量%に対して0.02〜40質量%、さらに0.05〜30質量%であることが特に好ましい。   The concentration of the acid A is preferably 0.01 to 50% by mass with respect to 100% by mass of the total amount of the silicon compound A. If the addition amount is small, the catalytic effect of the acid is lowered, which is not preferable. Even if it is excessively added, the catalytic effect is not improved. On the contrary, there is a concern that the wafer surface may be eroded or remain as impurities on the wafer. For this reason, it is especially preferable that the density | concentration of the acid A is 0.02-40 mass% with respect to 100 mass% of total amounts of the said silicon compound A, Furthermore, 0.05-30 mass%.

酸Aは、水を含有するものであると、前記薬液中に含まれる水の増加につながり、前記保護膜が形成されにくくなる。このため、該酸Aは、水の含有量が少ないものほど好ましく、好ましい水の含有率は、35質量%以下であり、特に好ましくは10質量%、さらに好ましくは5質量%以下であり、限りなく0質量%に近いことが理想的である。   If the acid A contains water, the water contained in the chemical solution increases, and the protective film is hardly formed. For this reason, the acid A is preferably as the water content is small, and the preferable water content is 35% by mass or less, particularly preferably 10% by mass, and further preferably 5% by mass or less. Ideally, it is close to 0% by mass.

前記酸Aとしては、無機酸や有機酸がある。水の含有量が少ない無機酸の例としては、ハロゲン化水素、硫酸、過塩素酸、リン酸など、有機酸の例としては、一部または全ての水素がフッ素原子等で置換されていても良いアルカンスルホン酸やカルボン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などがある。   Examples of the acid A include inorganic acids and organic acids. Examples of inorganic acids with low water content include hydrogen halides, sulfuric acid, perchloric acid, phosphoric acid, etc. Examples of organic acids include those in which some or all of the hydrogen is replaced by fluorine atoms, etc. There are good alkane sulfonic acids, carboxylic acids, benzene sulfonic acids, p-toluene sulfonic acids and the like.

また、前記酸としてはルイス酸も用いることができる。ルイス酸の定義については、例えば「理化学辞典(第五版)」に記載されている。ルイス酸としては、酸無水物、ホウ素化合物、ケイ素化合物があり、酸無水物の例としては、無水トリフルオロメタンスルホン酸などの一部または全ての水素がフッ素原子等で置換されていても良い無水アルカンスルホン酸、無水酢酸、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸などの一部または全ての水素がフッ素原子等で置換されていても良い無水カルボン酸など、ホウ素化合物の例としては、アルキルホウ酸エステル、アリールホウ酸エステル、トリス(トリフルオロアセトキシ)ホウ素、トリアルコキシボロキシン、トリフルオロホウ素など、ケイ素化合物の例としては、クロロシラン、一部または全ての水素がフッ素原子等で置換されていても良いアルキルシリルアルキルスルホネート、一部または全ての水素がフッ素原子等で置換されていても良いアルキルシリルエステルなどが挙げられる。なお、前記ケイ素化合物が用いられた場合、該ケイ素化合物で前記保護膜の少なくとも一部が形成されても良い。   As the acid, a Lewis acid can also be used. The definition of Lewis acid is described in, for example, “Physical and Chemical Dictionary (Fifth Edition)”. Examples of Lewis acids include acid anhydrides, boron compounds, and silicon compounds. Examples of acid anhydrides include anhydrides in which some or all of hydrogen such as trifluoromethanesulfonic anhydride may be substituted with fluorine atoms or the like. Examples of boron compounds such as alkanesulfonic acid, acetic anhydride, trifluoroacetic anhydride, pentafluoropropionic anhydride, etc., such as carboxylic anhydrides in which part or all of hydrogen may be substituted with fluorine atoms, etc. include alkylboric acid Examples of silicon compounds such as esters, arylborates, tris (trifluoroacetoxy) borane, trialkoxyboroxine, trifluoroboron, etc., chlorosilane, part or all of hydrogen may be substituted with fluorine atoms, etc. Alkylsilylalkylsulfonates, some or all of the hydrogen Substituted with atom etc., and the like alkyl silyl esters. In addition, when the said silicon compound is used, at least one part of the said protective film may be formed with this silicon compound.

なお、前記酸Aがブレンステッド酸であると、該酸が前記ケイ素化合物Aと反応して、ケイ素化合物Aが減少、あるいは、ケイ素化合物Aの反応性を低下させることがあるため、該酸はルイス酸を含むことが好ましく、特に、酸無水物、および、下記一般式[5]で表されるケイ素化合物αが好ましい。   When the acid A is a Bronsted acid, the acid reacts with the silicon compound A to reduce the silicon compound A or reduce the reactivity of the silicon compound A. It is preferable to contain a Lewis acid, and in particular, an acid anhydride and a silicon compound α represented by the following general formula [5] are preferable.

Figure 2012015335
Figure 2012015335

ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、および、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Yは、それぞれ互いに独立して、ハロゲン基、−O−S(O)−R’、および、−O−C(O)−R’(R’は一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8の1価の炭化水素基)から選ばれる少なくとも1つの基である。また、eは1〜3の整数、fは0〜2の整数であり、eとfの合計は1〜3である。 Here, R 4 is each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. And Y is independently of each other a halogen group, —O—S (O 2 ) —R ′, and —O—C (O) —R ′ (R ′ is independently selected from It is at least one group selected from a monovalent hydrocarbon group having 1 to 8 carbon atoms in which some or all of hydrogen may be replaced by fluorine. Moreover, e is an integer of 1-3, f is an integer of 0-2, and the sum total of e and f is 1-3.

前記酸Aとしては、例えば、CHSiCl、CSiCl、CSiCl、CSiCl、C11SiCl、C13SiCl、C15SiCl、C17SiCl、C19SiCl、C1021SiCl、C1123SiCl、C1225SiCl、C1327SiCl、C1429SiCl、C1531SiCl、C1633SiCl、C1735SiCl、C1837SiCl、(CHSiCl、CSi(CH)Cl、(CSiCl、CSi(CH)Cl、(CSiCl、CSi(CH)Cl、(CSiCl、C11Si(CH)Cl、C13Si(CH)Cl、C15Si(CH)Cl、C17Si(CH)Cl、C19Si(CH)Cl、C1021Si(CH)Cl、C1123Si(CH)Cl、C1225Si(CH)Cl、C1327Si(CH)Cl、C1429Si(CH)Cl、C1531Si(CH)Cl、C1633Si(CH)Cl、C1735Si(CH)Cl、C1837Si(CH)Cl、(CHSiCl、CSi(CHCl、(CSi(CH)Cl、(CSiCl、CSi(CHCl、(CSi(CH)Cl、(CSiCl、CSi(CHCl、(CSiCl、C11Si(CHCl、C13Si(CHCl、C15Si(CHCl、C17Si(CHCl、C19Si(CHCl、C1021Si(CHCl、C1123Si(CHCl、C1225Si(CHCl、C1327Si(CHCl、C1429Si(CHCl、C1531Si(CHCl、C1633Si(CHCl、C1735Si(CHCl、C1837Si(CHCl、(CHSi(H)Cl、CHSi(H)Cl、(CSi(H)Cl、CSi(H)Cl、CSi(CH)(H)Cl、(CSi(H)Cl、CSi(H)Cl、CFCHCHSiCl、CCHCHSiCl、CCHCHSiCl、CCHCHSiCl、C11CHCHSiCl、C13CHCHSiCl、C15CHCHSiCl、C17CHCHSiCl、CFCHCHSi(CH)Cl、CCHCHSi(CH)Cl、CCHCHSi(CH)Cl、CCHCHSi(CH)Cl、C11CHCHSi(CH)Cl、C13CHCHSi(CH)Cl、C15CHCHSi(CH)Cl、C17CHCHSi(CH)Cl、CFCHCHSi(CHCl、CCHCHSi(CHCl、CCHCHSi(CHCl、CCHCHSi(CHCl、C11CHCHSi(CHCl、C13CHCHSi(CHCl、C15CHCHSi(CHCl、C17CHCHSi(CHCl、CFCHCHSi(CH)(H)Clなどのクロロシラン、あるいは、前記クロロシランのクロロ基を他のハロゲン基、−O−S(O)−R’、あるいは、−O−C(O)−R’(R’は一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8の1価の炭化水素基)等に置き換えた化合物が挙げられる。 Examples of the acid A include CH 3 SiCl 3 , C 2 H 5 SiCl 3 , C 3 H 7 SiCl 3 , C 4 H 9 SiCl 3 , C 5 H 11 SiCl 3 , C 6 H 13 SiCl 3 , and C 7. H 15 SiCl 3 , C 8 H 17 SiCl 3 , C 9 H 19 SiCl 3 , C 10 H 21 SiCl 3 , C 11 H 23 SiCl 3 , C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , (CH 3 ) 2 SiCl 2 , C 2 H 5 Si (CH 3 ) Cl 2 , (C 2 H 5 ) 2 SiCl 2 , C 3 H 7 Si (CH 3 ) Cl 2 , (C 3 H 7 ) 2 SiCl 2 , C 4 H 9 Si (CH 3 ) Cl 2 , (C 4 H 9 ) 2 SiCl 2 , C 5 H 11 Si (CH 3 ) Cl 2 , C 6 H 13 Si (CH 3 ) Cl 2 , C 7 H 15 Si ( CH 3 ) Cl 2 , C 8 H 17 Si (CH 3 ) Cl 2 , C 9 H 19 Si (CH 3 ) Cl 2 , C 10 H 21 Si (CH 3 ) Cl 2 , C 11 H 23 Si (CH 3 ) Cl 2 , C 12 H 25 Si (CH 3 ) Cl 2 , C 13 H 27 Si (CH 3 ) Cl 2 , C 14 H 29 Si (CH 3 ) Cl 2 , C 15 H 31 Si (CH 3 ) Cl 2 , C 16 H 33 Si (CH 3 ) Cl 2 , C 17 H 35 Si (CH 3 ) Cl 2 , C 18 H 37 Si (CH 3 ) Cl 2 , (CH 3 ) 3 SiCl, C 2 H 5 Si (CH 3 ) 2 Cl, (C 2 H 5 ) 2 Si (CH 3 ) Cl, (C 2 H 5 ) 3 SiCl, C 3 H 7 Si (CH 3 ) 2 Cl, (C 3 H 7 ) 2 Si (CH 3 ) Cl, (C 3 H 7 ) 3 SiCl, C 4 H 9 Si (CH 3 ) 2 Cl, (C 4 H 9 ) 3 SiCl, C 5 H 11 Si (CH 3 ) 2 Cl, C 6 H 13 Si (CH 3 ) 2 Cl C 7 H 15 Si (CH 3 ) 2 Cl, C 8 H 17 Si (CH 3 ) 2 Cl, C 9 H 19 Si (CH 3 ) 2 Cl, C 10 H 21 Si (CH 3 ) 2 Cl, C 11 H 23 Si (CH 3) 2 Cl, C 12 H 25 Si (CH 3) 2 Cl, C 13 H 27 Si (CH 3) 2 Cl, C 14 H 29 Si (CH 3) 2 Cl, C 15 H 31 Si (CH 3 ) 2 Cl, C 16 H 33 Si (CH 3 ) 2 Cl, C 17 H 35 Si (CH 3 ) 2 Cl, C 18 H 37 Si (CH 3 ) 2 Cl, (CH 3 ) 2 Si (H) Cl, CH 3 Si (H) 2 Cl, (C 2 H 5 ) 2 Si (H) Cl, C 2 H 5 Si (H) 2 Cl, C 2 H 5 Si (CH 3 ) (H) Cl, (C 3 H 7 ) 2 Si (H ) Cl, C 3 H 7 Si (H) 2 Cl, CF 3 CH 2 CH 2 SiCl 3, C 2 F 5 CH 2 CH 2 SiCl 3, C 3 F 7 CH 2 CH 2 SiCl 3, C 4 F 9 CH 2 CH 2 SiCl 3 , C 5 F 11 CH 2 CH 2 SiCl 3 , C 6 F 13 CH 2 CH 2 SiCl 3 , C 7 F 15 CH 2 CH 2 SiCl 3 , C 8 F 17 CH 2 CH 2 SiCl 3 , CF 3 CH 2 CH 2 Si (CH 3 ) Cl 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) Cl 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) Cl 2 , C 4 F 9 CH 2 CH 2 Si (CH 3) Cl 2, C 5 F 11 CH 2 CH 2 Si (CH 3) Cl 2, C 6 F 13 CH 2 CH 2 Si (CH 3) Cl 2, C 7 F 15 CH 2 CH 2 Si (CH 3) Cl 2, C 8 F 17 CH 2 CH 2 Si (CH 3) Cl 2, CF 3 CH 2 CH 2 Si (CH 3) 2 Cl, C 2 F 5 CH 2 CH 2 Si (CH 3) 2 Cl, C 3 F 7 CH 2 CH 2 Si (CH 3) 2 Cl, C 4 F 9 CH 2 CH 2 Si (CH 3) 2 Cl, C 5 F 11 CH 2 CH 2 Si (CH 3) 2 Cl, C 6 F 13 CH 2 CH 2 Si (CH ) 2 Cl, C 7 F 15 CH 2 CH 2 Si (CH 3) 2 Cl, C 8 F 17 CH 2 CH 2 Si (CH 3) 2 Cl, CF 3 CH 2 CH 2 Si (CH 3) (H) Chlorosilane such as Cl, or the chloro group of the chlorosilane is replaced with another halogen group, —O—S (O 2 ) —R ′, or —O—C (O) —R ′ (R ′ is part or all of Or a monovalent hydrocarbon group having 1 to 8 carbon atoms, which may be replaced by fluorine, and the like.

