JP5642103B2 - Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet - Google Patents
Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet Download PDFInfo
- Publication number
- JP5642103B2 JP5642103B2 JP2012071694A JP2012071694A JP5642103B2 JP 5642103 B2 JP5642103 B2 JP 5642103B2 JP 2012071694 A JP2012071694 A JP 2012071694A JP 2012071694 A JP2012071694 A JP 2012071694A JP 5642103 B2 JP5642103 B2 JP 5642103B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth permanent
- permanent magnet
- refrigerant
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、冷凍空調機等に用いられる希土類永久磁石についての腐食診断方法、耐腐食性検査方法および腐食診断システムに関する。 The present invention relates to a corrosion diagnosis method, a corrosion resistance inspection method, and a corrosion diagnosis system for rare earth permanent magnets used in refrigeration air conditioners and the like.
希土類永久磁石は優れた磁気特性を有するため、多くの電気・電子機器で利用されており、近年その生産量は急激に増大している。例えば、冷凍空調機の圧縮機に使用されている。これらの希土類永久磁石は、主成分として希土類元素および鉄を含有するため、湿度をおびた空気中では短時間のうちに容易に酸化するという欠点を有している。即ち、酸化腐食により磁気特性の低下や発生した錆等による周辺機器の汚染が発生する問題がある。このため、一般に希土類永久磁石は表面処理を行って使用されている。 Since rare earth permanent magnets have excellent magnetic properties, they are used in many electrical and electronic equipment, and their production volume has increased rapidly in recent years. For example, it is used for a compressor of a refrigeration air conditioner. Since these rare earth permanent magnets contain rare earth elements and iron as main components, they have a drawback of being easily oxidized in a short period of time in humid air. That is, there is a problem in that peripheral equipment is contaminated due to deterioration of magnetic properties or generated rust due to oxidative corrosion. For this reason, in general, rare earth permanent magnets are used after surface treatment.
例えば、希土類永久磁石における表面処理方法として、特許文献1(特許第4190743号公報)には、主成分をR(RはNdまたはNdと他の希土類元素の1種または2種以上との組み合わせ)、T(TはFe、またはFeおよびCo)、およびBとし、Ndが17〜33.5重量%でRの合計量が26.8〜33.5重量%、Bが0.78〜1.25重量%、Ni,Ga,Zr,Nb,Hf,Ta,Mn,Sn,Mo,Zn,Pb,Sb,Al,Si,V,Cr,Ti,Cu,Ca,Mgから選ばれる1種または2種以上の元素の合計量が0.05〜3.5重量%、残部がTおよび不可避の不純物からなる合金を鋳造し、アルゴン、窒素または真空の無酸素雰囲気中で粉砕した後、微粉砕、磁場中成型、焼結、時効を順次行って焼結磁石とする方法が開示されている。 For example, as a surface treatment method for rare earth permanent magnets, Patent Document 1 (Patent No. 4190743) discloses that the main component is R (R is Nd or a combination of Nd and one or more of other rare earth elements). , T (T is Fe, or Fe and Co), and B, Nd is 17 to 33.5 wt%, the total amount of R is 26.8 to 33.5 wt%, and B is 0.78 to 1. 25% by weight, Ni, Ga, Zr, Nb, Hf, Ta, Mn, Sn, Mo, Zn, Pb, Sb, Al, Si, V, Cr, Ti, Cu, Ca, Mg Casting an alloy composed of 0.05 to 3.5% by weight of the total elements of the seeds or more and the balance of T and the inevitable impurities, pulverized in an oxygen, nitrogen or vacuum oxygen-free atmosphere, and then finely pulverized. Sintered magnet by sequentially performing molding, sintering, and aging in a magnetic field How to is disclosed a.
また、特許文献2(特開2003−17349号公報)には、希土類元素を含む磁石本体の表面にポリシラザン被膜を形成する工程と、前記ポリシラザン被膜からガラス状保護被膜を得る工程とを有する磁石の製造方法が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 2003-17349) discloses a magnet having a step of forming a polysilazane coating on the surface of a magnet body containing a rare earth element and a step of obtaining a glassy protective coating from the polysilazane coating. A manufacturing method is disclosed.
また、特許文献3(特許第4449342号公報)には、アルカリ珪酸塩被膜中に熱可塑性樹脂を0.1重量%〜50重量%の含量で均一分散させることを特徴とする磁石の表面処理方法が開示されている。 Further, Patent Document 3 (Japanese Patent No. 4449342) discloses a surface treatment method for a magnet, characterized in that a thermoplastic resin is uniformly dispersed in an alkali silicate coating at a content of 0.1 wt% to 50 wt%. Is disclosed.
また、特許文献4(特開2011−97004号公報)には、希土類系焼結磁石に対し、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が200Pa〜1000Paの雰囲気下、250℃〜600℃で熱処理工程を含み、常温から熱処理開始温度までの昇温を、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10−3Pa〜100Paの雰囲気下で2段階工程で行い、常温から200℃迄の昇温を20分間未満で行った後、200℃から熱処理開始温度迄の昇温を20分間以上で行う。 Patent Document 4 (Japanese Patent Laid-Open No. 2011-97004) describes an atmosphere in which an oxygen partial pressure is 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure is 200 Pa to 1000 Pa with respect to a rare earth sintered magnet. lower, 250 ° C. to 600 ° C. in includes a heat treatment step, the Atsushi Nobori from room temperature to the heat treatment starting temperature, oxygen partial pressure 1 × 10 2 Pa~1 × 10 5 Pa at a water vapor partial pressure of 1 × 10 -3 Pa The temperature is raised from room temperature to 200 ° C. in less than 20 minutes in an atmosphere of ˜100 Pa in less than 20 minutes, and then the temperature is raised from 200 ° C. to the heat treatment start temperature in 20 minutes or more.
