JP5656380B2 - Conductive ink composition, solar cell using the composition, and method for producing solar cell module - Google Patents

Conductive ink composition, solar cell using the composition, and method for producing solar cell module Download PDF

Info

Publication number
JP5656380B2
JP5656380B2 JP2009211203A JP2009211203A JP5656380B2 JP 5656380 B2 JP5656380 B2 JP 5656380B2 JP 2009211203 A JP2009211203 A JP 2009211203A JP 2009211203 A JP2009211203 A JP 2009211203A JP 5656380 B2 JP5656380 B2 JP 5656380B2
Authority
JP
Japan
Prior art keywords
particles
conductive particles
mass
conductive
ink composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009211203A
Other languages
Japanese (ja)
Other versions
JP2010109334A (en
Inventor
怜子 小川
怜子 小川
年治 林
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009211203A priority Critical patent/JP5656380B2/en
Publication of JP2010109334A publication Critical patent/JP2010109334A/en
Application granted granted Critical
Publication of JP5656380B2 publication Critical patent/JP5656380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0245Flakes, flat particles or lamellar particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、電子部品等の電極又は電気配線の形成に用いられる導電性インク組成物に関する。更に詳しくは、太陽電池モジュールにおける電気配線、又は太陽電池セルの電極の形成に好適に用いることができる導電性インク組成物及び該組成物を用いた太陽電池セル及び太陽電池モジュールの製造方法に関するものである。 The present invention relates to a conductive ink composition used for forming an electrode such as an electronic component or electric wiring. More particularly, relates to a process for the preparation of the electric wire, or a solar cell electrode solar cell and a solar cell module had use a suitable conductive ink composition may be used and the composition for the formation of the solar cell module It is.

導電性インク組成物をフィルム、基板、又は電子部品等の基材に塗布又は印刷した後、加熱して乾燥硬化させることにより、電極又は電気配線等を形成するという方法は、従来から広く用いられている。しかし、近年の電子機器の高性能化に伴い、導電性インク組成物を用いて形成される電極や電気配線等には、より低抵抗で信頼性が高いことが要求され、その要求は年々高まりつつある。   A method of forming an electrode or an electric wiring by applying or printing a conductive ink composition on a substrate such as a film, a substrate, or an electronic component, and then drying and curing by heating is widely used. ing. However, with the recent improvement in performance of electronic devices, electrodes and electrical wiring formed using conductive ink compositions are required to have lower resistance and higher reliability, and the demand is increasing year by year. It's getting on.

太陽電池の分野においては、表面にテクスチャ構造が形成された結晶性の半導体基板等からなる光電変換層と、該光電変換層上に設けられる集電極とを備える光起電力素子において、集電極は、電極幅をできるだけ細線化し、抵抗を極力小さく設計することが求められている。一般に、太陽電池は使用する材料の種類によって、結晶系の単結晶型又は多結晶型や、アモルファス型、化合物型、ハイブリッド型等に分類される。   In the field of solar cells, in a photovoltaic device comprising a photoelectric conversion layer made of a crystalline semiconductor substrate or the like having a textured structure formed on the surface, and a collector electrode provided on the photoelectric conversion layer, the collector electrode is Therefore, it is required to make the electrode width as thin as possible and design the resistance as small as possible. In general, solar cells are classified into a crystalline single crystal type or a polycrystalline type, an amorphous type, a compound type, a hybrid type, and the like depending on the type of material used.

図1及び図2は、ハイブリッド型太陽電池における太陽電池セルの一例を示す模式図であり、図2はその受光面側からみた平面を、また図1は、図2のA−A線の断面を示す図である。ハイブリッド型太陽電池における太陽電池セルは、図1に示すように、n型単結晶シリコン基板11の受光面側に非結晶質のアモルファスシリコン層12が形成され、このアモルファスシリコン層12上にITOからなる透明電極13、更に、透明電極13上には、集電極14が形成される。一方、受光面と反対側の基板裏面には、アモルファスシリコン層16及び透明電極17が形成される。集電極14が形成される表面は、光閉じ込め効果を得るために、凹凸形状を有するテクスチャ構造になっているのが一般的である。   1 and 2 are schematic views showing an example of a solar battery cell in a hybrid solar battery. FIG. 2 is a plan view seen from the light receiving surface side, and FIG. 1 is a cross section taken along line AA in FIG. FIG. As shown in FIG. 1, a solar cell in a hybrid solar cell has an amorphous amorphous silicon layer 12 formed on the light-receiving surface side of an n-type single crystal silicon substrate 11, and ITO is formed on the amorphous silicon layer 12. A collecting electrode 14 is formed on the transparent electrode 13 and the transparent electrode 13. On the other hand, an amorphous silicon layer 16 and a transparent electrode 17 are formed on the back surface of the substrate opposite to the light receiving surface. In general, the surface on which the collecting electrode 14 is formed has a textured structure having an uneven shape in order to obtain a light confinement effect.

集電極14は、一般に図2に示すように、バスバー部14aとフィンガー部14bとから構成されるが、光電変換層である上記n型単結晶シリコン基板等にできるだけ多くの光を吸収させ、抵抗損失なく電力を取り出すことが要求されることから、電極幅、特にフィンガー部14bの電極幅を細線化し、受光面の面積をより広く確保すること、また抵抗をより小さくすることが要求される。   As shown in FIG. 2, the collector electrode 14 is generally composed of a bus bar portion 14a and finger portions 14b. The collector electrode 14 absorbs as much light as possible into the n-type single crystal silicon substrate or the like, which is a photoelectric conversion layer. Since it is required to take out electric power without loss, it is required to reduce the electrode width, particularly the electrode width of the finger portion 14b, to secure a wider area of the light receiving surface, and to further reduce the resistance.

このような集電極の電極幅の細線化及び低抵抗化を実現すべく、例えば、集電極が粒状導電性フィラーとフレーク状導電性フィラーを含有し、このうち導電性フィラー全体に対する粒状導電性フィラーの含有量が40重量%以上である導電性ペーストを用いて形成された光起電力素子が開示されている(例えば、特許文献1参照。)。この光起電力素子を構成する集電極は、一般に、スクリーン印刷法を用いて形成されるが、導電性ペースト中にフレーク状導電性フィラーが多く含まれると、スクリーン版に目詰まりが生じ易く、印刷パターンにかすれや断線を起こし、細線化が困難であるという従来の問題点を解決することを目的とするものである。   In order to realize such thinning and low resistance of the electrode width of the collecting electrode, for example, the collecting electrode contains a granular conductive filler and a flaky conductive filler, and among these, the granular conductive filler for the entire conductive filler A photovoltaic element formed using a conductive paste having a content of 40% by weight or more is disclosed (for example, see Patent Document 1). The collector electrode constituting this photovoltaic element is generally formed using a screen printing method, but if the conductive paste contains a lot of flaky conductive filler, the screen plate is likely to be clogged, An object of the present invention is to solve the conventional problem that the printed pattern is faint or disconnected and it is difficult to make the line thin.

特開2002−76398号公報(請求項1)JP 2002-76398 A (Claim 1)

しかしながら、上記特許文献1に記載された発明では、フレーク状導電性フィラーの含有量を少なくすることで良好な導電性が損なわれないよう、導電性ペースト中に含まれるフレーク状導電性フィラーのフレーク径(フレーク平面の最長長さ)が5μm以上、好ましくは6〜8μmとされており、比較的大きなフレーク径の導電性フィラーを使用しなければならない。そのため、導電性ペーストをスクリーン印刷法等を用いて印刷する際、微細なパターンの印刷が困難となり、形成される電極の電極幅を細線化するという効果は十分ではなかった。   However, in the invention described in Patent Document 1, the flakes of the flaky conductive filler contained in the conductive paste are used so that good conductivity is not impaired by reducing the content of the flaky conductive filler. The diameter (the longest length of the flake plane) is 5 μm or more, preferably 6 to 8 μm, and a conductive filler having a relatively large flake diameter must be used. For this reason, when the conductive paste is printed using a screen printing method or the like, it is difficult to print a fine pattern, and the effect of thinning the electrode width of the formed electrode is not sufficient.

本発明の目的は、電極又は電気配線、特に、太陽電池の集電極において、電極幅の更なる細線化及び低抵抗化が可能であり、また細線化された狭い密着面積においても十分な密着性を有するとともに、耐熱性及び耐水性に優れた信頼性の高い電極を形成し得る導電性インク組成物を提供することにある。   It is an object of the present invention to further reduce the electrode width and reduce the resistance of an electrode or an electrical wiring, particularly a solar cell collector electrode, and sufficient adhesion even in a narrow and narrow contact area. Another object of the present invention is to provide a conductive ink composition capable of forming a highly reliable electrode having excellent heat resistance and water resistance.