前記一般式[5]の−Y基になることのある−O−S(O)−R’基、および、−O−C(O)−R’基のR’は、例えば、−CH、−C、−C、−C、−C、−C−CH、−CF、−C−CF、−C、−C、−C−CHなどがある。 R— of the —O—S (O 2 ) —R ′ group and the —O—C (O) —R ′ group that may be the —Y group of the general formula [5] is, for example, —CH 3, -C 2 H 5, -C 3 H 7, -C 4 H 9, -C 6 H 5, -C 6 H 4 -CH 3, -CF 3, -C 2 H 4 -CF 3, -C 2 F 5, -C 6 F 5 , and the like -C 6 F 4 -CH 3.

これらのうち、−Y基がクロロ基、−OC(O)−CF、−OS(O)−CFであると前記凹凸パターン表面に保護膜を短時間に形成できるためより好ましい。 Among these, it is more preferable that the —Y group is a chloro group, —OC (O) —CF 3 , —OS (O 2 ) —CF 3 because a protective film can be formed on the surface of the concavo-convex pattern in a short time.

また、前記酸Aは、反応によって得られたものであってもよい。例えば、下記一般式[6]で表されるようにケイ素化合物Bと酸Bとを反応させて得られたものであってもよい。   The acid A may be obtained by a reaction. For example, it may be obtained by reacting silicon compound B and acid B as represented by the following general formula [6].

Figure 2012015335
Figure 2012015335

ここで、R (H)Si−Z4−g−hはケイ素化合物B、A−Hは酸B、R (H)Si−A4−g−hは反応から得られる酸Aを表す。Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、および、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Aは、それぞれ互いに独立して、ハロゲン基、−O−S(O)−R’、および、−O−C(O)−R’(R’は、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8の1価の炭化水素基)から選ばれる少なくとも1つの基である。また、Zは、それぞれ互いに独立して、Siと結合する元素が窒素の1価の有機基を示す。また、gは1〜3の整数、hは0〜2の整数であり、gとhの合計は1〜3である。なお、式[6]において、Z−Hは副生成物であり、前記保護膜形成に寄与しない成分であっても良い。 Wherein, R 5 g (H) h Si-Z 4-g-h of the silicon compound B, A-H are acid B, R 5 g (H) h Si-A 4-g-h is obtained from the reaction Represents acid A. R 5 is independently selected from a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. At least one group, and A is, independently of each other, a halogen group, —O—S (O 2 ) —R ′, and —O—C (O) —R ′ (R ′ is partly Or at least one group selected from monovalent hydrocarbon groups having 1 to 8 carbon atoms in which all hydrogens may be replaced by fluorine. Each Z independently represents a monovalent organic group in which the element bonded to Si is nitrogen. Moreover, g is an integer of 1-3, h is an integer of 0-2, and the sum total of g and h is 1-3. In Formula [6], ZH is a by-product and may be a component that does not contribute to the formation of the protective film.

本発明の保護膜形成用薬液は、前記ケイ素化合物Aと前記式[6]の反応で得られた触媒としての酸Aを混合して含有するものであってもよい。また、前記酸Bに対し前記ケイ素化合物Bを過剰に添加し、前記式[6]の反応で消費されなかったケイ素化合物Bが、前記反応により生成した酸Aと反応して前記保護膜を形成するものであってもよい。すなわち、前記式[6]の反応で消費されなかったケイ素化合物Bの余剰分はケイ素化合物Aとして前記保護膜形成に寄与するものであってもよい。なお、前記ケイ素化合物Bは、前記酸Bに対して、モル比で0.2〜100000モル倍とすることが好ましく、0.5〜50000モル倍、さらに1〜10000モル倍とすることが好ましい。   The chemical solution for forming a protective film of the present invention may contain a mixture of the silicon compound A and the acid A as a catalyst obtained by the reaction of the formula [6]. Further, the silicon compound B is excessively added to the acid B, and the silicon compound B not consumed in the reaction of the formula [6] reacts with the acid A generated by the reaction to form the protective film. You may do. That is, the surplus of the silicon compound B that has not been consumed in the reaction of the formula [6] may contribute to the formation of the protective film as the silicon compound A. The silicon compound B is preferably 0.2 to 100000 mol times, preferably 0.5 to 50000 mol times, and more preferably 1 to 10000 mol times with respect to the acid B. .

なお、前記式[6]の右辺のように触媒としての酸Aが得られるのであれば、前記のケイ素化合物Bと酸Bとの反応以外の反応を利用してもよい。   In addition, as long as the acid A as a catalyst is obtained like the right side of said Formula [6], you may utilize reaction other than the reaction of the said silicon compound B and the acid B. FIG.

前記式[6]の左辺のケイ素化合物BのZとしてのSiに結合する元素が窒素の1価の有機基には、水素、炭素、窒素、酸素だけでなく、ケイ素、硫黄、ハロゲン元素などが含まれていても良い。Siと結合する元素が窒素の1価の有機基の例としては、イソシアネート基、アミノ基、ジアルキルアミノ基、イソチオシアネート基、アジド基、アセトアミド基、−N(CH)C(O)CH、−N(CH)C(O)CF、−N=C(CH)OSi(CH、−N=C(CF)OSi(CH、−NHC(O)−OSi(CH、−NHC(O)−NH−Si(CH、イミダゾール環、オキサゾリジノン環、モルホリン環、−NH−C(O)−Si(CH、−N(H)2−i(Si(H) 3−j(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜18の1価の炭化水素基、iは1または2、jは0〜2の整数)などがある。 The monovalent organic group in which the element bonded to Si as Z of the silicon compound B on the left side of the formula [6] is nitrogen is not only hydrogen, carbon, nitrogen, oxygen but also silicon, sulfur, halogen elements, etc. It may be included. Examples of the monovalent organic group in which the element bonded to Si is nitrogen include an isocyanate group, an amino group, a dialkylamino group, an isothiocyanate group, an azide group, an acetamide group, —N (CH 3 ) C (O) CH 3. , -N (CH 3) C ( O) CF 3, -N = C (CH 3) OSi (CH 3) 3, -N = C (CF 3) OSi (CH 3) 3, -NHC (O) - OSi (CH 3) 3, -NHC (O) -NH-Si (CH 3) 3, an imidazole ring, an oxazolidinone ring, morpholine ring, -NH-C (O) -Si (CH 3) 3, -N (H 2-i (Si (H) j R 6 3-j ) i (R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms in which part or all of hydrogen may be replaced by fluorine. , I is 1 or 2, j is an integer of 0-2).

この中でも、前記式[6]の左辺のケイ素化合物BのZは、−N(CH、−NH、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CF、−NHC(O)−NH−Si(CH、イミダゾール環、−NH−C(O)−Si(CH、−N(H)2−p(Si(H) 3−q(Rは、一部または全ての水素がフッ素に置き換えられていても良い炭素数が1〜8の1価の炭化水素基、pは1または2、qは0〜2の整数)が好ましい。 Among these, Z of the silicon compound B on the left side of the formula [6] is —N (CH 3 ) 2 , —NH 2 , —N (C 2 H 5 ) 2 , —N (CH 3 ) C (O). CH 3, -N (CH 3) C (O) CF 3, -NHC (O) -NH-Si (CH 3) 3, an imidazole ring, -NH-C (O) -Si (CH 3) 3, - N (H) 2-p ( Si (H) q R 7 3-q) p (R 7 is a part or all of hydrogen carbon atoms, which may have been replaced by fluorine monovalent 1-8 A hydrocarbon group, p is 1 or 2, and q is an integer of 0 to 2.

また、前記式[6]の左辺の酸Bとしては、例えば、無機酸や有機酸があり、無機酸の例としては、ハロゲン化水素、硫酸、過塩素酸、リン酸など、有機酸の例としては、一部または全ての水素がフッ素原子等で置換されていても良いアルカンスルホン酸やカルボン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などがある。特に、塩化水素、トリフルオロメタンスルホン酸、トリフルオロ酢酸が好ましい。   Examples of the acid B on the left side of the formula [6] include inorganic acids and organic acids. Examples of inorganic acids include organic acids such as hydrogen halide, sulfuric acid, perchloric acid, and phosphoric acid. As alkane sulfonic acid, carboxylic acid, benzene sulfonic acid, p-toluene sulfonic acid, etc., in which some or all of hydrogen may be substituted with fluorine atoms or the like. In particular, hydrogen chloride, trifluoromethanesulfonic acid, and trifluoroacetic acid are preferable.

前記薬液中の水分量は、該薬液総量に対し5000質量ppm以下であることが好ましい。水分量が5000質量ppm超の場合、前記ケイ素化合物Aの活性、および/または、前記酸Aの反応促進効果が低下し、前記保護膜を短時間で形成しにくくなる。従って、前記薬液に含まれるケイ素化合物Aや非プロトン性有機溶媒は水を多く含まないものであることが好ましい。なお、前記薬液中の水分量は10ppm以上であってもよい。   The amount of water in the chemical solution is preferably 5000 ppm by mass or less with respect to the total amount of the chemical solution. When the amount of water exceeds 5000 ppm by mass, the activity of the silicon compound A and / or the reaction promoting effect of the acid A is reduced, and it becomes difficult to form the protective film in a short time. Therefore, it is preferable that the silicon compound A and the aprotic organic solvent contained in the chemical solution do not contain much water. The water content in the chemical solution may be 10 ppm or more.

また、前記薬液中の液相での光散乱式液中粒子検出器によるパーティクル測定における0.5μmより大きい粒子の数が該薬液1mL当たり100個以下であることが好ましい。前記0.5μmより大きい粒子の数が該薬液1mL当たり100個超であると、パーティクルによるパターンダメージを誘発する恐れがありデバイスの歩留まり低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、0.5μmより大きい粒子の数が該薬液1mL当たり100個以下であれば、前記保護膜を形成した後の、溶媒や水による洗浄を省略または低減できるため好ましい。このため、前記薬液中の0.5μmより大きい粒子の該薬液1mL当たりの個数は少ないほど好ましいが、前記0.5μmより大きい粒子の数は該薬液1mL当たり1個以上であってもよい。なお、本発明における薬液中の液相でのパーティクル測定は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定するものであり、パーティクルの粒径とは、PSL(ポリスチレン製ラテックス)標準粒子基準の光散乱相当径を意味する。   Moreover, it is preferable that the number of particles larger than 0.5 μm in particle measurement by a light scattering type submerged particle detector in the liquid phase of the chemical solution is 100 or less per 1 mL of the chemical solution. If the number of particles larger than 0.5 μm exceeds 100 per 1 mL of the chemical solution, pattern damage due to the particles may be induced, which causes a decrease in device yield and reliability. Further, it is preferable that the number of particles larger than 0.5 μm is 100 or less per mL of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced. For this reason, it is preferable that the number of particles larger than 0.5 μm per 1 mL of the chemical solution in the chemical solution is smaller, but the number of particles larger than 0.5 μm may be 1 or more per 1 mL of the chemical solution. The particle measurement in the liquid phase in the chemical solution in the present invention is performed by using a commercially available measuring device in the light scattering liquid particle measurement method using a laser as a light source. , PSL (polystyrene latex) standard particle-based light scattering equivalent diameter.

また、前記薬液中のNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物含有量が、該薬液総量に対しそれぞれ100質量ppb以下であることが好ましい。前記の各元素の金属不純物としては、金属微粒子、イオン、コロイド、錯体、酸化物や窒化物といった形で、溶解、未溶解に係らず薬液中に存在するもの全てが対象となる。前記金属不純物含有量が、該薬液総量に対しそれぞれ100質量ppb超であると、デバイスの接合リーク電流が増大する恐れがありデバイスの歩留まり低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、前記金属不純物含有量が、該薬液総量に対しそれぞれ100質量ppb以下であると、前記保護膜を形成した後の、溶媒や水による洗浄を省略または低減できるため好ましい。なお、前記金属不純物含有量は、該薬液総量に対し各0.01質量ppb以上であってもよい。   Moreover, it is preferable that the metal impurity content of each element of Na, Mg, K, Ca, Mn, Fe and Cu in the chemical solution is 100 mass ppb or less with respect to the total amount of the chemical solution. The metal impurities of each element described above are all those that exist in the chemical solution in the form of metal fine particles, ions, colloids, complexes, oxides and nitrides, whether dissolved or undissolved. If the metal impurity content is more than 100 mass ppb with respect to the total amount of the chemical solution, the junction leakage current of the device may be increased, which causes a decrease in device yield and reliability. Moreover, it is preferable that the metal impurity content is 100 mass ppb or less with respect to the total amount of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced. In addition, 0.01 mass ppb or more of each said metal impurity content may be sufficient with respect to this chemical | medical solution total amount.

前記一般式[1]で表されるケイ素化合物Aと触媒としての酸Aを混合して含有させる保護膜形成用薬液の調製方法において、混合前のケイ素化合物A、酸A、及び、混合後の混合液のうち少なくとも1つを精製することが好ましい。また、保護膜形成用薬液が溶媒を含有する場合は、前記の混合前のケイ素化合物A及び酸Aは、溶媒を含んだ溶液状態であってもよく、この場合前記精製は、混合前のケイ素化合物Aまたはその溶液、酸Aまたはその溶液、及び、混合後の混合液のうち少なくとも1つを対象とするものであってもよい。   In the method for preparing a chemical solution for forming a protective film in which the silicon compound A represented by the general formula [1] and the acid A as a catalyst are mixed and contained, the silicon compound A before mixing, the acid A, and after mixing It is preferable to purify at least one of the mixed solutions. When the protective film-forming chemical solution contains a solvent, the silicon compound A and the acid A before mixing may be in a solution state containing a solvent. In this case, the purification is performed before the silicon before mixing. The target may be at least one of compound A or a solution thereof, acid A or a solution thereof, and a mixed solution after mixing.

前記精製は、モレキュラーシーブ等の吸着剤や蒸留等による水分子の除去、イオン交換樹脂や蒸留等によるNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物の除去、及び、フィルターろ過によるパーティクル等の汚染物質の除去のうち少なくとも1つの除去手段を用いて行われるものである。保護膜形成用薬液の活性やウェハの清浄度を考慮して、水分子を除去し、かつ、金属不純物を除去し、かつ、汚染物質を除去することが好ましく、除去する順番は問わない。   The purification includes removal of water molecules by adsorbent such as molecular sieve or distillation, removal of metal impurities of each element of Na, Mg, K, Ca, Mn, Fe and Cu by ion exchange resin or distillation, and This is performed using at least one removing means among removing contaminants such as particles by filter filtration. In consideration of the activity of the chemical solution for forming the protective film and the cleanliness of the wafer, it is preferable to remove water molecules, remove metal impurities, and remove contaminants, and the removal order is not limited.

また、本発明の保護膜形成用薬液は、原料を2つ以上に分けた状態で保管し、使用前に混合して使うこともできる。例えば、前記保護膜形成用薬液の原料の一部としてケイ素化合物A、触媒としての酸Aを用いる場合、ケイ素化合物Aと触媒としての酸Aを個別に保管し、使用前に混合することもできる。ケイ素化合物B、及び酸Bを用いる場合、ケイ素化合物Bと酸Bを個別に保管して使用前に混合することもできる。なお、混合前のケイ素化合物と酸はそれぞれ溶液状態であっても良い。また、上記のケイ素化合物と酸を同じ溶液で保管して使用前に別の原料と混合することもできる。   Moreover, the chemical | medical solution for protective film formation of this invention can be stored in the state which divided the raw material into two or more, and can also be mixed and used before use. For example, when the silicon compound A and the acid A as the catalyst are used as a part of the raw material for the protective film forming chemical, the silicon compound A and the acid A as the catalyst can be stored separately and mixed before use. . When using the silicon compound B and the acid B, the silicon compound B and the acid B can be stored separately and mixed before use. The silicon compound and the acid before mixing may be in a solution state. In addition, the above silicon compound and acid can be stored in the same solution and mixed with another raw material before use.

以下、ウェハ表面を微細な凹凸パターンを有する面とする方法について説明する。まず、該ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するウェハが得られる。   Hereinafter, a method of making the wafer surface a surface having a fine uneven pattern will be described. First, after applying a resist to the wafer surface, the resist is exposed through a resist mask, and the resist having a desired concavo-convex pattern is produced by etching away the exposed resist or the resist that has not been exposed. . Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a fine uneven pattern is obtained.

表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハとしては、ウェハ表面にシリコン、または酸化ケイ素、窒化ケイ素などシリコンを含む膜が形成されたもの、あるいは、上記凹凸パターンを形成したときに、該凹凸パターンの表面の少なくとも一部がシリコン、または酸化ケイ素、窒化ケイ素などシリコンを含むものが含まれる。   As a wafer having a fine concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon, the wafer surface is formed with a silicon-containing film such as silicon, silicon oxide, silicon nitride, or the concavo-convex pattern. When the pattern is formed, those in which at least a part of the surface of the concavo-convex pattern contains silicon or silicon such as silicon oxide and silicon nitride are included.

また、シリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つを含む複数の成分から構成されたウェハに対しても、シリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つの表面に撥水性保護膜を形成することができる。該複数の成分から構成されたウェハとしては、シリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つがウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部がシリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つとなるものも含まれる。   In addition, a wafer composed of a plurality of components including at least one selected from silicon, silicon oxide, and silicon nitride also repels at least one surface selected from silicon, silicon oxide, and silicon nitride. An aqueous protective film can be formed. As the wafer composed of the plurality of components, at least one selected from silicon, silicon oxide, and silicon nitride is formed on the wafer surface, or when a concavo-convex pattern is formed, at least one of the concavo-convex pattern is formed. A part whose part is at least one selected from silicon, silicon oxide, and silicon nitride is also included.

前記ウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液で表面の洗浄を行い、乾燥等により水系洗浄液を除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa−a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。   After making the wafer surface a surface having a fine uneven pattern, cleaning the surface with an aqueous cleaning liquid and removing the aqueous cleaning liquid by drying or the like, the pattern collapses when the width of the concave portion is small and the aspect ratio of the convex portion is large. Is likely to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic view when a wafer 1 whose surface is a surface having a fine concavo-convex pattern 2 is viewed in perspective, and FIG. 2 shows a part of a cross section aa ′ in FIG. . As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.

本発明の好ましい態様では、前記(工程1)に記したように、ウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液を当該面に供し、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持する。そして、前記(工程2)に記したように、凹凸パターンの少なくとも凹部表面に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液Aで置換する。該洗浄液Aの好ましい例としては、本発明で特定する保護膜形成用薬液、水、有機溶媒、あるいは、それらの混合物、あるいは、それらに酸、アルカリ、界面活性剤、酸化剤のうち少なくとも1種が混合されたもの等が挙げられる。また、洗浄液Aとして前記薬液以外を使用したときは、凹凸パターンの少なくとも凹部表面に洗浄液Aが保持された状態で、該洗浄液Aを該保護膜形成用薬液に置換していくことが好ましい。   In a preferred embodiment of the present invention, as described in the above (Step 1), after making the wafer surface a surface having a fine concavo-convex pattern, an aqueous cleaning solution is applied to the surface, and the aqueous cleaning solution is applied to at least the concave surface of the concavo-convex pattern. Hold. Then, as described in the above (Step 2), the aqueous cleaning liquid held on at least the concave surface of the concavo-convex pattern is replaced with a cleaning liquid A different from the aqueous cleaning liquid. Preferred examples of the cleaning liquid A include at least one of a chemical solution for forming a protective film specified in the present invention, water, an organic solvent, or a mixture thereof, or an acid, an alkali, a surfactant, and an oxidizing agent. Are mixed. Further, when a liquid other than the chemical liquid is used as the cleaning liquid A, it is preferable to replace the cleaning liquid A with the protective film-forming chemical liquid in a state where the cleaning liquid A is held on at least the concave surface of the concavo-convex pattern.

また、該洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Examples of the organic solvent which is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.

前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3−プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジアセテート、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。   Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1, , 3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, hydrofluorocarbons such as Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all from 3M), chlorocarbons such as tetrachloromethane, chloroform Hydrochlorocarbons such as chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pe Tafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3- There are hydrochlorofluorocarbons such as trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc. Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether. , Propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diacetate , Ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc. Examples of nitrogen-containing compound solvents include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone , Diethylamine, Examples include triethylamine and pyridine.

また、該洗浄液Aに混合されることのある酸としては、無機酸や有機酸がある。無機酸の例としては、フッ酸、バッファードフッ酸、硫酸、硝酸、塩酸、リン酸など、有機酸の例としては、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸などが挙げられる。該洗浄液Aに混合されることのあるアルカリとしては、アンモニア、コリンなどが挙げられる。該洗浄液Aに混合されることのある酸化剤としては、オゾン、過酸化水素などが挙げられる。   Examples of acids that can be mixed with the cleaning liquid A include inorganic acids and organic acids. Examples of inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc. Examples of organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like. Examples of the alkali that may be mixed in the cleaning liquid A include ammonia and choline. Examples of the oxidizing agent that may be mixed with the cleaning liquid A include ozone and hydrogen peroxide.

なお、該洗浄液Aが有機溶媒であれば、前記保護膜形成用薬液を水と接触させることなく凹部に供すことができるので好ましい。また、該洗浄液Aが酸水溶液を含んでいれば、前記保護膜が短時間で形成できるので好ましい。   In addition, it is preferable that the cleaning liquid A is an organic solvent because the chemical liquid for forming a protective film can be provided to the recess without being brought into contact with water. Further, it is preferable that the cleaning liquid A contains an acid aqueous solution because the protective film can be formed in a short time.

また、前記洗浄液Aとして、複数の洗浄液を用いても良い。例えば、前記酸水溶液を含む洗浄液と前記有機溶媒の洗浄液の2種類を用いることができる。   A plurality of cleaning liquids may be used as the cleaning liquid A. For example, two types of cleaning liquid containing the acid aqueous solution and the organic solvent cleaning liquid can be used.

図3は、洗浄工程にて凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa−a’断面の一部を示すものである。洗浄工程の際に、保護膜形成用薬液が、凹凸パターン2が形成されたウェハ1に供される。この際、前記薬液は図3に示したように凹部4に保持された状態となり、凹部4の表面に保護膜が形成されることにより該表面が撥水化される。   FIG. 3 is a schematic view showing a state in which the recess 4 holds the protective film forming chemical 8 in the cleaning process. The wafer in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. In the cleaning process, the protective film forming chemical is supplied to the wafer 1 on which the concave / convex pattern 2 is formed. At this time, the chemical solution is held in the recess 4 as shown in FIG. 3, and a protective film is formed on the surface of the recess 4 to make the surface water repellent.

保護膜形成用薬液は、温度を高くすると、より短時間で前記保護膜を形成しやすくなる。均質な保護膜を形成しやすい温度は、10℃以上、該薬液の沸点未満であり、特には15℃以上、該薬液の沸点よりも10℃低い温度未満で保持されることが好ましい。前記薬液の温度は、凹凸パターンの少なくとも凹部表面に保持されているときも当該温度に保持されることが好ましい。   When the temperature of the protective film-forming chemical is increased, the protective film can be easily formed in a shorter time. The temperature at which a homogeneous protective film is easily formed is preferably 10 ° C. or higher and lower than the boiling point of the chemical solution, and more preferably 15 ° C. or higher and lower than 10 ° C. lower than the boiling point of the chemical solution. The temperature of the chemical solution is preferably maintained at the temperature even when held on at least the concave surface of the concave / convex pattern.

なお、他の洗浄液についても、10℃以上、洗浄液の沸点未満の温度で保持しても良い。例えば、洗浄液Aが酸水溶液を含む、特に好ましくは酸水溶液と沸点が100℃以上の有機溶媒を含む溶液を用いる場合、洗浄液の温度を該洗浄液の沸点付近に高くすると、前記保護膜が短時間で形成しやすくなるので好ましい。   Other cleaning liquids may also be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid. For example, when the cleaning liquid A contains an acid aqueous solution, particularly preferably a solution containing an acid aqueous solution and an organic solvent having a boiling point of 100 ° C. or higher, the protective film can be shortened for a short time if the temperature of the cleaning liquid is raised near the boiling point of the cleaning liquid. It is preferable because it is easy to form.

前記凹凸パターンの少なくとも凹部表面に保護膜形成用薬液を保持する工程(工程3)の後で、該凹凸パターンの少なくとも凹部表面に保持された前記薬液を該薬液とは異なる洗浄液Bに置換した後に、乾燥により凹凸パターン表面から液体を除去する工程(工程4)に移ってもよく、この洗浄液Bの例としては、水系溶液からなる水系洗浄液、または、有機溶媒、または、前記水系洗浄液と有機溶媒の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、またはそれらに保護膜形成用薬液に含まれるケイ素化合物A、及び触媒としての酸Aが該薬液よりも低濃度になるように添加されたもの等が挙げられる。   After the step (Step 3) of holding the protective film-forming chemical solution on at least the concave surface of the concave / convex pattern, after replacing the chemical solution held on at least the concave surface of the concave / convex pattern with a cleaning liquid B different from the chemical solution The step of removing the liquid from the surface of the concavo-convex pattern by drying (step 4) may be performed. Examples of the cleaning liquid B include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, or the aqueous cleaning liquid and the organic solvent. A mixture of at least one of an acid, an alkali and a surfactant, or a silicon compound A contained in a chemical solution for forming a protective film, and an acid A as a catalyst is lower than the chemical solution. The thing added so that it might become a density | concentration etc. are mentioned.

また、該洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Examples of the organic solvent which is one of the preferable examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.

前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3−プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジアセテート、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。   Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, and isophorone. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1, , 3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, hydrofluorocarbons such as Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all from 3M), chlorocarbons such as tetrachloromethane, chloroform Hydrochlorocarbons such as chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pe Tafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3- There are hydrochlorofluorocarbons such as trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc. Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether. , Propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diacetate , Ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc. Examples of nitrogen-containing compound solvents include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone , Diethylamine, Examples include triethylamine and pyridine.

また、前記洗浄液Bへの置換を経て、該凹凸パターンの少なくとも凹部表面に水系溶液からなる水系洗浄液を保持した後に、乾燥により凹凸パターン表面から液体を除去する工程(工程4)に移ってもよい。   In addition, after the replacement with the cleaning liquid B, an aqueous cleaning liquid composed of an aqueous solution is held on at least the concave surface of the concave / convex pattern, and then the process may be shifted to a step of removing the liquid from the concave / convex pattern surface by drying (step 4). .

また、前記洗浄液Bとして、複数の洗浄液を用いても良い。例えば、有機溶媒(好ましくは水溶性有機溶媒を含む)と水系洗浄液の2種類を用いることができる。   A plurality of cleaning liquids may be used as the cleaning liquid B. For example, an organic solvent (preferably containing a water-soluble organic solvent) and an aqueous cleaning solution can be used.

