JP5642336B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5642336B2
JP5642336B2 JP2008026410A JP2008026410A JP5642336B2 JP 5642336 B2 JP5642336 B2 JP 5642336B2 JP 2008026410 A JP2008026410 A JP 2008026410A JP 2008026410 A JP2008026410 A JP 2008026410A JP 5642336 B2 JP5642336 B2 JP 5642336B2
Authority
JP
Japan
Prior art keywords
metal
brazing material
semiconductor device
bonding
metal brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008026410A
Other languages
Japanese (ja)
Other versions
JP2009188176A (en
Inventor
飯塚 祐二
祐二 飯塚
池田 良成
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008026410A priority Critical patent/JP5642336B2/en
Publication of JP2009188176A publication Critical patent/JP2009188176A/en
Application granted granted Critical
Publication of JP5642336B2 publication Critical patent/JP5642336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Description

この発明は、金属ロウ材により半導体チップを基板に接合してなる半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device in which a semiconductor chip is bonded to a substrate with a metal brazing material and a method for manufacturing the same.

従来、パワーデバイスは電力変換用途のスイッチングデバイスとして用いられている。パワーデバイスのモジュールでは、半導体チップと基板を一体化するための接合材として、比較的低い温度で接合が可能なはんだ材が用いられている。一般に、はんだ材の融点は200〜300℃程度である。このため、はんだ接合層の内部に亀裂が生じてパワーデバイスの機能が失われるという破壊形態があることが分かっている(たとえば、下記非特許文献1参照。)。   Conventionally, power devices are used as switching devices for power conversion applications. In a power device module, a solder material that can be bonded at a relatively low temperature is used as a bonding material for integrating a semiconductor chip and a substrate. Generally, the melting point of the solder material is about 200 to 300 ° C. For this reason, it has been found that there is a fracture mode in which a crack occurs in the solder joint layer and the function of the power device is lost (for example, see Non-Patent Document 1 below).

この破壊の原因として、半導体チップの線膨張係数と基板の線膨張係数が大きく異なることによって、はんだ接合層に熱応力が繰り返し作用することと、はんだ材自体の再結晶化によって、はんだ材の組織が変化することが挙げられる。また、はんだ材の組織が変化する際の時間的な進行速度と、はんだ材自体の高温耐量との間には、強い相関関係がある。したがって、パワーデバイスの安定な高温動作を可能にするためには、耐熱性が優れた接合材を用いて、半導体チップと基板を接合する接合層を形成する必要がある。   The cause of this destruction is that the thermal expansion of the solder joint layer is caused by the fact that the linear expansion coefficient of the semiconductor chip and the linear expansion coefficient of the substrate are greatly different, and that the solder material structure is recrystallized. Change. In addition, there is a strong correlation between the temporal progression speed when the structure of the solder material changes and the high temperature tolerance of the solder material itself. Therefore, in order to enable stable high-temperature operation of the power device, it is necessary to form a bonding layer that bonds the semiconductor chip and the substrate using a bonding material having excellent heat resistance.

一方、固相の接合材同士を、その境界部分を活性化して、相互に接合する方式がある。この方式は、高融点(600℃〜2000℃)の金属の粉体からなる接合材同士を、従来のはんだ材を用いた場合と同様の接合温度(150〜400℃)で接合することができる。この場合、接合材の融点がモジュールの実機動作時の温度(125〜175℃)よりも十分に高いので、耐熱性が優れている。この方式では、通常、金属粉体からなる接合材を焼結して接合する方法が用いられている。   On the other hand, there is a system in which solid-phase bonding materials are bonded to each other by activating the boundary portion. In this method, bonding materials made of metal powder having a high melting point (600 ° C. to 2000 ° C.) can be bonded at the same bonding temperature (150 to 400 ° C.) as when a conventional solder material is used. . In this case, since the melting point of the bonding material is sufficiently higher than the temperature (125 to 175 ° C.) during the actual operation of the module, the heat resistance is excellent. In this method, a method of sintering and joining a joining material made of metal powder is usually used.

この方式において、接合前に金属粉体が凝集したり酸化したりすることによって接合性が劣化するのを避けるために、分散剤の機能を有する溶剤に金属粉体を混合し、塗布性を良好にしたペースト状の接合材が用いられている。このペースト状の接合材を用いる場合、接合材に過剰な溶剤が含まれていると、接合過程における金属粉体同士の界面の活性化による接合が阻害される。これに対して、不活性雰囲気の中で予備加熱を行ってペースト中の溶剤を揮発させた後に金属粉体同士の結合を進展させる2段方式の加熱接合方法が公開されている(たとえば、下記特許文献1参照。)。   In this method, in order to avoid deterioration of the bondability due to the aggregation or oxidation of the metal powder before bonding, the metal powder is mixed with a solvent having a function of a dispersing agent to improve the coating property. A paste-like bonding material is used. When using this paste-like bonding material, if the bonding material contains an excessive solvent, bonding due to activation of the interface between the metal powders in the bonding process is hindered. On the other hand, a two-stage heat bonding method has been disclosed in which the preheating is performed in an inert atmosphere to volatilize the solvent in the paste and then the bonding between the metal powders is advanced (for example, the following) (See Patent Document 1).

両角,他2名,「パワー半導体モジュールにおける信頼性設計技術」,富士時報,富士電機株式会社,平成13年2月10日,第74巻,第2号,p145〜148Both corners, two others, "Reliability design technology in power semiconductor modules", Fuji Jiho, Fuji Electric Co., Ltd. February 10, 2001, Vol. 74, No. 2, p145-148 特開平9−326416号公報Japanese Patent Laid-Open No. 9-326416

しかしながら、上述した特許文献1にかかる従来技術では、固相の接合材と固体の被接合材との接合界面に空隙が存在し、その空隙が埋まらずに残ってしまうため、接合材と被接合材の接合界面付近がポーラス(多孔質体)状態になる。このため、接合界面付近の熱抵抗が高くなり、パワーデバイスのように発熱密度が高いデバイスの接合方式としては実用化が困難である。   However, in the prior art according to Patent Document 1 described above, a gap exists at the bonding interface between the solid-phase bonding material and the solid bonded material, and the void remains without being filled. The vicinity of the joining interface of the material is in a porous (porous body) state. For this reason, the thermal resistance in the vicinity of the bonding interface increases, and it is difficult to put it to practical use as a bonding method for a device having a high heat generation density such as a power device.