本発明の別の目的は、上記導電性インク組成物を用いて形成された電極を備え、光電変換効率の高い太陽電池セル及び該太陽電池セルを備えた太陽電池モジュールの製造方法を提供することにある。 Another object of the present invention is to provide a solar cell having an electrode formed using the conductive ink composition and having high photoelectric conversion efficiency, and a method for producing a solar cell module including the solar cell. It is in.

本発明の更に別の目的は、上記導電性インク組成物を用いて形成された電気配線を備え、光電変換効率の高い太陽電池モジュールの製造方法を提供することにある。 Still another object of the present invention is to provide a method for producing a solar cell module having an electrical wiring formed using the conductive ink composition and having high photoelectric conversion efficiency.

本発明の第1の観点は、導電性粒子と、加熱硬化性樹脂組成物、硬化剤及び溶剤とを含む有機系ビヒクルからなり、太陽電池セルの集電極又は太陽電池セル同士を電気的に接合するリード線の形成に用いられる導電性インク組成物において、導電性粒子が平均粒径1nm以上100nm未満のナノ銀粒子と平均フレーク径が0.1μm以上1.0μm以下であるフレーク状導電性粒子とを含有し、導電性粒子が前記フレーク状導電性粒子を前記ナノ銀粒子より質量割合でより多く含有し、導電性粒子が平均粒径0.1〜0.5μmの球状導電性粒子を更に含み、導電性粒子がフレーク状導電性粒子を50〜95質量%含有し、導電性粒子がナノ銀粒子を1〜10質量%含有し、ナノ銀粒子が球状と、球状以外の異方性の粒子とを含み、加熱硬化性樹脂組成物と導電性粒子の含有割合が質量比で2〜15:75〜95であり、フレーク状導電性粒子がAg粒子であり、球状導電性粒子がAg粒子であり、加熱硬化性樹脂組成物がエポキシ樹脂組成物であり、溶剤100質量部に対してエポキシ樹脂組成物を20〜40質量部含有し、硬化剤がイミダゾール類、第3級アミン類、又はフッ化ホウ素を含むルイス酸、或いはその化合物であることを特徴とする。 1st viewpoint of this invention consists of an organic vehicle containing electroconductive particle, a thermosetting resin composition, a hardening | curing agent, and a solvent, and it electrically joins the collector electrode or photovoltaic cell of photovoltaic cells. In the conductive ink composition used for forming the lead wire, the conductive particles are nano silver particles having an average particle size of 1 nm or more and less than 100 nm and flaky conductive particles having an average flake size of 0.1 μm or more and 1.0 μm or less And the conductive particles contain more flaky conductive particles in a mass ratio than the nano silver particles, and the conductive particles are spherical conductive particles having an average particle size of 0.1 to 0.5 μm. In addition, the conductive particles contain 50 to 95% by mass of flaky conductive particles, the conductive particles contain 1 to 10% by mass of nano silver particles, and the nano silver particles are spherical and anisotropic other than spherical. And heat hardened The content ratio of the conductive resin composition to the conductive particles is 2 to 15:75 to 95 by mass ratio, the flaky conductive particles are Ag particles, the spherical conductive particles are Ag particles, and the thermosetting resin. Lewis acid containing epoxy resin composition, 20-40 parts by mass of epoxy resin composition with respect to 100 parts by mass of solvent, and curing agent containing imidazoles, tertiary amines, or boron fluoride Or a compound thereof.

本発明の第の観点は、第1の観点に基づく発明であって、更に基板に塗布後、温度100〜280℃の範囲内で加熱硬化することを特徴とする。 A second aspect of the present invention is an invention based on the first aspect, and is characterized in that after being applied to a substrate, it is heat-cured within a temperature range of 100 to 280 ° C.

本発明の第の観点は、第1又は2の観点に基づく導電性インク組成物を用いて集電極形成する太陽電池セルの製造方法である。 The 3rd viewpoint of this invention is a manufacturing method of the photovoltaic cell which forms a collector electrode using the conductive ink composition based on the 1st or 2nd viewpoint.

本発明の第の観点は、第の観点に基づく発明であって、更に集電極が透明導電層上に形成されたことを特徴とする。 A fourth aspect of the present invention is the invention based on the third aspect, and is characterized in that a collecting electrode is further formed on the transparent conductive layer.

本発明の第の観点は、第又は第の観点の太陽電池セルを備えた太陽電池モジュールである。 The 5th viewpoint of the present invention is a solar cell module provided with the photovoltaic cell of the 3rd or 4th viewpoint.

本発明の第の観点は、第1又は第2の観点の導電性インク組成物を用いてリード線が形成された太陽電池モジュールである。 A sixth aspect of the present invention is a solar cell module in which a lead wire is formed using the conductive ink composition of the first or second aspect .

本発明の導電性インク組成物によれば、導電性粒子と、加熱硬化性樹脂組成物、硬化剤及び溶剤とを含む有機系ビヒクルからなり、太陽電池セルの集電極又は太陽電池セル同士を電気的に接合するリード線の形成に用いられる導電性インク組成物において、導電性粒子が平均粒径1nm以上100nm未満のナノ銀粒子と平均フレーク径が0.1μm以上1.0μm以下であるフレーク状導電性粒子とを含有し、導電性粒子が前記フレーク状導電性粒子を前記ナノ銀粒子より質量割合でより多く含有し、導電性粒子が平均粒径0.1〜0.5μmの球状導電性粒子を更に含み、導電性粒子がフレーク状導電性粒子を50〜95質量%含有し、導電性粒子がナノ銀粒子を1〜10質量%含有し、ナノ銀粒子が球状と、球状以外の異方性の粒子とを含み、加熱硬化性樹脂組成物と導電性粒子の含有割合が質量比で2〜15:75〜95であり、フレーク状導電性粒子がAg粒子であり、球状導電性粒子がAg粒子であり、加熱硬化性樹脂組成物がエポキシ樹脂組成物であり、溶剤100質量部に対してエポキシ樹脂組成物を20〜40質量部含有し、硬化剤がイミダゾール類、第3級アミン類、又はフッ化ホウ素を含むルイス酸、或いはその化合物であることにより、電極又は電気配線、特に、太陽電池の集電極の形成において、電極幅の更なる細線化及び低抵抗化が可能になる。また細線化された狭い密着面積においても十分な密着性を有するとともに、耐熱性に優れた高い信頼性の電極を形成することができる。
本発明の導電性インク組成物を用いて形成された集電極は、電極幅がより細線化され、低抵抗化されるため、この電極を備えた太陽電池セル及び該太陽電池セルを備えた太陽電池モジュールは、高い光電変換効率が得られる。
また本発明の導電性インク組成物を用いて形成されたリード線は、従来のものよりも低抵抗であるため、このリード線を備えた太陽電池モジュールは、高い光電変換効率が得られる。
According to the conductive ink composition of the present invention, the conductive ink composition is composed of an organic vehicle containing conductive particles and a thermosetting resin composition, a curing agent and a solvent. In a conductive ink composition used for formation of a lead wire to be bonded, a conductive silver particle having a mean particle diameter of 1 nm or more and less than 100 nm and a flake shape having an average flake diameter of 0.1 μm or more and 1.0 μm or less Conductive particles, the conductive particles contain more flaky conductive particles in a mass ratio than the nano silver particles, and the conductive particles have a spherical conductivity with an average particle size of 0.1 to 0.5 μm. Further containing conductive particles, the conductive particles contain 50 to 95% by mass of flaky conductive particles, the conductive particles contain 1 to 10% by mass of nanosilver particles, the nanosilver particles are spherical, and other than spherical With anisotropic particles And the content ratio of the thermosetting resin composition and the conductive particles is 2 to 15:75 to 95 by mass ratio, the flaky conductive particles are Ag particles, and the spherical conductive particles are Ag particles, The thermosetting resin composition is an epoxy resin composition, containing 20 to 40 parts by mass of the epoxy resin composition with respect to 100 parts by mass of the solvent, and the curing agent is imidazoles, tertiary amines, or boron fluoride. In the formation of an electrode or electrical wiring, particularly, a collector electrode of a solar cell, the electrode width can be further reduced and the resistance can be reduced. In addition, it is possible to form a highly reliable electrode having sufficient adhesion even in a narrow and narrow adhesion area and having excellent heat resistance.
Since the collector electrode formed using the conductive ink composition of the present invention has a narrower electrode width and a lower resistance, a solar cell provided with this electrode and a solar cell provided with the solar cell The battery module can obtain high photoelectric conversion efficiency.
Moreover, since the lead wire formed using the conductive ink composition of the present invention has a lower resistance than the conventional one, a solar cell module provided with this lead wire can obtain high photoelectric conversion efficiency.

図2のA−A線の断面を示す図。The figure which shows the cross section of the AA line of FIG. 太陽電池セルの平面の一例を表す模式図。The schematic diagram showing an example of the plane of a photovoltaic cell. 太陽電池モジュールの一例の概略を示す平面図。The top view which shows the outline of an example of a solar cell module.

次に本発明を実施するための形態について説明する。
本発明の導電性インク組成物は、導電性粒子と、加熱硬化性樹脂組成物、硬化剤及び溶剤を含む有機系ビヒクルとを含有する。導電性粒子は平均粒径1nm以上100nm未満のナノ銀粒子と平均フレーク径が0.1μm以上1.0μm以下であるフレーク状導電性粒子とを含有する。
Next, the form for implementing this invention is demonstrated.
The conductive ink composition of the present invention contains conductive particles and an organic vehicle containing a heat curable resin composition, a curing agent and a solvent. The conductive particles contain nano silver particles having an average particle diameter of 1 nm or more and less than 100 nm and flaky conductive particles having an average flake diameter of 0.1 μm or more and 1.0 μm or less .

本発明の導電性インク組成物では、導電性粒子として上記ナノ銀粒子を含むことにより、このナノ銀粒子が比較的低温で焼結し、導電性粒子同士の隙間を埋めるため、フレーク状導電性粒子の平均フレーク径を従来より小さくしても、高い導電性を維持できる。また平均フレーク径の小さなフレーク状導電性粒子が使用できるため、フレーク状導電性粒子の含有割合を減らさなくても、スクリーン印刷法を用いて印刷する場合に生じていたスクリーン目詰まりといった不具合も解消される。   In the conductive ink composition of the present invention, since the nanosilver particles are sintered at a relatively low temperature by containing the nanosilver particles as the conductive particles, the gap between the conductive particles is filled. Even if the average flake diameter of the particles is made smaller than before, high conductivity can be maintained. In addition, since flaky conductive particles with a small average flake diameter can be used, problems such as screen clogging that occur when printing using the screen printing method are eliminated without reducing the content of flaky conductive particles. Is done.

ナノ銀粒子の平均粒径を上記範囲としたのは、1nm未満では、強固な凝集等が起こりやすく不安定な材料となり、100nm以上になると、100〜150℃付近の低温で焼成した場合、ナノ銀粒子の低温での焼結が不十分となり本発明の効果が得られ難いからである。このうち、ナノ銀粒子の平均粒径は5〜90nmが好ましい。またフレーク状導電性粒子の平均フレーク径を上記範囲としたのは、フレーク状導電性粒子の平均フレーク径が0.1μm未満であると、比表面積が大きくなるため、組成物の粘度が高くなり過ぎたり、またフレーク状導電性粒子を入れることにより高い導電性を得るという効果が得られ難くなるからである。一方、1.0μmを超えると、形成される電極の低抵抗化が困難であったり、またスクリーン印刷法等を用いて印刷する際、スクリーン目詰まりを起こし、かすれなどの印刷不良を起こす。このうち、フレーク状導電性粒子のフレーク径は0.15〜1.0μmであることが好ましい。 The average particle diameter of the nano silver particles is in the above range because if it is less than 1 nm, it becomes an unstable material in which strong aggregation or the like is likely to occur, and if it is 100 nm or more, when it is baked at a low temperature around 100 to 150 ° C., This is because the silver particles are not sufficiently sintered at a low temperature, and it is difficult to obtain the effects of the present invention. Among these, the average particle diameter of the nano silver particles is preferably 5 to 90 nm. The average flake diameter of the flaky conductive particles is within the above range because the specific surface area increases when the average flake diameter of the flaky conductive particles is less than 0.1 μm, and the viscosity of the composition increases. This is because it is difficult to obtain the effect of obtaining high conductivity by passing the flaky conductive particles. On the other hand, Exceeding 1.0 [mu] m, or it is difficult to reduce the resistance of the electrode to be formed, also when printing using a screen printing method or the like, cause screen clogging, causing printing defects such as thin spots . Among these, the flake diameter of the flaky conductive particles is preferably 0.15 to 1.0 μm.

また本発明の導電性インク組成物は導電性粒子として、上記ナノ銀粒子及びフレーク状導電性粒子以外に、平均粒径0.1〜3μmの球状導電性粒子を更に含。上記球状導電性粒子を更に含むことにより、導電性粒子同士の隙間がより密に集まり、導電性が更に向上する。球状導電性粒子の平均粒径が3μmを越えると粒径の大きな粒子が多く含まれることにより組成物の粘度が低くなるため、印刷後のパターン形状が崩れ、滲みが発生するため好ましくない。このうち、更に含まれる球状導電性粒子の平均粒径は、0.1〜2.0μmが特に好ましい。また、導電性粒子同士が密に集まり、高い導電性を確保するのに好適であることから、更に含まれる球状導電性粒子の平均粒径は、フレーク状導電性粒子の平均フレーク径よりも小さいことが特に好ましい。ここで、ナノ銀粒子及び球状導電性粒子の平均粒径及びフレーク状導電性粒子の平均フレーク径とは、レーザー回折/散乱式粒度分布測定装置(堀場製作所製 LA−950)にて測定し、粒子径基準を個数として演算した50%平均粒子径(D50)をいう。このレーザー回折/散乱式粒度分布測定装置による個数基準平均粒径又は平均フレーク径の値は、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE及びS−900)により観察した画像において、任意の50個の粒子について粒径を実測したときのその平均粒径又は平均フレーク径とほぼ一致する。なおフレーク状であるか球状であるかは、上記走査型顕微鏡で観察した像で識別したアスペクト比(直径/厚さ)が2以上のものをフレーク状とし、2未満のものを球状と識別する。またフレーク状導電性粒子の平均フレーク径とは、フレーク状導電性微粒子の直径(長径)の平均値をいう。フレーク状導電性粒子のアスペクト比(直径/厚さ)は2〜20の範囲であることが好ましい。厚みは0.005〜1.5μmの範囲であることが好ましく、0.005〜0.5μmの範囲であることが特に好ましい。 The conductive ink composition of the present invention as the conductive particles, in addition to the nano silver particles and flaky conductive particles, further including a spherical conductive particles having an average particle size of 0.1 to 3 m. By further including the spherical conductive particles, the gaps between the conductive particles gather more closely, and the conductivity is further improved. If the average particle size of the spherical conductive particles exceeds 3 μm, the composition has a low viscosity due to the inclusion of many particles having a large particle size, so that the pattern shape after printing collapses and bleeding occurs, which is not preferable. Among these, the average particle diameter of the spherical conductive particles further contained is particularly preferably 0.1 to 2.0 μm. In addition, since the conductive particles are closely gathered and suitable for ensuring high conductivity, the average particle diameter of the spherical conductive particles further contained is smaller than the average flake diameter of the flaky conductive particles. It is particularly preferred. Here, the average particle diameter of nano silver particles and spherical conductive particles and the average flake diameter of flaky conductive particles are measured with a laser diffraction / scattering type particle size distribution measuring device (LA-950, manufactured by Horiba, Ltd.) The 50% average particle diameter (D 50 ) calculated using the particle diameter standard as the number. The number-based average particle diameter or the average flake diameter measured by this laser diffraction / scattering particle size distribution analyzer is an arbitrary value of 50 in an image observed with a scanning electron microscope (S-4300SE and S-900, manufactured by Hitachi High-Technologies Corporation). The average particle diameter or the average flake diameter when the particle diameter is actually measured for each particle is almost the same. Whether it is flaky or spherical is determined to be flaky if the aspect ratio (diameter / thickness) identified by the image observed with the scanning microscope is 2 or more, and is identified as spherical if it is less than 2 . The average flake diameter of the flaky conductive particles refers to the average value of the diameter (major axis) of the flaky conductive fine particles. The aspect ratio (diameter / thickness) of the flaky conductive particles is preferably in the range of 2-20. The thickness is preferably in the range of 0.005 to 1.5 μm, and particularly preferably in the range of 0.005 to 0.5 μm.