このような保護皮膜で被覆された希土類永久磁石を用いた電気・電子機器(冷凍空調機など)であっても、保護皮膜の経時劣化や欠損等に起因して、希土類永久磁石の酸化腐食が発生する可能性がある。したがって、希土類永久磁石の酸化腐食の有無を診断する必要があるが、運転中の機器を解体することなく希土類永久磁石の腐食状態を診断する方法は皆無であり、腐食の有無を調べるためには、機器を解体し、磁石を取り出して診断を行う必要があった。 Even in electrical and electronic equipment (refrigeration air conditioners, etc.) using rare earth permanent magnets coated with such a protective coating, oxidative corrosion of rare earth permanent magnets may occur due to deterioration or loss of the protective coating over time. May occur. Therefore, it is necessary to diagnose the presence or absence of oxidative corrosion of rare earth permanent magnets, but there is no method for diagnosing the corrosion state of rare earth permanent magnets without disassembling operating equipment. It was necessary to disassemble the device, take out the magnet, and perform diagnosis.
また、製品としての信頼性の観点から、使用前の希土類永久磁石の耐腐食性の検査(保護皮膜の被覆状態の検査)を行う必要性もあるが、検査後の(検査に合格した)希土類永久磁石を問題なく製品に使用できるような検査方法が望まれていた。 In addition, from the viewpoint of reliability as a product, it is necessary to inspect the corrosion resistance of rare earth permanent magnets before use (inspection of the coating state of the protective film), but the rare earth after inspection (passed the inspection) An inspection method that can use a permanent magnet in a product without any problem has been desired.
本発明の目的は、保護皮膜で被覆された希土類永久磁石を用いた電気・電子機器において、機器を解体することなく容易に実施できる希土類永久磁石の腐食診断方法を提供することである。 An object of the present invention is to provide a method for diagnosing corrosion of rare earth permanent magnets that can be easily carried out in an electric / electronic device using a rare earth permanent magnet coated with a protective film without disassembling the device.
また、本発明の別の目的は、保護皮膜で被覆された希土類永久磁石を検査後も問題なく製品に使用できるような希土類永久磁石の耐腐食性検査方法を提供することである。 Another object of the present invention is to provide a method for inspecting corrosion resistance of a rare earth permanent magnet so that the rare earth permanent magnet coated with a protective film can be used in a product without any problem after the inspection.
本発明は、保護皮膜で被覆された希土類永久磁石の周囲に存在する塩素系冷媒を分析する分析ステップと、
前記分析ステップにおいて、前記塩素系冷媒中に、前記塩素系冷媒の主成分と希土類永久磁石との反応生成物が検出された場合に、前記希土類永久磁石が腐食したと判定する判定ステップと
を含むことを特徴とする、希土類永久磁石の腐食診断方法である。
The present invention comprises an analysis step for analyzing a chlorinated refrigerant present around a rare earth permanent magnet coated with a protective film;
A step of determining that the rare earth permanent magnet is corroded when a reaction product of the main component of the chlorine refrigerant and the rare earth permanent magnet is detected in the chlorine refrigerant in the analyzing step. This is a corrosion diagnostic method for rare earth permanent magnets.
また、本発明は、希土類永久磁石を塩素系冷媒環境下に所定時間暴露する暴露試験を行い、
該暴露試験後に上記の腐食診断方法を実施して、
その結果、前記希土類永久磁石が腐食したと判定された場合に、前記希土類永久磁石の耐腐食性が不合格であると判定する、希土類永久磁石の耐腐食性検査方法にも関する。
In addition, the present invention performs an exposure test in which a rare earth permanent magnet is exposed to a chlorine-based refrigerant environment for a predetermined time,
After the exposure test, carry out the above corrosion diagnostic method,
As a result, the present invention also relates to a method for inspecting corrosion resistance of a rare earth permanent magnet, in which, when it is determined that the rare earth permanent magnet has been corroded, the corrosion resistance of the rare earth permanent magnet is determined to be unacceptable.
また、本発明は、保護皮膜で被覆された希土類永久磁石と塩素系冷媒を用いた冷媒回路とを備え、前記希土類永久磁石が前記塩素系冷媒に曝されている冷凍空調機において、前記希土類永久磁石の腐食を診断する腐食診断システムであって、
運転中の前記冷凍空調機の前記冷媒回路から採取された前記塩素系冷媒を分析するための分析器と、
前記分析器において、前記塩素系冷媒の主成分と前記希土類永久磁石との反応生成物が検出された場合に、前記希土類永久磁石が腐食したと判定する判定機器とを備えることを特徴とする、冷凍空調機の希土類永久磁石の腐食診断システムにも関する。
The present invention further includes a rare earth permanent magnet covered with a protective film and a refrigerant circuit using a chlorine refrigerant, wherein the rare earth permanent magnet is exposed to the chlorine refrigerant. A corrosion diagnostic system for diagnosing corrosion of a magnet,
An analyzer for analyzing the chlorinated refrigerant collected from the refrigerant circuit of the refrigeration air conditioner in operation;
The analyzer includes a determination device that determines that the rare earth permanent magnet is corroded when a reaction product between the main component of the chlorine-based refrigerant and the rare earth permanent magnet is detected. It also relates to a corrosion diagnosis system for rare earth permanent magnets in refrigeration air conditioners.
本発明の腐食診断方法または腐食診断システムによれば、保護皮膜で被覆された希土類永久磁石を用いた電気・電子機器において、比較的容易に採取できる冷媒を分析することで、機器を解体することなく容易に希土類永久磁石の腐食を診断することができる。 According to the corrosion diagnosis method or the corrosion diagnosis system of the present invention, in an electric / electronic device using a rare earth permanent magnet coated with a protective film, the device is disassembled by analyzing a refrigerant that can be collected relatively easily. And corrosion of rare earth permanent magnets can be diagnosed easily.
本発明の耐腐食性検査方法によれば、保護皮膜で被覆された希土類永久磁石の耐腐食性を検査することができ、保護皮膜で被覆された希土類永久磁石を検査後も問題なく製品に使用することができる。 According to the corrosion resistance inspection method of the present invention, the corrosion resistance of a rare earth permanent magnet coated with a protective film can be inspected, and the rare earth permanent magnet coated with a protective film can be used in a product without problems even after the inspection. can do.
以下、実施の形態を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to embodiments, but the present invention is not limited thereto.
(実施の形態1)
本発明の希土類永久磁石の腐食診断方法は、(1)保護皮膜で被覆された希土類永久磁石の周囲に存在する塩素系冷媒を分析する分析ステップと、(2)分析ステップにおいて、塩素系冷媒中に、塩素系冷媒の主成分と希土類永久磁石との反応生成物が検出された場合に、希土類永久磁石が腐食したと判定する判定ステップとを含むことを特徴とする。
(Embodiment 1)
The rare earth permanent magnet corrosion diagnosis method of the present invention includes (1) an analysis step for analyzing a chlorine-based refrigerant present around a rare-earth permanent magnet coated with a protective film, and (2) in the chlorine-based refrigerant in the analysis step. And a determination step of determining that the rare earth permanent magnet is corroded when a reaction product between the main component of the chlorine-based refrigerant and the rare earth permanent magnet is detected.
希土類永久磁石とは、主成分として希土類元素および鉄を含有する磁石である。希土類永久磁石は、湿度をおびた空気中では短時間のうちに容易に酸化するという欠点を有しているため、製品に用いられる際には保護皮膜でその表面が被覆される。保護皮膜としては、種々公知のものを用いることができ、例えば、上記特許文献1〜4に記載される保護皮膜が挙げられる。 A rare earth permanent magnet is a magnet containing rare earth elements and iron as main components. Since rare earth permanent magnets have the disadvantage of being easily oxidized in a short period of time in air with high humidity, the surface is coated with a protective film when used in products. As the protective film, various known ones can be used, and examples thereof include protective films described in Patent Documents 1 to 4 described above.
分析ステップで分析対象となる、保護皮膜で被覆された希土類永久磁石の周囲に存在する塩素系冷媒とは、例えば、運転中の冷凍空調機においては、希土類永久磁石が設置されている雰囲気中の塩素系冷媒である。ただし、この希土類永久磁石が設置されている雰囲気中の塩素系冷媒が、冷凍空調機の冷媒回路を循環している場合は、冷媒回路中の塩素系冷媒も分析対象に含まれる。また、例えば、希土類永久磁石を塩素系冷媒環境下に所定時間暴露する暴露試験を行った場合は、希土類永久磁石が設置されている雰囲気中の塩素系冷媒である。 The chlorine-based refrigerant present around the rare earth permanent magnet covered with the protective film, which is the object of analysis in the analysis step, is, for example, in an operating refrigeration air conditioner in the atmosphere where the rare earth permanent magnet is installed. It is a chlorinated refrigerant. However, when the chlorine-based refrigerant in the atmosphere where the rare earth permanent magnet is installed circulates through the refrigerant circuit of the refrigeration air conditioner, the chlorine-based refrigerant in the refrigerant circuit is also included in the analysis target. For example, when an exposure test is performed in which a rare earth permanent magnet is exposed to a chlorine refrigerant environment for a predetermined time, the rare earth permanent magnet is a chlorine refrigerant in an atmosphere in which the rare earth permanent magnet is installed.
なお、分析対象となる塩素系冷媒は、所定以上の時間、保護皮膜で被覆された希土類永久磁石の周囲に存在していたものであることが好ましい。希土類永久磁石の周囲に存在していた時間が短すぎると、腐食が生じていても検出可能な量の反応生成物(塩素系冷媒の主成分と希土類永久磁石との反応生成物)が生成されず、正確な腐食診断が行えない場合があるからである。 The chlorine-based refrigerant to be analyzed is preferably present around the rare earth permanent magnet covered with the protective film for a predetermined time or more. If the time around the rare earth permanent magnet is too short, a detectable amount of reaction product (reaction product between the main component of the chlorine-based refrigerant and the rare earth permanent magnet) is produced even if corrosion occurs. This is because accurate corrosion diagnosis may not be performed.
分析ステップで分析対象となる塩素系冷媒の主成分としては、ハイドロクロロフルオロカーボン(HCFC)、クロロフルオロカーボン(CFC)などが挙げられ、好ましくはハイドロクロロフルオロカーボンである。また、ハイドロフルオロカーボンとしては、HCFC−22、クロロフルオロカーボンとしては、CFC−12などが挙げられ、好ましくはHCFC−22である。 Examples of the main component of the chlorine-based refrigerant to be analyzed in the analysis step include hydrochlorofluorocarbon (HCFC), chlorofluorocarbon (CFC), and the like, preferably hydrochlorofluorocarbon. Further, examples of the hydrofluorocarbon include HCFC-22, and examples of the chlorofluorocarbon include CFC-12, and HCFC-22 is preferable.
上記判定ステップでは、分析ステップにおいて、塩素系冷媒中に、塩素系冷媒の主成分と希土類永久磁石との反応生成物が検出された場合に、希土類永久磁石が腐食したと判定するが、ここでいう「塩素系冷媒の主成分と希土類永久磁石との反応生成物が検出された場合」とは、ほんのわずかでも反応性生成物が検出された場合であってもよく、あらかじめ定めた特定量以上の反応生成物が検出された場合であってもよい。 In the determination step, in the analysis step, it is determined that the rare earth permanent magnet is corroded when a reaction product of the main component of the chlorine refrigerant and the rare earth permanent magnet is detected in the chlorine refrigerant. “When a reaction product between a main component of a chlorine-based refrigerant and a rare earth permanent magnet is detected” may be a case where even a slight amount of a reactive product is detected, and it exceeds a predetermined amount. The reaction product may be detected.
塩素系冷媒の主成分がHCFC−22である場合、この主成分と希土類永久磁石との反応生成物は、好ましくはHFC−32、HFC−23およびHCFC−31からなる群から選択される少なくとも1種の化合物である。 When the main component of the chlorine-based refrigerant is HCFC-22, the reaction product of the main component and the rare earth permanent magnet is preferably at least one selected from the group consisting of HFC-32, HFC-23, and HCFC-31. A kind of compound.
本発明の腐食診断方法は、保護皮膜で被覆された希土類永久磁石と塩素系冷媒を用いた冷媒回路とを備え、希土類永久磁石が前記塩素系冷媒に曝されている機器において、希土類永久磁石の腐食を診断する場合に用いられることが好ましい。この場合、分析ステップで、運転中の前記機器から採取された塩素系冷媒を分析することが好ましい。また、分析対象となる塩素系冷媒は、機器の冷媒回路内の塩素系冷媒であることが好ましい。 The corrosion diagnosis method of the present invention comprises a rare earth permanent magnet coated with a protective film and a refrigerant circuit using a chlorine-based refrigerant. It is preferably used when diagnosing corrosion. In this case, it is preferable to analyze the chlorine-based refrigerant collected from the operating device in the analysis step. Moreover, it is preferable that the chlorine-based refrigerant to be analyzed is a chlorine-based refrigerant in the refrigerant circuit of the device.
上記機器としては、冷凍空調機、冷蔵空調機等が挙げられ、好ましくは冷凍空調機である。 As said apparatus, a refrigeration air conditioner, a refrigerator air conditioner, etc. are mentioned, Preferably it is a refrigeration air conditioner.
本発明の希土類永久磁石の腐食診断方法において、例えば、冷凍空調機内の希土類永久磁石を診断対照とする場合、分析対象となる反応生成物は、以下に説明する塩素系冷媒、冷凍機油および金属の特殊な劣化反応によって生成されると考えられる。 In the method for diagnosing rare earth permanent magnet corrosion according to the present invention, for example, when a rare earth permanent magnet in a refrigeration air conditioner is used as a diagnostic reference, the reaction product to be analyzed is a chlorine-based refrigerant, refrigeration oil, and metal described below. It is thought to be generated by a special deterioration reaction.
(1)Spauschus反応
Spauschus反応とは、含塩素冷媒の劣化反応でCFC−12と鉄、冷凍機油が反応し、冷媒が劣化するとともにスラッジが発生する反応である。この反応は、以下の平衡反応:
3CCl2F2+Fe → 3CClF2 *+FeCl3 ・・・平衡反応1
CClF2 *+RCH3→CHClF2+RCH2 * ・・・平衡反応2
2RCH2 *→RCH2CH2R ・・・平衡反応3
からなる。
(1) Spaus c hus reaction The Spaus c hus reaction is a reaction in which CFC-12, iron, and refrigeration oil react in a deterioration reaction of a chlorine-containing refrigerant, and the refrigerant deteriorates and sludge is generated. This reaction involves the following equilibrium reaction:
3CCl 2 F 2 + Fe → 3CClF 2 * + FeCl 3 ... Equilibrium reaction 1
CClF 2 * + RCH 3 → CHClF 2 + RCH 2 * —equilibrium reaction 2
2RCH 2 * → RCH 2 CH 2 R... Equilibrium reaction 3
Consists of.
すなわち、
平衡反応1:CFC−12が鉄と反応し、塩化鉄が生成するとともにCFC−12のラジカル(*)が生成する。
平衡反応2:CFC−12のラジカルが冷凍機油(RCH3)と反応し、HCFC−22と冷凍機油のラジカルが生成する。
平衡反応3:冷凍機油のラジカル同士が反応し、冷凍機油の高分子量化が起こる。高分子量化した冷凍機油はさらに他の冷媒のラジカルとの反応を繰り返し、さらに高分子化した冷凍機油がスラッジとなる。
(平衡反応2で生成したHCFC−22は、CFC−12と比べて反応性が低く、上記の反応を考える場合は安定化合物とみなされる)。
That is,
Equilibrium reaction 1: CFC-12 reacts with iron to produce iron chloride and radical (*) of CFC-12.
Equilibrium reaction 2: The radical of CFC-12 reacts with refrigerating machine oil (RCH 3 ), and the radical of HCFC-22 and refrigerating machine oil is generated.
Equilibrium reaction 3: Refrigerating machine oil radicals react with each other to increase the molecular weight of the refrigerating machine oil. The high-molecular weight refrigeration oil further repeats the reaction with other refrigerant radicals, and the further high-molecular refrigeration oil becomes sludge.
(HCFC-22 produced in Equilibrium Reaction 2 is less reactive than CFC-12 and is considered a stable compound when considering the above reaction).
(2)HCFC−22と鉄、冷凍機油の劣化反応
(1)の反応ではHCFC−22は安定化合物とみなされるが、HCFC−22にも塩素が含まれる。このため、HCFC−22と希土類永久磁石中の鉄や冷凍機油との反応として、HCFC−22を中心化合物とした場合は、上記と同様に以下の平衡反応:
6CHClF2+2Fe → 6CHF2 *+2FeCl3 ・・・平衡反応A
CHF2 *+RCH3→CH2F2+RCH2 * ・・・平衡反応B−1
CHF2 *+ CHClF2→CHF3+ CHClF* ・・・平衡反応B−2
CHClF*+ RCH3→CH2ClF+RCH2 * ・・・平衡反応C−1
2RCH2 *→RCH2CH2R ・・・平衡反応C−2
を考えることができる。
(2) Degradation reaction of HCFC-22, iron, and refrigerating machine oil In the reaction (1), HCFC-22 is regarded as a stable compound, but HCFC-22 also contains chlorine. For this reason, when HCFC-22 is used as a central compound as a reaction between HCFC-22 and iron or refrigerating machine oil in the rare earth permanent magnet, the following equilibrium reaction:
6CHClF 2 + 2Fe → 6CHF 2 * + 2FeCl 3 ... Equilibrium reaction A
CHF 2 * + RCH 3 → CH 2 F 2 + RCH 2 * ... Equilibrium reaction B-1
CHF 2 * + CHClF 2 → CHF 3 + CHClF * ... equilibrium reaction B-2
CHClF * + RCH 3 → CH 2 ClF + RCH 2 * ... Equilibrium reaction C-1
2RCH 2 * → RCH 2 CH 2 R ... equilibrium reaction C-2
Can think.
すなわち、
平衡反応A:HCFC−22が鉄と反応し、塩化鉄が生成するとともにラジカル(*)が生成する。
平衡反応B−1:HCFC−22のラジカルが冷凍機油と反応し、HFC−32と冷凍機油のラジカルが生成する。HFC−32には塩素が無いので、ここで反応は停止する。
平衡反応B−2:HCFC−22のラジカルがHCFC−22と反応し、HFC−23とHCFC−22のラジカル(Fが引き抜かれて発生するラジカル)が生成する。
平衡反応C−1:HCFC−22のラジカル(Fが引き抜かれて発生するラジカル)が冷凍機油と反応し、HCFC−31と冷凍機油のラジカルが生成する。
平衡反応C−2:冷凍機油のラジカル同士が反応し、冷凍機油の高分子量化が起こる、高分子量化した冷凍機油はさらに他の冷媒のラジカルとの反応を繰り返し、さらに高分子化した冷凍機油がスラッジとなる。
That is,
Equilibrium reaction A: HCFC-22 reacts with iron to produce iron chloride and radical (*).
Equilibrium reaction B-1: The radicals of HCFC-22 react with the refrigerating machine oil to generate radicals of HFC-32 and the refrigerating machine oil. Since there is no chlorine in HFC-32, the reaction stops here.
Equilibrium reaction B-2: The radicals of HCFC-22 react with HCFC-22 to generate radicals of HFC-23 and HCFC-22 (radicals generated when F is extracted).
Equilibrium reaction C-1: HCFC-22 radicals (radicals generated when F is extracted) react with refrigeration oil to generate HCFC-31 and refrigeration oil radicals.
Equilibrium reaction C-2: Refrigerating machine oil radicals react with each other to increase the molecular weight of the refrigerating machine oil. Higher molecular weight refrigerating machine oil further repeats the reaction with radicals of other refrigerants and further polymerizes the refrigerating machine oil. Becomes sludge.
以上で述べたように、希土類永久磁石の腐食は、塩素系冷媒と希土類永久磁石中の鉄との直接的な反応により進行するものと考えられる。 As described above, the corrosion of the rare earth permanent magnet is considered to proceed by a direct reaction between the chlorine-based refrigerant and iron in the rare earth permanent magnet.
(試験例1)
保護皮膜で被覆された希土類永久磁石について、塩素系冷媒中における実際の腐食を確認するための試験を行った。試験方法はJIS K 2211を参考にした。ガラス容器に触媒である鉄、銅およびアルミニウムと評価対象である希土類永久磁石を入れ、冷凍機油0.7mL、冷媒0.7mLを注入後密封する。この密閉ガラス容器を175℃で2週間加熱したときの希土類永久磁石の重量変化を測定した。ここでの冷凍機油は、エーテル系冷凍機油である。冷媒として、塩素系冷媒であるHCFC−22を注入したガラス容器と塩素非含有のHFC−134aを注入したガラス容器を用意した。希土類永久磁石として、保護皮膜で被覆されたネオジム磁石(磁石A)を入れたガラス容器、保護皮膜が未完全なネオジム磁石(磁石B)を入れたガラス容器、そして、保護皮膜を施していないネオジム磁石(磁石C)を入れたガラス容器を用意した。
(Test Example 1)
A rare earth permanent magnet coated with a protective film was tested to confirm actual corrosion in a chlorinated refrigerant. The test method was based on JIS K 2211. Put iron, copper, and aluminum as catalysts and a rare earth permanent magnet as an evaluation target into a glass container, inject 0.7 mL of refrigerating machine oil and 0.7 mL of refrigerant, and seal it. The weight change of the rare earth permanent magnet was measured when this sealed glass container was heated at 175 ° C. for 2 weeks. The refrigerating machine oil here is an ether type refrigerating machine oil. As the refrigerant, a glass container into which HCFC-22, which is a chlorine-based refrigerant, was injected and a glass container into which chlorine-free HFC-134a was injected were prepared. As a rare earth permanent magnet, a glass container containing a neodymium magnet (magnet A) coated with a protective film, a glass container containing a neodymium magnet (magnet B) with an incomplete protective film, and neodymium without a protective film A glass container containing a magnet (magnet C) was prepared.
表1に加熱後の磁石の重量変化を記す。表に示すように、HCFC−22を注入した場合、磁石は腐食により減量した。HFC−134aを注入した場合、磁石は減量しなかった。この結果は、先に述べた塩素系冷媒、冷凍機油および金属の劣化メカニズムと一致しており、塩素系冷媒を用いることで磁石が腐食したことが分かる。 Table 1 shows the change in the weight of the magnet after heating. As shown in the table, when HCFC-22 was injected, the magnet lost weight due to corrosion. When HFC-134a was injected, the magnet did not lose weight. This result is consistent with the deterioration mechanism of the chlorinated refrigerant, refrigeration oil, and metal described above, and it can be seen that the magnet was corroded by using the chlorinated refrigerant.
保護皮膜で被覆されたネオジム磁石Aの腐食減量は1.7g、保護皮膜が未完全なネオジム磁石Bの腐食減量は46.5g、保護皮膜を施していないネオジム磁石Cの腐食減量は134.6gであった。このように、希土類永久磁石の保護皮膜が未完全であるほど腐食減量が大きくなり、塩素系冷媒を用いることで希土類永久磁石の保護皮膜を検査することができることを示す。 The weight loss of the neodymium magnet A coated with the protective film is 1.7 g, the weight loss of the neodymium magnet B which is not completely protected is 46.5 g, and the weight loss of the neodymium magnet C without the protective film is 134.6 g. Met. As described above, the incompleteness of the protective film of the rare earth permanent magnet increases the corrosion weight loss, which indicates that the protective film of the rare earth permanent magnet can be inspected by using the chlorine-based refrigerant.
(試験例2)
次に、塩素系冷媒の主成分と希土類永久磁石との反応生成物の生成と、希土類永久磁石の腐食状態の関係を調べる試験を行った。
(Test Example 2)
Next, a test was conducted to examine the relationship between the formation of a reaction product between the main component of the chlorine-based refrigerant and the rare earth permanent magnet and the corrosion state of the rare earth permanent magnet.
実施の形態1で述べたガラス容器から冷媒を採取し、ガスクロマトグラフ質量分析装置で分析した。図1に、加熱後のHFC−134aのクロマトグラムを示す。図1に示すように、HFC−134aは希土類永久磁石と反応しないため希土類永久磁石とHFC−134aの反応生成物は検出されなかった。図2と図3にHCFC−22を注入した場合の分析結果(クロマトグラム)を示す。図2は、HFC−23とHFC−32を検出するため、フラグメントイオンピークの強度が強いM/Z=51でスキャンした解析結果である。図3は、HCFC−31を検出するため、フラグメントイオンピークの強度が強いM/Z=68でスキャンした解析結果である。 A refrigerant was collected from the glass container described in Embodiment 1, and analyzed with a gas chromatograph mass spectrometer. FIG. 1 shows a chromatogram of HFC-134a after heating. As shown in FIG. 1, since the HFC-134a does not react with the rare earth permanent magnet, the reaction product of the rare earth permanent magnet and the HFC-134a was not detected. FIG. 2 and FIG. 3 show the analysis results (chromatogram) when HCFC-22 is injected. FIG. 2 shows an analysis result obtained by scanning at M / Z = 51 where the intensity of the fragment ion peak is high in order to detect HFC-23 and HFC-32. FIG. 3 shows an analysis result obtained by scanning with M / Z = 68 in which the intensity of the fragment ion peak is strong in order to detect HCFC-31.
図2と図3に示すように、HCFC−22は希土類永久磁石と反応するため、希土類永久磁石とHCFC−22の反応生成物と考えられるHFC−23、HFC−32およびHCFC−31が検出された。 As shown in FIGS. 2 and 3, since HCFC-22 reacts with a rare earth permanent magnet, HFC-23, HFC-32 and HCFC-31, which are considered to be reaction products of the rare earth permanent magnet and HCFC-22, are detected. It was.
表2にHCFC−22を注入した場合のHFC−23、HFC−32およびHCFC−31のGC/MSのピーク面積値を示す。図4は、HFC−23、HFC−32およびHCFC−31のピーク面積値の合計と希土類永久磁石の腐食減量の関係を示すグラフである。図4に示すように、希土類永久磁石の腐食減量が大きくなるにしたがって、HFC−23、HFC−32およびHCFC−31のピーク面積値の合計は大きくなった。 Table 2 shows the GC / MS peak area values of HFC-23, HFC-32 and HCFC-31 when HCFC-22 is injected. FIG. 4 is a graph showing the relationship between the sum of the peak area values of HFC-23, HFC-32 and HCFC-31 and the corrosion weight loss of rare earth permanent magnets. As shown in FIG. 4, the total peak area values of HFC-23, HFC-32, and HCFC-31 increased as the corrosion weight loss of the rare earth permanent magnets increased.
この結果は、塩素系冷媒、冷凍機油および金属の劣化メカニズムと一致しており、冷凍空調機から塩素系冷媒を採取して分析することで、塩素系冷媒の主成分と希土類永久磁石との反応生成物(HFC−23、HFC−32およびHCFC−31)の検出の有無に基づいて、希土類永久磁石の腐食状態を診断できることを示す。 This result is consistent with the deterioration mechanism of chlorinated refrigerant, refrigeration oil, and metal. By collecting and analyzing the chlorinated refrigerant from the refrigeration air conditioner, the reaction between the main component of the chlorinated refrigerant and the rare earth permanent magnet Based on the presence or absence of detection of products (HFC-23, HFC-32 and HCFC-31), it is shown that the corrosion state of the rare earth permanent magnet can be diagnosed.
(実施の形態2)
実施の形態2として、希土類永久磁石の耐腐食性検査方法について説明する。本実施の形態では、希土類永久磁石を塩素系冷媒環境下に所定時間暴露する暴露試験を行い、該暴露試験後の塩素系冷媒を分析対象として、実施の形態1と同様の方法で希土類永久磁石の腐食の有無を診断し、その結果、希土類永久磁石が腐食したと判定された場合に、希土類永久磁石の耐腐食性が不合格であると判定する。
(Embodiment 2)
As Embodiment 2, a method for inspecting corrosion resistance of a rare earth permanent magnet will be described. In the present embodiment, an exposure test is performed in which the rare earth permanent magnet is exposed to a chlorinated refrigerant environment for a predetermined time, and the chlorinated refrigerant after the exposure test is analyzed, and the rare earth permanent magnet is analyzed in the same manner as in the first embodiment. In the case where it is determined that the rare earth permanent magnet is corroded, it is determined that the corrosion resistance of the rare earth permanent magnet is unacceptable.
暴露試験では、希土類永久磁石を、塩素系冷媒と冷凍機油の共存する環境下に所定時間暴露することが好ましく、また、加熱環境下で実施されることが好ましい。これにより、保護皮膜に欠損があることや保護皮膜が経時劣化しやすいこと等により、希土類永久磁石の耐腐食性が低い場合には、前記塩素系冷媒の主成分と希土類永久磁石との反応生成物が十分な量生成されるため、より正確に希土類永久磁石の耐腐食性の検査を実施することができる。 In the exposure test, the rare earth permanent magnet is preferably exposed for a predetermined time in an environment in which a chlorine-based refrigerant and a refrigerating machine oil coexist, and is preferably performed in a heating environment. As a result, when the corrosion resistance of the rare earth permanent magnet is low due to a defect in the protective film or the protective film is likely to deteriorate over time, the reaction between the main component of the chlorine-based refrigerant and the rare earth permanent magnet is generated. Since a sufficient amount of the product is generated, the corrosion resistance test of the rare earth permanent magnet can be performed more accurately.
ただし、使用前の(新品の)希土類永久磁石について検査を行い、検査に合格した希土類永久磁石を製品に使用する場合は、検査後の希土類永久磁石の性能が損なわれないような検査条件を設定することが好ましい。このような検査条件を設定することで、検査後の希土類永久磁石を問題なく製品に使用することができる。 However, when a rare earth permanent magnet (new) before use is inspected and a rare earth permanent magnet that has passed the inspection is used in a product, inspection conditions are set so that the performance of the rare earth permanent magnet after inspection is not impaired. It is preferable to do. By setting such inspection conditions, the inspected rare earth permanent magnet can be used for a product without any problem.
(実施の形態3:腐食診断システム)
本実施の形態では、保護皮膜で被覆された希土類永久磁石と塩素系冷媒を用いた冷媒回路とを備え、前記希土類永久磁石が前記塩素系冷媒に曝されている冷凍空調機において、前記希土類永久磁石の腐食を診断する腐食診断システムについて説明する。
(Embodiment 3: Corrosion diagnostic system)
In the present embodiment, in a refrigerating and air-conditioning apparatus comprising a rare earth permanent magnet coated with a protective film and a refrigerant circuit using a chlorine refrigerant, the rare earth permanent magnet is exposed to the chlorine refrigerant. A corrosion diagnostic system for diagnosing magnet corrosion will be described.
この腐食診断システムは、運転中の前記冷凍空調機の前記冷媒回路から採取された前記塩素系冷媒を分析するための分析器と、
前記分析器において、前記塩素系冷媒の主成分と前記希土類永久磁石との反応生成物が検出された場合に、前記希土類永久磁石が腐食したと判定する判定機器とを備えることを特徴とする。
The corrosion diagnostic system includes an analyzer for analyzing the chlorinated refrigerant collected from the refrigerant circuit of the refrigeration air conditioner in operation;
The analyzer includes a determination device that determines that the rare earth permanent magnet is corroded when a reaction product between the main component of the chlorine-based refrigerant and the rare earth permanent magnet is detected.
本実施の形態の腐食診断システムの一例を図5に示す。運転中の冷凍空調機内の希土類永久磁石の腐食診断システムは、冷凍空調機の冷媒回路から塩素系冷媒を採取する採取手段10と、採取手段10で採取された塩素系冷媒を分析するための分析器21と、分析器21において、塩素系冷媒の主成分と希土類永久磁石との反応生成物が検出された場合に、希土類永久磁石が腐食したと判定する判定機器22とを備える。分析器21は、ガスクロマトグラフ質量分析装置であることが好ましい。
An example of the corrosion diagnosis system of the present embodiment is shown in FIG. The corrosion diagnosis system for rare earth permanent magnets in an operating refrigeration air conditioner includes a sampling means 10 for extracting a chlorinated refrigerant from a refrigerant circuit of the refrigeration air conditioner, and an analysis for analyzing the chlorinated refrigerant collected by the sampling means 10 And a
以下に、運転中の冷凍空調機内の希土類永久磁石の腐食診断システムを用いた診断手順を説明する。まず、採取手段10により冷凍空調機の冷媒回路から塩素系冷媒を採取する。次に、分析器21を用いて、採取手段10により採取した塩素系冷媒中の化合物を分析する。その後、判定機器22は、塩素系冷媒の主成分と希土類永久磁石との反応生成物の検出の有無に基づいて、運転中の冷凍空調機内の希土類永久磁石の腐食の有無を判定する。すなわち、判定機器22は、採取手段10により採取した塩素系冷媒中から、塩素系冷媒の主成分と希土類永久磁石との反応生成物(例えば、HFC−23、HFC−32、HCFC−31)が検出された場合に、冷凍空調機内の希土類永久磁石が腐食したと判定する。
Below, the diagnostic procedure using the corrosion diagnostic system of the rare earth permanent magnet in the refrigeration air conditioner in operation will be described. First, a chlorine-based refrigerant is sampled from the refrigerant circuit of the refrigeration air conditioner by the sampling means 10. Next, the
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10 採取手段、21 分析器、22 判定機器。 10 sampling means, 21 analyzer, 22 judgment equipment.
Claims (6)
前記分析ステップにおいて、前記塩素系冷媒中に、前記塩素系冷媒の主成分と前記希土類永久磁石との反応生成物が検出された場合に、前記希土類永久磁石が腐食したと判定する判定ステップとを含み、
前記反応生成物は、HFC−32、HFC−23およびHCFC−31からなる群から選択される少なくとも1種の化合物であることを特徴とする、希土類永久磁石の腐食診断方法。 An analysis step for analyzing a chlorinated refrigerant that is present around a rare earth permanent magnet coated with a protective film and mainly contains at least one of HCFC-22 and CFC-12 ;
In the analyzing step, the chlorine-based refrigerant, when the reaction product of a main component and the rare earth permanent magnet of the chlorine-based refrigerant is detected, and determining steps and said rare earth permanent magnet is corroded seen including,
The method for diagnosing corrosion of rare earth permanent magnets, wherein the reaction product is at least one compound selected from the group consisting of HFC-32, HFC-23, and HCFC-31 .
前記分析ステップで、運転中の前記機器から採取された前記塩素系冷媒を分析する、希土類永久磁石の腐食診断方法。 A device comprising a rare earth permanent magnet coated with a protective film and a refrigerant circuit using a chlorine-based refrigerant, and diagnosing corrosion of the rare-earth permanent magnet in a device in which the rare earth permanent magnet is exposed to the chlorine-based refrigerant, A method for diagnosing corrosion of a rare earth permanent magnet according to claim 1 or 2 ,
The analysis step, analyzing the chlorine refrigerant taken from the device during operation, corrosion diagnostic method for a rare earth permanent magnet.
前記塩素系冷媒は前記冷凍空調機の前記冷媒回路内の冷媒であり、
前記冷媒回路は、前記希土類永久磁石が設置された圧縮機を含み、
前記分析ステップにおいて、前記冷媒回路内から採取した前記塩素系冷媒を分析する、
請求項3に記載の希土類永久磁石の腐食診断方法。 The device is a refrigeration air conditioner,
The chlorine refrigerant Ri refrigerant der in the refrigerant circuit of the refrigerating air conditioner,
The refrigerant circuit includes a compressor in which the rare earth permanent magnet is installed,
In the analyzing step, the chlorinated refrigerant collected from the refrigerant circuit is analyzed .
The rare earth permanent magnet corrosion diagnostic method according to claim 3 .
該暴露試験後に請求項1または2に記載の希土類永久磁石の腐食診断方法を実施して、
その結果、前記希土類永久磁石が腐食したと判定された場合に、前記希土類永久磁石の耐腐食性が不合格であると判定する、希土類永久磁石の耐腐食性検査方法。 Perform an exposure test in which the rare earth permanent magnet is exposed to a chlorine-based refrigerant environment for a predetermined time,
After carrying out the exposure test, the rare earth permanent magnet corrosion diagnosis method according to claim 1 or 2 ,
As a result, when it is determined that the rare earth permanent magnet has been corroded, it is determined that the corrosion resistance of the rare earth permanent magnet is unacceptable.
運転中の前記冷凍空調機の前記冷媒回路から採取された前記塩素系冷媒を分析するための分析器と、
前記分析器において、前記塩素系冷媒の主成分と前記希土類永久磁石との反応生成物が検出された場合に、前記希土類永久磁石が腐食したと判定する判定機器とを備え、
前記反応生成物は、HFC−32、HFC−23およびHCFC−31からなる群から選択される少なくとも1種の化合物であることを特徴とする、冷凍空調機の希土類永久磁石の腐食診断システム。 A rare earth permanent magnet covered with a protective film, and a refrigerant circuit using a chlorine-based refrigerant mainly composed of at least one of HCFC-22 and CFC-12 , wherein the rare earth permanent magnet is exposed to the chlorine-based refrigerant. A corrosion diagnosis system for diagnosing corrosion of the rare earth permanent magnet,
An analyzer for analyzing the chlorinated refrigerant collected from the refrigerant circuit of the refrigeration air conditioner in operation;
In the analyzer, when a reaction product of the main component of the chlorine-based refrigerant and the rare earth permanent magnet is detected, a determination device that determines that the rare earth permanent magnet has corroded ,
The corrosion diagnosis system for a rare earth permanent magnet of a refrigeration air conditioner, wherein the reaction product is at least one compound selected from the group consisting of HFC-32, HFC-23, and HCFC-31 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071694A JP5642103B2 (en) | 2012-03-27 | 2012-03-27 | Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071694A JP5642103B2 (en) | 2012-03-27 | 2012-03-27 | Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013206956A JP2013206956A (en) | 2013-10-07 |
JP5642103B2 true JP5642103B2 (en) | 2014-12-17 |
Family
ID=49525784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012071694A Expired - Fee Related JP5642103B2 (en) | 2012-03-27 | 2012-03-27 | Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5642103B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06194009A (en) * | 1992-12-21 | 1994-07-15 | Toshiba Corp | Refrigerator |
JPH07335446A (en) * | 1994-06-14 | 1995-12-22 | Mitsubishi Electric Corp | Method of diagnosing insulating oil and oil-filled electric equipment |
JP2001305128A (en) * | 2000-04-21 | 2001-10-31 | Matsushita Refrig Co Ltd | Method and means for detecting deterioration of lubricating oil and refrigerating system |
JP4190743B2 (en) * | 2000-05-31 | 2008-12-03 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
JP4449342B2 (en) * | 2002-05-31 | 2010-04-14 | 日立金属株式会社 | Deterioration prevention method for alkali silicate coating |
JP4292766B2 (en) * | 2002-08-30 | 2009-07-08 | 日立金属株式会社 | Deterioration prevention method for alkali silicate coating |
-
2012
- 2012-03-27 JP JP2012071694A patent/JP5642103B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013206956A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3350566B1 (en) | Leak detector sensor systems using tag-sensitized refrigerants | |
JP5642103B2 (en) | Corrosion diagnosis method, corrosion resistance inspection method and corrosion diagnosis system for rare earth permanent magnet | |
JP2010243224A (en) | Method for diagnosing deterioration of heat-resistant polyester varnish | |
US20200393298A1 (en) | System and Method For Non-Destructive, In-Situ, Positive Material Identification Of A Pipe | |
Holt et al. | An initial study into silver corrosion in transformers following oil reclamation | |
JP6460003B2 (en) | Diagnosis method of electrical equipment | |
JP5800562B2 (en) | Refrigeration air conditioner failure cause estimation method | |
Majurin et al. | Chemical stability assessments of R-514A and R-1233zd (E) | |
JP2007327877A (en) | Analysis method of polyvinyl chloride composition | |
US11517942B2 (en) | Cleaning method | |
CN106018448B (en) | Miscellaneous phase content appraisal procedure in a kind of LaFeSi base magnetic refrigerating material | |
Chen et al. | Applicability of the competition concept in determining the stress corrosion cracking behavior of austenitic stainless steels in chloride solutions | |
Rebello et al. | Saturated low frequency eddy current technique applied to microstructure phase quantification in duplex stainless steel | |
JP2008175751A (en) | Degradation diagnosis method of refrigerant, and degradation diagnosis system of refrigerant | |
JP7244380B2 (en) | Evaluation method for insolubilization treatment of contaminated soil | |
Allgood et al. | Long term viability of HFO-1234yf in stationary refrigeration systems–multi-year evaluation of refrigerant, lubricant, and compressor performance in a domestic freezer | |
Garton | Vacuum technology and vacuum design handbook for accelerator technicians | |
JP2013195226A (en) | Deterioration diagnosis device and deterioration diagnosis method | |
CN113686800B (en) | Method and system for evaluating compatibility of environment-friendly gas and solid material | |
Kontomaris et al. | A non-flammable, reduced GWP, HFC-134a replacement in centrifugal chillers: DR-11 | |
RU2589941C1 (en) | Method of controlling tightness of articles | |
Sumardi et al. | The Effect of Environment Temperature and Humidity on Corrosion Rate of a Condensing Unit | |
CN106645004B (en) | A kind of detection method that stainless steel coil of strip gets rusty with the PVC material degree of correlation on fire | |
JP2005071692A (en) | Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability | |
JP2021060428A (en) | Prediction method of maximum inclusion diameter in steel by ultrasonic fatigue test, and method for measuring the diameter of non-metal inclusions, which is the starting point of fracture therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140930 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5642103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |