JP2007327877A - Analysis method of polyvinyl chloride composition - Google Patents

Analysis method of polyvinyl chloride composition Download PDF

Info

Publication number
JP2007327877A
JP2007327877A JP2006159922A JP2006159922A JP2007327877A JP 2007327877 A JP2007327877 A JP 2007327877A JP 2006159922 A JP2006159922 A JP 2006159922A JP 2006159922 A JP2006159922 A JP 2006159922A JP 2007327877 A JP2007327877 A JP 2007327877A
Authority
JP
Japan
Prior art keywords
plasticizer
tensile elongation
polyvinyl chloride
plasticizer content
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006159922A
Other languages
Japanese (ja)
Inventor
Toshio Hashimoto
敏雄 橋本
Yasuhiro Yoshioka
靖浩 吉岡
Takeshi Endo
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006159922A priority Critical patent/JP2007327877A/en
Publication of JP2007327877A publication Critical patent/JP2007327877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine and analyze a deterioration degree and a residual lifetime with sufficient sensitivity and accuracy, by a method simplified more than a general procedure for measuring directly properties (tensile elongation, tensile strength or the like) of an analysis object. <P>SOLUTION: In this analysis method wherein a PVC composition comprising at least polyvinyl chloride and a plasticizer is used as the analysis object, a tensile elongation change characteristic or a tensile strength change characteristic to a plasticizer content change is acquired beforehand (a master curve is acquired) by performing thermal accelerated deterioration treatment of a polyvinyl chloride composition comprising the polyvinyl chloride and the plasticizer which are the same as the analysis object, and the plasticizer content is calculated from the plasticizer extracted from the analysis object, and collated with the tensile elongation change characteristic or the tensile strength change characteristic, to thereby measure indirectly the tensile elongation or the tensile strength of the analysis object. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリ塩化ビニル組成物の分析方法に関するものであって、例えば油入変圧器,乾式モールド変圧器,開閉装置,配電盤,回転機等の各種機器に用いられているポリ塩化ビニル組成物の物性を測定し劣化度合い,余寿命等を分析するものである。   The present invention relates to a method for analyzing a polyvinyl chloride composition, for example, a polyvinyl chloride composition used in various devices such as an oil-filled transformer, a dry mold transformer, a switchgear, a switchboard, and a rotating machine. It measures the physical properties and analyzes the degree of deterioration and remaining life.

油入変圧器,乾式モールド変圧器,開閉装置,配電盤,回転機等の各種機器(電気設備機器等;以下、機器と称する)には種々の高分子材料組成物、例えば所望の絶縁性,弾性,耐応力性(機械的強度等),シール性,耐液性(電解液,有機化学溶液(油等)等に対する耐性),耐ガス性(絶縁ガス,有機化学ガス等に対する耐性),耐腐食性,耐熱性,耐寒性,耐候性(雨水,太陽光(紫外線等),温度・湿度変化等に対する耐性)等の物性を備えた組成物が適宜用いられている。その具体例としては、ポリ塩化ビニル,フタル酸ジエステル系の可塑剤(例えば、フタル酸ジ−2−エチルヘキシル(以下、DOPと称する))等から成り、電線等の被覆材等として用いられている組成物(いわゆるポリ塩化ビニル電線(以下、PVC電線と称する)の外周側に用いられている中空状(円筒状等)のポリ塩化ビニル組成物(以下、PVC組成物と称する)等)が挙げられる。   Various devices such as oil-filled transformers, dry mold transformers, switchgears, switchboards, rotating machines (electric equipment, etc .; hereinafter referred to as devices) have various polymer material compositions such as desired insulation and elasticity. , Stress resistance (mechanical strength, etc.), sealability, liquid resistance (resistance to electrolytes, organic chemical solutions (oil, etc.)), gas resistance (resistance to insulating gases, organic chemical gases, etc.), corrosion resistance Compositions having physical properties such as heat resistance, heat resistance, cold resistance, and weather resistance (resistance to rainwater, sunlight (ultraviolet rays, etc.), temperature / humidity changes, etc.) are appropriately used. Specific examples thereof include polyvinyl chloride, a phthalate diester plasticizer (for example, di-2-ethylhexyl phthalate (hereinafter referred to as DOP)) and the like, and are used as covering materials for electric wires and the like. Compositions (such as hollow (cylindrical) polyvinyl chloride compositions (hereinafter referred to as PVC compositions) used on the outer peripheral side of so-called polyvinyl chloride wires (hereinafter referred to as PVC wires), etc.) It is done.

前記の高分子材料組成物は、例えば含有成分,機器の使用状況(使用環境,使用頻度等)に応じて時間経過と共に劣化(寿命(例えば、約10年〜15年程度の寿命)を有する)し、該機器において不具合が生じる恐れがあるため、該高分子材料組成物の研究が適宜行われている。   The polymer material composition deteriorates with time (for example, having a lifetime (for example, a lifetime of about 10 to 15 years)) depending on, for example, the content of components and the usage status (usage environment, usage frequency, etc.) of the device. However, since there is a risk that problems may occur in the device, research on the polymer material composition is being conducted as appropriate.

例えば、PVC電線のPVC組成物の場合には、良好な相溶性を有するDOP等の可塑剤が一般的に用いられているものの、該可塑剤の分子構造中に芳香核が存在する場合、十分な耐寒性は得られないとされている。また、PVC電線の使用環境によっては、PVC組成物自体にひび割れ等が発生することが知られている。さらに、PVC組成物の分子構造が時間経過と共に変化(ポリ塩化ビニル,可塑剤等の劣化や塩素脱離反応,揮散等の変化)し、絶縁性,弾性,耐応力性等が低下すると推測されていた。   For example, in the case of a PVC composition for a PVC electric wire, a plasticizer such as DOP having good compatibility is generally used. However, when an aromatic nucleus is present in the molecular structure of the plasticizer, sufficient It is said that the cold resistance cannot be obtained. Moreover, it is known that a crack etc. will generate | occur | produce in PVC composition itself depending on the use environment of a PVC electric wire. Furthermore, it is estimated that the molecular structure of the PVC composition changes over time (deterioration of polyvinyl chloride, plasticizers, changes in chlorine elimination reaction, volatilization, etc.), resulting in a decrease in insulation, elasticity, stress resistance, etc. It was.

このようなことから、高分子材料組成物において定期的な交換あるいは補修等のメンテナンスが行われている。近年においては、定期的に高分子材料組成物の一部(すなわち、被分析対象)を採取して物性を直接測定(例えば、単に切断して採取した被分析対象の物性を直接測定)して分析(劣化度合い,余寿命を判定)し、その分析結果に応じたメンテナンスを行い、例えばランニングコストを抑制することが検討されている。   For this reason, maintenance such as periodic replacement or repair is performed in the polymer material composition. In recent years, a part of a polymer material composition (that is, an object to be analyzed) is periodically collected and directly measured for physical properties (for example, directly measured for physical properties of an object to be analyzed). Analysis (determining the degree of deterioration and remaining life) and performing maintenance in accordance with the analysis results, for example, to reduce running costs are being studied.