導電性粒子は上記フレーク状導電性粒子を上記ナノ銀粒子より質量割合でより多く含有する。即ち導電性粒子は上記フレーク状導電性粒子を50質量%以上含有する。フレーク状導電性粒子が50質量%未満であると、導電性が低下する。このうち、導電性粒子はフレーク状導電性粒子を50〜95質量%含有、65〜95質量%含有するのが好ましい。一方、ナノ銀粒子は、好ましくは1〜10質量%含有する。また、球状導電性粒子を更に含む場合には、4〜35質量%含有するのが好ましい。 The conductive particles contain more flaky conductive particles in a mass ratio than the nano silver particles. That is, the conductive particles contain 50% by mass or more of the flaky conductive particles. When the flaky conductive particles are less than 50% by mass, the conductivity is lowered. Of these, conductive particles of the flaky conductive particles containing 50 to 95 wt%, is good preferable to contain 65 to 95 wt%. On the other hand, the nano silver particles are preferably contained in an amount of 1 to 10% by mass. Moreover, when further containing spherical electroconductive particle, it is preferable to contain 4-35 mass%.

また導電性粒子として含まれるナノ銀粒子は、球状にかかわらず、球状以外にフレーク状やロッド状といった異方性のナノ銀粒子。異方性のナノ銀粒子を含ませることで、導電性を更に向上させる効果が期待できる。 The nanosilver particles contained as conductive particles, regardless of spherical, flaky or rodlike such anisotropic nanosilver particles free of the non-spherical. By including anisotropic nano silver particles, the effect of further improving the conductivity can be expected.

導電性粒子に含まれるフレーク状導電性粒子には、比抵抗が小さく酸化され難いという理由から、Ag粒子を使用するが、Ag以外には、Au、Cu、Ni又はAlを単独で使用してもよいし、或いはAgを含めたこれら2種以上を組み合わせて使用してもよい。 The flaky conductive particles contained in the conductive particles, because they hardly oxidized resistivity small, but that use Ag particles, in addition to Ag are used Au, Cu, Ni or Al alone Alternatively, these two or more types including Ag may be used in combination.

また、導電性粒子に含まれる球状導電性粒子には、比抵抗が小さく酸化され難いという理由から、Ag粒子を使用するが、Ag以外には、Au、Cu、Ni又はAlを単独で使用してもよいし、或いはAgを含めたこれら2種以上を組み合わせて使用してもよい。 Further, the spherical conductive particles contained in the conductive particles, the reason that the resistivity hardly oxidized smaller, but that use Ag particles, in addition to Ag are used Au, Cu, Ni or Al alone Alternatively, these two or more types including Ag may be used in combination.

本発明の導電性インク組成物を構成する有機系ビヒクルは、加熱硬化性樹脂組成物、硬化剤及び溶剤を含有する。
有機系ビヒクルを構成する加熱硬化性樹脂組成物には、従来よりも更に細線化され、接着面積が狭くなった集電極において高い密着性を発現させる必要があるという理由から、エポキシ樹脂組成物を使用する。好適なエポキシ樹脂組成物には、ビスフェノールA型、ビスフェノールF型、ビフェニル型、ビフェニル混合型、クレゾールノボラック型、ナフタレン型、ジシクロペンタジエン型等のエポキシ樹脂組成物が挙げられる。このうち、ビフェニル型又はビフェニル混合型のエポキシ樹脂が特に好ましい。ビフェニル型エポキシ樹脂には、例えば、ビフェノールグリシジルエーテル型エポキシ樹脂(日本化薬社製:NC−3000、NC−3000L、ジャパンエポキシレジン社製:YX4000、YL6640等)が挙げられる。またビフェニル混合型には、o−クレゾールノボラックのポリグリシジルエーテルとビフェノールグリシジルエーテルとを混合したエポキシ樹脂(日本化薬社製:CER−1020等)が挙げられる。また上記エポキシ樹脂組成物の中でも、特に、室温では、固体で存在し、かつ150℃における溶融粘度が0.1Pa・s以下であるという性質を有するものが特に好ましい。その理由は、硬化剤との反応を瞬時に進めることができ、また、高い密着性を発現させ、比抵抗を低下させるのに好適だからである。一方、150℃における溶融粘度が0.1Pa・sを越えると、硬化反応が瞬時に進まず、密着不良等の不具合が生じやすいため好ましくない。ここで示した溶融粘度の値は、例えば、コーン及びプレート型のICI粘度計(Research Equipment London社製)を用いて測定された値である。
The organic vehicle constituting the conductive ink composition of the present invention contains a heat curable resin composition, a curing agent and a solvent.
For the thermosetting resin composition constituting the organic vehicle, an epoxy resin composition is used because it is necessary to express high adhesion in a collector electrode that is further thinned and has a narrow adhesion area. We want to use. Suitable epoxy resin compositions include bisphenol A type, bisphenol F type, biphenyl type, biphenyl mixed type, cresol novolac type, naphthalene type, dicyclopentadiene type and the like. Of these, biphenyl type or biphenyl mixed type epoxy resins are particularly preferable. Examples of the biphenyl type epoxy resin include a biphenol glycidyl ether type epoxy resin (Nippon Kayaku Co., Ltd .: NC-3000, NC-3000L, Japan Epoxy Resin Co., Ltd .: YX4000, YL6640, etc.). The biphenyl mixed type includes an epoxy resin (manufactured by Nippon Kayaku Co., Ltd .: CER-1020, etc.) obtained by mixing polyglycidyl ether of o-cresol novolac and biphenol glycidyl ether. Among the epoxy resin compositions, those having a property of being solid at room temperature and having a melt viscosity at 150 ° C. of 0.1 Pa · s or less are particularly preferable. The reason for this is that the reaction with the curing agent can be carried out instantaneously, and it is suitable for developing high adhesion and reducing the specific resistance. On the other hand, if the melt viscosity at 150 ° C. exceeds 0.1 Pa · s, the curing reaction does not proceed instantaneously, and problems such as poor adhesion are likely to occur. The value of the melt viscosity shown here is a value measured using, for example, a cone and plate type ICI viscometer (manufactured by Research Equipment London).

硬化剤としては、一般的に用いられるイミダゾール類、第3級アミン類又はフッ化ホウ素を含むルイス酸、或いはその化合物が好適である。イミダゾール類には、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール又は2−フェニルイミダゾールイソシアヌル酸付加物等が挙げられる。第3級アミン類には、ピペリジン、ベンジルジアミン、ジエチルアミノプロピルアミン、イソフォロンジアミン又はジアミノジフェニルメタン等が挙げられる。フッ化ホウ素を含むルイス酸には、フッ化ホウ素モノエチルアミン等のフッ化ホウ素のアミン錯体が挙げられる。またジシアンジアミド(DICY)のような潜在性の高い硬化剤を用い、その促進剤として上記硬化剤を組み合わせても良い。このうち、密着性向上の理由から、イミダゾール類の2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール又は2−フェニル−4,5−ジヒドロキシメチルイミダゾールが特に好ましい。   As the curing agent, commonly used imidazoles, tertiary amines, Lewis acids containing boron fluoride, or compounds thereof are suitable. Examples of imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4. -Methyl-5-hydroxymethylimidazole or 2-phenylimidazole isocyanuric acid adduct is exemplified. Tertiary amines include piperidine, benzyldiamine, diethylaminopropylamine, isophoronediamine or diaminodiphenylmethane. The Lewis acid containing boron fluoride includes an amine complex of boron fluoride such as boron fluoride monoethylamine. Further, a curing agent having a high potential such as dicyandiamide (DICY) may be used, and the above curing agent may be combined as an accelerator. Of these, imidazoles such as 2-ethyl-4-methylimidazole, 2-phenylimidazole, or 2-phenyl-4,5-dihydroxymethylimidazole are particularly preferred for the purpose of improving adhesion.

溶剤としては、ジオキサン、ヘキサン、トルエン、メチルセロソルブ、シクロヘキサン、ジエチレングリコールジメチルエーテル、ジメチルホルムアミド、N−メチルピロリドン、ジアセトンアルコール、ジメチルアセトアミド、γ−ブチロラクトン、ブチルカルビトール、ブチルカルビトールアセテート、エチルカルビトール、エチルカルビトールアセテート、ブチルセロソルブ、ブチルセロソルブアセテート、エチルセロソルブ、α−テルピネオール等が挙げられる。このうち、エチルカルビトールアセテート、ブチルカルビトールアセテート、α−テルピネオールが特に好ましい。 As the solvent, dioxane, hexane, toluene, methyl cellosolve, cyclohexane, diethylene glycol dimethyl ether, dimethylformamide, N-methylpyrrolidone, diacetone alcohol, dimethylacetamide, γ-butyrolactone, butyl carbitol, butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, butyl cellosolve, butyl cellosolve acetate, ethyl cellosolve, alpha-terpineol, and the like. Of these, ethyl carbitol acetate, butyl carbitol acetate, and α-terpineol are particularly preferable.

本発明の導電性インク組成物は、例えば、以下のような方法で調製される。
先ず、好ましくは温度20〜30℃、更に好ましくは25℃の条件で、上記溶剤100質量部に対し、上記加熱硬化性樹脂組成物を好ましくは10〜50質量部、更に好ましくは20〜40質量部を混合し、次いで上記硬化剤を適量混合して有機系ビヒクルを調製する。また導電性粒子として、上記ナノ銀粒子とフレーク状導電性粒子とを、又は上記ナノ銀粒子とフレーク状導電性粒子と、更に上記球状導電性粒子とを混合し、十分に振り混ぜたものを用意する。次いで、上記調製された有機系ビヒクルと、上記導電性粒子とを、例えば3本ロールミル等の混練機を用いて混練し、ペースト化することにより導電性インク組成物が調製される。このとき、調製される導電性インク組成物に適性な粘度、及び必要な流動性を持たせるために、有機系ビヒクルを5〜30質量%、導電性粒子を70〜95質量%の割合で混合するのが好ましい。有機系ビヒクルが下限値の5質量%未満、即ち導電性粒子が95質量%を越えると、インク組成物としての適性な流動性が得られ難く、一方、有機系ビヒクルが上限値の30質量%を越える、即ち導電性粒子が70質量%未満になると、導電性粒子が不足し、良好な導電性が得られ難くなるからである。このうち、有機系ビヒクルを8〜20質量%、導電性粒子を80〜92質量%の割合で混合するのが特に好ましい。
The conductive ink composition of the present invention is prepared, for example, by the following method.
First, preferably at a temperature 20 to 30 ° C., further preferably of 25 ° C. Conditions, to the solvent 100 parts by weight, preferably 10 to 50 parts by weight of the thermosetting resin composition, more preferably 20 to 40 weight Parts are mixed, and then an appropriate amount of the curing agent is mixed to prepare an organic vehicle. Further, as the conductive particles, the nano silver particles and the flaky conductive particles, or the nano silver particles and the flaky conductive particles, and further the spherical conductive particles are mixed and sufficiently mixed. prepare. Next, the conductive ink composition is prepared by kneading the prepared organic vehicle and the conductive particles with a kneader such as a three-roll mill to form a paste. At this time, in order to give a suitable viscosity and necessary fluidity to the prepared conductive ink composition, the organic vehicle is mixed at a ratio of 5 to 30% by mass and the conductive particles at a ratio of 70 to 95% by mass. It is preferable to do this. When the organic vehicle is less than the lower limit of 5% by mass, that is, when the conductive particles exceed 95% by mass, it is difficult to obtain suitable fluidity as an ink composition, while the organic vehicle has an upper limit of 30% by mass. This is because, if the conductive particles are less than 70% by mass, the conductive particles are insufficient and it is difficult to obtain good conductivity. Among these, it is particularly preferable to mix the organic vehicle in an amount of 8 to 20% by mass and the conductive particles in an amount of 80 to 92% by mass.

また導電性インク組成物中の加熱硬化性樹脂組成物と導電性粒子の含有割合は、導電性の高い電極を形成するのに好適であるという理由から、質量比で2〜15:75〜95である。このうち、好ましくは、2〜7:83〜95である。 Further, the content ratio of the heat curable resin composition and the conductive particles in the conductive ink composition is preferably 2 to 15:75 to 95 in terms of mass ratio because it is suitable for forming a highly conductive electrode. der Ru. Of these, good Mashiku is, 2 to 7: A 83-95.

このように調製された本発明の導電性インク組成物は、30〜200Pa・sの適正な粘度を有する。これによりスクリーン印刷法を用いて基板等に塗布する場合、形状の乱れやかすれを生じることなく、微細なパターンの印刷ができる。また基板や太陽電池セルにおける積層体上等に塗布又は印刷した後、好ましくは100〜280℃、更に好ましくは150〜220℃の温度で硬化する性質を有する。100℃未満では、硬化が不十分となる。またハイブリッド型の太陽電池セルにおいては、280℃を超える温度で焼成した場合、太陽電池セルの性能に支障を来す。   The conductive ink composition of the present invention thus prepared has an appropriate viscosity of 30 to 200 Pa · s. Thereby, when applying to a board | substrate etc. using a screen printing method, a fine pattern can be printed, without producing a disorder | damage | disturbance of a shape and a fading. Moreover, after apply | coating or printing on the laminated body etc. in a board | substrate or a photovoltaic cell, Preferably it has a property hardened | cured at the temperature of 100-280 degreeC, More preferably, 150-220 degreeC. If it is less than 100 degreeC, hardening will become inadequate. Moreover, in the case of a hybrid solar cell, when it is baked at a temperature exceeding 280 ° C., the performance of the solar cell is hindered.

本発明の導電性インク組成物は、電極又は電気配線、特に、太陽電池モジュールにおける太陽電池セルの集電極、又はリード線の形成に好適に用いることができる。太陽電池セルの集電極は、例えば、太陽電池セルの平面を模式的に表した図2に示すように、2本のバスバー部14aと、このバスバー部14aと直交する複数本からなるフィンガー部14bとを備える。   The conductive ink composition of the present invention can be suitably used for forming electrodes or electrical wiring, in particular, collecting electrodes of solar cells in a solar cell module, or lead wires. For example, as shown in FIG. 2 schematically showing the plane of the solar battery cell, the collector electrode of the solar battery cell includes two bus bar portions 14a and a plurality of finger portions 14b perpendicular to the bus bar portion 14a. With.

この集電極の電極幅、特にフィンガー部の電極幅は、より多くの光を受光面に照射させるために、できるだけ細線化することが求められているが、本発明の導電性インク組成物では、平均フレーク径が0.1μm以上3μm未満と、従来のものに比べて小さいフレーク状導電性粒子を使用しているため、微細なパターンの印刷ができ、形成される太陽電池の集電極の更なる細線化が可能となる。またフレーク径の小さいフレーク状導電性粒子を使用することにより、スクリーン印刷法を用いて印刷する際、従来技術で問題とされていたスクリーン目詰まりといった不具合も解消される。また本発明の導電性インク組成物では、従来のものに比べ、平均フレーク径の小さいフレーク状導電性粒子を使用しているが、ナノ銀粒子が比較的低温で焼結し、導電性粒子同士の隙間を埋めるため、高い導電性を維持できる。更に、接着性の高いエポキシ樹脂を用いているため、より細線化され、狭べられた接着面積においても、高い密着性が得られる。   The electrode width of the collector electrode, particularly the electrode width of the finger portion, is required to be as thin as possible in order to irradiate more light onto the light receiving surface. In the conductive ink composition of the present invention, Since flaky conductive particles having an average flake diameter of 0.1 μm or more and less than 3 μm are used as compared with conventional ones, a fine pattern can be printed, and the solar cell collector electrode to be formed is further improved Thinning is possible. Further, by using flaky conductive particles having a small flake diameter, problems such as screen clogging, which has been a problem in the prior art when printing using the screen printing method, are solved. The conductive ink composition of the present invention uses flaky conductive particles having a smaller average flake diameter than conventional ones, but the nano silver particles are sintered at a relatively low temperature, and the conductive particles are Therefore, high conductivity can be maintained. Furthermore, since an epoxy resin with high adhesiveness is used, high adhesion can be obtained even in a narrower and narrower adhesive area.

本発明の導電性インク組成物を用いて形成された集電極を備えた太陽電池セル及び該太陽電池セルを備えた太陽電池モジュールは、集電極の細線化により、より多くの光を受光面に照射させ、光電変換層に吸収させることができるため、高い光電変換効率が得られる。   A solar battery cell having a collector electrode formed by using the conductive ink composition of the present invention and a solar battery module having the solar battery cell receive more light on the light receiving surface by thinning the collector electrode. Since it can be irradiated and absorbed in the photoelectric conversion layer, high photoelectric conversion efficiency is obtained.

また、図3に示すように、一般に太陽電池モジュール30は、リード線31により太陽電池セル32同士を相互に電気的に接続されることで形成される。このリード線は、太陽電池モジュールの特性を高めるために、より低抵抗のものを用いることが要求されることから、通常、銅箔が使用され、この銅箔は半田などにより被覆される。本発明の導電性インク組成物は、リード線における銅箔の代替として利用でき、印刷法による形成が可能であることから、簡便な方法で低抵抗のリード線の形成が可能になる。   As shown in FIG. 3, generally, the solar cell module 30 is formed by electrically connecting the solar cells 32 to each other by lead wires 31. Since this lead wire is required to have a lower resistance in order to enhance the characteristics of the solar cell module, a copper foil is usually used, and this copper foil is covered with solder or the like. Since the conductive ink composition of the present invention can be used as a substitute for the copper foil in the lead wire and can be formed by a printing method, a low resistance lead wire can be formed by a simple method.

本発明の導電性インク組成物を用いて集電極が形成された太陽電池セル又はこの太陽電池セルを備えた太陽電池モジュールは、高い光電変換効率が得られる。   A solar cell in which a collecting electrode is formed using the conductive ink composition of the present invention or a solar cell module provided with this solar cell has high photoelectric conversion efficiency.

また本発明の導電性インク組成物を用いてリード線が形成された太陽電池モジュールは、従来の銅箔等により形成されたリード線よりも低抵抗であるため、高い光電変換効率が得られる。   Moreover, since the solar cell module in which the lead wire is formed using the conductive ink composition of the present invention has a lower resistance than the lead wire formed from a conventional copper foil or the like, high photoelectric conversion efficiency is obtained.

次に本発明の実施例を参考例及び比較例とともに詳しく説明する。なお、以下に示す実施例6は、参考例である。
Next, examples of the present invention will be described in detail together with reference examples and comparative examples. In addition, Example 6 shown below is a reference example.

先ず、温度25℃の条件で、ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部を混合し、更に前記混合物に2−エチル−4−メチルイミダゾールを適量添加して有機系ビヒクルを調製した。次いで、得られた有機系ビヒクル20質量%と、上記銀粒子80質量%とを3本ロールミルにて混練し、ペースト化することにより導電性インク組成物を調製した。   First, 30 mass parts of epoxy resin is mixed with 100 mass parts of butyl carbitol acetate under the condition of a temperature of 25 ° C., and an organic vehicle is prepared by adding an appropriate amount of 2-ethyl-4-methylimidazole to the mixture. did. Next, 20% by mass of the obtained organic vehicle and 80% by mass of the silver particles were kneaded with a three-roll mill and formed into a paste to prepare a conductive ink composition.

次いで、得られた導電性インク組成物を、スクリーン印刷法を用いて100×100mm角のガラス基板上に印刷塗布した後、このガラス基板を熱風循環炉に投入し、200℃の温度で30分間焼成して10×10mm角の電極を形成した。   Next, the obtained conductive ink composition was applied by printing on a 100 × 100 mm square glass substrate using a screen printing method, and then the glass substrate was put into a hot air circulating furnace, at a temperature of 200 ° C. for 30 minutes. Firing was performed to form a 10 × 10 mm square electrode.

参考例2>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂25質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子95質量%、平均粒径20nmのナノ銀粒子5質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を90質量%、有機系ビヒクルの含有割合を10質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
< Reference Example 2>
An organic vehicle was prepared as 25 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as a conductive particle, a flaky conductive material having an average flake diameter of 0.5 μm The use of silver particles consisting of 95% by mass of particles and 5% by mass of nano silver particles having an average particle diameter of 20 nm, the content of conductive particles being 90% by mass, and the content of organic vehicle being 10% by mass Except for the above, a conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂35質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子80質量%、平均粒径50nmのナノ銀粒子5質量%、平均粒径0.2μmの球状導電性粒子15質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を88質量%、有機系ビヒクルの含有割合を12質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 1 >
Preparation of organic vehicle as epoxy resin 35 parts by mass with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, flaky conductive having an average flake diameter of 0.5 μm 80% by mass of particles, 5% by mass of nano silver particles having an average particle diameter of 50 nm, silver particles composed of 15% by mass of spherical conductive particles having an average particle diameter of 0.2 μm, and 88% by mass of the conductive particles. %, A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1 except that the content of the organic vehicle was 12% by mass.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子90質量%、平均粒径20nmのナノ銀粒子5質量%、平均粒径0.3μmの球状導電性粒子5質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を90質量%、有機系ビヒクルの含有割合を10質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 2 >
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.5 μm 90% by mass of particles, 5% by mass of nano silver particles having an average particle size of 20 nm, 5% by mass of spherical conductive particles having an average particle size of 0.3 μm, and 90% by mass of conductive particles. %, A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1, except that the organic vehicle content was 10% by mass.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂35質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子70質量%、平均粒径80nmのナノ銀粒子10質量%、平均粒径0.1μmの球状導電性粒子20質量%からなる銀粒子を使用したこと以外は、及び導電性粒子の含有割合を88質量%、有機系ビヒクルの含有割合を12質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 3 >
Preparation of organic vehicle as epoxy resin 35 parts by mass with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, flaky conductive having an average flake diameter of 0.5 μm Except for using 70% by mass of particles, 10% by mass of nano silver particles having an average particle size of 80 nm, and 20% by mass of spherical conductive particles having an average particle size of 0.1 μm, and the content ratio of conductive particles. A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1 except that 88% by mass and the content of the organic vehicle were 12% by mass.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂20質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径1.0μmのフレーク状導電性粒子80質量%、平均粒径20nmのナノ銀粒子5質量%、平均粒径0.5μmの球状導電性粒子15質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を85質量%、有機系ビヒクルの含有割合を15質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 4 >
An organic vehicle was prepared as 20 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 1.0 μm. 80% by mass of particles, 5% by mass of nano silver particles having an average particle size of 20 nm, 15% by mass of spherical conductive particles having an average particle size of 0.5 μm, and 85% by mass of conductive particles. %, A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1 except that the organic vehicle content was 15% by mass.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.2μmのフレーク状導電性粒子70質量%、平均粒径40nmのナノ銀粒子10質量%、平均粒径0.1μmの球状導電性粒子20質量%からなる銀粒子を使用したこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 5 >
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.2 μm Similar to Reference Example 1, except that silver particles comprising 70% by mass of particles, 10% by mass of nano silver particles having an average particle size of 40 nm, and 20% by mass of spherical conductive particles having an average particle size of 0.1 μm were used. An ink composition was prepared to form an electrode.

<実施例
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂40質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径2.0μmのフレーク状導電性粒子80質量%、平均粒径70nmのナノ銀粒子10質量%、平均粒径0.5μmの球状導電性粒子10質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を90質量%、有機系ビヒクルの含有割合を10質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Example 6 >
An organic vehicle was prepared as 40 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 2.0 μm 80% by mass of particles, 10% by mass of nano silver particles having an average particle size of 70 nm, 10% by mass of spherical conductive particles having an average particle size of 0.5 μm, and 90% by mass of the conductive particles. %, A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1, except that the organic vehicle content was 10% by mass.

<比較例1>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径10.0μmのフレーク状導電性粒子93質量%、平均粒径50nmのナノ銀粒子7質量%からなる銀粒子を使用したこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative Example 1>
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 10.0 μm A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1 except that silver particles composed of 93% by mass of particles and 7% by mass of nanosilver particles having an average particle diameter of 50 nm were used.

<比較例2>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂25質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.05μmのフレーク状導電性粒子95質量%、平均粒径20nmのナノ銀粒子5質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を88質量%、有機系ビヒクルの含有割合を12質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative example 2>
An organic vehicle was prepared as 25 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.05 μm The use of silver particles composed of 95% by mass of particles and 5% by mass of nano silver particles having an average particle size of 20 nm, the content of conductive particles being 88% by mass, and the content of organic vehicles being 12% by mass Except for the above, a conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1.

<比較例3>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子30質量%、平均粒径50nmのナノ銀粒子70質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を75質量%、有機系ビヒクルの含有割合を25質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative Example 3>
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.5 μm The use of silver particles composed of 30% by mass of particles and 70% by mass of nano silver particles having an average particle size of 50 nm, the content of conductive particles being 75% by mass, and the content of organic vehicles being 25% by mass Except for the above, a conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1.

<比較例4>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子100質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を88質量%、有機系ビヒクルの含有割合を12質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative Example 4>
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.5 μm Similar to Reference Example 1, except that silver particles composed of 100% by mass of the particles were used, the content of the conductive particles was 88% by mass, and the content of the organic vehicle was 12% by mass. An ink composition was prepared to form an electrode.

<比較例5>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂30質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径0.5μmのフレーク状導電性粒子70質量%、平均粒径50nmのナノ銀粒子10質量%、平均粒径5.0μmの球状導電性粒子20質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を88質量%、有機系ビヒクルの含有割合を12質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative Example 5>
An organic vehicle was prepared as 30 parts by mass of an epoxy resin with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, a flaky conductive material having an average flake diameter of 0.5 μm 70% by mass of particles, 10% by mass of nano silver particles having an average particle diameter of 50 nm, 20% by mass of spherical conductive particles having an average particle diameter of 5.0 μm, and 88% by mass of the conductive particles. %, A conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1 except that the content of the organic vehicle was 12% by mass.

<比較例6>
ブチルカルビトールアセテート100質量部に対し、エポキシ樹脂35質量部として有機系ビヒクルを調製したこと、また以下の表1に示すように、導電性粒子として、平均フレーク径2.0μmのフレーク状導電性粒子80質量%、平均粒径0.5μmの球状導電性粒子20質量%からなる銀粒子を使用したこと、及び導電性粒子の含有割合を90質量%、有機系ビヒクルの含有割合を10質量%としたこと以外は、参考例1と同様に、導電性インク組成物を調製し、電極を形成した。
<Comparative Example 6>
Preparation of organic vehicle as epoxy resin 35 parts by mass with respect to 100 parts by mass of butyl carbitol acetate, and as shown in Table 1 below, as conductive particles, flaky conductive having an average flake diameter of 2.0 μm 80% by mass of particles, 20% by mass of silver conductive particles having an average particle size of 0.5 μm were used, 90% by mass of the conductive particles, and 10% by mass of the organic vehicle. Except for the above, a conductive ink composition was prepared and an electrode was formed in the same manner as in Reference Example 1.

Figure 0005656380
<比較試験及び評価>
実施例1〜6、参考例1,2及び比較例1〜6で得られた導電性インク組成物について粘度、スクリーン印刷性、スクリーン目詰まり及び最小線幅を評価した。また実施例1〜6、参考例1,2及び比較例1〜6の導電性インク組成物を用いて形成された電極について比抵抗を評価した。その結果を以下の表2に示す。
(1)粘度:レオメータ(ティー・エー・インスツルメント社製 AR1000)を用いて、400mmコーンを使用し、ずり速度10S-1とした時の値を測定した。
(2)スクリーン印刷性:スクリーン印刷法により100×100mm角のガラス基板上に印刷されたパターンについて、パターン形状が確認できた場合を「良好」とし、印刷時のかすれ等でパターン形状が僅かに乱れた場合を「可」とし、また印刷時にレオロジー特性の関係からパターンが全く印刷できなかったり、著しいかすれによりライン欠損が全体にわたってみられた場合を「不可」とした。
(3)スクリーン目詰まり:スクリーン版が目詰まりして連続印刷が困難な場合、又はライン形状に目詰まりによる未塗布箇所がみられた場合を「有」とし、未塗布箇所がみられなかった場合を「無」とした。
(4)最小線幅:40、50、70、100、150及び200μmの線幅で開口部が設計されたスクリーン版を用いて100×100mm角のガラス基板上にパターンを印刷し、ラインが重ならずに乱れることなく印刷できた最小の線幅を最小線幅とした。
(5)比抵抗:100×100mm角のガラス基板上に形成された10×10mm角の電極について、表面固有抵抗表面抵抗計(三菱化学社製:ローレスタ)にて四端子四探針方式を用いて測定した表面抵抗値と、レーザー顕微鏡(キーエンス社製:VK−9600)を用いて測定した膜厚の値から、電極の比抵抗値(Ω・cm)を算出した。
Figure 0005656380
<Comparison test and evaluation>
The conductive ink compositions obtained in Examples 1 to 6, Reference Examples 1 and 2, and Comparative Examples 1 to 6 were evaluated for viscosity, screen printability, screen clogging, and minimum line width. Moreover, specific resistance was evaluated about the electrode formed using the conductive ink composition of Examples 1-6 , Reference Examples 1 and 2, and Comparative Examples 1-6. The results are shown in Table 2 below.
(1) Viscosity: Using a rheometer (AR1000 manufactured by TA Instruments), a 400 mm cone was used, and the value at a shear rate of 10S -1 was measured.
(2) Screen printability: The pattern printed on a 100 × 100 mm square glass substrate by the screen printing method is defined as “good” when the pattern shape can be confirmed, and the pattern shape is slightly due to blurring during printing. The case where it was disturbed was determined as “Yes”, and the case where the pattern could not be printed at all due to the rheological characteristics at the time of printing, or the case where the line defect was observed over the entire area due to significant blur was determined as “Not possible”.
(3) Screen clogging: When the screen plate is clogged and continuous printing is difficult, or when there is an uncoated part due to clogging in the line shape, “Yes” is indicated, and no uncoated part is seen The case was set to “None”.
(4) Minimum line width: A pattern is printed on a 100 × 100 mm square glass substrate using a screen plate with openings designed with line widths of 40, 50, 70, 100, 150 and 200 μm. The minimum line width that could be printed without being disturbed was defined as the minimum line width.
(5) Specific resistance: For a 10 × 10 mm square electrode formed on a 100 × 100 mm square glass substrate, a four-terminal four-probe method is used with a surface resistivity meter (Mitsubishi Chemical Corporation: Loresta). The specific resistance value (Ω · cm) of the electrode was calculated from the measured surface resistance value and the film thickness value measured using a laser microscope (manufactured by Keyence Corporation: VK-9600).

Figure 0005656380
表2から明らかなように、実施例1〜6、参考例1,2及び比較例1〜6を比較すると、実施例1〜6、参考例1,2では適切な粘度が得られ、スクリーン目詰まりも無く、スクリーン印刷性においても高い評価が得られた。また最小線幅についても、実施例5、7及び8では比較例4〜6と同等の結果に留まったものの、実施例1,2及び4、参考例1,2では、すべての比較例よりも優れた結果を示した。
Figure 0005656380
As is clear from Table 2, when Examples 1 to 6, Reference Examples 1 and 2 and Comparative Examples 1 to 6 are compared, suitable viscosity is obtained in Examples 1 to 6 and Reference Examples 1 and 2 , and There was no clogging, and high evaluation was obtained in screen printability. Also, the minimum line widths were the same as those of Comparative Examples 4 to 6 in Examples 5, 7 and 8, but in Examples 1 , 2 and 4, and Reference Examples 1 and 2 , compared to all the comparative examples. Excellent results were shown.

また、実施例1〜6、参考例1,2で形成された電極の比抵抗は、比較例1〜6で形成された電極よりもはるかに低く、高い導電性が得られることが確認された。
Moreover, the specific resistance of the electrodes formed in Examples 1 to 6 and Reference Examples 1 and 2 was much lower than the electrodes formed in Comparative Examples 1 to 6, and it was confirmed that high conductivity was obtained. .

Claims (6)

導電性粒子と、加熱硬化性樹脂組成物、硬化剤及び溶剤とを含む有機系ビヒクルからなり、太陽電池セルの集電極又は太陽電池セル同士を電気的に接合するリード線の形成に用いられる導電性インク組成物において、
前記導電性粒子が平均粒径1nm以上100nm未満のナノ銀粒子と平均フレーク径が0.1μm以上1.0μm以下であるフレーク状導電性粒子とを含有し、
前記導電性粒子が前記フレーク状導電性粒子を前記ナノ銀粒子より質量割合でより多く含有し、
前記導電性粒子が平均粒径0.1〜0.5μmの球状導電性粒子を更に含み、
前記導電性粒子がフレーク状導電性粒子を50〜95質量%含有し、
前記導電性粒子がナノ銀粒子を1〜10質量%含有し、
前記ナノ銀粒子が球状と、球状以外の異方性の粒子とを含み、
前記加熱硬化性樹脂組成物と導電性粒子の含有割合が質量比で2〜15:75〜95であり、
前記フレーク状導電性粒子がAg粒子であり、
前記球状導電性粒子がAg粒子であり、
前記加熱硬化性樹脂組成物がエポキシ樹脂組成物であり、前記溶剤100質量部に対して前記エポキシ樹脂組成物を20〜40質量部含有し、
前記硬化剤がイミダゾール類、第3級アミン類、又はフッ化ホウ素を含むルイス酸、或いはその化合物である
ことを特徴とする導電性インク組成物。
Conductive particles are made of an organic vehicle containing conductive particles, a thermosetting resin composition, a curing agent, and a solvent, and are used for forming a collector electrode of solar cells or a lead wire that electrically joins the solar cells. In the ink composition,
The conductive particles contain nano silver particles having an average particle diameter of 1 nm or more and less than 100 nm and flaky conductive particles having an average flake diameter of 0.1 μm or more and 1.0 μm or less,
The conductive particles contain more flaky conductive particles in a mass ratio than the nano silver particles,
The conductive particles further include spherical conductive particles having an average particle size of 0.1 to 0.5 μm,
The conductive particles contain 50 to 95% by mass of flaky conductive particles,
The conductive particles contain 1 to 10% by mass of nano silver particles,
The nano silver particles include spherical and anisotropic particles other than spherical,
The content ratio of the thermosetting resin composition and the conductive particles is 2 to 15:75 to 95 by mass ratio,
The flaky conductive particles are Ag particles,
The spherical conductive particles are Ag particles,
The thermosetting resin composition is an epoxy resin composition, containing 20 to 40 parts by mass of the epoxy resin composition with respect to 100 parts by mass of the solvent,
The conductive ink composition, wherein the curing agent is an imidazole, a tertiary amine, a Lewis acid containing boron fluoride, or a compound thereof.
基板に塗布後、温度100〜280℃の範囲内で加熱硬化する請求項1記載の導電性インク組成物。   The conductive ink composition according to claim 1, wherein the conductive ink composition is heat-cured within a temperature range of 100 to 280 ° C. after being applied to the substrate. 請求項1又は2記載の導電性インク組成物を用いて集電極を形成する太陽電池セルの製造方法。   The manufacturing method of the photovoltaic cell which forms a collector electrode using the electroconductive ink composition of Claim 1 or 2. 前記集電極を透明導電層上に形成する請求項3記載の太陽電池セルの製造方法。   The manufacturing method of the photovoltaic cell of Claim 3 which forms the said collector electrode on a transparent conductive layer. 請求項3又は4記載の方法で得られる太陽電池セルを用いた太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module using the photovoltaic cell obtained by the method of Claim 3 or 4. 請求項1又は2記載の導電性インク組成物を用いて形成されたリード線により太陽電池セル同士を電気的に接合させる太陽電池モジュールの製造方法。   A method for producing a solar cell module, wherein solar cells are electrically joined together by a lead wire formed using the conductive ink composition according to claim 1.
JP2009211203A 2008-09-30 2009-09-14 Conductive ink composition, solar cell using the composition, and method for producing solar cell module Expired - Fee Related JP5656380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211203A JP5656380B2 (en) 2008-09-30 2009-09-14 Conductive ink composition, solar cell using the composition, and method for producing solar cell module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008253037 2008-09-30
JP2008253037 2008-09-30
JP2009211203A JP5656380B2 (en) 2008-09-30 2009-09-14 Conductive ink composition, solar cell using the composition, and method for producing solar cell module

Publications (2)

Publication Number Publication Date
JP2010109334A JP2010109334A (en) 2010-05-13
JP5656380B2 true JP5656380B2 (en) 2015-01-21

Family

ID=42298433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211203A Expired - Fee Related JP5656380B2 (en) 2008-09-30 2009-09-14 Conductive ink composition, solar cell using the composition, and method for producing solar cell module

Country Status (1)

Country Link
JP (1) JP5656380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107955447A (en) * 2017-12-13 2018-04-24 天津宝兴威科技股份有限公司 A kind of coating fluid of the waterproof toughness reinforcing of nano-silver conductive film
CN109926577A (en) * 2019-05-05 2019-06-25 深圳第三代半导体研究院 It is a kind of can low temperature and high-density sintered copper cream

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857237B2 (en) * 2010-11-29 2016-02-10 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
KR101243895B1 (en) * 2011-01-10 2013-03-25 (주)켐스 Conductive Ink Composition and the method for preparing the same
KR20130031414A (en) * 2011-09-21 2013-03-29 삼성전기주식회사 Conductive paste composition for low temperature firing
TWI481326B (en) * 2011-11-24 2015-04-11 Showa Denko Kk A conductive pattern forming method, and a conductive pattern forming composition by light irradiation or microwave heating
KR101411012B1 (en) * 2011-11-25 2014-06-24 제일모직주식회사 Electrode paste composite for a solar battery and electrode thereof and solar cell thereof
EP2830099B1 (en) * 2012-03-23 2019-06-05 Panasonic Intellectual Property Management Co., Ltd. Solar cell, and solar cell manufacturing method
JP5939386B2 (en) * 2012-04-16 2016-06-22 株式会社大阪ソーダ Conductive ink composition
JP5552145B2 (en) * 2012-08-23 2014-07-16 尾池工業株式会社 Silver particle dispersion, conductive film, and method for producing silver particle dispersion
JP6013198B2 (en) * 2013-01-04 2016-10-25 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
JP6309335B2 (en) * 2014-04-25 2018-04-11 四国計測工業株式会社 Wiring board and semiconductor device
CN107075327B (en) * 2014-07-11 2019-05-28 E.I.内穆尔杜邦公司 Using low-temperature setting with the flowable composition and its correlation technique of the thermally conductive pathways formed in electrical type application
CN104449046B (en) * 2014-12-09 2017-08-18 上海宥拓化学有限公司 A kind of electrically conductive ink and its application
JP2015057863A (en) * 2014-12-12 2015-03-26 三洋電機株式会社 Solar cell
JP2015188117A (en) * 2015-07-29 2015-10-29 パナソニックIpマネジメント株式会社 solar cell
JP2018525832A (en) * 2015-08-14 2018-09-06 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Sinterable composition used in solar cells
JPWO2020075590A1 (en) * 2018-10-11 2021-09-02 株式会社ダイセル Inks, sintered bodies, and decorative glass
KR102213023B1 (en) * 2019-02-12 2021-02-09 주식회사 잉크테크 Paste composition for outer electrode of inductor
US20240033860A1 (en) * 2020-12-16 2024-02-01 Heraeus Deutschland GmbH & Co. KG Sintering paste and use thereof for connecting components
WO2024004956A1 (en) * 2022-07-01 2024-01-04 株式会社ダイセル Ink composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611842B2 (en) * 1987-12-23 1994-02-16 住友ベークライト株式会社 Conductive resin paste
JP4363340B2 (en) * 2004-03-12 2009-11-11 住友電気工業株式会社 Conductive silver paste and electromagnetic wave shielding member using the same
JP2005276773A (en) * 2004-03-26 2005-10-06 Toyobo Co Ltd Conductive paste
JP4482930B2 (en) * 2004-08-05 2010-06-16 昭栄化学工業株式会社 Conductive paste
JP2007103473A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar cell device and solar cell module
JP4847154B2 (en) * 2006-02-24 2011-12-28 三洋電機株式会社 Conductive paste composition, solar cell using the paste composition, and solar cell module using the cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107955447A (en) * 2017-12-13 2018-04-24 天津宝兴威科技股份有限公司 A kind of coating fluid of the waterproof toughness reinforcing of nano-silver conductive film
CN109926577A (en) * 2019-05-05 2019-06-25 深圳第三代半导体研究院 It is a kind of can low temperature and high-density sintered copper cream
CN109926577B (en) * 2019-05-05 2020-11-17 深圳第三代半导体研究院 Copper paste capable of being sintered at low temperature and high density

Also Published As

Publication number Publication date
JP2010109334A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5656380B2 (en) Conductive ink composition, solar cell using the composition, and method for producing solar cell module
JP5713525B2 (en) Conductive ink composition, solar cell using the composition, and method for producing solar cell module
JP5651625B2 (en) Heat curable conductive paste composition
JP4847154B2 (en) Conductive paste composition, solar cell using the paste composition, and solar cell module using the cell
JP5839574B2 (en) Heat curable conductive paste composition
KR102554447B1 (en) conductive paste
JP5837735B2 (en) Conductive ink composition and solar cell module formed using the composition
JP5839573B2 (en) Heat curable conductive paste composition
CN111480206B (en) Conductive paste
JP5819712B2 (en) Heat curable conductive paste composition
JP5277844B2 (en) Conductive ink composition and solar cell module formed using the composition
JP5353163B2 (en) Conductive ink composition and solar cell in which collector electrode is formed using the composition
JP6018476B2 (en) Thermosetting conductive paste
JP2009146584A (en) Conductive paste composition
US20190359842A1 (en) Electrically Conductive Composition
KR20120004122A (en) Electrode paste and electrode using the same
WO2022202563A1 (en) Electrically conductive paste, solar cell electrode, and solar cell
KR20120052148A (en) Electrode paste composition and electrode comprising the same
JP5692295B2 (en) Method for forming solar cell collector electrode and solar cell module provided with the solar cell
JP6357599B1 (en) Conductive paste
JP2009076271A (en) Conductive paste and electrode using it
KR20230058317A (en) Conductive adhesive, electronic circuit using the same and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees