JP5648235B2 - LED device - Google Patents

LED device Download PDF

Info

Publication number
JP5648235B2
JP5648235B2 JP2008205454A JP2008205454A JP5648235B2 JP 5648235 B2 JP5648235 B2 JP 5648235B2 JP 2008205454 A JP2008205454 A JP 2008205454A JP 2008205454 A JP2008205454 A JP 2008205454A JP 5648235 B2 JP5648235 B2 JP 5648235B2
Authority
JP
Japan
Prior art keywords
substrate
phosphor
covering member
led device
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008205454A
Other languages
Japanese (ja)
Other versions
JP2010040986A (en
Inventor
隆一郎 森中
隆一郎 森中
吉松 良
良 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2008205454A priority Critical patent/JP5648235B2/en
Publication of JP2010040986A publication Critical patent/JP2010040986A/en
Application granted granted Critical
Publication of JP5648235B2 publication Critical patent/JP5648235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発光ダイオード(以下LED)を搭載したLED装置に関する。   The present invention relates to an LED device equipped with a light emitting diode (hereinafter referred to as LED).

近年、LEDチップからの短波長(紫外〜青)の光により励起され長波長光を発光する蛍光体を用いた、白色光を発光する発光装置が実用化されている。   2. Description of the Related Art In recent years, light emitting devices that emit white light using phosphors that are excited by short wavelength (ultraviolet to blue) light from an LED chip and emit long wavelength light have been put into practical use.

例えば、特許文献1の図5には、半導体素子104と、耐候性を考慮したセラミックからなる支持基板103と、支持基板に配され半導体素子を被覆する被覆部材101と、発光素子104と対面する凹状の被覆部材101の内壁面に塗布された蛍光体層110とを有する発光装置400が開示されている。また、この特許文献1には、例えば、蛍光体、シラノール(Si(OEt)3OH)、及びエタノールを混合してスラリーを形成し、スラリーをノズルから被覆部材101の透光性部分に吐出させた後、300℃にて3時間加熱してシラノールをSiO2とし、蛍光体を被覆部材101に固着させる方法が開示されている。しかしながら、蛍光体は、水分と反応することで蛍光体が劣化してしまうが、スラリーを形成する際に水分が混入することでLED装置としての寿命が短くなってしまう場合があった。 For example, in FIG. 5 of Patent Document 1, the semiconductor element 104, a support substrate 103 made of ceramic in consideration of weather resistance, a covering member 101 disposed on the support substrate and covering the semiconductor element, and the light emitting element 104 are faced. A light emitting device 400 having a phosphor layer 110 applied to the inner wall surface of a concave covering member 101 is disclosed. In Patent Document 1, for example, a phosphor, silanol (Si (OEt) 3 OH), and ethanol are mixed to form a slurry, and the slurry is discharged from a nozzle to a light-transmitting portion of the covering member 101. After that, a method is disclosed in which the phosphor is fixed to the covering member 101 by heating at 300 ° C. for 3 hours to make silanol into SiO 2 . However, the phosphor deteriorates by reacting with moisture, but the lifetime as the LED device may be shortened by mixing moisture when forming the slurry.

一方、スラリーを形成することなく、蛍光体を粉状のまま用いると発光効率が高くなることが知られている。これは、蛍光体が粉状であることから、励起光を吸収しやすく、かつ発光を取り出しやすいためである。特に、硫化物系の蛍光体は、合成が容易であることから高い純度のものが得られるのでより高効率化することができる。さらに、粉状の蛍光体は、加熱や被覆部材への固着といった工程が封入に際して不要であるため、安価なLED装置を提供することが期待できる。
特開2006−93372号公報
On the other hand, it is known that the luminous efficiency increases when the phosphor is used in powder form without forming a slurry. This is because the phosphor is powdery, so that it is easy to absorb excitation light and to easily extract emitted light. In particular, since sulfide-based phosphors are easily synthesized, high-purity products can be obtained, so that the efficiency can be further increased. Furthermore, since the powdery phosphor does not require a process such as heating or fixing to the covering member when encapsulating, it can be expected to provide an inexpensive LED device.
JP 2006-93372 A

上述のように粉状の蛍光体はスラリー化された蛍光体よりも発光効率が高く、かつ安価なLED装置を提供できる。しかしながら、粉状であることからスラリー化された蛍光体よりも水分を取り込みやすく、劣化が急速に進んでしまい、その結果、LED装置の長寿命化を実現することが困難であった。   As described above, the powdery phosphor has higher luminous efficiency than the slurry phosphor and can provide an inexpensive LED device. However, since it is powdery, it is easier to take in moisture than the slurryed phosphor, and the deterioration progresses rapidly. As a result, it is difficult to realize a long life of the LED device.

そこで、本発明は上記課題に鑑み、粉状の蛍光体を封入した長寿命のLED装置を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the long-life LED apparatus which enclosed the powdery fluorescent substance.

上記目的を達成するため、本発明のLED装置は、セラミック製の基板と、基板上に搭載されたLEDチップと、LEDチップを覆い、かつ基板に接合されたガラス製の被覆部材と、基板と被覆部材とで形成された空間内に封入された粉状の蛍光体と、を有するものである。   To achieve the above object, an LED device of the present invention includes a ceramic substrate, an LED chip mounted on the substrate, a glass covering member that covers the LED chip and is bonded to the substrate, and a substrate. And a powdery phosphor encapsulated in a space formed by the covering member.

本発明によれば、粉状の蛍光体を封入したLED装置であっても長寿命化することができる。   According to the present invention, it is possible to extend the life of an LED device in which a powdered phosphor is enclosed.

図1に本実施形態のLED装置の模式的な断面図を示す。   FIG. 1 shows a schematic cross-sectional view of the LED device of this embodiment.

本実施形態のLED装置10は、基板1と、基板1上に搭載されたLEDチップ2と、LEDチップ2を覆い、かつ基板1に金属接合された被覆部材5と、基板1と被覆部材5とで形成された空間内に封入された粉状の蛍光体4とを有する。   The LED device 10 of this embodiment includes a substrate 1, an LED chip 2 mounted on the substrate 1, a covering member 5 that covers the LED chip 2 and is metal-bonded to the substrate 1, and the substrate 1 and the covering member 5. And a powdery phosphor 4 encapsulated in a space formed by.

基板1は、後述するLEDチップ2の他、導体配線などが配置されるものであり、その材料としては、例えば、Al23、AlN等のセラミックが用いられる。本実施形態において基板1をセラミック製としたのは、セラミックが水分を透過させない性質を有する点に着目したことによる。また、セラミックの熱膨張係数は、例えば、Al23を材料とした場合、7.1×10-6/℃程度であるが、この数値は、後述するガラス製の被覆部材5は8〜10×10-6/℃程度に近い値といえる。つまり、基板1をセラミック製とすることで熱膨張率をガラス製の被覆部材5の熱膨張率に近づけることができる。同程度の熱膨張率の材質を用いた基板1及び被覆部材5はLEDチップ2の発熱に対して同程度に伸縮することとなるので、基板1と被覆部材5との接合部分に熱変形に起因する隙間が形成されにくくなり、当該隙間から水分が内部に浸入するのを防止することができる。このように、基板1をセラミック製とすることで、蛍光体4と水分との接触を阻止することができる。 In addition to the LED chip 2 described later, the substrate 1 is provided with conductor wiring and the like, and as the material thereof, for example, ceramics such as Al 2 O 3 and AlN are used. The reason why the substrate 1 is made of ceramic in the present embodiment is that attention is paid to the fact that the ceramic does not allow moisture to permeate. The thermal expansion coefficient of the ceramic is, for example, about 7.1 × 10 −6 / ° C. when Al 2 O 3 is used as a material. This numerical value is 8 to 8 for the glass covering member 5 described later. It can be said that it is a value close to about 10 × 10 −6 / ° C. That is, by making the substrate 1 made of ceramic, the coefficient of thermal expansion can be made close to the coefficient of thermal expansion of the covering member 5 made of glass. Since the substrate 1 and the covering member 5 using the material having the same coefficient of thermal expansion are expanded and contracted to the same extent with respect to the heat generated by the LED chip 2, the joint portion between the substrate 1 and the covering member 5 is thermally deformed. The resulting gap is less likely to be formed, and moisture can be prevented from entering the inside through the gap. Thus, the contact between the phosphor 4 and moisture can be prevented by making the substrate 1 made of ceramic.

さらに、基板1をセラミックとすることで、LED装置10を1枚のセラミック基板上に一括して形成した後、個片化する製造方法を採用できるため、製造コストを下げることができる。その他、セラミックは、LEDチップ2が発光する紫外光に対する耐候性、及びLEDチップ2の発熱に対する耐熱性を併せ持つ点においても基板1の材料として好ましい。   Furthermore, since the substrate 1 is made of ceramic, it is possible to employ a manufacturing method in which the LED devices 10 are collectively formed on a single ceramic substrate and then separated into individual pieces, so that the manufacturing cost can be reduced. In addition, ceramic is preferable as the material of the substrate 1 in that it has weather resistance against ultraviolet light emitted from the LED chip 2 and heat resistance against heat generation of the LED chip 2.

なお、基板1にガラスエポキシ等、樹脂を含有する材料は適用できない。樹脂材料は、外気中の水分を透過させる透湿性を有するため、外気に含まれる水分が樹脂を透過して内部に浸入してしまうためである。また、本実施形態においては、基板1に金属を適用するのも好ましくない。金属自体に透湿性がない点では好適である。しかしながら、ガラスと金属では互いに熱膨張係数が大きく異なるため、熱変形によりガラスと金属の接合部分に隙間が形成されてその隙間から水分が浸入してしまう可能性が高くなるためである。また、金属基板の場合、セラミック基板のような一括形成後に個片化する製造方法が採用できないため、コストが高くなるためである。   Note that a material containing resin such as glass epoxy cannot be applied to the substrate 1. This is because the resin material has moisture permeability that allows moisture in the outside air to pass therethrough, so that moisture contained in the outside air permeates the resin and enters the inside. In the present embodiment, it is not preferable to apply a metal to the substrate 1. This is preferable in that the metal itself has no moisture permeability. However, since the thermal expansion coefficients of glass and metal are greatly different from each other, a gap is formed at the joint between the glass and metal due to thermal deformation, and there is a high possibility that moisture will enter through the gap. In addition, in the case of a metal substrate, a manufacturing method for separating into individual pieces after batch formation, such as a ceramic substrate, cannot be adopted, and the cost increases.

LEDチップ2は、その発光波長が350nmから470nmの間であり、近紫外から青色の発光光を発光するものが用いられる。また、LEDチップ2の表面には、エポキシ樹脂等に比べ光劣化しにくいシリコン樹脂からなるコーティング層3が形成されている。LEDチップ2は基板1に対してAuSn等の金属接合材や光劣化しにくいシリコン樹脂Agペースト等によって固定される。また、フリップチップ実装されるLEDチップ2は、基板1に形成された導体配線と電気的に接続させるため、Agペースト、ITOペースト、カーボンペースト、金属バンプ等を用いることができる。   The LED chip 2 has an emission wavelength between 350 nm and 470 nm and emits near-ultraviolet to blue emission light. In addition, a coating layer 3 made of a silicon resin that is less susceptible to light degradation than an epoxy resin or the like is formed on the surface of the LED chip 2. The LED chip 2 is fixed to the substrate 1 with a metal bonding material such as AuSn or a silicon resin Ag paste that is not easily deteriorated by light. Further, the LED chip 2 to be flip-chip mounted can be made of Ag paste, ITO paste, carbon paste, metal bump, or the like in order to be electrically connected to the conductor wiring formed on the substrate 1.

被覆部材5は、半球形状に形成された、例えばケイ酸塩ガラス等を材料とした透明ガラスが用いられている。ガラス素材を被覆部材5に用いたのは、基板1と同様に、ガラスが水分を透過させない性質を有する点に着目したことによるものである。よって、被覆部材5についても、基板1と同様に、樹脂、あるいは樹脂を混入した材料は適用できない。また、LEDチップ2の発光及び蛍光体4の励起光を外部に効率良く取り出すため、被覆部材5の表面は粗面5aとなっている。粗面5aは被覆部材5の表面をエッチングすることにより形成するものであってもよい。なお、基板1と被覆部材5とを接合している金属接合部6には、AuSn、SnAgCu等の低融点金属が用いられている。   The covering member 5 is made of a transparent glass made of, for example, silicate glass or the like formed in a hemispherical shape. The reason why the glass material is used for the covering member 5 is that, like the substrate 1, attention is paid to the point that the glass does not allow moisture to permeate. Therefore, as with the substrate 1, a resin or a material mixed with a resin cannot be applied to the covering member 5. Further, in order to efficiently extract the light emitted from the LED chip 2 and the excitation light from the phosphor 4 to the outside, the surface of the covering member 5 is a rough surface 5a. The rough surface 5 a may be formed by etching the surface of the covering member 5. A low melting point metal such as AuSn or SnAgCu is used for the metal joint 6 that joins the substrate 1 and the covering member 5.

蛍光体4は、LEDチップ2の発光により励起し、長波長を発光する複数の蛍光物質が、スラリー化等されずに粉状のまま、基板1と被覆部材5とで形成される空間内に封入されている。より厳密には、本実施形態の場合、蛍光体4は、基板1と、被覆部材5と、後述するコーティング層3とによって囲まれた空間内に存在している。蛍光体4としては、硫化物系、窒化物系、酸窒化物系等が用いられる。例えば、
1.Sc系Ce付活酸化物蛍光体(緑色)とEu付活アルミニウムシリコンナイトライド系窒化物蛍光体(赤色)
2.Eu付活酸化物蛍光体(緑〜黄色)とEu付活アルミニウムシリコンナイトライド系窒化物蛍光体(赤色)
3.Eu付活チオガレート系硫化物蛍光体(緑〜黄色)とEu付活アルカリ系硫化物蛍光体(橙〜赤色)
4.Eu付活シリケイト系酸化物蛍光体(緑〜黄色)とEu付活アルカリ系硫化物蛍光体(橙〜赤色)
等を組み合わせた蛍光体4を用いても良いが、本発明はこれに限定されるものではない。なお、本実施形態においては、蛍光体4としては、特に硫化物系の蛍光体を用いるのが好適である。硫化物系の蛍光物質は、合成が容易であることから高純度のものを生成可能であり、発光効率を高めることができるためである。また、蛍光体4を粉状の状態で用いることで、励起光を吸収しやすく、かつ発光を取り出しやすくすることができるため、発光効率が高くなる。もっとも、硫化物系の場合、水分と反応しやすく、特に粉状の場合、水分を取り込みやすい。よって、硫化物系であって粉状である、本実施形態の蛍光体4を水分劣化から保護する必要がある。本発明者らの実施した試験によると、硫化物系蛍光体を温度60℃、湿度90%の環境下にて24時間放置しておくと、その発光強度は、温度60℃、湿度90%、0時間における発光強度の50%にまで低下することが明らかとなった。一方、蛍光体4をガラスで封止した場合、温度60℃、湿度90%の環境下に500時間放置しても、その発光強度は低下しなかった。よって、水分反応を起こさせないために、蛍光体4は、上述したガラス製の被覆部材5とセラミック製の基板1とで形成された空間内に、N2減圧化の下、封入されている。
The phosphor 4 is excited by the light emission of the LED chip 2, and a plurality of fluorescent materials that emit long wavelengths remain in a powder form without being slurried or the like, and in a space formed by the substrate 1 and the covering member 5. It is enclosed. More precisely, in the case of the present embodiment, the phosphor 4 is present in a space surrounded by the substrate 1, the covering member 5, and a coating layer 3 described later. As the phosphor 4, a sulfide system, a nitride system, an oxynitride system, or the like is used. For example,
1. Sc-based Ce-activated oxide phosphor (green) and Eu-activated aluminum silicon nitride-based nitride phosphor (red)
2. Eu-activated oxide phosphor (green to yellow) and Eu-activated aluminum silicon nitride-based nitride phosphor (red)
3. Eu-activated thiogallate sulfide phosphor (green to yellow) and Eu-activated alkali sulfide phosphor (orange to red)
4). Eu-activated silicate oxide phosphors (green to yellow) and Eu-activated alkali sulfide phosphors (orange to red)
However, the present invention is not limited to this. In the present embodiment, it is particularly preferable to use a sulfide-based phosphor as the phosphor 4. This is because the sulfide-based fluorescent substance can be easily synthesized and can be produced with high purity, and the luminous efficiency can be increased. Moreover, since the phosphor 4 is used in a powdery state, the excitation light can be easily absorbed and the emitted light can be easily extracted, so that the light emission efficiency is increased. However, in the case of a sulfide system, it is easy to react with moisture, and in the case of powder, in particular, moisture is easily taken up. Therefore, it is necessary to protect the phosphor 4 of this embodiment, which is sulfide-based and powdery, from moisture deterioration. According to the tests conducted by the present inventors, when the sulfide-based phosphor is left in an environment of a temperature of 60 ° C. and a humidity of 90% for 24 hours, the emission intensity is 60 ° C., a humidity of 90%, It was revealed that the emission intensity decreased to 50% of the emission intensity at 0 hours. On the other hand, when the phosphor 4 was sealed with glass, the emission intensity did not decrease even after being left for 500 hours in an environment of a temperature of 60 ° C. and a humidity of 90%. Therefore, in order not to cause a moisture reaction, the phosphor 4 is sealed in the space formed by the glass covering member 5 and the ceramic substrate 1 under N 2 pressure reduction.

以上のとおり、本実施形態のLED装置10は、硫化物系であってかつ粉状の蛍光体4を用いているため、発光効率が高い。また、蛍光体4は、粉状のまま用いるため、スラリー化する工程が不要であり、加えて単に基板1と被覆部材5とで形成される空間内に封入するのみであるので、加熱や被覆部材5への固着といった工程も不要となり、LED装置10を安価に提供することができる。   As described above, the LED device 10 of the present embodiment is sulfide-based and uses the powdered phosphor 4, and thus has high luminous efficiency. Further, since the phosphor 4 is used in the form of powder, there is no need for a slurrying process. In addition, since the phosphor 4 is simply enclosed in a space formed by the substrate 1 and the covering member 5, A process such as fixing to the member 5 is not required, and the LED device 10 can be provided at low cost.

また、本実施形態のLED装置10は、基板1をセラミック製とし、被覆部材5をガラス製としているため、外気に含まれる水分がこれら基板1及び被覆部材5を透過して内部に封入された蛍光体4へと達してしまうのを防止することができる。さらに、セラミックとガラスとは熱膨張係数が互いに近いため、LEDチップ2の発熱による変形が生じても接合部分に隙間が生じにくいので、当該隙間からの水分浸入を防止することができる。このように、水分反応により蛍光体4が劣化してしまうことがないため、高効率の本実施形態のLED装置10の長寿命化を図ることができる。   In the LED device 10 of the present embodiment, since the substrate 1 is made of ceramic and the covering member 5 is made of glass, moisture contained in the outside air passes through the substrate 1 and the covering member 5 and is enclosed inside. Reaching to the phosphor 4 can be prevented. Furthermore, since the thermal expansion coefficients of ceramic and glass are close to each other, a gap is unlikely to be formed in the joint portion even if the LED chip 2 is deformed by heat generation, so that moisture can be prevented from entering through the gap. Thus, since the phosphor 4 is not deteriorated by the moisture reaction, the lifetime of the LED device 10 of the present embodiment with high efficiency can be extended.

本発明のLED装置の一例の模式的な側断面図である。It is a typical sectional side view of an example of the LED device of this invention.

符号の説明Explanation of symbols

1 基板
2 LEDチップ
3 コーティング層
4 蛍光体
5a 粗面
5 被覆部材
6 金属接合部
10 LED装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 LED chip 3 Coating layer 4 Phosphor 5a Rough surface 5 Coating | coated member 6 Metal junction part 10 LED apparatus

Claims (4)

セラミック製の基板と、
前記基板上に搭載されたLEDチップと、
前記LEDチップを覆うコーティング層と、
前記基板及び前記コーティング層と一緒に囲まれる空間が提供されるように前記LEDチップを覆い、かつ前記基板に接合されたガラス製の被覆部材と、
前記空間内に封入された粉状の蛍光体と、を有し、
前記空間は不活性ガスで充填される、LED装置。
A ceramic substrate;
An LED chip mounted on the substrate;
A coating layer covering the LED chip;
A glass covering member that covers the LED chip so as to provide a space surrounded by the substrate and the coating layer , and is bonded to the substrate;
Have a, a powdered phosphor enclosed in the space,
The LED device , wherein the space is filled with an inert gas .
硫化物系の前記蛍光体を有する、請求項1に記載のLED装置。   The LED device according to claim 1, comprising the sulfide-based phosphor. 前記基板と前記被覆部材とは金属接合されている、請求項1ないしのいずれか1項に記載のLED装置。 Said substrate and said cover member are metal bonding, LED device according to any one of claims 1 to 2. 前記被覆部材の表面は粗面化されている、請求項1ないしのいずれか1項に記載のLED装置。 The surface of the covering member is roughened, LED device according to any one of claims 1 to 3.
JP2008205454A 2008-08-08 2008-08-08 LED device Active JP5648235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205454A JP5648235B2 (en) 2008-08-08 2008-08-08 LED device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205454A JP5648235B2 (en) 2008-08-08 2008-08-08 LED device

Publications (2)

Publication Number Publication Date
JP2010040986A JP2010040986A (en) 2010-02-18
JP5648235B2 true JP5648235B2 (en) 2015-01-07

Family

ID=42013172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205454A Active JP5648235B2 (en) 2008-08-08 2008-08-08 LED device

Country Status (1)

Country Link
JP (1) JP5648235B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003969B4 (en) 2011-02-11 2023-03-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Process for producing an optoelectronic component
JP5849691B2 (en) * 2011-12-28 2016-02-03 日亜化学工業株式会社 Mounting method of light emitting element
JP6490932B2 (en) * 2013-09-16 2019-03-27 エルジー イノテック カンパニー リミテッド Light emitting device package
JP6740616B2 (en) * 2015-09-15 2020-08-19 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2017047412A1 (en) * 2015-09-15 2017-03-23 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
KR102562090B1 (en) * 2016-01-07 2023-08-02 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package
JP7403072B2 (en) * 2020-01-29 2023-12-22 パナソニックIpマネジメント株式会社 Light emitting device and lighting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347601A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Light emitting diode illuminator
JP4661147B2 (en) * 2004-09-24 2011-03-30 日亜化学工業株式会社 Semiconductor device
JP2007123390A (en) * 2005-10-26 2007-05-17 Kyocera Corp Light emitting device
JP5130680B2 (en) * 2006-03-02 2013-01-30 日亜化学工業株式会社 Semiconductor device and method for forming the same
JP2008060542A (en) * 2006-08-03 2008-03-13 Toyoda Gosei Co Ltd Light-emitting device, method of manufacturing same, and light source device provided with the same

Also Published As

Publication number Publication date
JP2010040986A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5284006B2 (en) Light emitting device
JP5648235B2 (en) LED device
JP4920497B2 (en) Optical semiconductor device
KR101202110B1 (en) Light emitting device
JP3891115B2 (en) Light emitting device
US8575642B1 (en) Optical devices having reflection mode wavelength material
JP5558665B2 (en) Light emitting device
TWI450423B (en) Light emitting device
KR102074027B1 (en) Method for producing an optoelectronic semiconductor device, and optoelectronic semiconductor device
US7737457B2 (en) Phosphor down converting element for an LED package and fabrication method
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP4591071B2 (en) Semiconductor device
JP4661147B2 (en) Semiconductor device
JP2008060542A (en) Light-emitting device, method of manufacturing same, and light source device provided with the same
JP2004071908A (en) Light emitting device
JP2005259972A (en) Surface-mounting led
US9006007B2 (en) Method for producing an optoelectronic assembly and optoelectronic assembly
JP7436907B2 (en) Manufacturing method of semiconductor device
US10644208B2 (en) Method of manufacturing light emitting device
JP2006303548A (en) Light-emitting device
JP4165592B2 (en) Light emitting device
JP2005333014A (en) Led lamp
WO2013021518A1 (en) Light emitting device
JP5380588B2 (en) Light emitting device
KR102021603B1 (en) Phosphore in glass structure having heat dissipation feature and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5648235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250