また、固相の接合材と被接合材の界面には反応層がほとんど形成されないため、接合界面付近の強度を確保することができない。このように、上述した特許文献1にかかる従来技術では、接合材にはんだ材を用いる場合と比べて接合層の耐熱性は向上するものの、接合材と被接合材の接合界面付近の接合性を確保することが困難であるという問題がある。   In addition, since a reaction layer is hardly formed at the interface between the solid-phase bonding material and the material to be bonded, the strength near the bonding interface cannot be ensured. Thus, in the prior art according to Patent Document 1 described above, the heat resistance of the bonding layer is improved as compared with the case where a solder material is used as the bonding material, but the bonding property near the bonding interface between the bonding material and the bonded material is improved. There is a problem that it is difficult to ensure.

この発明は、上述した問題点を解消するものであり、接合層の耐熱性を向上させつつ、接合材と被接合材の接合界面付近の接合性を向上させた半導体装置およびその製造方法を提供することを目的とする。   The present invention solves the above-described problems, and provides a semiconductor device and a method for manufacturing the same that improve the heat resistance of the bonding layer and improve the bonding property in the vicinity of the bonding interface between the bonding material and the bonded material. The purpose is to do.

上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、半導体チップと基板との間の接合層に、焼結層と、反応層と、が存在する。接合層の焼結層は、金属ロウ材の焼結により一体化された焼結層である。接合層の反応層は、金属ロウ材と、金属ロウ材よりも融点が低く、かつ半導体チップおよび基板の少なくとも一方の接合面に形成された金属被膜との界面における固相−液相反応により、金属被膜と金属ロウ材とが一体化した反応層である。   In order to solve the above-described problems and achieve the object, a semiconductor device according to the present invention includes a sintered layer and a reaction layer in a bonding layer between a semiconductor chip and a substrate. The sintered layer of the bonding layer is a sintered layer integrated by sintering of the metal brazing material. The reaction layer of the bonding layer has a melting point lower than that of the metal brazing material and a solid-liquid phase reaction at the interface between the metal film formed on at least one bonding surface of the semiconductor chip and the substrate. It is a reaction layer in which the metal coating and the metal brazing material are integrated.

この構成によれば、半導体チップおよび基板の少なくとも一方(以下、「被接合材」という)に形成された金属被膜と金属ロウ材とは液相−固相反応によって接合されているため、被接合材と金属ロウ材との接合界面付近の接合性が向上する。また、被接合材と金属ロウ材との間の隙間が、一旦溶けて固まった金属被膜の金属で埋められるので、接合界面付近の熱抵抗が低くなる。さらに、金属ロウ材同士は焼結により一体化されるので、はんだ材などを用いた場合と比べて接合層の耐熱性が向上する。   According to this configuration, the metal film formed on at least one of the semiconductor chip and the substrate (hereinafter referred to as “bonded material”) and the metal brazing material are bonded by a liquid phase-solid phase reaction. Bondability in the vicinity of the bonding interface between the metal and the metal brazing material is improved. Further, since the gap between the material to be joined and the metal brazing material is filled with the metal of the metal film once melted and hardened, the thermal resistance near the joining interface is lowered. Furthermore, since the metal brazing materials are integrated by sintering, the heat resistance of the bonding layer is improved as compared with the case where a solder material or the like is used.

また、この発明にかかる半導体装置の製造方法は、まず、被接合材の接合面に、接合材である金属ロウ材よりも融点が低い金属被膜を形成する。つぎに、形成した金属被膜に接して半導体チップと基板との間に金属ロウ材を配置する。つぎに、金属被膜を溶融して、固相−液相反応により金属被膜と金属ロウ材を一体化する。そして、金属ロウ材を焼結して一体化する。   In the method for manufacturing a semiconductor device according to the present invention, first, a metal film having a melting point lower than that of the metal brazing material as the bonding material is formed on the bonding surface of the material to be bonded. Next, a metal brazing material is disposed between the semiconductor chip and the substrate in contact with the formed metal film. Next, the metal coating is melted, and the metal coating and the metal brazing material are integrated by a solid-liquid phase reaction. Then, the metal brazing material is sintered and integrated.

この方法によれば、被接合材に形成された金属被膜を一旦溶融させることにより金属ロウ材と金属被膜が固相−液相反応により結合されるので、被接合材と金属ロウ材とが金属被膜を介して接合される。また、金属ロウ材を焼結することで、はんだ材などに比べて耐熱性が高い接合層が形成される。   According to this method, the metal brazing material and the metal coating are bonded by a solid-liquid phase reaction by once melting the metal coating formed on the material to be joined. Joined through a coating. Further, by sintering the metal brazing material, a bonding layer having higher heat resistance than the solder material or the like is formed.

また、金属被膜を一旦溶かして金属ロウ材と結合させるときには、金属被膜の融点よりも高く、金属ロウ材の融点より低い第1の温度で加熱することで、金属ロウ材を固相のまま維持しつつ金属被膜を溶融する。また、金属ロウ材を焼結するときには、第1の温度より高く、金属ロウ材の融点より低い温度で加熱する。   In addition, when the metal coating is once melted and bonded to the metal brazing material, the metal brazing material is maintained in a solid phase by heating at a first temperature that is higher than the melting point of the metal coating and lower than the melting point of the metal brazing material. While melting the metal coating. When the metal brazing material is sintered, it is heated at a temperature higher than the first temperature and lower than the melting point of the metal brazing material.

この方法によれば、金属ロウ材の焼結が進行する前に被接合材と金属ロウ材が金属被膜を介して接合される。このため、被接合材と金属ロウ材との接合界面における一体化を効率的に行うことができる。また、被接合材と金属ロウ材とが一体化した後に金属ロウ材の焼結を行うことができる。このため、焼結による金属ロウ材の内部結合が安定して進行し、接合層の耐熱性がより向上する。   According to this method, the material to be joined and the metal brazing material are joined via the metal coating before the sintering of the metal brazing material proceeds. For this reason, integration at the bonding interface between the material to be bonded and the metal brazing material can be performed efficiently. Further, the metal brazing material can be sintered after the material to be joined and the metal brazing material are integrated. For this reason, the internal bonding of the metal brazing material by sintering proceeds stably, and the heat resistance of the bonding layer is further improved.

また、金属ロウ材は、たとえば、金属粉体と溶剤を混合した金属ペーストであってもよい。この場合、金属被膜を形成した後、金属被膜を溶融する前に、金属ロウ材に含まれる溶剤を揮発させる。   The metal brazing material may be, for example, a metal paste in which metal powder and a solvent are mixed. In this case, after the metal film is formed, the solvent contained in the metal brazing material is volatilized before the metal film is melted.

この方法によれば、金属粉体と溶剤とを混合した金属ペーストを金属ロウ材として用いることで、接合前に金属粉体が凝集したり、酸化したりすることによる金属ロウ材の接合性の劣化を防ぐことができる。また、金属被膜を溶融する前に金属ロウ材の溶剤を揮発させることで、金属ロウ材に過剰に含まれる溶剤による金属ロウ材同士の接合性の悪化を防ぐことができる。   According to this method, by using a metal paste in which a metal powder and a solvent are mixed as a metal brazing material, the bonding property of the metal brazing material due to the aggregation or oxidation of the metal powder before joining is achieved. Deterioration can be prevented. Further, by volatilizing the solvent of the metal brazing material before melting the metal coating, it is possible to prevent deterioration of the bonding property between the metal brazing materials due to the solvent excessively contained in the metal brazing material.

金属ロウ材として金属ペーストを用いる場合、金属被膜の融点よりも低い温度で加熱するとよい。これにより、溶剤を揮発させるときに金属被膜が溶融することを防ぐとともに、溶剤を緩やかに揮発させることで溶剤の飛散などを防ぐことができる。   When using a metal paste as the metal brazing material, it is preferable to heat at a temperature lower than the melting point of the metal coating. This prevents the metal coating from melting when the solvent is volatilized, and prevents the solvent from scattering by slowly volatilizing the solvent.

金属ロウ材の金属粉体には、たとえば、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属、またはこれらの金属同士の合金もしくは混合粉末を用いることができる。   For the metal powder of the metal brazing material, for example, any one of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu, or an alloy or mixed powder of these metals is used. Can do.

被接合材の接合面に形成する金属被膜には、たとえば、In,Sb,Sn,Biのいずれかの金属、または、In,Sb,Sn,Biのいずれかの金属を主成分とし、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuとの合金を用いることができる。   The metal film formed on the bonding surface of the material to be bonded includes, for example, a metal of any one of In, Sb, Sn, Bi, or any metal of In, Sb, Sn, Bi as a main component. An alloy with Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, or Cu can be used.

以上説明したように、この発明にかかる半導体装置およびその製造方法によれば、接合層の耐熱性が向上しつつ、接合材と被接合材の接合界面付近の接合性が向上するという効果を奏する。   As described above, according to the semiconductor device and the manufacturing method thereof according to the present invention, there is an effect that the heat resistance of the bonding layer is improved and the bondability in the vicinity of the bonding interface between the bonding material and the bonded material is improved. .

以下に添付図面を参照して、この発明にかかる半導体装置およびその製造方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a semiconductor device and a method for manufacturing the same according to the present invention will be explained below in detail with reference to the accompanying drawings.

(実施の形態)
図1は、実施の形態にかかる半導体装置の接合後の接合部を拡大して示す断面図である。図1に示すように、実施の形態にかかる半導体装置10は、金属ロウ材により半導体チップ11を配線基板12に接合してなる半導体装置である。半導体チップ11および配線基板12との間の接合層には、焼結層13と、反応層15と、が存在する。
(Embodiment)
FIG. 1 is an enlarged cross-sectional view of a bonded portion after bonding of the semiconductor device according to the embodiment. As shown in FIG. 1, a semiconductor device 10 according to the embodiment is a semiconductor device in which a semiconductor chip 11 is bonded to a wiring board 12 with a metal brazing material. In the bonding layer between the semiconductor chip 11 and the wiring substrate 12, a sintered layer 13 and a reaction layer 15 exist.

半導体チップ11および配線基板12の少なくとも一方の接合面には金属被膜14が形成されている。ここでは、半導体チップ11および配線基板12の両方の接合面に金属被膜14がそれぞれ形成されているとする。金属被膜14には、金属ロウ材よりも融点が低い金属が用いられている。金属被膜14は、たとえばSnでできている。   A metal film 14 is formed on at least one joint surface of the semiconductor chip 11 and the wiring substrate 12. Here, it is assumed that the metal coating 14 is formed on the bonding surfaces of both the semiconductor chip 11 and the wiring substrate 12. A metal having a melting point lower than that of the metal brazing material is used for the metal coating 14. The metal coating 14 is made of, for example, Sn.

半導体チップ11および配線基板12の各金属被膜14と金属ロウ材との接合界面付近にそれぞれ形成された反応層15は、金属被膜14の最表面と金属ロウ材の最表面とが液相−固相反応によって一体化して形成された反応層(ε−Ag3Sn、他Ag4Snなどの反応層の濃化領域)である。 The reaction layer 15 formed in the vicinity of the bonding interface between each metal coating 14 and the metal brazing material on the semiconductor chip 11 and the wiring board 12 has a liquid phase-solid state between the outermost surface of the metal coating 14 and the outermost surface of the metal brazing material. a reaction layer which is formed integrally with phase reaction (concentrated region of ε-Ag 3 Sn, the reaction layer such as other Ag 4 Sn).

反応層15は、半導体チップ11の金属被膜14と金属ロウ材、配線基板12の金属被膜14と金属ロウ材がそれぞれ液相−固相反応によって一体化して形成された反応層であるため、一旦溶けて固まった金属被膜14で隙間が埋められている。このため、反応層15の接合状態は緻密になっており、反応層15は電気的にも熱的にも伝導性に優れている。また、固体同士の接合と比べて、液相−固相反応による接合は接合活性傾向が大きいため、反応層15が十分に形成される。このため、接合界面付近の強度が十分に確保されている。   The reaction layer 15 is a reaction layer formed by integrating the metal film 14 and the metal brazing material of the semiconductor chip 11 and the metal film 14 and the metal brazing material of the wiring substrate 12 by a liquid phase-solid phase reaction. The gap is filled with the melted and hardened metal coating 14. For this reason, the bonding state of the reaction layer 15 is dense, and the reaction layer 15 is excellent in conductivity both electrically and thermally. Further, since the bonding activity tendency is larger in the bonding by the liquid phase-solid phase reaction than in the bonding between the solids, the reaction layer 15 is sufficiently formed. For this reason, the strength in the vicinity of the bonding interface is sufficiently ensured.

焼結層13は、金属ロウ材の焼結によって架橋状の層を形成している。焼結された金属ロウ材は、はんだ材などを用いた場合と比べて、高い耐熱性を有する。このため、金属ロウ材を焼結した焼結層13によって半導体チップ11と配線基板12の接合層が形成されることで、接合材にはんだ材などを用いる場合と比べて、接合層の耐熱性が向上する。   The sintered layer 13 forms a cross-linked layer by sintering a metal brazing material. The sintered metal brazing material has higher heat resistance than the case where a solder material or the like is used. For this reason, the bonding layer between the semiconductor chip 11 and the wiring board 12 is formed by the sintered layer 13 obtained by sintering the metal brazing material, so that the heat resistance of the bonding layer is higher than when a solder material is used as the bonding material. Will improve.