水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリのうち少なくとも1種が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。特に、水系洗浄液に水を用いると、前記薬液によって撥水化された凹凸パターンの少なくとも凹部表面の該液との接触角θが大きくなって該凹部表面の毛細管力Pが小さくなり、さらに乾燥後にウェハ表面に汚れが残りにくくなるので好ましい。   Examples of the aqueous cleaning liquid include water or water mainly containing water mixed with at least one organic solvent, acid or alkali in water (for example, the water content is 50% by mass or more). It is done. In particular, when water is used as the aqueous cleaning liquid, the contact angle θ with the liquid on at least the concave surface of the concave / convex pattern made water repellent by the chemical solution increases, and the capillary force P on the concave surface decreases, and further after drying. This is preferable because dirt on the wafer surface is less likely to remain.

保護膜形成用薬液により撥水化された凹部4に水系洗浄液が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa−a’断面の一部を示すものである。凹凸パターン表面は前記薬液により撥水性保護膜10が形成され撥水化されている。そして、該保護膜10は、水系洗浄液9が凹凸パターン表面から除去されるときもウェハ表面に保持される。   FIG. 4 shows a schematic diagram when the aqueous cleaning liquid is held in the recess 4 made water repellent by the protective film forming chemical. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. 1. The surface of the concavo-convex pattern is made water-repellent by forming the water-repellent protective film 10 with the chemical. The protective film 10 is held on the wafer surface even when the aqueous cleaning liquid 9 is removed from the uneven pattern surface.

ウェハの凹凸パターンの少なくとも凹部表面に、保護膜形成用薬液により前記保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は50〜130°であると、パターン倒れが発生し難いため好ましい。また、接触角は90°に近いほど該凹部表面の毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、60〜120°が特に好ましく、70〜110°がさらに好ましい。また、毛細管力は2.1MN/m以下であることが好ましい。該毛細管力が2.1MN/m以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.5MN/m以下が特に好ましく、1.0MN/m以下がさらに好ましい。さらに、洗浄液との接触角を90°付近に調整して毛細管力を限りなく0.0MN/mに近づけることが理想的である。 When the protective film 10 is formed on at least the concave surface of the concave / convex pattern of the wafer with the chemical solution for forming the protective film, the contact angle is 50 to 130 ° when it is assumed that water is retained on the surface. It is preferable because it does not easily fall over. Further, the closer the contact angle is to 90 °, the smaller the capillary force on the surface of the recess and the more difficult the pattern collapse occurs. The capillary force is preferably 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs. Also, when the capillary force is small, the collapse is further difficult to occur pattern, capillary force is particularly preferably 1.5Mn / m 2 or less, more preferably 1.0 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close to 0.0 MN / m 2 as possible.

次に、前記(工程4)に記したように、乾燥により凹凸パターン表面から液体を除去する工程が行われる。該工程では、凹凸パターン表面に保持された液体が乾燥により除去される。当該乾燥は、スピン乾燥法、IPA(2−プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。   Next, as described in the above (Step 4), a step of removing the liquid from the surface of the concavo-convex pattern by drying is performed. In this step, the liquid held on the uneven pattern surface is removed by drying. The drying is preferably performed by a known drying method such as spin drying, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, or vacuum drying.

前記凹凸パターン表面から液体が除去されるときに、該表面に保持されている液体は、前記薬液、洗浄液B、水系洗浄液、及びそれらの混合液でもよい。なお、前記薬液を含む混合液は、前記薬液を洗浄液Bに置換する途中の状態の液でもよいし、あらかじめ前記薬液を該薬液とは異なる洗浄液に混合して得た混合液でもよい。また、前記凹凸パターン表面から液体が一旦除去された後で、前記凹凸パターン表面に、洗浄液B、水系洗浄液、および、それらの混合液から選ばれる少なくとも1つを保持させて、その後、乾燥しても良い。   When the liquid is removed from the surface of the concavo-convex pattern, the liquid held on the surface may be the chemical liquid, the cleaning liquid B, the aqueous cleaning liquid, and a mixture thereof. The liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the cleaning liquid B, or may be a liquid mixture obtained by previously mixing the chemical liquid with a cleaning liquid different from the chemical liquid. Further, after the liquid is once removed from the uneven pattern surface, the uneven pattern surface is held with at least one selected from the cleaning liquid B, the aqueous cleaning liquid, and a mixture thereof, and then dried. Also good.

次に、前記(工程5)に記したように、ウェハ表面を光照射すること、ウェハを加熱すること、及び、ウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行うことにより、撥水性保護膜10を除去する工程が行われる。   Next, as described in the above (Step 5), by performing at least one treatment selected from light irradiation of the wafer surface, heating of the wafer, and exposure of the wafer to ozone, water repellency is achieved. A step of removing the protective film 10 is performed.

光照射で前記保護膜10を除去する場合、該保護膜10中のC−C結合、C−F結合を切断することが有効であり、このためには、それらの結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、メタルハライドランプであれば、例えば、照度計(コニカミノルタセンシング製照射強度計UM−10、受光部UM−360〔ピーク感度波長:365nm、測定波長範囲:310〜400nm〕)の測定値で100mW/cm以上が好ましく、200mW/cm以上が特に好ましい。なお、照射強度が100mW/cm未満では前記保護膜10を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で前記保護膜10を除去できるので好ましい。 When the protective film 10 is removed by light irradiation, it is effective to cut the C—C bond and the C—F bond in the protective film 10, and for this purpose, their binding energy is 83 kcal / mol. It is preferable to irradiate ultraviolet rays including wavelengths shorter than 340 nm and 240 nm, which are energy corresponding to 116 kcal / mol. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. If the ultraviolet irradiation intensity is a metal halide lamp, for example, measurement with an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]) 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable. When the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 10. In addition, a low-pressure mercury lamp is preferable because ultraviolet rays having a shorter wavelength are irradiated, and thus the protective film 10 can be removed in a short time even if the irradiation intensity is low.

また、光照射で前記保護膜10を除去する場合、紫外線で前記保護膜10の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜10の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源としては、低圧水銀ランプやエキシマランプが用いられる。また、光照射しながらウェハを加熱してもよい。   Further, when the protective film 10 is removed by light irradiation, ozone is generated at the same time as the constituent components of the protective film 10 are decomposed by ultraviolet rays, and the constituent components of the protective film 10 are oxidized and volatilized by the ozone. Is particularly preferable. As this light source, a low-pressure mercury lamp or an excimer lamp is used. Further, the wafer may be heated while irradiating light.

ウェハを加熱する場合、400〜700℃、好ましくは、500〜700℃でウェハの加熱を行う。この加熱時間は、0.5〜60min、好ましくは1〜30minの保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。   When the wafer is heated, the wafer is heated at 400 to 700 ° C, preferably 500 to 700 ° C. This heating time is preferably 0.5 to 60 min, preferably 1 to 30 min. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.

ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供することが好ましい。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。   When the wafer is exposed to ozone, it is preferable that ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage is provided on the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.

前記のウェハ表面の保護膜を除去する工程では、前記光照射処理、前記加熱処理、前記オゾン曝露処理を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。また、当該工程では、プラズマ照射、コロナ放電などを併用してもよい。   In the step of removing the protective film on the wafer surface, the protective film on the wafer surface can be efficiently removed by combining the light irradiation treatment, the heat treatment, and the ozone exposure treatment. In this step, plasma irradiation, corona discharge, or the like may be used in combination.

ウェハの表面を微細な凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部表面に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本発明では、前記保護膜形成用薬液の評価を中心に行った。また、背景技術等で述べた式
P=2×γ×cosθ/S(γ:表面張力、θ:接触角、S:パターン寸法)
から明らかなようにパターン倒れは、洗浄液のウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部表面の毛細管力とは相関性があるので、前記式と撥水性保護膜10の液滴の接触角の評価から毛細管力を導き出してもよい。なお、実施例において、前記洗浄液として、水系洗浄液の代表的なものである水を用いた。
Making the surface of the wafer a surface having a fine concavo-convex pattern and replacing the cleaning liquid held on at least the concave surface of the concavo-convex pattern with other cleaning liquids have already been established through various studies in other literature. Therefore, in the present invention, the evaluation of the chemical solution for forming a protective film was mainly performed. In addition, the formula P = 2 × γ × cos θ / S (γ: surface tension, θ: contact angle, S: pattern dimension) described in the background art, etc.
As can be seen from the above, the pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid. In the case of the cleaning liquid held in the recess 4 of the concavo-convex pattern 2, the contact angle of the droplet and the capillary force on the surface of the recess, which can be considered as equivalent to the pattern collapse, are correlated. The capillary force may be derived from the evaluation of the contact angle of the droplet of the protective film 10. In the examples, water, which is a typical aqueous cleaning solution, was used as the cleaning solution.

しかしながら、表面に微細な凹凸パターンを有するウェハの場合、パターンは非常に微細なため、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。   However, in the case of a wafer having a fine concavo-convex pattern on the surface, since the pattern is very fine, the contact angle of the protective film 10 formed on the concavo-convex pattern surface cannot be accurately evaluated.

水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。   The contact angle of water droplets is evaluated by dropping several μl of water droplets on the sample (base material) surface as in JIS R 3257 “Test method for wettability of substrate glass surface”, and the angle between the water droplet and the substrate surface. It is made by measuring. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.

そこで、本発明では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に微細な凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本発明では、表面が平滑なウェハとして、表面に熱酸化膜層または窒化ケイ素層またはシリコン層を有し表面が平滑なシリコンウェハを用いた。   Therefore, in the present invention, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the fine uneven pattern 2 is formed. Various evaluations were made considering the protective film 10. In the present invention, as a wafer having a smooth surface, a silicon wafer having a surface having a thermal oxide film layer, a silicon nitride layer or a silicon layer and having a smooth surface is used.

詳細を下記に述べる。以下では、保護膜形成用薬液の評価方法、保護膜形成用薬液が供されたウェハの評価方法、該保護膜形成用薬液の調製、そして、ウェハに該保護膜形成用薬液を供した後の評価結果が述べられる。   Details are described below. In the following, the evaluation method of the protective film forming chemical solution, the evaluation method of the wafer provided with the protective film forming chemical solution, the preparation of the protective film forming chemical solution, and after providing the protective film forming chemical solution to the wafer The evaluation results are stated.

〔保護膜形成用薬液の評価方法〕
保護膜形成用薬液の評価方法として、以下の(1)〜(2)の評価を行った。
[Method for evaluating protective film-forming chemical]
The following evaluations (1) to (2) were performed as evaluation methods for the chemical solution for forming a protective film.

(1)保護膜形成用薬液の水置換性
平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を室温で1質量%のフッ酸水溶液に2min浸漬し、次いで純水に1min浸漬した。次いで、ウェハが純水に濡れた状態で、ウェハを保護膜形成用薬液に5min浸漬した。浸漬後、目視観察でウェハ表面に水が残ってないものを合格(表中で○と表記)とした。
(1) Water displacement of chemical solution for forming a protective film A silicon wafer with a smooth thermal oxide film (Si wafer having a 1 μm thick thermal oxide film layer on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 minutes. Then, it was immersed in pure water for 1 min. Next, the wafer was immersed in a protective film forming chemical solution for 5 minutes while the wafer was wet with pure water. After immersion, a product in which water did not remain on the wafer surface by visual observation was regarded as acceptable (denoted as “◯” in the table).

(2)保護膜形成用薬液のpH測定
pH試験紙(ADVANTEC社製WR)に25℃の薬液を付着させ、pHを測定した。
(2) pH measurement of chemical solution for forming protective film A 25 ° C chemical solution was attached to pH test paper (WR manufactured by ADVANTEC), and the pH was measured.

〔保護膜形成用薬液が供されたウェハの評価方法〕
保護膜形成用薬液が供されたウェハの評価方法として、以下の(1)〜(4)の評価を行った。
[Evaluation method of wafer provided with chemical solution for forming protective film]
The following evaluations (1) to (4) were performed as methods for evaluating a wafer provided with a chemical solution for forming a protective film.

(1)ウェハ表面に形成された保護膜の接触角評価
保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA−X型)で測定した。ここでは保護膜の接触角が50〜130°の範囲であったものを合格(表中で○と表記)とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). It was measured by Interface Science: CA-X type). Here, the contact angle of the protective film in the range of 50 to 130 ° was determined to be acceptable (denoted as “◯” in the table).

(2)毛細管力の評価
下式を用いてPを算出し、毛細管力(Pの絶対値)を求めた。
P=2×γ×cosθ/S
ここで、γは表面張力、θは接触角、Sはパターン寸法を示す。なお、線幅:45nmのパターンでは、ウェハが気液界面を通過するときの洗浄液が水の場合はパターンが倒れやすく、2−プロパノールの場合はパターンが倒れ難い傾向がある。パターン寸法:45nm、ウェハ表面:酸化ケイ素の場合、洗浄液が、2−プロパノール(表面張力:22mN/m、酸化ケイ素との接触角:1°)では毛細管力は0.98MN/mとなる。一方、水銀を除く液体の中で表面張力が最も大きい水(表面張力:72mN/m、酸化ケイ素との接触角:2.5°)では毛細管力は3.2MN/mとなる。そこで中間の2.1MN/mを目標とし、水が保持されたときの毛細管力が2.1MN/m以下になれば合格(表中で○と表記)とし、2.1MN/mを越えるものは不合格(表中で×と表記)とした。
(2) Evaluation of capillary force P was calculated using the following equation, and the capillary force (absolute value of P) was determined.
P = 2 × γ × cos θ / S
Here, γ is the surface tension, θ is the contact angle, and S is the pattern dimension. In the pattern with a line width of 45 nm, the pattern tends to collapse when the cleaning liquid is water when the wafer passes through the gas-liquid interface, and the pattern does not easily collapse when the wafer is 2-propanol. When the pattern size is 45 nm and the wafer surface is silicon oxide, the capillary force is 0.98 MN / m 2 when the cleaning liquid is 2-propanol (surface tension: 22 mN / m, contact angle with silicon oxide: 1 °). On the other hand, the capillary force is 3.2 MN / m 2 in water (surface tension: 72 mN / m, contact angle with silicon oxide: 2.5 °) having the largest surface tension among liquids excluding mercury. Therefore, the target is 2.1 MN / m 2 in the middle, and if the capillary force when water is retained is 2.1 MN / m 2 or less, it is accepted (indicated by ○ in the table), and 2.1 MN / m 2 Those exceeding the mark were regarded as unacceptable (denoted as x in the table).

(3)保護膜の除去性
以下の条件でメタルハライドランプのUV光をサンプルに2時間照射した。照射後に水滴の接触角が30°以下となったものを合格(表中で○と表記)とした。
・ランプ:アイグラフィックス製M015−L312(強度:1.5kW)
・照度:下記条件における測定値が128mW/cm
・測定装置:紫外線強度計(コニカミノルタセンシング製、UM−10)
・受光部:UM−360
(受光波長:310〜400nm、ピーク波長:365nm)
・測定モード:放射照度測定
(3) Removability of protective film The sample was irradiated with UV light from a metal halide lamp for 2 hours under the following conditions. A sample having a water droplet contact angle of 30 ° or less after irradiation was regarded as acceptable (denoted as “◯” in the table).
-Lamp: M0155-L312 (strength: 1.5 kW) manufactured by Eye Graphics
Illuminance: The measured value under the following conditions is 128 mW / cm 2
Measuring device: UV intensity meter (Konica Minolta Sensing, UM-10)
-Light receiving part: UM-360
(Receiving wavelength: 310 to 400 nm, peak wavelength: 365 nm)
・ Measurement mode: Irradiance measurement

(4)保護膜除去後のウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ−電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。保護膜を除去した後のウェハのRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記薬液の残渣がウェハ表面にないとし、合格(表中で○と表記)とした。
(4) Evaluation of surface smoothness of wafer after removal of protective film Surface observation was performed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and centerline average surface roughness: Ra (nm) Asked. Ra is a three-dimensional extension of the centerline average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value of the wafer after removing the protective film is 1 nm or less, the wafer surface is not eroded by cleaning, and there is no residue of the chemical on the wafer surface. It was.

Figure 2012015335
Figure 2012015335

ここで、X、X、Y、Yは、それぞれ、X座標、Y座標の測定範囲を示す。Sは、測定面が理想的にフラットであるとした時の面積であり、(X−X)×(Y−Y)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Zは、測定面内の平均高さを表す。 Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and is a value of (X R −X L ) × (Y B −Y T ). Moreover, F (X, Y) is, the measurement point (X, Y) in height, Z 0 represents the average height within the measurement surface.

実施例1
(1)保護膜形成用薬液の調製
ケイ素化合物Aとしてトリメチルクロロシラン〔(CHSiCl〕;5g、水溶性の非プロトン性有機溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA、水100重量部の溶解度:22重量部);95gを混合し、約5min撹拌して、撥水性洗浄液の総量に対するケイ素化合物Aの濃度(以降「ケイ素化合物濃度」と記載する)が5質量%、撥水性洗浄液の総量に対する水溶性非プロトン性有機溶媒の濃度(以降「水溶性有機溶媒濃度」と記載する)が95質量%の保護膜形成用薬液を得た。さらに、モレキュラーシーブ4A(ユニオン昭和製)により該薬液から水分を除去し、次いで、イオン交換樹脂(日本ポール製イオンクリーンSL)により該薬液から金属不純物を除去し、次いで、フィルターろ過(日本インテグリス製オプチマイザー)により該薬液からパーティクルを除去し精製を行った。精製後の該薬液中の水分量をカールフィッシャー式水分計(京都電子製、ADP−511型)により測定を行ったところ、精製後の該薬液中の水分量は、該薬液総量に対し6質量ppmであった。また、精製後の該薬液中の金属不純物含有量を誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定したところ、精製後の該薬液中のNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物含有量は、該薬液総量に対しそれぞれ、Na=2質量ppb、Mg=0.04質量ppb、K=0.2質量ppb、Ca=1質量ppb、Mn=0.005質量ppb、Fe=0.08質量ppb、Cu=0.06質量ppbであった。また、液相での光散乱式液中粒子検出器によるパーティクル測定における0.5μmより大きい粒子の数を光散乱式液中粒子測定装置(リオン社製、KS−42AF型)により測定したところ、0.5μmより大きい粒子の数は該薬液1mL当たり2個であった。なお、本実施例以降の実施例においても、同様の精製を行い、水分量が薬液総量に対し5000質量ppm以下であり、Na、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物含有量は、該薬液総量に対しそれぞれ100質量ppb以下であり、0.5μmより大きい粒子の数は該薬液1mL当たり100個以下であることを確認した薬液を用いた。
Example 1
(1) Preparation of chemical solution for forming protective film Trimethylchlorosilane [(CH 3 ) 3 SiCl] as silicon compound A; 5 g, solubility of propylene glycol monomethyl ether acetate (PGMEA, 100 parts by weight of water as water-soluble aprotic organic solvent) : 22 parts by weight); 95 g was mixed and stirred for about 5 minutes. The concentration of silicon compound A relative to the total amount of the water-repellent cleaning solution (hereinafter referred to as “silicon compound concentration”) was 5% by mass, based on the total amount of the water-repellent cleaning solution. A chemical solution for forming a protective film having a water-soluble aprotic organic solvent concentration (hereinafter referred to as “water-soluble organic solvent concentration”) of 95% by mass was obtained. Furthermore, water is removed from the chemical solution with molecular sieve 4A (made by Union Showa), then metal impurities are removed from the chemical solution with ion exchange resin (Nippon Pole's Ion Clean SL), and then filtered (Nippon Entegris). Particles were removed from the chemical solution using an optimizer) for purification. When the water content in the chemical solution after purification was measured with a Karl Fischer moisture meter (ADP-511, manufactured by Kyoto Electronics Co., Ltd.), the water content in the chemical solution after purification was 6 mass relative to the total amount of the chemical solution. ppm. Further, when the metal impurity content in the chemical solution after purification was measured by an inductively coupled plasma mass spectrometer (Yokogawa Analytical Systems, Agilent 7500cs type), Na, Mg, K, The metal impurity content of each element of Ca, Mn, Fe, and Cu is Na = 2 mass ppb, Mg = 0.04 mass ppb, K = 0.2 mass ppb, Ca = 1 mass with respect to the total amount of the chemical solution, respectively. It was ppb, Mn = 0.005 mass ppb, Fe = 0.08 mass ppb, Cu = 0.06 mass ppb. Further, when the number of particles larger than 0.5 μm in the particle measurement by the light scattering liquid particle detector in the liquid phase was measured with a light scattering liquid particle measuring device (Lion Co., Ltd., KS-42AF type), The number of particles larger than 0.5 μm was 2 per 1 mL of the drug solution. In addition, also in the examples after this example, the same purification was performed, the water content was 5000 ppm by mass or less with respect to the total amount of the chemical solution, and the metal of each element of Na, Mg, K, Ca, Mn, Fe and Cu Impurity content was 100 mass ppb or less with respect to the total amount of the chemical solution, and a chemical solution was confirmed that the number of particles larger than 0.5 μm was 100 or less per mL of the chemical solution.

(2)シリコンウェハの洗浄
平滑なSiO膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を室温で1質量%のフッ酸水溶液に2min浸漬し、次いで純水に1min、2−プロパノール(iPA)に1min浸漬した。また、LP−CVDで作製したSiN膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素膜を有するシリコンウェハ)、および、ポリシリコン膜付きシリコンウェハを1質量%のフッ酸水溶液に2min浸漬し、次いで純水に1min、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5で混合した洗浄液に1min、純水に1min浸漬した。
(2) Cleaning of silicon wafer A silicon wafer with a smooth SiO 2 film (Si wafer having a 1 μm thick thermal oxide film layer on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 minutes, and then purified water It was immersed for 1 min in 2-propanol (iPA) for 1 min. Further, a silicon wafer with a SiN film (a silicon wafer having a silicon nitride film with a thickness of 50 nm on the surface) produced by LP-CVD and a silicon wafer with a polysilicon film were immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 min. Subsequently, it was immersed in pure water for 1 min, 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water in a mixing solution of 1: 1: 5 for 1 min and in pure water for 1 min.

(3)シリコンウェハ表面への保護膜形成用薬液による表面処理
シリコンウェハを、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で10min浸漬させた。その後、シリコンウェハをiPAに1min浸漬し、次いで、水系洗浄液としての純水に1min浸漬した。最後に、シリコンウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment with a protective film forming chemical on the silicon wafer surface The silicon wafer was immersed for 10 minutes at 20 ° C. in the protective film forming chemical prepared in “(1) Preparation of protective film forming chemical”. Thereafter, the silicon wafer was immersed in iPA for 1 min, and then immersed in pure water as an aqueous cleaning solution for 1 min. Finally, the silicon wafer was taken out from the pure water and air was blown to remove the pure water on the surface.

得られたウェハを上記「保護膜形成用薬液が供されたウェハの評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は60°となり、撥水性付与効果を示した。また、上記「毛細管力の評価」に記載した式を使って、水が保持されたときの毛細管力を計算したところ、毛細管力は1.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。 When the obtained wafer was evaluated in the manner described in “Method for evaluating wafer provided with protective film forming chemical solution”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. However, the contact angle after the surface treatment was 60 °, which showed the effect of imparting water repellency. Moreover, when the capillary force when water was held was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 1.6 MN / m 2 and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