例えばPVC電線等の電線類においては、PVC組成物の弾性(引張り伸び率等)が低下すると絶縁性が低下する傾向を有することから、被分析対象の弾性を直接測定する手法が採られている。また、引張り伸び率が規格値150%以下になると該絶縁性が著しく低下することに着目し、被分析対象の引張り伸び率と規格値とに基づいて劣化度合い,該被分析対象の余寿命を判定し分析する手法が一般的に採られている。なお、前記の規格値は、電線類の製品信頼性保証を目的とするJIS規格(JIS Z 8301)に準拠した基準に相当するものである。   For example, in the case of electric wires such as PVC electric wires, since the insulation property tends to decrease when the elasticity (tensile elongation, etc.) of the PVC composition decreases, a technique for directly measuring the elasticity of the analysis target is adopted. . In addition, paying attention to the fact that the insulation is significantly lowered when the tensile elongation rate is below the standard value of 150%, the degree of deterioration and the remaining life of the analyte are determined based on the tensile elongation rate and the standard value. A method of judging and analyzing is generally adopted. In addition, the said standard value is corresponded to the reference | standard based on the JIS standard (JISZ8301) aiming at the product reliability guarantee of electric wires.

この一般的な手法では、単に被分析対象の引張り伸び率等を直接測定する手法であるが、ばらつき(例えば、試験装置に応じた測定誤差)が生じ易いとされている。このため、例えば目的とするPVC電線から所定長さ(例えば1.5m長)のPVC組成物(被分析対象)を採取し、そのPVC組成物において複数等分(例えば10等分)に切断および不要な芯線の除去等の加工作業を行い、それら加工された各被分析対象の引張り伸び率の平均値を求め、その平均値と規格値とを比較して分析する手法が知られている。   This general method is a method of directly measuring the tensile elongation rate or the like of the object to be analyzed, but it is considered that variations (for example, measurement errors depending on the test apparatus) are likely to occur. For this reason, for example, a PVC composition (analysis target) of a predetermined length (for example, 1.5 m long) is collected from the target PVC wire, and cut into multiple equal parts (for example, 10 parts) in the PVC composition. There is known a technique of performing processing operations such as removal of unnecessary core wires, obtaining an average value of tensile elongation rates of each processed object to be analyzed, and comparing the average value with a standard value.

しかしながら、前記のような一般的な手法では、各分析毎において、過剰な量の被分析対象が必要になる(PVC組成物を過剰に採取する)恐れがある。また、前記の多量の被分析対象において、芯線の除去等の加工作業や引張り伸び率を直接測定する等の多大な手間,時間等を費やす恐れがある。   However, in the general method as described above, an excessive amount of an analysis target may be required for each analysis (excessive collection of the PVC composition). Further, in the above-mentioned large amount of objects to be analyzed, there is a risk that a great amount of work, time, etc., such as processing work such as removal of the core wire and direct measurement of the tensile elongation rate may be spent.

その他にも、繰り返しねじれ力を与え、それによって生ずる反発トルクの信号の大小を求め、そのトルク値と、劣化状態が既知の電線・ケーブルによって測定され知られているトルク値と、を比較することにより、非破壊的で簡易かつ確実に活線状態のままで劣化度を判定評価する技術が知られている。
特公平7−52150
In addition, repeatedly apply a torsional force, determine the magnitude of the repulsive torque signal that results from it, and compare the torque value with a known torque value measured by a wire or cable with a known degradation state. Thus, there is known a technique for determining and evaluating the degree of deterioration in a non-destructive and simple and reliable manner in a live state.
7-52150

以上示したようなことから、被分析対象の物性(引張り伸び率,引張り強度等)を直接測定する一般的な手法よりも簡略化(例えば、採取するPVC組成物の量や、分析に要する手間,時間等を抑制)した方法であって、十分な精度で該物性を測定して分析でき、例えばメンテナンスに係るランニングコストの抑制に貢献できる方法の出現が望まれていた。   As described above, it is simplified (for example, the amount of PVC composition to be collected and labor required for analysis), compared to a general method for directly measuring physical properties (tensile elongation, tensile strength, etc.) of an analysis target. Therefore, the advent of a method that can measure and analyze the physical properties with sufficient accuracy and contribute to the reduction of running costs related to maintenance, for example, has been desired.

本発明は、前記課題の解決を図るために、各種機器に適用され可塑剤(DOP等)を含有したPVC組成物を被分析対象とする分析方法であって、被分析対象中の可塑剤含有率を測定することにより、該被分析対象の物性を間接的に特定し十分な精度で分析できるものである。   In order to solve the above-mentioned problems, the present invention is an analysis method that uses a PVC composition that is applied to various devices and contains a plasticizer (DOP or the like) as an object of analysis, and includes a plasticizer in the object of analysis. By measuring the rate, the physical properties of the object to be analyzed can be indirectly specified and analyzed with sufficient accuracy.

具体的に、請求項1記載の発明は、少なくともポリ塩化ビニル,可塑剤から成るポリ塩化ビニル組成物を被分析対象とする分析方法であって、前記ポリ塩化ビニル組成物を熱加速劣化処理することにより可塑剤含有率変化に対する引張り伸び率変化特性を予め得て、被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の可塑剤含有率変化に対する引張り伸び率変化特性と照合させて、前記の被分析対象の引張り伸び率を間接的に測定することを特徴とする。   Specifically, the invention according to claim 1 is an analysis method for subjecting a polyvinyl chloride composition comprising at least polyvinyl chloride and a plasticizer to be analyzed, wherein the polyvinyl chloride composition is thermally accelerated and deteriorated. Thus, the tensile elongation change characteristic with respect to the plasticizer content change is obtained in advance, and the plasticizer content calculated from the plasticizer extracted from the object to be analyzed is the tensile elongation change characteristic with respect to the plasticizer content change. And the tensile elongation of the object to be analyzed is indirectly measured.

請求項2記載の発明は、少なくともポリ塩化ビニル,可塑剤から成るポリ塩化ビニル組成物を被分析対象とする分析方法であって、前記ポリ塩化ビニル組成物を熱加速劣化処理することにより可塑剤含有率変化に対する引張り強度変化特性を予め得て、被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の可塑剤含有率変化に対する引張り強度変化特性と照合させて、前記の被分析対象の引張り強度を間接的に測定することを特徴とする。   The invention according to claim 2 is an analysis method for analyzing a polyvinyl chloride composition comprising at least polyvinyl chloride and a plasticizer, and the plasticizer is obtained by subjecting the polyvinyl chloride composition to thermal accelerated deterioration treatment. Obtaining the tensile strength change characteristic with respect to the content rate change in advance, collating the plasticizer content calculated from the plasticizer extracted from the analysis target with the tensile strength change property with respect to the plasticizer content rate change, It is characterized by indirectly measuring the tensile strength of the object to be analyzed.

請求項3記載の発明は、請求項1または2記載の発明において、前記の熱加速劣化処理の加速時間を10℃半減則により経過年数に換算し、該経過年数変化に対する可塑剤含有率変化特性を予め得て、被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の経年変化に対する可塑剤含有率特性と照合させて、前記の被分析対象の経過年数を間接的に測定することを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the acceleration time of the thermal accelerated deterioration treatment is converted into elapsed years according to the 10 ° C. half law, and the plasticizer content change characteristic with respect to the change in elapsed years Is obtained in advance, and the plasticizer content calculated from the plasticizer extracted from the analysis target is collated with the plasticizer content characteristics with respect to the aging, so that the age of the analysis target is indirectly determined. It is characterized by measuring.