ここでは、半導体チップ11および配線基板12を接合してなる半導体装置10について説明したが、半導体チップ11と接合される基板は、回路パターンが形成された配線基板12に限らず、半導体チップ11と一体化して半導体チップ11を支持する支持基板や、セラミックなどの絶縁基板などであってもよい。   Here, the semiconductor device 10 formed by bonding the semiconductor chip 11 and the wiring substrate 12 has been described. However, the substrate bonded to the semiconductor chip 11 is not limited to the wiring substrate 12 on which the circuit pattern is formed, and the semiconductor chip 11 It may be a support substrate that integrally supports the semiconductor chip 11 or an insulating substrate such as ceramic.

図2は、実施の形態にかかる半導体装置の接合前の接合部を拡大して示す断面図である。図2において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。図2に示すように、接合前の実施の形態にかかる半導体装置10は、半導体チップ11、配線基板12および金属ロウ材13aが積層されている。   FIG. 2 is an enlarged cross-sectional view of a bonding portion before bonding of the semiconductor device according to the embodiment. In FIG. 2, the same components as those shown in FIG. As shown in FIG. 2, in the semiconductor device 10 according to the embodiment before bonding, a semiconductor chip 11, a wiring board 12, and a metal brazing material 13a are laminated.

金属被膜14は、あらかじめ、半導体チップ11および配線基板12のそれぞれの接合面に、蒸着、スパッタまたはめっきなどの処理によって形成される。たとえば金属被膜14をめっき処理によって形成することで、十分な膜厚の金属被膜14を容易に形成することができる。金属被膜14の膜厚はたとえば0.1μm〜10μm程度であるのがよい。   The metal coating 14 is formed in advance on the respective joint surfaces of the semiconductor chip 11 and the wiring substrate 12 by a process such as vapor deposition, sputtering, or plating. For example, by forming the metal film 14 by plating, the metal film 14 having a sufficient film thickness can be easily formed. The film thickness of the metal coating 14 is preferably about 0.1 μm to 10 μm, for example.

金属ロウ材13aは、半導体チップ11と配線基板12との間に、金属被膜14に接して配置されている。金属ロウ材13aは、たとえば、金属粉体と有機溶剤などの溶剤とを混合した金属ペーストである。この場合、金属被膜14には、金属ロウ材13aに含まれる金属粉体よりも融点が低い金属を用いる。溶剤と混合する金属粉体は、たとえば粒径が0.1μm〜数μmのAgである。   The metal brazing material 13 a is disposed in contact with the metal coating 14 between the semiconductor chip 11 and the wiring substrate 12. The metal brazing material 13a is, for example, a metal paste in which a metal powder and a solvent such as an organic solvent are mixed. In this case, a metal having a melting point lower than that of the metal powder contained in the metal brazing material 13a is used for the metal coating 14. The metal powder mixed with the solvent is, for example, Ag having a particle size of 0.1 μm to several μm.

接合後に、半導体チップ11と配線基板12の線膨張係数の違いに起因して生じる熱応力を十分に分散させることができるように、金属ロウ材13aの塗布厚みを0〜300μm程度にするとよい。金属ロウ材13aの塗布厚みについては、厚みが50〜300μm程度で、かつ金属ロウ材の塗布パターンに相当する開口部を有するメタルマスクを用いてスキージ印刷を行うか、ディスペンスによる滴下量をメタルマスクの開口部の容積分と同等にすることによって、容易に調節することができる。   After bonding, the coating thickness of the metal brazing material 13a is preferably about 0 to 300 μm so that the thermal stress generated due to the difference in coefficient of linear expansion between the semiconductor chip 11 and the wiring board 12 can be sufficiently dispersed. With respect to the coating thickness of the metal brazing material 13a, squeegee printing is performed using a metal mask having a thickness of about 50 to 300 μm and an opening corresponding to the coating pattern of the metal brazing material, or the amount of dripping by dispensing is applied to the metal mask. It can be easily adjusted by making it equal to the volume of the opening.

図3は、半導体装置の接合工程を示すフローチャートである。図3に示すように、まず、半導体チップ11および配線基板12の少なくとも一方の接合面に金属被膜14を形成する(ステップS301)。ここでは、半導体チップ11および配線基板12の両方の接合面に金属被膜14を形成する。   FIG. 3 is a flowchart showing the bonding process of the semiconductor device. As shown in FIG. 3, first, a metal film 14 is formed on at least one joint surface of the semiconductor chip 11 and the wiring substrate 12 (step S301). Here, the metal film 14 is formed on the joint surfaces of both the semiconductor chip 11 and the wiring substrate 12.

つぎに、配線基板12の接合面に金属ロウ材13aを塗布する(ステップS302)。半導体チップ11の接合面に金属ロウ材13aを塗布してもよい。ステップS302で塗布される金属ロウ材13aとして、金属粉体と溶剤とが混合された金属ペーストを用いることで、接合前に金属粉体が凝集したり、酸化したりすることによる金属ロウ材13aの接合性の劣化を防ぐことができる。   Next, the metal brazing material 13a is applied to the bonding surface of the wiring board 12 (step S302). A metal brazing material 13 a may be applied to the bonding surface of the semiconductor chip 11. By using a metal paste in which metal powder and a solvent are mixed as the metal brazing material 13a applied in step S302, the metal brazing material 13a is formed by aggregation or oxidation of the metal powder before joining. It is possible to prevent deterioration of the bondability.

つぎに、金属ロウ材13aを加熱し、金属ロウ材13aに含まれる溶剤を揮発させる(ステップS303)。ステップS303によって、金属ロウ材13aに過剰に含まれる溶剤による金属ロウ材13a同士の接合性の悪化を防ぐことができる。そして、配線基板12の上に金属ロウ材13aを介して半導体チップ11を載せる。   Next, the metal brazing material 13a is heated to volatilize the solvent contained in the metal brazing material 13a (step S303). By step S303, it is possible to prevent deterioration of the bonding property between the metal brazing materials 13a due to the solvent excessively contained in the metal brazing material 13a. Then, the semiconductor chip 11 is placed on the wiring board 12 via the metal brazing material 13a.

つぎに、金属被膜14の融点より高く、金属ロウ材13aの融点よりも低い第1の温度で金属被膜14を溶かして金属ロウ材13aに溶融結合する(ステップS304)。ステップS304によって、半導体チップ11および配線基板12のそれぞれが、金属ロウ材13aとの間で液相−固相反応し、金属ロウ材13aと一体化する。   Next, the metal film 14 is melted and bonded to the metal brazing material 13a at a first temperature higher than the melting point of the metal coating 14 and lower than the melting point of the metal brazing material 13a (step S304). In step S304, each of the semiconductor chip 11 and the wiring board 12 undergoes a liquid-solid phase reaction with the metal brazing material 13a to be integrated with the metal brazing material 13a.

このとき、半導体チップ11および配線基板12と金属ロウ材との間の隙間に溶けた金属被膜14の金属が入り込む。そして、後に、この溶けた金属が固まることによって、半導体チップ11および配線基板12と金属ロウ材との間の隙間が金属で埋まるので、接合界面付近の熱抵抗が低くなる。   At this time, the metal of the metal coating 14 melted into the gap between the semiconductor chip 11 and the wiring board 12 and the metal brazing material enters. Then, since the melted metal solidifies later, the gap between the semiconductor chip 11 and the wiring board 12 and the metal brazing material is filled with the metal, so that the thermal resistance in the vicinity of the bonding interface is lowered.

つぎに、ステップS303の第1温度よりも高く、金属ロウ材13aの融点よりも低い第2の温度で金属ロウ材13aを焼結し(ステップS305)、一連の接合工程を終了する。ステップS305によって、金属ロウ材13aの内部結合が進行し、はんだ材などに比べて高温耐量が大きい焼結層(図1符号13参照)が形成される。   Next, the metal brazing material 13a is sintered at a second temperature that is higher than the first temperature in step S303 and lower than the melting point of the metal brazing material 13a (step S305), and the series of joining steps is completed. By step S305, the internal bonding of the metal brazing material 13a proceeds, and a sintered layer (see reference numeral 13 in FIG. 1) having a higher high-temperature resistance than a solder material or the like is formed.

なお、ステップS303においては、金属被膜14の融点よりも低い温度の加熱状態を保持することで、溶剤を揮発させるときに金属被膜14が溶融することを防ぐとともに、金属ロウ材13aの金属粒子間に充填された溶剤が緩やかに揮発する。   In step S303, the heating state at a temperature lower than the melting point of the metal coating 14 is maintained to prevent the metal coating 14 from melting when the solvent is volatilized, and between the metal particles of the metal brazing material 13a. The solvent filled in is volatilized slowly.

たとえば、金属ロウ材13aの溶剤としてアルコール系の溶剤を用いる場合、120〜160℃程度の加熱状態を保持するとよい。これにより、溶剤の内部で気化が起こり、それによってボイドが急激に発生するのを防ぐことができるので、溶剤を飛散させることなく速やかに揮発させることができる。   For example, when an alcohol-based solvent is used as the solvent for the metal brazing material 13a, a heating state of about 120 to 160 ° C. may be maintained. Thereby, since vaporization occurs inside the solvent and thereby a void can be prevented from being generated abruptly, the solvent can be volatilized quickly without being scattered.

また、たとえば金属被膜14がSn(融点が230℃)であり、金属ロウ材13aの金属粉体がAgである場合、ステップS304において、230〜250℃の温度で金属被膜14を溶融する。これにより、溶剤が揮発した金属ロウ材13aが固相のまま維持されつつ、溶融した金属被膜14と、金属ロウ材13aと、の間で液相−固相反応が生じ、金属被膜14と金属ロウ材13aとの接合界面の一体化が進行する。   For example, when the metal coating 14 is Sn (melting point is 230 ° C.) and the metal powder of the metal brazing material 13a is Ag, the metal coating 14 is melted at a temperature of 230 to 250 ° C. in step S304. Thereby, while the metal brazing material 13a from which the solvent has been volatilized is maintained in a solid phase, a liquid phase-solid phase reaction occurs between the molten metal coating 14 and the metal brazing material 13a. Integration of the bonding interface with the brazing material 13a proceeds.

これにより、金属ロウ材13aの焼結が進行する前に金属被膜14と金属ロウ材13aとが液相−固相反応によって接合される。このため、金属被膜14と金属ロウ材13aとの接合界面における一体化を効率的に行うことができる。また、金属被膜14と金属ロウ材13aとが一体化した後に金属ロウ材13aの焼結(ステップS305)を行うことができる。このため、焼結による金属ロウ材13aの内部結合を安定して進行させることができる。したがって、形成される接合層の耐熱性がより向上する。   Thereby, before the sintering of the metal brazing material 13a proceeds, the metal coating 14 and the metal brazing material 13a are joined by a liquid phase-solid phase reaction. For this reason, integration at the bonding interface between the metal coating 14 and the metal brazing material 13a can be performed efficiently. Further, the metal brazing material 13a can be sintered (step S305) after the metal coating 14 and the metal brazing material 13a are integrated. For this reason, the internal coupling | bonding of the metal brazing material 13a by sintering can be advanced stably. Therefore, the heat resistance of the formed bonding layer is further improved.

金属ロウ材13aの金属粒子を粒径0.1μm〜数μmのAgにする場合、ステップS305において、たとえば250〜300℃程度で金属ロウ材13aを焼結する。また、ステップS305においては、焼結によって焼結体の体積が顕著に収縮する場合がある。そのため、配線基板12に半導体チップ11を押しつけた状態で焼結を行うことによって、接合後に接合層が破損するのを回避することができる。   When the metal particles of the metal brazing material 13a are Ag having a particle size of 0.1 μm to several μm, the metal brazing material 13a is sintered at about 250 to 300 ° C. in step S305, for example. Moreover, in step S305, the volume of the sintered body may be significantly contracted by sintering. Therefore, it is possible to avoid the bonding layer from being damaged after bonding by performing the sintering while the semiconductor chip 11 is pressed against the wiring board 12.

ここでは、金属ロウ材13aの金属粉体がAgであり、金属被膜14がSnである場合を例示して説明したが、金属ロウ材13aの金属粉体と金属被膜14の組み合わせはこれに限らず、金属被膜14の融点が金属ロウ材13aの金属粉体よりも低く、金属ロウ材13aの金属粉体と金属被膜14が互いに接合活性傾向を有する組み合わせであればよい。金属ロウ材13aの金属粉体には、たとえば、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属を用いることができる。   Here, the case where the metal powder of the metal brazing material 13a is Ag and the metal coating 14 is Sn has been described as an example, but the combination of the metal powder of the metal brazing material 13a and the metal coating 14 is not limited thereto. The metal coating 14 may have a melting point lower than that of the metal powder of the metal brazing material 13a, and the metal powder of the metal brazing material 13a and the metal coating 14 may have a bonding activity tendency. For the metal powder of the metal brazing material 13a, for example, any one of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu can be used.

または、金属ロウ材13aの金属粉体には、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属同士の合金もしくは混合粉末などを用いてもよい。金属被膜14には、たとえば、In,Sb,Sn,Biのいずれかの金属を用いることができる。または、金属被膜14には、In,Sb,Sn,Biのいずれかの金属を主成分とした、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuとの合金などを用いてもよい。   Alternatively, as the metal powder of the metal brazing material 13a, an alloy or mixed powder of any metal of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu may be used. For the metal coating 14, for example, any one of In, Sb, Sn, and Bi can be used. Alternatively, the metal coating 14 is made of an alloy of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, Cu, etc., which contains any one of In, Sb, Sn, and Bi as a main component. It may be used.

たとえば、金属被膜14をSnまたはInにし、金属ロウ材13aの金属粉体をBiにするとよい。この場合、ステップS304における溶融結合を260℃以上で行う。これにより、上述した反応とは異なり、温度が260℃に達する前に金属被膜14が溶融し、固相状態を保つ金属ロウ材13aより先に、半導体チップ11と金属被膜14、配線基板12と金属被膜14がそれぞれ溶融結合する。   For example, the metal coating 14 may be Sn or In, and the metal powder of the metal brazing material 13a may be Bi. In this case, the melt bonding in step S304 is performed at 260 ° C. or higher. Thus, unlike the above-described reaction, the metal film 14 is melted before the temperature reaches 260 ° C., and the semiconductor chip 11, the metal film 14, the wiring board 12, and the metal brazing material 13 a that maintains the solid state. Each metal coating 14 is melt bonded.

その後、温度が260℃に達した後に、金属被膜14と液相化した金属ロウ材13aのBiとの接合が生じる。一般に、金属ロウ材13aは、半導体チップ11や配線基板12などの被接合材への濡れ性が劣るが、まず金属被膜14と被接合材とを接合し、その後に金属被膜14と金属ロウ材13aとを接合することで実質の接合性がさらに向上する。   Thereafter, after the temperature reaches 260 ° C., the metal coating 14 and the Bi of the metal brazing material 13a in a liquid phase are joined. In general, the metal brazing material 13a is inferior in wettability to a material to be joined such as the semiconductor chip 11 and the wiring substrate 12, but first the metal coating 14 and the material to be joined are joined, and then the metal coating 14 and the metal brazing material. By joining 13a, substantial bondability is further improved.

図4は、実施の形態にかかる半導体装置の接合後の全体構成を示す断面図である。図4において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。図1の焼結層13、金属被膜14および反応層15は図示省略している。図4に示すように、半導体装置10は、半導体チップ11と、配線基板12と、アルミワイヤ41と、ヒートシンク42と、ケース43と、を備えている。   FIG. 4 is a cross-sectional view illustrating an overall configuration after bonding of the semiconductor device according to the embodiment. In FIG. 4, the same components as those shown in FIG. The sintered layer 13, the metal coating 14, and the reaction layer 15 in FIG. 1 are not shown. As shown in FIG. 4, the semiconductor device 10 includes a semiconductor chip 11, a wiring board 12, an aluminum wire 41, a heat sink 42, and a case 43.

配線基板12は、絶縁基板の表面に回路パターン12a,12bを形成した基板である。半導体チップ11の裏面は、図示省略した接合層を介して配線基板12の回路パターン12aと接合している(図1参照)。半導体チップ11の表面に設けられた図示省略した電極と回路パターン12bとはアルミワイヤ41によって電気的に接続されている。配線基板12の裏面には金属膜12cが設けられており、この金属膜12cが図示省略したはんだ接合層を介してヒートシンク42と接合している。   The wiring substrate 12 is a substrate in which circuit patterns 12a and 12b are formed on the surface of an insulating substrate. The back surface of the semiconductor chip 11 is bonded to the circuit pattern 12a of the wiring board 12 via a bonding layer (not shown) (see FIG. 1). An electrode (not shown) provided on the surface of the semiconductor chip 11 and the circuit pattern 12 b are electrically connected by an aluminum wire 41. A metal film 12c is provided on the back surface of the wiring board 12, and the metal film 12c is bonded to the heat sink 42 via a solder bonding layer (not shown).

ヒートシンク42は、良熱伝導体の材質で作られており、ベース部42aおよび放熱フィン部42bを有する。ベース部42aは、半導体チップ11で発生し、配線基板12を介して伝わる熱を放熱フィン部42bへ伝導する。放熱フィン部42bは、複数の放熱フィンを有し、ベース部42aから伝導された熱を放散する。ヒートシンク42の周縁にはケース43が接着されている。   The heat sink 42 is made of a good heat conductor material and has a base portion 42a and a heat radiating fin portion 42b. The base portion 42a conducts heat generated in the semiconductor chip 11 and transmitted through the wiring board 12 to the heat radiating fin portion 42b. The heat radiating fin portion 42b has a plurality of heat radiating fins and dissipates heat conducted from the base portion 42a. A case 43 is bonded to the periphery of the heat sink 42.

以上説明したように、実施の形態によれば、被接合材である半導体チップ11および配線基板12にそれぞれ形成された金属被膜14を溶融して金属ロウ材13aと溶融結合することで、金属被膜14と金属ロウ材13aとの液相−固相反応によって、半導体チップ11と金属ロウ材13a、および配線基板12と金属ロウ材13aがそれぞれ接合される。また、金属ロウ材13aを焼結した焼結層13によって、はんだ材などに比べて耐熱性が高い接合層が形成される。   As described above, according to the embodiment, the metal film 14 formed on the semiconductor chip 11 and the wiring board 12 that are the bonded materials is melted and bonded to the metal brazing material 13a. The semiconductor chip 11 and the metal brazing material 13a, and the wiring substrate 12 and the metal brazing material 13a are bonded to each other by the liquid phase-solid phase reaction between the metal 14 and the metal brazing material 13a. In addition, the sintered layer 13 obtained by sintering the metal brazing material 13a forms a bonding layer having higher heat resistance than a solder material or the like.

このため、接合層の耐熱性が向上しつつ、接合材と被接合材の接合界面付近の接合性が向上する。たとえば、接合界面付近の接合状態が緻密になるため、電気的、熱的な伝導性が向上する。このため、半導体装置10を発熱密度が高いデバイスにも適用することができる。また、反応層15が十分に形成されるため、接合界面付近の強度が十分に確保される。また、接合層の耐熱性が向上するため、安定な高温動作が可能になる。   For this reason, the heat resistance of the bonding layer is improved, and the bonding property in the vicinity of the bonding interface between the bonding material and the bonded material is improved. For example, since the bonding state in the vicinity of the bonding interface becomes dense, electrical and thermal conductivity is improved. For this reason, the semiconductor device 10 can be applied to a device having a high heat generation density. Further, since the reaction layer 15 is sufficiently formed, the strength in the vicinity of the bonding interface is sufficiently ensured. In addition, since the heat resistance of the bonding layer is improved, stable high-temperature operation is possible.

以上において本発明は、上述した実施の形態に限らず、種々変更可能である。たとえば、実施の形態中に記載した寸法や温度などの数値は一例であり、本発明はそれらの値に限定されるものではない。また、半導体チップ11および配線基板12の両方の接合面に金属被膜14をそれぞれ形成する場合について説明したが、半導体チップ11および配線基板12のいずれか一方のみに金属被膜14を設けてもよい。   As described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, numerical values such as dimensions and temperatures described in the embodiments are examples, and the present invention is not limited to these values. Further, the case where the metal film 14 is formed on both the bonding surfaces of the semiconductor chip 11 and the wiring board 12 has been described, but the metal film 14 may be provided only on one of the semiconductor chip 11 and the wiring board 12.

たとえば半導体チップ11のみの接合面に金属被膜14を設けた場合、半導体チップ11と焼結層13は上述した通りに接合される。一方、配線基板12と焼結層13は、固相の焼結層13と固体の配線基板12が直接接合される。接合界面付近の接合性をより向上させるためには、半導体チップ11および配線基板12の両方の接合面に金属被膜14をそれぞれ形成することが望ましい。   For example, when the metal film 14 is provided on the bonding surface of only the semiconductor chip 11, the semiconductor chip 11 and the sintered layer 13 are bonded as described above. On the other hand, the wiring substrate 12 and the sintered layer 13 are directly bonded to the solid-phase sintered layer 13 and the solid wiring substrate 12. In order to further improve the bonding property in the vicinity of the bonding interface, it is desirable to form the metal coatings 14 on the bonding surfaces of both the semiconductor chip 11 and the wiring substrate 12, respectively.

以上のように、本発明にかかる半導体装置およびその製造方法は、金属ロウ材により半導体チップを基板に接合してなる半導体装置に有用であり、特に、動作時の温度が高く、発熱密度が高いパワーデバイスなどに適している。   As described above, the semiconductor device and the manufacturing method thereof according to the present invention are useful for a semiconductor device in which a semiconductor chip is bonded to a substrate with a metal brazing material, and in particular, the temperature during operation is high and the heat generation density is high. Suitable for power devices.

実施の形態にかかる半導体装置の接合後の接合部を拡大して示す断面図である。It is sectional drawing which expands and shows the junction part after joining of the semiconductor device concerning embodiment. 実施の形態にかかる半導体装置の接合前の接合部を拡大して示す断面図である。It is sectional drawing which expands and shows the junction part before joining of the semiconductor device concerning embodiment. 半導体装置の接合工程を示すフローチャートである。It is a flowchart which shows the joining process of a semiconductor device. 実施の形態にかかる半導体装置の接合後の全体構成を示す断面図である。It is sectional drawing which shows the whole structure after joining of the semiconductor device concerning embodiment.

符号の説明Explanation of symbols

10 半導体装置
11 半導体チップ
12 配線基板
12a,12b 回路パターン
12c 金属膜
13 焼結層
13a 金属ロウ材
14 金属被膜
15 反応層
41 アルミワイヤ
42 ヒートシンク
42a ベース部
42b 放熱フィン部
43 ケース
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Semiconductor chip 12 Wiring board 12a, 12b Circuit pattern 12c Metal film 13 Sintered layer 13a Metal brazing material 14 Metal coating 15 Reaction layer 41 Aluminum wire 42 Heat sink 42a Base part 42b Radiation fin part 43 Case

Claims (13)

金属粉体を含む金属ロウ材により半導体チップを基板に接合してなる半導体装置において、
前記半導体チップと前記基板との間の接合層には
前記金属ロウ材よりも融点が低く、かつ前記半導体チップおよび前記基板の少なくとも一方の接合面に形成された金属被膜と
前記金属被膜の融点よりも高く、前記金属ロウ材の融点より低い第1の温度で溶けた前記金属被膜と、前記金属ロウ材とが、界面における固相−液相反応により一体化した反応層と、
前記金属ロウ材の焼結により一体化された焼結層と、
が存在することを特徴とする半導体装置。
In a semiconductor device formed by bonding a semiconductor chip to a substrate with a metal brazing material containing metal powder,
In the bonding layer between the semiconductor chip and the substrate ,
A melting point lower than that of the metal brazing material , and a metal film formed on at least one bonding surface of the semiconductor chip and the substrate ;
A reaction layer in which the metal coating melted at a first temperature higher than the melting point of the metal coating and lower than the melting point of the metal brazing material and the metal brazing material are integrated by a solid-liquid phase reaction at the interface. When,
A sintered layer integrated by sintering the metal brazing material;
A semiconductor device characterized in that
前記焼結層は、前記第1の温度より高く、前記金属ロウ材の融点よりも低い第2の温度で焼結されたことを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the sintered layer is sintered at a second temperature that is higher than the first temperature and lower than a melting point of the metal brazing material. 前記金属ロウ材が、前記金属粉体と溶剤を混合した金属ペーストであり、前記固相−液相反応の前に、前記金属被膜の融点よりも低い温度の加熱状態を保持することにより前記溶剤を揮発させ前記反応層を形成したことを特徴とする請求項1に記載の半導体装置。The metal brazing material is a metal paste obtained by mixing the metal powder and a solvent, and the solvent is maintained by maintaining a heating state at a temperature lower than the melting point of the metal coating before the solid-liquid phase reaction. The semiconductor device according to claim 1, wherein the reaction layer is formed by volatilizing the substrate. 前記反応層において、前記半導体チップおよび前記基板の少なくとも一方と前記金属ロウ材との間の隙間が前記金属被膜で埋められていることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein a gap between at least one of the semiconductor chip and the substrate and the metal brazing material is filled with the metal film in the reaction layer. 前記金属粉体は、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属、または、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属同士の合金もしくは混合粉末であることを特徴とする請求項1に記載の半導体装置。The metal powder is any one of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu, or In, Sb, Sn, Ni, Pd, Au, Zn, Bi, and Ag. 2. The semiconductor device according to claim 1, wherein the semiconductor device is an alloy or mixed powder of any one of Cu and Cu. 前記金属被膜は、前記金属粉体よりも融点が低く、In,Sb,Sn,Biのいずれかの金属、または、In,Sb,Sn,Biのいずれかの金属を主成分とした、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuとの合金であることを特徴とする請求項5に記載の半導体装置。The metal coating has a melting point lower than that of the metal powder, and contains In, Sb, Sn, Bi, or In, Sb, Sn, Bi as a main component. 6. The semiconductor device according to claim 5, wherein the semiconductor device is an alloy of Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu. 前記金属被膜はSnを含み、前記金属粉体はAgを含むことを特徴とする請求項6に記載の半導体装置。The semiconductor device according to claim 6, wherein the metal film contains Sn, and the metal powder contains Ag. 前記金属被膜は、前記半導体チップおよび前記基板の双方の接合面にそれぞれ形成されていることを特徴とする請求項7に記載の半導体装置。The semiconductor device according to claim 7, wherein the metal film is formed on a bonding surface of both the semiconductor chip and the substrate. 金属粉体を含む金属ロウ材により半導体チップを基板に接合してなる半導体装置の製造方法において、
前記半導体チップおよび前記基板の少なくとも一方の接合面に、前記金属ロウ材よりも融点が低い金属被膜を形成する形成工程と、
前記金属被膜に接して前記半導体チップと前記基板との間に前記金属ロウ材を配置する配置工程と
前記金属被膜の融点より高く、前記金属ロウ材の融点より低い第1の温度で溶融した前記金属被膜と、前記金属ロウ材とを界面における固相−液相反応により一体化する溶融工程と、
前記金属ロウ材を焼結して一体化する焼結工程と、
を含むことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a semiconductor chip is bonded to a substrate with a metal brazing material containing metal powder,
Forming a metal film having a melting point lower than that of the metal brazing material on at least one bonding surface of the semiconductor chip and the substrate;
An arrangement step of arranging the metal brazing material between the semiconductor chip and the substrate in contact with the metal coating ;
A melting step in which the metal coating melted at a first temperature higher than the melting point of the metal coating and lower than the melting point of the metal brazing material and the metal brazing material are integrated by a solid-liquid phase reaction at an interface ;
A sintering step of sintering and integrating the metal brazing material ;
A method for manufacturing a semiconductor device, comprising:
記焼結工程では、前記第1の温度より高く、前記金属ロウ材の融点より低い温度で加熱することを特徴とする請求項9に記載の半導体装置の製造方法。 Prior Symbol sintering step, the first higher than the temperature, a method of manufacturing a semiconductor device according to claim 9, wherein the heating at a temperature below the melting point of the brazing filler metal. 前記金属ロウ材は、前記金属粉体と溶剤を混合した金属ペーストであり、The metal brazing material is a metal paste in which the metal powder and a solvent are mixed,
前記配置工程の後で前記溶融工程の前に、前記溶剤を揮発させる揮発工程を含むことを特徴とする請求項9に記載の半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 9, further comprising a volatilizing step of volatilizing the solvent after the arranging step and before the melting step.
前記金属粉体は、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属、または、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuのいずれかの金属同士の合金もしくは混合粉末であることを特徴とする請求項9に記載の半導体装置の製造方法。 The metal powder is any one of In, Sb, Sn, Ni, Pd, Au, Zn, Bi, Ag, and Cu, or In, Sb, Sn, Ni, Pd, Au, Zn, Bi, and Ag. 10. The method for manufacturing a semiconductor device according to claim 9 , wherein the semiconductor device is an alloy or mixed powder of any one of Cu and Cu. 前記金属被膜は、In,Sb,Sn,Biのいずれかの金属、または、In,Sb,Sn,Biのいずれかの金属を主成分とした、In,Sb,Sn,Ni,Pd,Au,Zn,Bi,Ag,Cuとの合金であることを特徴とする請求項12に記載の半導体装置の製造方法。 The metal coating is composed of any one of In, Sb, Sn, Bi, or In, Sb, Sn, Ni, Pd, Au, which is mainly composed of any one of In, Sb, Sn, Bi. 13. The method of manufacturing a semiconductor device according to claim 12 , wherein the semiconductor device is an alloy of Zn, Bi, Ag, and Cu.
JP2008026410A 2008-02-06 2008-02-06 Semiconductor device and manufacturing method thereof Active JP5642336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026410A JP5642336B2 (en) 2008-02-06 2008-02-06 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008026410A JP5642336B2 (en) 2008-02-06 2008-02-06 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009188176A JP2009188176A (en) 2009-08-20
JP5642336B2 true JP5642336B2 (en) 2014-12-17

Family

ID=41071138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026410A Active JP5642336B2 (en) 2008-02-06 2008-02-06 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5642336B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401825B (en) * 2009-11-27 2013-07-11 Ind Tech Res Inst A bonding method for led chip and bonded led
JP2012174927A (en) * 2011-02-22 2012-09-10 Fujitsu Ltd Semiconductor device and manufacturing method of the same
JP2014060341A (en) 2012-09-19 2014-04-03 Toshiba Corp Semiconductor device and semiconductor device manufacturing method
US9676047B2 (en) 2013-03-15 2017-06-13 Samsung Electronics Co., Ltd. Method of forming metal bonding layer and method of manufacturing semiconductor light emitting device using the same
JP6065973B2 (en) 2013-05-09 2017-01-25 三菱電機株式会社 Semiconductor module
JP6143687B2 (en) * 2014-02-18 2017-06-07 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6936595B2 (en) * 2017-03-15 2021-09-15 株式会社 日立パワーデバイス Semiconductor device
JP6366766B2 (en) * 2017-03-24 2018-08-01 三菱電機株式会社 Semiconductor device
US10385469B2 (en) * 2017-09-11 2019-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. Thermal stress compensation bonding layers and power electronics assemblies incorporating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033329A (en) * 2004-02-18 2007-03-26 버지니아 테크 인터렉추얼 프라퍼티스, 인크. Nano-sized metal pastes for interconnects and how to use them
CN101479839A (en) * 2006-04-24 2009-07-08 株式会社村田制作所 Electronic element, electronic element device using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009188176A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5642336B2 (en) Semiconductor device and manufacturing method thereof
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
JP4770533B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6072667B2 (en) Semiconductor module and manufacturing method thereof
JP5659663B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5636720B2 (en) Semiconductor device manufacturing method and joining jig
JP2012099779A (en) Power module using burning join and manufacturing method of the power module
JP6029222B1 (en) Metal particles, paste, molded body, and laminate
CN102917835A (en) Junction material, manufacturing method thereof, and manufacturing method of junction structure
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
JP2005095977A (en) Circuit device
JP2009147111A (en) Bonding material, method of manufacturing the same, and semiconductor apparatus
JP5968046B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2007088030A (en) Semiconductor device
JPWO2007119571A1 (en) Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
JP6569511B2 (en) Bonded body, power module substrate with cooler, and method for manufacturing power module substrate with cooler
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
JP5292977B2 (en) Bonding material, semiconductor device and manufacturing method thereof
TWI484604B (en) Metal thermal interface materials and packaged semiconductors comprising the materials
US20240038621A1 (en) Device Comprising a Component and a Coupled Cooling Body
JP2015213097A (en) Heat radiator, manufacturing method thereof and package for storing semiconductor device
JP3840132B2 (en) Peltier device mounting circuit board
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP6936595B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130513

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250