Figure 2012015335
Figure 2012015335

実施例2
保護膜形成用薬液中のケイ素化合物A濃度を10質量%とした以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は68°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 2
All were the same as Example 1 except that the concentration of silicon compound A in the chemical solution for forming the protective film was 10% by mass. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 68 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例3
保護膜形成用薬液中のケイ素化合物Aとして、ジメチルクロロシラン〔(CHSi(H)Cl〕を用いた以外はすべて実施例2と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 3
All were the same as Example 2 except that dimethylchlorosilane [(CH 3 ) 2 Si (H) Cl] was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例4
保護膜形成用薬液中のケイ素化合物Aとして、(トリフルオロプロピル)トリクロロシラン〔CFCHCHSiCl〕を用いた以外はすべて実施例2と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 4
All were the same as Example 2 except that (trifluoropropyl) trichlorosilane [CF 3 CH 2 CH 2 SiCl 3 ] was used as the silicon compound A in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例5
保護膜形成用薬液中のケイ素化合物Aとして、(トリフルオロプロピル)ジメチルクロロシラン〔CFCHCHSi(CHCl〕を用いた以外はすべて実施例2と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 5
All were the same as Example 2 except that (trifluoropropyl) dimethylchlorosilane [CF 3 CH 2 CH 2 Si (CH 3 ) 2 Cl] was used as the silicon compound A in the protective film-forming chemical solution. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例6
保護膜形成用薬液中のケイ素化合物Aとして、(オクチル)ジメチルクロロシラン〔C17Si(CHCl〕を用いた以外はすべて実施例2と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 6
All were the same as in Example 2 except that (octyl) dimethylchlorosilane [C 8 H 17 Si (CH 3 ) 2 Cl] was used as the silicon compound A in the protective film-forming chemical solution. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例7
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルトリフルオロメタンスルホネート〔(CHSi−OS(O)CF〕を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 7
All were the same as Example 1 except that trimethylsilyl trifluoromethanesulfonate [(CH 3 ) 3 Si—OS (O 2 ) CF 3 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating water repellency imparting effect. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例8
保護膜形成用薬液中のケイ素化合物Aとしてトリメチルメトキシシラン〔(CHSi−OCH〕;3g、触媒としての酸としてトリメチルシリルトリフルオロメタンスルホネート〔(CHSi−OS(O)CF〕;1g、水溶性の非プロトン性有機溶媒としてPGMEA;96gを混合して保護膜形成用薬液を得た以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 8
3 g of trimethylmethoxysilane [(CH 3 ) 3 Si—OCH 3 ] as the silicon compound A in the chemical solution for forming the protective film; trimethylsilyl trifluoromethanesulfonate [(CH 3 ) 3 Si—OS (O 2 ) as an acid as a catalyst CF 3 ]; 1 g and PGMEA; 96 g as a water-soluble aprotic organic solvent were mixed to obtain a protective film-forming chemical solution, and all the procedures were the same as in Example 1. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例9
触媒としての酸を無水トリフルオロメタンスルホン酸〔(CFSOO〕とした以外はすべて実施例8と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 9
All were the same as Example 8 except that the acid as a catalyst was trifluoromethanesulfonic anhydride [(CF 3 SO 2 ) 2 O]. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例10
触媒としての酸をトリフルオロメタンスルホン酸〔CHS(O)OH〕とした以外はすべて実施例8と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 10
All were the same as Example 8 except that the acid as the catalyst was trifluoromethanesulfonic acid [CH 3 S (O 2 ) OH]. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例11
保護膜形成用薬液中のケイ素化合物A濃度を10質量%とした以外はすべて実施例10と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は88°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 11
All were the same as Example 10 except that the concentration of silicon compound A in the chemical solution for forming the protective film was 10% by mass. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 88 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例12
触媒としての酸を98%硫酸〔HSO〕とした以外はすべて実施例8と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 12
All were the same as Example 8 except that the acid as the catalyst was 98% sulfuric acid [H 2 SO 4 ]. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例13
保護膜形成用薬液中のケイ素化合物Aとしてヘキサメチルジシラザン〔(HC)Si−NH−Si(CH〕;1g、水溶性の非プロトン性有機溶媒としてPGMEA;98.9gを混合した。さらに、触媒としての酸としてトリメチルシリルトリフルオロアセテート〔(CHSi−OC(O)CF〕;0.1gを混合して、保護膜形成用薬液を得た以外はすべて実施例1と同じとした。ヘキサメチルジシラザンとPGMEAの混合液、および、保護膜形成用薬液のpH値は、それぞれ、8、および、7であった。また、保護膜の評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 13
Hexamethyldisilazane [(H 3 C) 3 Si—NH—Si (CH 3 ) 3 ] as the silicon compound A in the protective film forming chemical solution; 1 g, PGMEA as the water-soluble aprotic organic solvent; 98.9 g Were mixed. Furthermore, all except that trimethylsilyl trifluoroacetate [(CH 3 ) 3 Si—OC (O) CF 3 ]; 0.1 g was mixed as an acid as a catalyst to obtain a chemical solution for forming a protective film. Same as above. The pH values of the mixed solution of hexamethyldisilazane and PGMEA and the chemical solution for forming a protective film were 8 and 7, respectively. Moreover, as shown in Table 1, the evaluation results of the protective film showed a contact angle after the surface treatment of 84 °, indicating a water repellency imparting effect. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例14
保護膜形成用薬液中のケイ素化合物A濃度を5質量%とした以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 14
All were the same as Example 13 except that the concentration of silicon compound A in the chemical solution for forming the protective film was 5 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating water repellency imparting effect. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例15
保護膜形成用薬液中のケイ素化合物A濃度を10質量%とした以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は88°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 15
All were the same as Example 13 except that the concentration of silicon compound A in the chemical solution for forming the protective film was 10% by mass. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 88 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例16
保護膜形成用薬液中の水溶性の非プロトン性有機溶媒としてエチレングリコールモノメチルエーテルアセテート(EGMEA、水の溶解度:任意に溶解)を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 16
All were the same as Example 13 except that ethylene glycol monomethyl ether acetate (EGMEA, solubility in water: arbitrarily dissolved) was used as the water-soluble aprotic organic solvent in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例17
保護膜形成用薬液中の水溶性の非プロトン性有機溶媒としてエチレングリコールジメチルエーテル(モノグリム、水の溶解度:任意に溶解)を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 17
All were the same as Example 13 except that ethylene glycol dimethyl ether (monoglyme, solubility in water: arbitrarily dissolved) was used as the water-soluble aprotic organic solvent in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例18
保護膜形成用薬液中の水溶性の非プロトン性有機溶媒としてジエチレングリコールジメチルエーテル(ジグリム、水の溶解度:任意に溶解)を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 18
All were the same as Example 13 except that diethylene glycol dimethyl ether (diglyme, solubility of water: arbitrarily dissolved) was used as the water-soluble aprotic organic solvent in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例19
保護膜形成用薬液中のケイ素化合物Aとしてヘキサメチルジシラザン〔(HC)Si−NH−Si(CH〕;1g、触媒としての酸としてトリメチルシリルトリフルオロアセテート〔(CHSi−OC(O)CF〕;0.1g、水溶性の非プロトン性有機溶媒としてPGMEA;88.9g、その他の有機溶媒としてフッ素系溶剤(住友3M製Novec HFE−7100:ハイドロフルオロエーテル);10.0gを混合して保護膜形成用薬液を得た以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 19
Hexamethyldisilazane [(H 3 C) 3 Si—NH—Si (CH 3 ) 3 ] as the silicon compound A in the protective film forming chemical solution; 1 g, trimethylsilyl trifluoroacetate [(CH 3 ) as the acid as the catalyst 3 Si—OC (O) CF 3 ]; 0.1 g, PGMEA as a water-soluble aprotic organic solvent; 88.9 g, fluorine-based solvent as other organic solvent (Novec HFE-7100 manufactured by Sumitomo 3M: Hydrofluoroether ); All were the same as Example 13 except that 10.0 g was mixed to obtain a chemical solution for forming a protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例20
保護膜形成用薬液中のその他の溶媒として1−クロロ−3,3,3−トリフルオロプロペン(CTFP)を用いた以外はすべて実施例19と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 20
All were the same as Example 19 except that 1-chloro-3,3,3-trifluoropropene (CTFP) was used as the other solvent in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例21
保護膜形成用薬液中のその他の溶媒として1,2ジクロロ−3,3,3−トリフルオロプロペン(DCTFP)を用いた以外はすべて実施例19と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 21
All were the same as Example 19 except that 1,2 dichloro-3,3,3-trifluoropropene (DCTFP) was used as the other solvent in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例22
保護膜形成用薬液中の酸として、トリメチルシリルトリフルオロメタンスルホネート〔(CHSiOS(O)CF〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 22
All were the same as Example 13 except that trimethylsilyl trifluoromethanesulfonate [(CH 3 ) 3 SiOS (O 2 ) CF 3 ] was used as the acid in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例23
保護膜形成用薬液中の酸として、無水トリフルオロ酢酸〔{CFC(O)}O〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 23
All were the same as Example 13 except that trifluoroacetic anhydride [{CF 3 C (O)} 2 O] was used as the acid in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例24
保護膜形成用薬液中の酸として、無水トリフルオロメタンスルホン酸〔{CFS(O)}O〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 24
All were the same as Example 13 except that trifluoromethanesulfonic anhydride [{CF 3 S (O 2 )} 2 O] was used as the acid in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例25
保護膜形成用薬液中の酸として、トリメチルシリルクロロシラン〔(CHSiCl〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 25
All were the same as Example 13 except that trimethylsilylchlorosilane [(CH 3 ) 3 SiCl] was used as the acid in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例26
保護膜形成用薬液中の酸として、トリフルオロ酢酸〔CFC(O)OH〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 26
All were the same as Example 13 except that trifluoroacetic acid [CF 3 C (O) OH] was used as the acid in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例27
保護膜形成用薬液中の酸として、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 27
All were the same as Example 13 except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例28
保護膜形成用薬液中のケイ素化合物Aとして、テトラメチルジシラザン〔(HC)Si(H)−NH−Si(H)(CH〕を用いた以外はすべて実施例13と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 28
Example 13 is the same as Example 13 except that tetramethyldisilazane [(H 3 C) 2 Si (H) —NH—Si (H) (CH 3 ) 2 ] is used as the silicon compound A in the protective film forming chemical solution. Same as above. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating water repellency imparting effect. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例29
保護膜形成用薬液中のケイ素化合物Aとして、ジフェニルテトラメチルジシラザン〔CSi(CH−NH−Si(CH〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 29
Examples All except that diphenyltetramethyldisilazane [C 6 H 5 Si (CH 3 ) 2 —NH—Si (CH 3 ) 2 C 6 H 5 ] was used as the silicon compound A in the chemical solution for forming the protective film Same as 28. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating water repellency imparting effect. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例30
保護膜形成用薬液中のケイ素化合物Aとして、1,3−ビス(トリフルオロプロピル)テトラメチルジシラザン〔CFCHCHSi(CH−NH−Si(CHCHCHCF〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 30
As silicon compound A in the chemical solution for forming a protective film, 1,3-bis (trifluoropropyl) tetramethyldisilazane [CF 3 CH 2 CH 2 Si (CH 3 ) 2 —NH—Si (CH 3 ) 2 CH 2 All were the same as Example 28 except that CH 2 CF 3 ] was used. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例31
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルジメチルアミン〔(CHSi−N(CH〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 31
All were the same as in Example 28 except that trimethylsilyldimethylamine [(CH 3 ) 3 Si—N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例32
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルジエチルアミン〔(CHSi−N(C〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 32
All were the same as Example 28 except that trimethylsilyldiethylamine [(CH 3 ) 3 Si—N (C 2 H 5 ) 2 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例33
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルイソシアネート〔(CHSi−NCO〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 33
All were the same as in Example 28 except that trimethylsilyl isocyanate [(CH 3 ) 3 Si—NCO] was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例34
保護膜形成用薬液中のケイ素化合物Aとして、下式に示すトリメチルシリルイミダゾールを用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 34
All were the same as Example 28 except that trimethylsilylimidazole represented by the following formula was used as the silicon compound A in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

Figure 2012015335
Figure 2012015335

実施例35
保護膜形成用薬液中のケイ素化合物Aとして、ブチルジメチル(ジメチルアミノ)シラン〔CSi(CH−N(CH〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は92°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 35
The same as Example 28, except that butyldimethyl (dimethylamino) silane [C 4 H 9 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 92 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例36
保護膜形成用薬液中のケイ素化合物Aとして、オクチルジメチル(ジメチルアミノ)シラン〔C17Si(CH−N(CH〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は104°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 36
The same as Example 28, except that octyldimethyl (dimethylamino) silane [C 8 H 17 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 104 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例37
保護膜形成用薬液中のケイ素化合物Aとして、テトラメチルジシラザン〔(HC)Si(H)−NH−Si(H)(CH〕を用いた以外はすべて実施例19と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 37
Example 19 is the same as Example 19 except that tetramethyldisilazane [(H 3 C) 2 Si (H) —NH—Si (H) (CH 3 ) 2 ] is used as the silicon compound A in the protective film forming chemical. Same as above. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例38
保護膜形成用薬液中の酸として、無水トリフルオロ酢酸〔{CFC(O)}O〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 38
All were the same as Example 28, except that trifluoroacetic anhydride [{CF 3 C (O)} 2 O] was used as the acid in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating water repellency imparting effect. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例39
保護膜形成用薬液中の酸として、無水トリフルオロメタンスルホン酸〔{CFS(O)}O〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 39
All were the same as in Example 28 except that trifluoromethanesulfonic anhydride [{CF 3 S (O 2 )} 2 O] was used as the acid in the chemical solution for forming the protective film. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例40
保護膜形成用薬液中の酸として、トリメチルシリルクロロシラン〔(CHSiCl〕を用いた以外はすべて実施例28と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 40
All were the same as Example 28, except that trimethylsilylchlorosilane [(CH 3 ) 3 SiCl] was used as the acid in the protective film forming chemical. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例41
保護膜形成用薬液中の酸として、トリフルオロ酢酸〔CFC(O)OH〕を用いた以外はすべて実施例28と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 41
All were the same as in Example 28 except that trifluoroacetic acid [CF 3 C (O) OH] was used as the acid in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

Figure 2012015335
Figure 2012015335

実施例42
保護膜形成用薬液中の酸として、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例28と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 42
All were the same as Example 28, except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例43
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルジメチルアミン〔(CHSi−N(CH〕を用いた以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 43
All were the same as in Example 41 except that trimethylsilyldimethylamine [(CH 3 ) 3 Si—N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例44
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルジエチルアミン〔(CHSi−N(C〕を用いた以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 44
All were the same as Example 41, except that trimethylsilyldiethylamine [(CH 3 ) 3 Si—N (C 2 H 5 ) 2 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例45
保護膜形成用薬液中のケイ素化合物Aとして、ブチルジメチル(ジメチルアミノ)シラン〔CSi(CH−N(CH〕を用いた以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は92°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 45
The same as Example 41, except that butyldimethyl (dimethylamino) silane [C 4 H 9 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 92 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例46
保護膜形成用薬液中のケイ素化合物Aとして、オクチルジメチル(ジメチルアミノ)シラン〔C17Si(CH−N(CH〕を用いた以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は104°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 46
The same as Example 41, except that octyldimethyl (dimethylamino) silane [C 8 H 17 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 104 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例47
保護膜形成用薬液中のケイ素化合物Aとして、トリメチルシリルジメチルアミン〔(CHSi−N(CH〕を用いた以外はすべて実施例42と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 47
All were the same as Example 42, except that trimethylsilyldimethylamine [(CH 3 ) 3 Si—N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例48
保護膜形成用薬液中のケイ素化合物Aとして、ブチルジメチル(ジメチルアミノ)シラン〔CSi(CH−N(CH〕を用いた以外はすべて実施例42と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は94°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 48
The same as Example 42, except that butyldimethyl (dimethylamino) silane [C 4 H 9 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 94 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例49
保護膜形成用薬液中のケイ素化合物Aとして、オクチルジメチル(ジメチルアミノ)シラン〔C17Si(CH−N(CH〕を用いた以外はすべて実施例42と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は104°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 49
The same as Example 42, except that octyldimethyl (dimethylamino) silane [C 8 H 17 Si (CH 3 ) 2 —N (CH 3 ) 2 ] was used as the silicon compound A in the protective film forming chemical. did. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 104 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例50
上記「(2)シリコンウェハの洗浄」で、平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で2min浸漬し、純水に1min浸漬した。さらに、0.3質量%の塩酸水溶液に98℃で1min浸漬し、次いで室温で純水に1min浸漬したのち、2−プロパノール(iPA)に1min浸漬した以外は、実施例13と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 50
In the above “(2) Cleaning of silicon wafer”, a silicon wafer with a smooth thermal oxide film (Si wafer having a thermal oxide film layer with a thickness of 1 μm on the surface) is immersed in a 1 mass% hydrofluoric acid aqueous solution at room temperature for 2 minutes. Then, it was immersed in pure water for 1 min. Further, it was the same as Example 13 except that it was immersed in a 0.3% by mass hydrochloric acid solution at 98 ° C. for 1 min, then immersed in pure water at room temperature for 1 min, and then immersed in 2-propanol (iPA) for 1 min. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例51
平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ0.3μmの窒化ケイ素層を有するSiウェハ)を用いた以外は実施例50と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 51
Example 50 was the same as Example 50 except that a silicon wafer with a smooth silicon nitride film (Si wafer having a silicon nitride layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例52
上記「(2)シリコンウェハの洗浄」で、平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ0.3μmの窒化ケイ素層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で2min浸漬し、純水に1min浸漬した。さらに、0.6質量%の塩酸水溶液とエチレングリコールの質量比が50:50の混合液に98℃で1min浸漬し、次いで室温で純水に1min浸漬したのち、2−プロパノール(iPA)に1min浸漬した以外は、実施例51と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 52
In the above “(2) Cleaning of silicon wafer”, a silicon wafer with a smooth silicon nitride film (Si wafer having a silicon nitride layer having a thickness of 0.3 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 min. And immersed in pure water for 1 min. Furthermore, after dipping for 1 min at 98 ° C. in a mixed solution of 0.6 mass% hydrochloric acid aqueous solution and ethylene glycol at a mass ratio of 50:50, and then dipping in pure water for 1 min at room temperature, 1 min in 2-propanol (iPA). The procedure was the same as Example 51 except for immersion. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例53
保護膜形成用薬液中の酸として、トリフルオロ酢酸〔CFC(O)OH〕を用いた以外はすべて実施例51と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 53
The procedure was the same as in Example 51 except that trifluoroacetic acid [CF 3 C (O) OH] was used as the acid in the protective film forming chemical. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例54
平滑なポリシリコン膜付きシリコンウェハ(表面に厚さ0.3μmのポリシリコン層を有するSiウェハ)を用いた以外は実施例51と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 54
The same procedure as in Example 51 was performed except that a smooth silicon wafer with a polysilicon film (Si wafer having a polysilicon layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例55
平滑なポリシリコン膜付きシリコンウェハ(表面に厚さ0.3μmのポリシリコン層を有するSiウェハ)を用いた以外は実施例52と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 55
Example 52 was the same as Example 52 except that a smooth silicon wafer with a polysilicon film (Si wafer having a polysilicon layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

実施例56
平滑なポリシリコン膜付きシリコンウェハ(表面に厚さ0.3μmのポリシリコン層を有するSiウェハ)を用いた以外は実施例53と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。また、保護膜形成用薬液の水置換性は良好であった。
Example 56
Example 53 was the same as Example 53 except that a smooth silicon wafer with a polysilicon film (Si wafer having a polysilicon layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation. Moreover, the water substitution property of the chemical solution for forming a protective film was good.

比較例1
シリコンウェハに保護膜形成用薬液を供さなかった以外は、実施例1と同じとした。すなわち、本比較例では、撥水化されていない表面状態のウェハを評価した。評価結果は表2に示すとおり、ウェハの接触角は3°と低く、水が保持されたときの毛細管力は3.2MN/mと大きかった。
Comparative Example 1
The same procedure as in Example 1 was performed except that the silicon wafer was not supplied with the chemical solution for forming the protective film. That is, in this comparative example, a wafer having a surface state that is not water-repellent was evaluated. As shown in Table 2, the contact angle of the wafer was as low as 3 °, and the capillary force when water was retained was as large as 3.2 MN / m 2 .

比較例2
保護膜形成用薬液中の溶媒としてフッ素系溶剤(住友3M製Novec HFE−7100:ハイドロフルオロエーテル)のみを用いた以外はすべて実施例13と同じとした。評価結果は表2に示すとおり、保護膜形成用薬液の水置換性が悪かった。
Comparative Example 2
All were the same as Example 13 except that only the fluorine-based solvent (Novec HFE-7100 manufactured by Sumitomo 3M) was used as the solvent in the chemical solution for forming the protective film. As shown in Table 2, the evaluation results showed that the water replacement property of the protective film forming chemical was poor.

実施例57
ケイ素化合物Bとして、ヘキサメチルジシラザン〔(HC)Si−NH−Si(CH〕;1g、酸Bとしてトリフルオロ酢酸〔CFC(O)OH〕;0.1gと有機溶媒としてPGMEA;98.9gを混合し、下式のように反応させることにより、酸触媒(酸A)としてトリメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてヘキサメチルジシラザン、有機溶媒としてPGMEAを含む保護膜形成用薬液を得た以外は実施例1と同じとした。本実施例の薬液に含まれるヘキサメチルジシラザンは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 57
As silicon compound B, hexamethyldisilazane [(H 3 C) 3 Si—NH—Si (CH 3 ) 3 ]; 1 g, as acid B trifluoroacetic acid [CF 3 C (O) OH]; 0.1 g 98.9 g of PGMEA as an organic solvent is mixed and reacted as shown in the following formula to protect trimethylsilyl trifluoroacetate as an acid catalyst (acid A), hexamethyldisilazane as a silicon compound A, and PGMEA as an organic solvent. The procedure was the same as Example 1 except that the film forming chemical solution was obtained. Hexamethyldisilazane contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

Figure 2012015335
Figure 2012015335

実施例58
保護膜形成用薬液中の有機溶媒として、HFE−7100とPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例57と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 58
All were the same as Example 57 except that a mixed solvent having a mass ratio of HFE-7100 and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical solution. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例59
保護膜形成用薬液中の有機溶媒として、CTFPとPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例57と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 59
All were the same as Example 57 except that a mixed solvent having a mass ratio of CTFP and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical solution. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例60
保護膜形成用薬液中の有機溶媒として、DCTFPとPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例57と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 60
All were the same as in Example 57 except that a mixed solvent having a mass ratio of DCTFP and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical solution. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例61
酸Bとして、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例58と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 61
The acid B was the same as that of Example 58 except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例62
保護膜形成用薬液中の有機溶媒として、CTFPとPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例61と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 62
All were the same as Example 61 except that a mixed solvent having a mass ratio of CTFP and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical solution. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例63
ケイ素化合物Bとして、テトラメチルジシラザン〔(HC)Si(H)−NH−Si(H)(CH〕;1g、酸Bとしてトリフルオロ酢酸〔CFC(O)OH〕;0.1gと有機溶媒としてPGMEA;98.9gを混合し、下式のように反応させることにより、酸触媒(酸A)としてジメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてテトラメチルジシラザン、有機溶媒としてPGMEAを含む保護膜形成用薬液を得た以外は実施例1と同じとした。本実施例の薬液に含まれるテトラメチルジシラザンは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 63
As silicon compound B, tetramethyldisilazane [(H 3 C) 2 Si (H) —NH—Si (H) (CH 3 ) 2 ]; 1 g, trifluoroacetic acid [CF 3 C (O) OH as acid B ] 0.1 g and PGMEA as an organic solvent: 98.9 g were mixed and reacted as shown in the following formula, whereby dimethylsilyl trifluoroacetate as an acid catalyst (acid A), tetramethyldisilazane as a silicon compound A, The same procedure as in Example 1 was conducted except that a protective film-forming chemical solution containing PGMEA as an organic solvent was obtained. Tetramethyldisilazane contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

実施例64
ケイ素化合物B濃度を10質量%とした以外はすべて実施例63と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は88°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 64
All were the same as Example 63 except that the silicon compound B concentration was 10 mass%. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 88 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例65
保護膜形成用薬液中の有機溶媒として、HFE−7100とPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例63と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 65
All were the same as Example 63 except that a mixed solvent having a mass ratio of HFE-7100 and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical solution. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例66
酸Bとして、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例65と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 66
The same procedure as in Example 65 was conducted except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid B. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例67
ケイ素化合物Bとして、トリメチルシリルジメチルアミン〔(CHSi−N(CH〕を用い、下式のように反応させることにより、酸触媒(酸A)としてトリメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてトリメチルシリルジメチルアミンを含む保護膜形成用薬液を得た以外は実施例63と同じとした。本実施例の薬液に含まれるトリメチルシリルジメチルアミンは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 67
By using trimethylsilyldimethylamine [(CH 3 ) 3 Si—N (CH 3 ) 2 ] as the silicon compound B and reacting as shown in the following formula, trimethylsilyl trifluoroacetate, silicon compound as the acid catalyst (acid A) The procedure was the same as Example 63 except that a protective film-forming chemical solution containing trimethylsilyldimethylamine as A was obtained. Trimethylsilyldimethylamine contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining the acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

実施例68
ケイ素化合物Bとして、トリメチルシリルジエチルアミン〔(CHSi−N(C〕を用い、下式のように反応させることにより、酸触媒(酸A)としてトリメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてトリメチルシリルジエチルアミンを含む保護膜形成用薬液を得た以外は実施例63と同じとした。本実施例の薬液に含まれるトリメチルシリルジエチルアミンは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 68
By using trimethylsilyldiethylamine [(CH 3 ) 3 Si—N (C 2 H 5 ) 2 ] as the silicon compound B and reacting it as shown in the following formula, trimethylsilyl trifluoroacetate, silicon as an acid catalyst (acid A) The procedure was the same as Example 63 except that a protective film-forming chemical solution containing trimethylsilyldiethylamine as compound A was obtained. Trimethylsilyldiethylamine contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining the acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

実施例69
ケイ素化合物Bとして、ブチルジメチル(ジメチルアミノ)シラン〔CSi(CH−N(CH〕を用い、下式のように反応させることにより、酸触媒(酸A)としてブチルジメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてブチルジメチル(ジメチルアミノ)シランを含む保護膜形成用薬液を得た以外は実施例63と同じとした。本実施例の薬液に含まれるブチルジメチル(ジメチルアミノ)シランは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は92°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 69
By using butyldimethyl (dimethylamino) silane [C 4 H 9 Si (CH 3 ) 2 —N (CH 3 ) 2 ] as the silicon compound B and reacting it as shown in the following formula, an acid catalyst (acid A) Example 63 was the same as Example 63 except that a protective film-forming chemical solution containing butyldimethylsilyl trifluoroacetate as the silicon compound and butyldimethyl (dimethylamino) silane as the silicon compound A was obtained. Butyldimethyl (dimethylamino) silane contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 92 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.1 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

実施例70
ケイ素化合物Bとして、オクチルジメチル(ジメチルアミノ)シラン〔C17Si(CH−N(CH〕を用い、下式のように反応させることにより、酸触媒(酸A)としてオクチルジメチルシリルトリフルオロアセテート、ケイ素化合物Aとしてオクチルジメチル(ジメチルアミノ)シランを含む保護膜形成用薬液を得た以外は実施例63と同じとした。本実施例の薬液に含まれるオクチルジメチル(ジメチルアミノ)シランは、前記の酸Aを得るための反応で消費されなかったケイ素化合物Bであり、該成分はケイ素化合物Aとして機能するものである。評価結果は表3に示すとおり、表面処理後の接触角は104°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 70
As the silicon compound B, octyldimethyl (dimethylamino) silane [C 8 H 17 Si (CH 3 ) 2 —N (CH 3 ) 2 ] is used and reacted as in the following formula, whereby an acid catalyst (acid A) Example 63 was the same as Example 63 except that a protective film-forming chemical solution containing octyldimethylsilyl trifluoroacetate as the silicon compound and octyldimethyl (dimethylamino) silane as the silicon compound A was obtained. Octyldimethyl (dimethylamino) silane contained in the chemical solution of this example is silicon compound B that was not consumed in the reaction for obtaining acid A, and the component functions as silicon compound A. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 104 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

Figure 2012015335
Figure 2012015335

実施例71
酸Bとして、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例67と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 71
The same procedure as in Example 67 was performed except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid B. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例72
酸Bとして、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例69と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は94°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 72
The same procedure as in Example 69 was performed except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid B. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 94 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例73
酸Bとして、トリフルオロメタンスルホン酸〔CFS(O)OH〕を用いた以外はすべて実施例70と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は104°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 73
The same procedure as in Example 70 was performed except that trifluoromethanesulfonic acid [CF 3 S (O 2 ) OH] was used as the acid B. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 104 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例74
上記「(2)シリコンウェハの洗浄」で、平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で2min浸漬し、純水に1min浸漬した。さらに、0.3質量%の塩酸水溶液に98℃で1min浸漬し、次いで室温で純水に1min浸漬したのち、2−プロパノール(iPA)に1min浸漬した以外は、実施例57と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は86°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 74
In the above “(2) Cleaning of silicon wafer”, a silicon wafer with a smooth thermal oxide film (Si wafer having a thermal oxide film layer with a thickness of 1 μm on the surface) is immersed in a 1 mass% hydrofluoric acid aqueous solution at room temperature for 2 minutes. Then, it was immersed in pure water for 1 min. Further, it was the same as Example 57 except that it was immersed in a 0.3 mass% hydrochloric acid aqueous solution at 98 ° C. for 1 min, then immersed in pure water at room temperature for 1 min, and then immersed in 2-propanol (iPA) for 1 min. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating the effect of imparting water repellency. Further, the capillary force when water was held was 0.2 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例75
平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ0.3μmの窒化ケイ素層を有するSiウェハ)を用いた以外は実施例74と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 75
A silicon wafer with a smooth silicon nitride film (Si wafer having a silicon nitride layer with a thickness of 0.3 μm on the surface) was used, except that a silicon wafer with a smooth silicon nitride film was used. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例76
上記「(2)シリコンウェハの洗浄」で、平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ0.3μmの窒化ケイ素層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で2min浸漬し、純水に1min浸漬した。さらに、0.6質量%の塩酸水溶液とエチレングリコールの質量比が50:50の混合液に98℃で1min浸漬し、次いで室温で純水に1min浸漬したのち、2−プロパノール(iPA)に1min浸漬した以外は、実施例75と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 76
In the above “(2) Cleaning of silicon wafer”, a silicon wafer with a smooth silicon nitride film (Si wafer having a silicon nitride layer having a thickness of 0.3 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution at room temperature for 2 min. And immersed in pure water for 1 min. Furthermore, after dipping for 1 min at 98 ° C. in a mixed solution of 0.6 mass% hydrochloric acid aqueous solution and ethylene glycol at a mass ratio of 50:50, then dipping in pure water for 1 min at room temperature, then 1 min in 2-propanol (iPA). The procedure was the same as Example 75 except for immersion. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例77
保護膜形成用薬液中の有機溶媒として、HFE−7100とPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例75と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 77
All were the same as Example 75 except that a mixed solvent having a mass ratio of HFE-7100 and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical. As shown in Table 3, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例78
保護膜形成用薬液中の有機溶媒として、HFE−7100とPGMEAの質量比が95:5の混合溶媒を用いた以外はすべて実施例76と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 78
All were the same as Example 76 except that a mixed solvent having a mass ratio of HFE-7100 and PGMEA of 95: 5 was used as the organic solvent in the protective film forming chemical. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例79
平滑なポリシリコン膜付きシリコンウェハ(表面に厚さ0.3μmのポリシリコン層を有するSiウェハ)を用いた以外は実施例75と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 79
The procedure was the same as Example 75 except that a smooth silicon wafer with a polysilicon film (Si wafer having a polysilicon layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

実施例80
平滑なポリシリコン膜付きシリコンウェハ(表面に厚さ0.3μmのポリシリコン層を有するSiウェハ)を用いた以外は実施例76と同じとした。評価結果は表3に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水性保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは浸食されず、さらにUV照射後に保護膜形成用薬液の残渣は残らないことが確認できた。
Example 80
The procedure was the same as Example 76, except that a smooth silicon wafer with a polysilicon film (Si wafer having a polysilicon layer with a thickness of 0.3 μm on the surface) was used. As shown in Table 3, the evaluation results showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Further, the contact angle after UV irradiation was less than 10 °, and the water repellent protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the protective film forming chemical solution remained after UV irradiation.

1 ウェハ
2 ウェハ表面の微細な凹凸パターン
3 パターンの凸部
4 パターンの凹部
5 凹部の幅
6 凸部の高さ
7 凸部の幅
8 凹部4に保持された洗浄液
9 凹部4に保持された水系洗浄液
10 撥水性保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Fine uneven | corrugated pattern 3 on the wafer surface 3 Pattern convex part 4 Pattern concave part 5 Concave width 6 Convex part height 7 Convex part width 8 Cleaning liquid 9 held in the concave part 4 Aqueous system held in the concave part 4 Cleaning liquid 10 Water repellent protective film

Claims (5)

表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハの洗浄時に、該凹凸パターンの少なくとも凹部表面に撥水性保護膜を形成するための薬液であり、
下記一般式[1]で表されるケイ素化合物Aを0.01〜30質量%、および、非プロトン性有機溶媒を含むことを特徴とする保護膜形成用薬液。
Figure 2012015335
ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、および、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基から選ばれる少なくとも1つの基であり、Xは、それぞれ互いに独立して、Siと結合する元素が窒素である1価の有機基、Siと結合する元素が酸素である1価の有機基、および、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数、bは0〜2の整数であり、aとbの合計は1〜3である。
A chemical solution for forming a water-repellent protective film on at least the concave surface of the concavo-convex pattern when cleaning a wafer having a fine concavo-convex pattern on the surface and at least part of the concavo-convex pattern includes silicon,
A chemical solution for forming a protective film comprising 0.01 to 30% by mass of a silicon compound A represented by the following general formula [1] and an aprotic organic solvent.
Figure 2012015335
Here, R 1 is each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms and a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. X is at least one group selected from: a monovalent organic group in which the element bonded to Si is nitrogen, a monovalent organic group in which the element bonded to Si is oxygen, and , At least one group selected from halogen groups, a is an integer of 1 to 3, b is an integer of 0 to 2, and the sum of a and b is 1 to 3.
前記非プロトン性有機溶媒は、水100質量部に対する溶解度が5質量部以上であり、
前記保護膜形成用薬液は、前記非プロトン性有機溶媒を50〜99.99質量%含む
ことを特徴とする請求項1に記載の保護膜形成用薬液。
The aprotic organic solvent has a solubility in 100 parts by mass of water of 5 parts by mass or more,
The protective film-forming chemical solution according to claim 1, wherein the protective film-forming chemical solution contains 50 to 99.99% by mass of the aprotic organic solvent.
前記ケイ素化合物A中のXが、Siと結合する元素が窒素である1価の有機基であり、前記保護膜形成用薬液が酸Aを含むことを特徴とする請求項1または2に記載の保護膜形成用薬液。 3. The silicon compound A according to claim 1, wherein X in the silicon compound A is a monovalent organic group in which an element bonded to Si is nitrogen, and the protective film forming chemical contains acid A. Chemical solution for protective film formation. 前記保護膜形成用薬液は、沸点が70〜220℃にあることを特徴とする請求項1〜3のいずれか1に記載の保護膜形成用薬液。 The protective film-forming chemical solution according to claim 1, wherein the protective film-forming chemical solution has a boiling point of 70 to 220 ° C. 5. 請求項1〜4のいずれか1に記載の保護膜形成用薬液を用いる、表面に微細な凹凸パターンを有し該凹凸パターンの少なくとも一部がシリコンを含むウェハ表面の洗浄方法であり、該方法は、
洗浄液を用いて前記ウェハ表面を洗浄する工程と、
前記保護膜形成用薬液を用いて該凹凸パターンの少なくとも凹部表面に撥水性保護膜を形成する工程と、
該凹凸パターンの表面に保持された液体を該凹凸パターンの表面から除去する工程と、
前記液体を除去する工程の後に、該ウェハ表面を光照射すること、該ウェハを加熱すること、該ウェハをオゾン曝露することから選ばれる少なくとも1つ以上の処理を行うことにより前記保護膜を除去する工程を有することを特徴とする表面に微細な凹凸パターンを有するウェハ表面の洗浄方法。

A method for cleaning a wafer surface using the chemical solution for forming a protective film according to claim 1, wherein the surface has a fine concavo-convex pattern and at least part of the concavo-convex pattern includes silicon, and the method Is
Cleaning the wafer surface with a cleaning liquid;
Forming a water-repellent protective film on at least the concave surface of the concave-convex pattern using the protective film-forming chemical,
Removing the liquid retained on the surface of the uneven pattern from the surface of the uneven pattern;
After the step of removing the liquid, the protective film is removed by performing at least one treatment selected from irradiating the wafer surface with light, heating the wafer, and exposing the wafer to ozone. And a method for cleaning a wafer surface having a fine uneven pattern on the surface.

JP2010150534A 2010-06-30 2010-06-30 Chemical for forming protective film, and cleaning method of wafer surface Pending JP2012015335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150534A JP2012015335A (en) 2010-06-30 2010-06-30 Chemical for forming protective film, and cleaning method of wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150534A JP2012015335A (en) 2010-06-30 2010-06-30 Chemical for forming protective film, and cleaning method of wafer surface

Publications (1)

Publication Number Publication Date
JP2012015335A true JP2012015335A (en) 2012-01-19

Family

ID=45601404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150534A Pending JP2012015335A (en) 2010-06-30 2010-06-30 Chemical for forming protective film, and cleaning method of wafer surface

Country Status (1)

Country Link
JP (1) JP2012015335A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115021A1 (en) * 2012-02-01 2013-08-08 セントラル硝子株式会社 Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP2013161834A (en) * 2012-02-01 2013-08-19 Central Glass Co Ltd Chemical for forming water repellent protective film, chemical kit for forming water repellent protective film, and cleaning method of wafer
JP2013161833A (en) * 2012-02-01 2013-08-19 Central Glass Co Ltd Chemical for forming water repellent protective film, chemical kit for forming water repellent protective film, and cleaning method of wafer
WO2018150775A1 (en) * 2017-02-20 2018-08-23 セントラル硝子株式会社 Chemical liquid for forming water repellent protective film
JP2018137426A (en) * 2017-02-20 2018-08-30 セントラル硝子株式会社 Chemical liquid for forming water repellent protective film
WO2019138870A1 (en) * 2018-01-15 2019-07-18 セントラル硝子株式会社 Chemical agent for forming water repellent protective film and surface treatment method for wafers
JP2019123860A (en) * 2018-01-15 2019-07-25 セントラル硝子株式会社 Drug solution for forming water repellent protective film, and surface treatment method for wafers
US10593538B2 (en) 2017-03-24 2020-03-17 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment methods and compositions therefor
WO2020105340A1 (en) * 2018-11-22 2020-05-28 セントラル硝子株式会社 Beveled part treatment agent composition and method for manufacturing wafer
CN111512418A (en) * 2017-12-22 2020-08-07 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
US11174394B2 (en) 2018-01-05 2021-11-16 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment compositions and articles containing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273616A (en) * 1997-03-31 1998-10-13 Toray Ind Inc Production of coating material for water repellent coating
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273616A (en) * 1997-03-31 1998-10-13 Toray Ind Inc Production of coating material for water repellent coating
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115021A1 (en) * 2012-02-01 2013-08-08 セントラル硝子株式会社 Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP2013161834A (en) * 2012-02-01 2013-08-19 Central Glass Co Ltd Chemical for forming water repellent protective film, chemical kit for forming water repellent protective film, and cleaning method of wafer
JP2013161833A (en) * 2012-02-01 2013-08-19 Central Glass Co Ltd Chemical for forming water repellent protective film, chemical kit for forming water repellent protective film, and cleaning method of wafer
WO2018150775A1 (en) * 2017-02-20 2018-08-23 セントラル硝子株式会社 Chemical liquid for forming water repellent protective film
JP2018137426A (en) * 2017-02-20 2018-08-30 セントラル硝子株式会社 Chemical liquid for forming water repellent protective film
US10593538B2 (en) 2017-03-24 2020-03-17 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment methods and compositions therefor
CN111512418B (en) * 2017-12-22 2023-08-29 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
CN111512418A (en) * 2017-12-22 2020-08-07 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
US11447642B2 (en) 2018-01-05 2022-09-20 Fujifilm Electronic Materials U.S.A., Inc. Methods of using surface treatment compositions
US11174394B2 (en) 2018-01-05 2021-11-16 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment compositions and articles containing same
CN111630633A (en) * 2018-01-15 2020-09-04 中央硝子株式会社 Chemical solution for forming water-repellent protective film and method for surface treatment of wafer
KR20200108887A (en) * 2018-01-15 2020-09-21 샌트랄 글래스 컴퍼니 리미티드 Chemical liquid for forming a water-repellent protective film and a method for surface treatment of wafers
TWI707030B (en) * 2018-01-15 2020-10-11 日商中央硝子股份有限公司 Chemical solution for forming water-repellent protective film and wafer surface treatment method
US11282709B2 (en) 2018-01-15 2022-03-22 Central Glass Company, Limited Chemical agent for forming water repellent protective film and surface treatment method for wafers
JP2019123860A (en) * 2018-01-15 2019-07-25 セントラル硝子株式会社 Drug solution for forming water repellent protective film, and surface treatment method for wafers
KR102465276B1 (en) * 2018-01-15 2022-11-10 샌트랄 글래스 컴퍼니 리미티드 Chemical solution for forming water-repellent protective film and surface treatment method of wafer
JP7277700B2 (en) 2018-01-15 2023-05-19 セントラル硝子株式会社 Chemical solution for forming water-repellent protective film and method for surface treatment of wafer
WO2019138870A1 (en) * 2018-01-15 2019-07-18 セントラル硝子株式会社 Chemical agent for forming water repellent protective film and surface treatment method for wafers
CN111630633B (en) * 2018-01-15 2023-09-19 中央硝子株式会社 Chemical solution for forming water-repellent protective film and method for treating surface of wafer
JPWO2020105340A1 (en) * 2018-11-22 2021-10-07 セントラル硝子株式会社 Method for manufacturing bevel treatment agent composition and wafer
WO2020105340A1 (en) * 2018-11-22 2020-05-28 セントラル硝子株式会社 Beveled part treatment agent composition and method for manufacturing wafer
JP7328564B2 (en) 2018-11-22 2023-08-17 セントラル硝子株式会社 Bevel treatment agent composition and wafer manufacturing method
US11817310B2 (en) 2018-11-22 2023-11-14 Central Glass Company, Limited Bevel portion treatment agent composition and method of manufacturing wafer

Similar Documents

Publication Publication Date Title
JP6032338B2 (en) Chemical solution for protective film formation
JP5708191B2 (en) Chemical solution for protective film formation
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
US9748092B2 (en) Liquid chemical for forming protecting film
JP5533178B2 (en) Silicon wafer cleaning agent
JP5482192B2 (en) Silicon wafer cleaning agent
JP5953721B2 (en) Method for preparing protective film forming chemical
JP5446848B2 (en) Silicon wafer cleaning agent
KR101425543B1 (en) Chemical solution for forming water-repellent protective film and method for cleaning of wafer using the same
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
JP5974514B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
KR20130046431A (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP6213616B2 (en) Method for preparing protective film forming chemical
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
TWI484023B (en) Water-borne protective film-forming liquid, water-repellent protective film-forming liquid pack and wafer cleaning method
JP5974515B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP5712670B2 (en) Water repellent protective film forming chemical

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216