請求項4記載の発明は、請求項1〜3記載の発明において、前記の可塑剤はソックスレー抽出法により抽出したことを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the plasticizer is extracted by a Soxhlet extraction method.

請求項5記載の発明は、請求項1〜4記載の発明において、前記の可塑剤はフタル酸ジエステル系の可塑剤であることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the plasticizer is a phthalic acid diester plasticizer.

請求項1〜5記載の発明によれば、被分析対象の物性(引張り伸び率,引張り強度等)を直接測定する一般的な手法よりも簡略化(例えば、採取するPVC組成物の量や、分析に要する手間,時間等を抑制)された方法であって、被分析対象(PVC組成物)中の可塑剤の含有率を測定することにより、該被分析対象の物性を十分な精度で間接的に特定(例えば、物性の劣化度合いを特定)できる。   According to the first to fifth aspects of the invention, it is simplified (e.g., the amount of the PVC composition to be collected) than the general method of directly measuring the physical properties of the analysis target (tensile elongation, tensile strength, etc.) This is a method in which labor and time required for analysis are suppressed, and by measuring the content of the plasticizer in the analysis target (PVC composition), the physical properties of the analysis target are indirectly detected with sufficient accuracy. (For example, the degree of deterioration of physical properties can be specified).

また、請求項3記載の発明によれば、被分析対象の経過年数を十分な精度で間接的に特定(例えば、余寿命を特定)できる。   According to the invention described in claim 3, it is possible to indirectly specify the elapsed years of the analysis target with sufficient accuracy (for example, specify the remaining life).

以下、本実施の形態におけるPVC組成物の分析方法を図面等に基づいて説明する。   Hereinafter, the analysis method of the PVC composition in this Embodiment is demonstrated based on drawing etc. FIG.

本実施の形態は、各種機器に適用されているPVC組成物(被分析対象)において、時間経過と共に可塑剤含有率は減少するものの、その他のポリ塩化ビニル等自体は殆ど変化せず、該PVC組成物の引張り伸び率(引張り伸び率,引張り伸び残率),引張り強度と該可塑剤含有率との間においてそれぞれ特定の傾向の相関関係特性が存在する(例えば後述の熱加速劣化処理によって引張り伸び率特性線,引張り強度特性線(マスターカーブ)が得られる)ことに着目したものであって、該PVC組成物の物性を間接的に測定し分析する方法である。   In this embodiment, in the PVC composition (analysis target) applied to various devices, the content of the plasticizer decreases with time, but the other polyvinyl chloride and the like hardly change, and the PVC There are specific correlation characteristics between the tensile elongation rate (tensile elongation rate, residual tensile elongation rate) of the composition, the tensile strength and the plasticizer content (for example, the tensile strength is increased by thermal accelerated deterioration treatment described later). Elongation rate characteristic line and tensile strength characteristic line (master curve) are obtained), which is a method for indirectly measuring and analyzing the physical properties of the PVC composition.

すなわち、少なくともポリ塩化ビニル,可塑剤から成るPVC組成物を被分析対象とする分析方法であって、被分析対象と同一のポリ塩化ビニル,可塑剤から成るポリ塩化ビニル組成物において熱加速劣化処理することにより可塑剤含有率変化に対する引張り伸び率変化特性や引張り強度変化特性を予め得て、被分析対象から抽出された可塑剤から可塑剤含有率を算出し前記の引張り伸び率変化特性や引張り強度変化特性と照合させて、前記の被分析対象の引張り伸び率や引張り強度を間接的に測定することを特徴とするものである。   That is, an analysis method using at least a PVC composition composed of polyvinyl chloride and a plasticizer as an object to be analyzed, and in the polyvinyl chloride composition comprising the same polyvinyl chloride and plasticizer as the object to be analyzed, heat accelerated deterioration treatment The tensile elongation change characteristic and tensile strength change characteristic with respect to the plasticizer content change are obtained in advance, and the plasticizer content is calculated from the plasticizer extracted from the subject to be analyzed. The tensile elongation rate and the tensile strength of the object to be analyzed are indirectly measured in comparison with the strength change characteristic.

次に、種々の試料(被分析対象)を用い、検証例1〜5により熱加速劣化処理に対するPVC組成物の種々の変化を検証してから、実施例1,2によりPVC組成物の引張り伸び率や引張り強度を間接的に測定し、劣化度合い,余寿命を判定できる分析方法の具体例を示した。   Next, after verifying various changes in the PVC composition with respect to the thermal accelerated deterioration treatment in verification examples 1 to 5 using various samples (analysis target), the tensile elongation of the PVC composition in accordance with examples 1 and 2 Specific examples of analytical methods that can indirectly measure the rate and tensile strength and determine the degree of deterioration and remaining life are shown.

なお、後述の引張り伸び率,引張り強度の測定は、JIS規格C3005のゴム・プラスチック絶縁電線試験方法に準拠して、PVC電線の一部から採取され芯線が除去(必要に応じて長手方向に切り開き、芯線が残存しないことを確認)されたPVC組成物を試料(長さ150mmの試料)とし、該試料の中央部に50mm間隔の標線を付し、引張り速度を500mm/minに設定して行った。   The tensile elongation and tensile strength described below are measured in accordance with the JIS standard C3005 rubber / plastic insulated wire test method, and the core wire is removed from a part of the PVC wire (opened in the longitudinal direction as necessary). The PVC composition that has been confirmed to have no core wire left) is used as a sample (a sample having a length of 150 mm), a marked line with an interval of 50 mm is attached to the center of the sample, and the tensile speed is set to 500 mm / min. went.

また、熱加速劣化処理は、10℃半減則(アレニウスの法則)に基づいて立案した方法により行った。具体的には、恒温槽(エスペック社製の「ハローそよかぜ」)を用い、該恒温槽による処理時間(以下、加速時間と称する),処理温度(以下、加速温度と称する)を設定して試料を加熱することにより行った。前記の加速時間,加速温度は、加速させる経過年数の程度(例えば、+10年,+20年,+30年相当の加速)に応じて、下記(1)式に基づき適宜設定、例えば試料の定格温度等を考慮し、KIV線で実績のある90℃を中心(90℃および105℃等)に設定した。前記の加速温度と基準温度(例えば、20℃)との差が大きくなる程、経過年数の加速は速くなり、たとえ前記の加速温度を比較的低く設定(例えば、70℃)した場合であっても、前記の加速時間を長く設定することにより、例えば前記の90℃を中心に設定した場合と同様の熱加速劣化処理を行うことができる。   The thermal accelerated deterioration treatment was performed by a method designed based on the 10 ° C. half law (Arrhenius law). Specifically, a constant temperature bath (“Hello Soyokaze” manufactured by Espec Corp.) is used, and a processing time (hereinafter referred to as acceleration time) and a processing temperature (hereinafter referred to as acceleration temperature) in the constant temperature bath are set. Was carried out by heating. The acceleration time and acceleration temperature are appropriately set based on the following formula (1) according to the degree of elapsed years to be accelerated (for example, acceleration corresponding to +10 years, +20 years, +30 years), for example, the rated temperature of the sample, etc. In consideration of the above, 90 ° C., which has a track record with the KIV line, was set to the center (90 ° C., 105 ° C., etc.). The greater the difference between the acceleration temperature and the reference temperature (eg, 20 ° C.), the faster the acceleration of the elapsed years, even when the acceleration temperature is set relatively low (eg, 70 ° C.). However, by setting the acceleration time to be long, for example, the same thermal acceleration deterioration process as that when the center is set at 90 ° C. can be performed.

「加速時間(日)」=(「加速させる経過年数(年)」×365(日))/(2^((「加速温度」−「基準温度」)/10)) …… (1)。   “Acceleration time (days)” = (“Elapsed years to be accelerated (years)” × 365 (days)) / (2 ^ ((“acceleration temperature” − “reference temperature”) / 10)) (1).

さらに、試料の劣化度合いや余寿命の判定基準となる引張り伸び率特性線や引張り強度特性線(マスターカーブ)の作成等を目的とする該試料中の可塑剤量の測定には、ソックスレー抽出法を適用した。このソックスレー抽出法による測定では、フラスコ,ナスフラスコ,マントルヒータ,冷却装置,温度計測器等から成るソックスレー抽出システムを用い、図1に示すようにナスフラスコ恒量工程S1a,被分析対象前処理工程S1b,抽出工程S2,冷却工程S3,算出工程S4を経て、可塑剤含有率の測定を行った。具体的に、前記のナスフラスコ恒量工程S1aでは、恒温槽(105℃)内でのナスフラスコの加熱(1時間),デシケータ内冷却(30分間),重量測定(恒量値±0.0005g以下)を繰り返し行った。被分析対象前処理工程S1bでは、PVC電線の一部(約1g)から採取され芯線が除去(必要に応じて長手方向に切り開き、芯線が残存しないことを確認)されたPVC組成物を試料として、該試料を粒状(約0.3mm大)に切断して電線約1gからを採取し、天秤により1gに秤量して円筒濾紙内に充填した。抽出工程S2では、フラスコ内への沸騰石(ガラス),ジエチルエーテル(130ml)を投入し、前記の円筒濾紙の所定箇所に設置し、冷却管内の温度(13℃)の確認を行ってから、マントルヒータの電源を入れフラスコ内の温度(約100℃)を確認しながら、該試料の抽出を行った(6時間連続)。冷却工程S3では、フラスコ内抽出液をナスフラスコ内へ移動させ、該フラスコ内壁をエチルエーテル洗浄(3回)し、該ナスフラスコ内の溶媒をエバポレータ除去した後、恒温槽(80℃)内でのナスフラスコの加熱(1時間),デシケータ内冷却(30分間),重量測定(恒量値±0.0005g以下)を繰り返し行って濃縮液(抽出された可塑剤)を得た。そして、算出工程では、フラスコ重量差引計算(「冷却工程S3時のナスフラスコ重量(可塑剤含む)/「ナスフラスコ恒量工程S1a時のナスフラスコ重量」×100=可塑剤含有率(%)に基づく計算)を行うことにより、可塑剤含有率を求めた。   Furthermore, the Soxhlet extraction method is used to measure the amount of plasticizer in a sample for the purpose of creating a tensile elongation characteristic line and a tensile strength characteristic line (master curve), which are criteria for judging the degree of deterioration and remaining life of the sample. Applied. In the measurement by this Soxhlet extraction method, a Soxhlet extraction system comprising a flask, eggplant flask, mantle heater, cooling device, temperature measuring instrument, etc. is used, and as shown in FIG. Through the extraction step S2, the cooling step S3, and the calculation step S4, the plasticizer content was measured. Specifically, in the eggplant flask constant weight step S1a, the eggplant flask is heated in a constant temperature bath (105 ° C.) (1 hour), cooled in a desiccator (30 minutes), and weighed (constant weight value ± 0.0005 g or less). Was repeated. In the pretreatment step S1b to be analyzed, a PVC composition sampled from a part (about 1 g) of the PVC electric wire and the core wire removed (cut in the longitudinal direction as necessary to confirm that the core wire does not remain) is used as a sample. The sample was cut into granules (about 0.3 mm in size), and about 1 g of the electric wire was collected, weighed to 1 g using a balance, and filled into a cylindrical filter paper. In the extraction step S2, boiling stone (glass) and diethyl ether (130 ml) are put into the flask, placed in a predetermined location of the cylindrical filter paper, and the temperature in the cooling pipe (13 ° C.) is confirmed. The sample was extracted while the mantle heater was turned on and the temperature in the flask (about 100 ° C.) was confirmed (continuous for 6 hours). In the cooling step S3, the extract in the flask is moved into the eggplant flask, the inner wall of the flask is washed with ethyl ether (three times), the solvent in the eggplant flask is removed by an evaporator, and then in a thermostatic chamber (80 ° C.). The eggplant flask was repeatedly heated (1 hour), cooled in the desiccator (30 minutes), and weighed (constant value ± 0.0005 g or less) to obtain a concentrated solution (extracted plasticizer). And in the calculation step, flask weight subtraction calculation (“the eggplant flask weight at the cooling step S3 (including the plasticizer) /“ the eggplant flask weight at the eggplant flask constant weight step S1a ”) × 100 = based on the plasticizer content (%) The plasticizer content was determined by performing calculation.

[検証例1]
本検証例1では、熱加速劣化処理によるPVC組成物の分子構造変化を検証した。まず、一般的な配電盤に適用される未使用のPVC電線(新品の2cm2KIV線)から採取し芯線が除去されたPVC組成物の試料S1を得て、FT−IR法により吸光度特性を測定し、その結果を図2のスペクトル特性線L1a(熱加速劣化処理なし)に示した。また、前記の試料S1を熱加速劣化処理することにより、所定の加速時間(10℃半減則により換算した経過年数が約15年に相当する加速時間)の劣化を施した後、スペクトル特性線L1aの場合と同様に吸光度特性を測定し、その結果を図2のスペクトル特性線L1b(熱加速劣化処理あり)に示した。
[Verification Example 1]
In this verification example 1, the change in the molecular structure of the PVC composition due to the thermal accelerated deterioration treatment was verified. First, a PVC composition sample S1 is obtained from an unused PVC electric wire (new 2cm 2 KIV wire) applied to a general distribution board, and the core wire is removed, and the absorbance characteristics are measured by the FT-IR method. The results are shown in the spectral characteristic line L1a (without thermal accelerated deterioration treatment) in FIG. Further, by subjecting the sample S1 to thermal acceleration deterioration treatment, after deterioration of a predetermined acceleration time (acceleration time corresponding to about 15 years converted to 10 ° C. half law), the spectral characteristic line L Absorbance characteristics were measured in the same manner as in the case of 1a , and the results are shown in the spectral characteristic line L 1b (with thermal accelerated deterioration treatment) in FIG.

図2に示す結果において、スペクトル特性線L1aと比較したスペクトル特性線L1bの吸光度減少度合いに着目すると、可塑剤由来の波長に係るピーク(1725cm-1)にて比較的大きく減少しているものの、その他の成分由来の波長に係るピークでは殆ど減少していないことが読み取れる。一般的に、PVC組成物自体を熱加速劣化処理すると、例えば該PVC組成物中において塩素脱離反応を起こすことが知られているが、図2に示す各スペクトル特性線L1a、L1bからは塩素脱離反応に由来する変化が観られなかった。 In the results shown in FIG. 2, when attention is paid to the absorbance decrease the degree of spectral characteristic line L 1b as compared to the spectral characteristic line L 1a, is relatively large decrease in peak of the wavelength from a plasticizer (1725 cm -1) However, it can be seen that there is almost no decrease in the peaks related to wavelengths derived from other components. In general, it is known that when a PVC composition itself is thermally accelerated and deteriorated, for example, a chlorine elimination reaction is caused in the PVC composition. From the spectral characteristic lines L 1a and L 1b shown in FIG. No change from the chlorine elimination reaction was observed.

したがって、PVC組成物においては、熱加速劣化処理により(換言すれば、時間経過(経年)と共に)可塑剤含有率は減少するものの、PVC等の成分自体は殆ど減少しないことを確認できた。   Therefore, in the PVC composition, it was confirmed that although the plasticizer content decreased by the heat accelerated deterioration treatment (in other words, with the passage of time (age)), the components such as PVC hardly decreased.

[検証例2]
本検証例2では、熱加速劣化処理によるPVC組成物の引張り伸び率の変化,可塑剤含有率の変化を検証した。まず、熱加速劣化処理により種々の加速時間の劣化が施された試料S1において、それぞれ引張り伸び率の測定,ソックスレー抽出法による可塑剤含有率の測定を行った。
[Verification Example 2]
In this verification example 2, the change of the tensile elongation rate of the PVC composition and the change of the plasticizer content rate due to the thermal accelerated deterioration treatment were verified. First, in the sample S1 subjected to various acceleration time degradation by the thermal accelerated degradation treatment, the tensile elongation rate was measured and the plasticizer content rate was measured by the Soxhlet extraction method.

そして、前記の各測定値と初期値(熱加速劣化処理前の引張り伸び率,可塑剤含有率)とを比較することにより、それぞれ引張り伸び残率,可塑剤剤量残率を算出し、それら各算出結果をそれぞれ図3の加速時間に対する引張り伸び残率変化特性線L1c、図4の加速時間に対する可塑剤量残率変化特性線L1dに示した。 Then, by comparing the measured values with the initial values (tensile elongation rate and plasticizer content rate before thermal accelerated deterioration treatment), the tensile elongation residual rate and the plasticizer amount residual rate are calculated, respectively. The respective calculation results are shown in the tensile elongation residual rate change characteristic line L 1c with respect to the acceleration time in FIG. 3 and the plasticizer amount residual rate change characteristic line L 1d with respect to the acceleration time in FIG.

図3,図4に示す各特性線L1c,L1dから、熱加速劣化処理の加速時間が増加するに連れて、引張り伸び残率,可塑剤量残率は減少する傾向があることを読み取れる。 From the characteristic lines L 1c and L 1d shown in FIG. 3 and FIG. 4, it can be read that the tensile elongation residual ratio and the plasticizer amount residual ratio tend to decrease as the acceleration time of the thermal accelerated deterioration process increases. .

したがって、PVC組成物は、熱加速劣化処理による加速時間と該PVC組成物の引張り伸び率(引張り伸び率,引張り伸び残率),可塑剤含有率(可塑剤量残率)との間において、それぞれ特定の傾向の相関関係特性が存在することを確認できた。   Therefore, the PVC composition is between the acceleration time by the thermal accelerated deterioration treatment and the tensile elongation rate (tensile elongation rate, residual tensile elongation rate) and plasticizer content rate (residual amount of plasticizer) of the PVC composition. It was confirmed that there was a correlation characteristic of each specific tendency.

[検証例3]
本検証例3では、種々のPVC組成物の引張り伸び率の変化を検証した。まず、一般的な配電盤に適用される未使用のPVC電線(新品の2cm2KIV線)3種類を用意し、それぞれの芯線を除去してPVC組成物の試料S2,S3,S4を得た。その後、前記の検証例2と同様に、熱加速劣化処理により種々の加速時間の劣化が施された各試料S2〜S4において、それぞれ引張り伸び率の測定,ソックスレー抽出法による可塑剤含有率の測定を行った。
[Verification Example 3]
In this verification example 3, the change of the tensile elongation rate of various PVC compositions was verified. First, three kinds of unused PVC electric wires (new 2 cm 2 KIV wires) applied to a general switchboard were prepared, and the core wires were removed to obtain PVC composition samples S2, S3, and S4. Thereafter, in the same manner as in Verification Example 2 above, in each of the samples S2 to S4 subjected to various acceleration time degradation by the thermal acceleration degradation treatment, measurement of the tensile elongation rate, measurement of the plasticizer content by the Soxhlet extraction method, respectively. Went.

そして、引張り伸び率の測定値と初期値とを比較することにより、引張り伸び残率をそれぞれ算出し、それら算出結果をそれぞれ図5の加速時間に対する引張り伸び残率変化特性線L2(試料S2),L3(試料S3),L4(試料S4)に示した。また、前記の試料S2,S3,S4の各引張り伸び率の測定値において、図6の可塑剤含有率変化に対する特性図としてまとめて示した。 Then, the tensile elongation residual rate is calculated by comparing the measured value of the tensile elongation rate with the initial value, and the calculated results are respectively shown in the tensile elongation residual rate change characteristic line L 2 (sample S2 with respect to the acceleration time in FIG. 5). ), L 3 (sample S3), L 4 (sample S4). Further, the measured values of the tensile elongation rates of the samples S2, S3, and S4 are collectively shown as characteristic diagrams with respect to the plasticizer content rate change in FIG.

図5に示すように、各試料S2〜S4における加速時間に対する引張り伸び残率変化特性は、熱加速劣化処理による加速時間が増加するに連れて減少する傾向があるものの、その傾向(減少度合い)は各試料S2〜S4毎に異なっていることが読み取れる。一方、図6に示す結果から、たとえ試料S2〜S4がそれぞれ互いに種類の異なるものであっても、可塑剤含有率に対する引張り伸び率変化特性が略同一の特性線L2〜4(すなわち、可塑剤含有率と引張り伸び率とのマスターカーブ)で示されることが読み取れる。 As shown in FIG. 5, the tensile elongation residual rate change characteristics with respect to the acceleration time in each of the samples S2 to S4 tend to decrease as the acceleration time by the thermal acceleration deterioration process increases, but the tendency (degree of decrease). Is different for each of the samples S2 to S4. On the other hand, from the results shown in FIG. 6, even if the samples S2 to S4 are of different types, the characteristic lines L 2 to 4 (ie, plastic It can be read that it is represented by a master curve of the agent content and tensile elongation.

したがって、PVC組成物においては、たとえ種類が異なる場合(熱加速劣化処理による加速時間に対する引張り伸び率変化特性が異なる)であっても、該PVC組成物の引張り伸び率(引張り伸び率,引張り伸び残率)と可塑剤含有率との間においてそれぞれ略同一の傾向の相関関係特性が存在し、この特性線を可塑剤含有率と引張り伸び率とのマスターカーブとして適用できることを確認できた。   Therefore, in the PVC composition, even if the types are different (the tensile elongation rate change characteristic with respect to the acceleration time by the thermal accelerated deterioration treatment is different), the tensile elongation rate (tensile elongation rate, tensile elongation) of the PVC composition is different. It was confirmed that there is a correlation characteristic having approximately the same tendency between the residual ratio) and the plasticizer content, and that this characteristic line can be applied as a master curve of the plasticizer content and the tensile elongation.

[検証例4]
本検証例4では、まず、一般的な配電盤に適用される未使用のPVC電線(新品の2mm2KIV線)4種類を用意し、それぞれの芯線を除去してPVC組成物の試料S5,S6,S7,S8を得た。その後、前記の検証例2と同様のソックスレー抽出法による可塑剤含有率の測定を、各試料S5〜S8毎に3回行った。そして、前記の各測定値から平均値,標準偏差,変動係数を算出し、下記の表1に示した。
[Verification Example 4]
In this verification example 4, first, four types of unused PVC electric wires (new 2 mm 2 KIV wires) that are applied to a general switchboard are prepared, and the core wires are removed to obtain PVC composition samples S5 and S6. , S7, S8 were obtained. Then, the measurement of the plasticizer content rate by the Soxhlet extraction method similar to the said verification example 2 was performed 3 times for every sample S5-S8. Then, an average value, a standard deviation, and a coefficient of variation were calculated from each of the measured values, and are shown in Table 1 below.

Figure 2007327877
Figure 2007327877

前記の表1に示す結果において、各試料S5〜S8における変動係数は比較的低いこと(3.49以下)から、PVC組成物の可塑剤含有率の測定にてソックスレー抽出法を適用した場合、十分な再現性を有することが読み取れる。   In the results shown in Table 1 above, since the coefficient of variation in each sample S5 to S8 is relatively low (3.49 or less), when the Soxhlet extraction method is applied in the measurement of the plasticizer content of the PVC composition, It can be read that there is sufficient reproducibility.

[検証例5]
本検証例5では、まず、一般的な配電盤に適用される未使用のPVC電線(電子照射架橋された新品の0.2mm2電子ワイヤ線)を用意し、芯線を除去してPVC組成物の試料S9を得た。その後、前記の検証例4と同様のソックスレー抽出法による可塑剤含有率の測定を3回行った。そして、前記の各測定値から平均値,標準偏差,変動係数を算出し、下記の表2に示した。
[Verification Example 5]
In this verification example 5, first, an unused PVC electric wire (new 0.2 mm 2 electronic wire wire cross-linked by electron irradiation) applied to a general switchboard is prepared, and the core wire is removed to prepare a PVC composition. Sample S9 was obtained. Then, the plasticizer content rate was measured three times by the same Soxhlet extraction method as in the above-mentioned verification example 4. Then, an average value, a standard deviation, and a coefficient of variation were calculated from each measured value, and are shown in Table 2 below.

Figure 2007327877
Figure 2007327877

前記の表2に示す結果において、前記の表1に示す結果同様に、試料S9において変動係数が比較的低いこと(0.74)から、PVC組成物の可塑剤含有率の測定においてソックスレー抽出法を適用した場合、たとえPVC組成物の種類が異なっても、十分な再現性を有することが読み取れる。   In the results shown in Table 2, similar to the results shown in Table 1, since the coefficient of variation is relatively low in the sample S9 (0.74), the Soxhlet extraction method is used in the measurement of the plasticizer content of the PVC composition. Is applied, it can be seen that even if the type of PVC composition is different, it has sufficient reproducibility.

[実施例1]
本実施例1では、まず、一般的な配電盤に適用される未使用のPVC電線(新品の2mm2KIV線)を用意し、芯線を除去してPVC組成物の試料S10を得た。その後、前記の検証例3と同様に、熱加速劣化処理により種々の加速時間の劣化が施された試料S10において、それぞれ引張り伸び率の測定,ソックスレー抽出法による可塑剤含有率の測定を行った。
[Example 1]
In Example 1, first, an unused PVC electric wire (new 2 mm 2 KIV wire) applied to a general switchboard was prepared, and the core wire was removed to obtain a PVC composition sample S10. Thereafter, in the same manner as in the above-described verification example 3, in the sample S10 subjected to various acceleration time degradations by the thermal acceleration degradation treatment, the tensile elongation rate was measured and the plasticizer content rate was measured by the Soxhlet extraction method. .

そして、前記のように測定された加速時間に対する引張り伸び率特性,可塑剤含有率特性に基づいて、該可塑剤含有率と引張り伸び率特性との相関関係特性をマスターカーブMC1として図7に示した。また、前記の加速時間を10℃半減則により経過年数に換算し、該経過年数に対する可塑剤含有率の特性をマスターカーブMC2として図8に示した。 Then, based on the tensile elongation characteristics and the plasticizer content characteristics with respect to the acceleration time measured as described above, the correlation characteristic between the plasticizer content and the tensile elongation characteristics is shown as a master curve MC 1 in FIG. Indicated. Further, the acceleration time in terms of elapsed years by 10 ° C. half rule, shown in FIG. 8 the properties of the plasticizer content with respect to the number of years elapsed as a master curve MC 2.

図7に示すマスターカーブMC1において、JIS規格に準拠した規格値150%に着目すると、可塑剤含有率が20mass%以下の場合には試料S10の絶縁性が著しく低いことが読み取れる。また、前記のように可塑剤含有率が20mass%の場合には、図8に示すマスターカーブMC2を照合すると、試料S10の経過年数が40年程度であることが読み取れる。 In the master curve MC 1 shown in FIG. 7, focusing on the standard value of 150% based on the JIS standard, it can be seen that the insulation of the sample S10 is remarkably low when the plasticizer content is 20 mass% or less. Further, wherein when the plasticizer content of 20 mass% is as, if matching master curve MC 2 shown in FIG. 8, it can read the number of years elapsed sample S10 is of the order of 40 years.

したがって、前記のように可塑剤含有率と引張り伸び率特性とのマスターカーブを得ることにより、例えば単に被分析対象の可塑剤含有率を測定するだけで、該引張り伸び率を間接的に測定し、劣化度合い等を判定し分析できることを確認できた。また、経過年数に対する可塑剤含有率のマスターカーブを得た場合には、該可塑剤含有率により被分析対象の経過年数を間接的に測定し、余寿命等を判定し分析できることを確認できた。   Therefore, by obtaining the master curve of the plasticizer content and the tensile elongation characteristics as described above, the tensile elongation is measured indirectly, for example, by simply measuring the plasticizer content to be analyzed. It was confirmed that the deterioration degree and the like can be judged and analyzed. In addition, when the master curve of the plasticizer content relative to the elapsed years was obtained, it was confirmed that the elapsed years of the analysis target were indirectly measured based on the plasticizer content, and the remaining life could be determined and analyzed. .

[実施例2]
本実施例2では、前記の実施例1と同様に、熱加速劣化処理により種々の加速時間の劣化が施された試料S10において、それぞれ引張り強度の測定,ソックスレー抽出法による可塑剤含有率の測定を行った。
[Example 2]
In this example 2, as in the case of the example 1, in the sample S10 subjected to various acceleration time degradations by the thermal acceleration degradation process, the tensile strength measurement and the plasticizer content measurement by the Soxhlet extraction method are performed, respectively. Went.

そして、前記のように測定された加速時間に対する引張り強度特性,可塑剤含有率特性に基づいて、該可塑剤含有率と引張り強度特性との相関関係特性をマスターカーブMC3として図9に示した。また、前記の加速時間を10℃半減則により経過年数に換算し、該経過年数に対する可塑剤含有率の特性をマスターカーブMC4として図10に示した。 Then, based on the tensile strength characteristics and the plasticizer content characteristics with respect to the acceleration time measured as described above, the correlation characteristics between the plasticizer content and the tensile strength characteristics are shown as a master curve MC 3 in FIG. . Further, the acceleration time was converted into elapsed years according to the 10 ° C. half law, and the characteristics of the plasticizer content with respect to the elapsed years are shown in FIG. 10 as a master curve MC 4 .

図9に示すマスターカーブMC3において、引張り強度が25MPa以下の場合には、可塑剤含有率が20mass%以下であり、前記の実施例1の図7の結果を参照すると試料S10の絶縁性が著しく低いことが読み取れる。また、前記のように引張り強度が25MPa以下の場合には、図10に示すマスターカーブMC4を照合すると、実施例1の図8の結果同様に、経過年数が40年程度であることが読み取れる。 In the master curve MC 3 shown in FIG. 9, when the tensile strength is 25 MPa or less, the plasticizer content is 20 mass% or less. With reference to the result of FIG. It can be seen that it is extremely low. Further, when the tensile strength is 25 MPa or less as described above, it can be read that the elapsed time is about 40 years as in the result of FIG. 8 of Example 1 when the master curve MC 4 shown in FIG. 10 is collated. .

したがって、前記のように可塑剤含有率と引張り強度とのマスターカーブを得ることにより、例えば単に被分析対象の可塑剤含有率を測定するだけで、該引張り強度を間接的に測定し、劣化度合い等を判定し分析できることを確認できた。また、経過年数に対する引張り強度のマスターカーブを得た場合には、該引張り強度により被分析対象の経過年数を間接的に測定し、余寿命等を判定し分析できることを確認できた。   Therefore, by obtaining the master curve of the plasticizer content and the tensile strength as described above, for example, by simply measuring the plasticizer content of the object to be analyzed, the tensile strength is indirectly measured and the degree of deterioration is determined. It was confirmed that it was possible to determine and analyze the above. Moreover, when the master curve of the tensile strength with respect to the elapsed years was obtained, it was confirmed that the elapsed years of the object to be analyzed were indirectly measured by the tensile strength, and the remaining life and the like could be determined and analyzed.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、前述の実施例では可塑剤としてフタル酸ジ−2−エチルヘキシルを含むPVC組成物に関する具体例を挙げたが、その他のフタル酸ジエステル系を可塑剤として含むPVC組成物においても、同様の作用効果が得られることは明らかである。   For example, although the specific example regarding the PVC composition which contains di-2-ethylhexyl phthalate as a plasticizer was mentioned in the above-mentioned Example, the same effect | action also in the PVC composition which contains other phthalic acid diester type | system | groups as a plasticizer. It is clear that an effect can be obtained.

本実施例に適用可能なソックスレー抽出法による測定の概略工程図。The schematic process drawing of the measurement by Soxhlet extraction method applicable to a present Example. 検証例1における熱加速劣化処理に対する吸光度特性図。FIG. 6 is an absorbance characteristic diagram for the thermal accelerated deterioration process in Verification Example 1. 検証例2における加速時間に対する引張り伸び残率変化特性図。The tensile elongation residual rate change characteristic view with respect to the acceleration time in Verification Example 2. 検証例2における加速時間に対する可塑剤量残率変化特性図。The plasticizer amount residual rate change characteristic view with respect to the acceleration time in Verification Example 2. 検証例3における加速時間に対する引張り伸び残率変化特性図。FIG. 10 is a graph showing a change in tensile elongation remaining rate with respect to acceleration time in Verification Example 3. 検証例3における可塑剤含有率に対する引張り伸び率変化特性図。The tensile elongation rate change characteristic view with respect to the plasticizer content rate in Verification Example 3. 実施例1における可塑剤含有率と引張り伸び率特性とのマスターカーブを示す概略図。Schematic which shows the master curve of the plasticizer content rate in Example 1, and a tensile elongation rate characteristic. 実施例1における経過年数と可塑剤含有率とのマスターカーブを示す特性図。The characteristic view which shows the master curve of the elapsed years in Example 1, and a plasticizer content rate. 実施例2における可塑剤含有率と引張り強度特性とのマスターカーブを示す概略図。Schematic which shows the master curve of the plasticizer content rate and tensile strength characteristic in Example 2. FIG. 実施例2における経過年数と引張り強度とのマスターカーブを示す特性図。The characteristic view which shows the master curve of the elapsed years in Example 2, and tensile strength.

Claims (5)

少なくともポリ塩化ビニル,可塑剤から成るポリ塩化ビニル組成物を被分析対象とする分析方法であって、
前記ポリ塩化ビニル組成物を熱加速劣化処理することにより可塑剤含有率変化に対する引張り伸び率変化特性を予め得て、
被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の可塑剤含有率変化に対する引張り伸び率変化特性と照合させて、前記の被分析対象の引張り伸び率を間接的に測定することを特徴とする塩化ビニル組成物の分析方法。
An analysis method for analyzing a polyvinyl chloride composition comprising at least polyvinyl chloride and a plasticizer,
By preliminarily obtaining a tensile elongation change characteristic with respect to a change in plasticizer content by subjecting the polyvinyl chloride composition to thermal accelerated deterioration treatment,
By comparing the plasticizer content calculated from the plasticizer extracted from the analyte with the tensile elongation change characteristic with respect to the plasticizer content change, the tensile elongation of the analyte is indirectly determined. A method for analyzing a vinyl chloride composition, comprising measuring.
少なくともポリ塩化ビニル,可塑剤から成るポリ塩化ビニル組成物を被分析対象とする分析方法であって、
前記ポリ塩化ビニル組成物を熱加速劣化処理することにより可塑剤含有率変化に対する引張り強度変化特性を予め得て、
被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の可塑剤含有率変化に対する引張り強度変化特性と照合させて、前記の被分析対象の引張り強度を間接的に測定することを特徴とする塩化ビニル組成物の分析方法。
An analysis method for analyzing a polyvinyl chloride composition comprising at least polyvinyl chloride and a plasticizer,
By preliminarily obtaining a tensile strength change characteristic with respect to a change in plasticizer content by subjecting the polyvinyl chloride composition to thermal accelerated deterioration treatment,
The plasticizer content calculated from the plasticizer extracted from the analysis target is collated with the tensile strength change characteristic with respect to the plasticizer content change, and the tensile strength of the analysis target is indirectly measured. A method for analyzing a vinyl chloride composition.
前記の熱加速劣化処理の加速時間を10℃半減則により経過年数に換算し、該経過年数変化に対する可塑剤含有率変化特性を予め得て、
被分析対象から抽出された可塑剤から算出される可塑剤含有率を、前記の経年変化に対する可塑剤含有率特性と照合させて、前記の被分析対象の経過年数を間接的に測定することを特徴とする請求項1または2記載の塩化ビニル組成物の分析方法。
The acceleration time of the thermal accelerated deterioration treatment is converted to the elapsed years according to the 10 ° C. half law, and the plasticizer content change characteristic with respect to the elapsed years change is obtained in advance,
The plasticizer content calculated from the plasticizer extracted from the analysis target is collated with the plasticizer content characteristics with respect to the secular change, and the elapsed time of the analysis target is indirectly measured. The method for analyzing a vinyl chloride composition according to claim 1 or 2.
前記の可塑剤はソックスレー抽出法により抽出したことを特徴とする請求項1〜3の何れか1項に記載の塩化ビニル組成物の分析方法。   The method for analyzing a vinyl chloride composition according to any one of claims 1 to 3, wherein the plasticizer is extracted by a Soxhlet extraction method. 前記の可塑剤はフタル酸ジエステル系の可塑剤であることを特徴とする請求項1〜4の何れか1項に記載の塩化ビニル組成物の分析方法。   The method for analyzing a vinyl chloride composition according to any one of claims 1 to 4, wherein the plasticizer is a phthalic acid diester plasticizer.
JP2006159922A 2006-06-08 2006-06-08 Analysis method of polyvinyl chloride composition Pending JP2007327877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159922A JP2007327877A (en) 2006-06-08 2006-06-08 Analysis method of polyvinyl chloride composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159922A JP2007327877A (en) 2006-06-08 2006-06-08 Analysis method of polyvinyl chloride composition

Publications (1)

Publication Number Publication Date
JP2007327877A true JP2007327877A (en) 2007-12-20

Family

ID=38928441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159922A Pending JP2007327877A (en) 2006-06-08 2006-06-08 Analysis method of polyvinyl chloride composition

Country Status (1)

Country Link
JP (1) JP2007327877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013640A (en) * 2010-07-05 2012-01-19 Yokohama Rubber Co Ltd:The Determination system of deterioration of tire and manufacturing method of reclaimed tire
JP2014016273A (en) * 2012-07-10 2014-01-30 Asahi Kasei Homes Co Deterioration test method for specimen
JP2014071057A (en) * 2012-10-01 2014-04-21 Hitachi-Ge Nuclear Energy Ltd Deterioration determination device and deterioration determination method for vinyl chloride hose
WO2017193707A1 (en) * 2016-05-13 2017-11-16 广东电网有限责任公司电力科学研究院 Method for analyzing causes of increase in dielectric loss of transformer oil
CN114414469A (en) * 2021-11-30 2022-04-29 百尔罗赫新材料科技有限公司 Method for testing hot bonding strength of PVC plastic layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061858A (en) * 1992-06-18 1994-01-11 Chisso Corp Waterproof product of vinyl chloride resin
JPH06273326A (en) * 1993-03-24 1994-09-30 Densen Sogo Gijutsu Center Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JPH11183467A (en) * 1997-12-17 1999-07-09 Yazaki Corp Analytical method for polyvinyl chloride-based product
JP2003264961A (en) * 2002-03-08 2003-09-19 Misato Kk Revitalizing method for degraded electric apparatus
JP2004028668A (en) * 2002-06-24 2004-01-29 Hitachi Cable Ltd Method for evaluating deterioration of polyvinyl chloride resin
JP2004354375A (en) * 2003-05-02 2004-12-16 Meidensha Corp Deterioration diagnostic method and system for electric wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061858A (en) * 1992-06-18 1994-01-11 Chisso Corp Waterproof product of vinyl chloride resin
JPH06273326A (en) * 1993-03-24 1994-09-30 Densen Sogo Gijutsu Center Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JPH11183467A (en) * 1997-12-17 1999-07-09 Yazaki Corp Analytical method for polyvinyl chloride-based product
JP2003264961A (en) * 2002-03-08 2003-09-19 Misato Kk Revitalizing method for degraded electric apparatus
JP2004028668A (en) * 2002-06-24 2004-01-29 Hitachi Cable Ltd Method for evaluating deterioration of polyvinyl chloride resin
JP2004354375A (en) * 2003-05-02 2004-12-16 Meidensha Corp Deterioration diagnostic method and system for electric wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013640A (en) * 2010-07-05 2012-01-19 Yokohama Rubber Co Ltd:The Determination system of deterioration of tire and manufacturing method of reclaimed tire
JP2014016273A (en) * 2012-07-10 2014-01-30 Asahi Kasei Homes Co Deterioration test method for specimen
JP2014071057A (en) * 2012-10-01 2014-04-21 Hitachi-Ge Nuclear Energy Ltd Deterioration determination device and deterioration determination method for vinyl chloride hose
WO2017193707A1 (en) * 2016-05-13 2017-11-16 广东电网有限责任公司电力科学研究院 Method for analyzing causes of increase in dielectric loss of transformer oil
CN114414469A (en) * 2021-11-30 2022-04-29 百尔罗赫新材料科技有限公司 Method for testing hot bonding strength of PVC plastic layer
CN114414469B (en) * 2021-11-30 2024-04-02 百尔罗赫新材料科技有限公司 PVC plastic layer thermal bonding strength testing method

Similar Documents

Publication Publication Date Title
Linhjell et al. Dielectric response of mineral oil impregnated cellulose and the impact of aging
Saha et al. Understanding the impacts of moisture and thermal ageing on transformer's insulation by dielectric response and molecular weight measurements
CN105424890B (en) A kind of improved transformer insulating paper moisture appraisal procedure
CN108872814B (en) Method for evaluating insulation life of oil paper in high-voltage current transformer
JP2007327877A (en) Analysis method of polyvinyl chloride composition
CN113064002B (en) Assessment method for insulation aging state of 10kV XLPE cable
CN105277822B (en) A kind of artificial accelerated aging test method for GIS disc insulators
JP2011027596A (en) Insulation deterioration diagnosis method of insulating material
JP2005061901A (en) Insulation diagnostic method for electric equipment
JP5437831B2 (en) Degradation evaluation method for polyether-containing polymers
JP2010243224A (en) Method for diagnosing deterioration of heat-resistant polyester varnish
Koga et al. Application of small punch test to lifetime prediction of plasticized polyvinyl chloride wire
JP6460003B2 (en) Diagnosis method of electrical equipment
Pirc et al. Cable aging monitoring with differential scanning calorimetry (DSC) in nuclear power plants
Verardi et al. Correlation of electrical and mechanical properties in accelerated aging of LV nuclear power plant cables
CN112305338B (en) Aging degree detection method and system for dry-type transformer
CN106600031B (en) Method for predicting residual life of high-voltage transmission strain clamp
JP2013032958A (en) Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program
CN106248912B (en) A kind of characterizing method of transformer oil ageing
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
CN105445626B (en) A kind of low pressure multicore cable residue lifetime estimation method
Venkatasubramanian et al. Assessment of regenerated oil through accelerated thermal ageing experiments
Bernard et al. Methods for monitoring age-related changes in transformer oils
Plaček Assessment of parameters for simulation of thermal ageing of materials in nuclear power plants using DSC
JP2014224824A (en) Insulation deterioration diagnosis method of insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02