JP2010243224A - Method for diagnosing deterioration of heat-resistant polyester varnish - Google Patents

Method for diagnosing deterioration of heat-resistant polyester varnish Download PDF

Info

Publication number
JP2010243224A
JP2010243224A JP2009089682A JP2009089682A JP2010243224A JP 2010243224 A JP2010243224 A JP 2010243224A JP 2009089682 A JP2009089682 A JP 2009089682A JP 2009089682 A JP2009089682 A JP 2009089682A JP 2010243224 A JP2010243224 A JP 2010243224A
Authority
JP
Japan
Prior art keywords
heat
deterioration
resistant polyester
peak
polyester varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089682A
Other languages
Japanese (ja)
Inventor
Toshio Hashimoto
敏雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009089682A priority Critical patent/JP2010243224A/en
Publication of JP2010243224A publication Critical patent/JP2010243224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely diagnose the deterioration of heat-resistant polyester varnish using a very small amount of a sample. <P>SOLUTION: In a method for diagnosing the degree of deterioration of the heat-resistant polyester varnish on the basis of the peaks of a total ion chromatogram (TIC) obtained by measuring the heat-resistant polyester varnish by a pyrolytic GC-MS method, the peak increased by the deterioration of the heat-resistant polyester varnish in the peaks of TIC serves as a deterioration peak and the peak not depending on the deterioration of the heat-resistant polyester varnish in the peak of TIC serves as a fundamental peak. The diagnosis of the degree of deterioration of the heat-resistant polyester varnish is performed on the basis of a peak area ratio obtained by dividing the area of the deterioration peak by the area of the fundamental peak. When the degrees of deterioration of the heat-resistant polyester vanish are measured with respect to samples different in the degree of deterioration by the pyrolytic GC-MS method and a conventional deterioration diagnosing method (e.g., weight reduction ratio) to prepare a master curve being a correlation between the measuring results, the degree of deterioration of the heat-resistant polyester varnish is more precisely measured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

電気機器等に使用されている耐熱性ポリエステルワニスの劣化診断技術に関する。熱分解GC−MS方法により、絶縁材料の劣化により増加するピーク面積を測定し、このピーク面積に基づいて絶縁材料の劣化度を診断する技術に関する。   The present invention relates to a deterioration diagnosis technique of a heat-resistant polyester varnish used in electrical equipment. The present invention relates to a technique for measuring a peak area that increases due to deterioration of an insulating material by a pyrolysis GC-MS method and diagnosing the degree of deterioration of the insulating material based on the peak area.

高分子絶縁材料に代表されるポリエステル樹脂等は、その耐熱性、電気特性、機械強度、接着性及び加工性(流動性)がよく、古くから使用されている。加工時には、樹脂の流動性が良いので、水車発電機等の回転機固定子コイル導体に巻いてあるガラステープに樹脂を含浸させたり、H種含浸モールド形乾式変圧器等の静止機器導体に巻いてあるセルロース系絶縁紙に樹脂を含浸させたりして電気絶縁保持に使用される。   Polyester resins typified by polymer insulating materials have good heat resistance, electrical properties, mechanical strength, adhesiveness and workability (fluidity), and have been used for a long time. During processing, the resin has good fluidity, so the glass tape wound around the stator coil conductor of a rotating machine such as a water turbine generator is impregnated with the resin, or wound around a stationary equipment conductor such as a H-type impregnated mold type dry transformer. Cellulose-based insulating paper is impregnated with resin and used for electrical insulation retention.

静止機器のH種含浸モールド形乾式変圧器に適用されている絶縁材料であるポリエステルワニスの耐熱区分はH種で規格としてはJIS C−4003又はMIL E−917Dに規格されており、許容最高温度は180℃と定められている。一般的な耐熱性ポリエステルワニスの分子構造を図6に示す。   The heat resistance classification of polyester varnish, which is an insulating material applied to Class H impregnated mold type dry transformers for stationary equipment, is Class H, and the standard is JIS C-4003 or MIL E-917D, and the maximum allowable temperature Is defined as 180 ° C. The molecular structure of a general heat resistant polyester varnish is shown in FIG.

H種含浸モールド形乾式変圧器等の電気機器類の絶縁診断方法としては、一般的に電気特性試験(各種耐電圧試験、部分放電測定等)による方法が主に用いられている。   As an insulation diagnosis method for electrical equipment such as a H-type impregnated mold type dry transformer, a method based on an electrical characteristic test (various withstand voltage tests, partial discharge measurement, etc.) is generally used.

回転機に適用されているポリエステル樹脂の劣化診断方法としての寿命判定基準として、IEC Pub.216「電気絶縁材料の耐熱特性決定のためのガイド」では、材料の推奨寿命基準点を質量減少率5%としている。したがって、回転機に対して、この寿命判定基準を適用する場合、質量減少率5%以上を寿命領域区分とし、安全領域を質量減少率3%以下、警戒領域を質量減少率3%〜5%とする暫定的な判定基準が設けられる。   As a life criterion as a method for diagnosing deterioration of a polyester resin applied to a rotating machine, IEC Pub. In 216 “Guide for determining the heat resistance characteristics of an electrically insulating material”, the recommended life reference point of the material is a mass reduction rate of 5%. Therefore, when this life criterion is applied to a rotating machine, a mass reduction rate of 5% or more is defined as a life zone classification, a safety zone is a mass reduction rate of 3% or less, and a warning zone is a mass reduction rate of 3% to 5%. Provisional judgment criteria are established.

このように、絶縁材料の劣化診断方法は確立されているが、特許文献1に示すように、利便性や実用性の観点から確立されている従来の劣化診断方法と他の診断方法の相関をとり、簡便な測定により絶縁材料の劣化診断が行われている。また、特許文献2に示すように、劣化により生成する分解生成物を検出し定量することにより劣化診断を行う方法もある。   Thus, although the deterioration diagnosis method for insulating materials has been established, as shown in Patent Document 1, the correlation between the conventional deterioration diagnosis method established from the viewpoint of convenience and practicality and other diagnosis methods can be obtained. Therefore, the deterioration diagnosis of the insulating material is performed by simple measurement. Moreover, as shown in Patent Document 2, there is also a method of performing deterioration diagnosis by detecting and quantifying a decomposition product generated by deterioration.

特開2005−338045号公報JP 2005-338045 A 特開2003−107075号公報JP 2003-107075 A

静止機器に使用されている絶縁材料は、回転機に用いられているものとは異なるため、上記従来技術で説明した回転機の暫定判定基準を直接、静止機器のH種含浸モールド形乾式変圧計に適用できない。   Since the insulating material used for the stationary equipment is different from that used for the rotating machine, the provisional judgment standard of the rotating machine described in the above-mentioned prior art is directly applied to the H type impregnated mold type dry transformer of the stationary machine. Not applicable to.

また、現在のH種含浸モールド形乾式変圧器の寿命予測は電気特性試験で約10年単位での予測が行われており、この方法では電気特性試験の実施時の状態は把握できるが、寿命予測の精度が悪く信頼性に欠ける等の問題を有している。   In addition, the current life prediction of the Class H impregnated mold-type dry transformer is predicted in units of about 10 years in the electrical characteristics test. With this method, the state when the electrical characteristics test is carried out can be grasped. There are problems such as poor accuracy of prediction and lack of reliability.

したがって、このような電気特性試験では、補強部材の特性低下や加熱等による絶縁材料自体の化学的な構造変化による材質変質(劣化)等は分からないので、実際に電気特性試験では問題がないにもかかわらず、事故に至るケースがある。   Therefore, in such an electrical property test, material deterioration (deterioration) due to a chemical structural change of the insulating material itself due to deterioration of the properties of the reinforcing member or heating, etc. is not known, so there is actually no problem in the electrical property test. Nevertheless, there are cases that lead to accidents.

そこで、本発明は精度よく耐熱性ポリエステルワニスの劣化診断を行う方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for accurately diagnosing deterioration of a heat-resistant polyester varnish.

上記目的を達成する本発明の耐熱性ポリエステルワニス劣化診断方法は、耐熱性ポリエステルワニスを熱分解GC−MS方法により測定し、該測定で得られるトータルイオンクロマトグラムのピークに基づき前記耐熱性ポリエステルワニスの劣化度を診断する方法である。前記ピークのうち前記耐熱性ポリエステルワニスの劣化により増加するピークを劣化ピークとし、前記ピークのうち前記耐熱性ポリエステルワニスの劣化に依存しないピークを基本ピークとし、前記劣化ピークの面積を前記基本ピークの面積で除したピーク面積比率に基づき前記耐熱性ポリエステルワニスの劣化度を診断することを特徴としている。   The heat-resistant polyester varnish deterioration diagnostic method of the present invention that achieves the above-mentioned object is characterized in that the heat-resistant polyester varnish is measured by a pyrolysis GC-MS method, and the heat-resistant polyester varnish is based on the peak of the total ion chromatogram obtained by the measurement. This is a method of diagnosing the degree of deterioration of the slag. Among the peaks, a peak that increases due to deterioration of the heat-resistant polyester varnish is defined as a deterioration peak, and among the peaks, a peak that does not depend on deterioration of the heat-resistant polyester varnish is defined as a basic peak, and an area of the deterioration peak is defined as the basic peak. The degree of deterioration of the heat-resistant polyester varnish is diagnosed based on the peak area ratio divided by the area.

したがって、以上の発明によれば、微量の試料を採取することにより、精度よく耐熱性ポリエステルワニス劣化診断ができる。   Therefore, according to the above invention, the heat-resistant polyester varnish deterioration diagnosis can be performed accurately by collecting a small amount of sample.

耐熱性ポリエステルワニスのTIC(トータルイオンクロマトグラム)。TIC (total ion chromatogram) of heat-resistant polyester varnish. (a)耐熱性ポリエステルワニスの分解生成物であるピーク成分(10分のピーク)の質量スペクトル、(b)標準データベース(安息香酸)の質量スペクトル。(A) Mass spectrum of peak component (peak of 10 minutes) which is a decomposition product of heat resistant polyester varnish, (b) Mass spectrum of standard database (benzoic acid). 耐熱性ポリエステルワニスの分解模式図。The decomposition | disassembly schematic diagram of a heat resistant polyester varnish. (a)劣化していない耐熱性ポリエステルワニスのTIC、(b)劣化した耐熱性ポリエステルワニスのTIC。(A) TIC of heat-resistant polyester varnish not deteriorated, (b) TIC of heat-resistant polyester varnish deteriorated. ピーク面積比率と質量減少率の関係図。The relationship figure of a peak area ratio and mass reduction rate. 耐熱性ポリエステルワニスの構造式。Structural formula of heat-resistant polyester varnish.

本発明は、熱分解ガスクロマトグラフ質量分析装置(Pyrolisis−Gas Chromatography−Mass Spectrometory、以下熱分解GC−MS装置と略す)を用いて静止機器のH種含浸モールド形乾式変圧器に使用されている耐熱性ポリエステルワニスの劣化診断を行うものである。   The present invention is a heat resistance used in a stationary type H-impregnated mold type dry transformer using a pyrolysis gas chromatograph mass spectrometer (Pyrolysis-Gas Chromatography-Mass Spectrometry, hereinafter abbreviated as pyrolysis GC-MS apparatus). Is used to diagnose deterioration of the conductive polyester varnish.

この熱分解GC−MS方法の測定原理を説明する。不活性ガス雰囲気の加熱炉において高分子材料等の試料を加熱し、試料から脱離発生するガスをガスクロマトグラフに導入する。そして、このガスクロマトグラフ内の分離カラムによって各成分に分離された分解ガスは質量分析装置に入り、電子衝撃イオン化法(EI法)により発生ガスである有機物質がイオン状態となり、四重極ロッド内で質量を振り分けて光電子倍増管で質量を検出する。   The measurement principle of this pyrolysis GC-MS method will be described. A sample such as a polymer material is heated in a heating furnace in an inert gas atmosphere, and a gas desorbed from the sample is introduced into a gas chromatograph. Then, the decomposition gas separated into each component by the separation column in this gas chromatograph enters the mass spectrometer, and the organic substance which is the generated gas becomes an ionic state by the electron impact ionization method (EI method), and the inside of the quadrupole rod The mass is distributed with and the mass is detected with a photomultiplier tube.

熱分解GC−MS方法を用いて測定した耐熱性ポリエステルワニスのトータルイオンクロマトグラム(以下TICと略す)を図1に示す。   FIG. 1 shows a total ion chromatogram (hereinafter abbreviated as TIC) of a heat-resistant polyester varnish measured using a pyrolysis GC-MS method.

熱分解GC−MS方法での測定に用いた測定装置及び測定条件を示す。
測定装置
・ガスクロマトグラフ質量分析計((株)島津製作所)
GC−MS装置(Gas Chromatography−Mass Spectrometer)
QP−2010型[データ処理ソフト:GC−MS solution Ver.2.20]
・熱分解装置(フロンティア・ラボ(株))
D−SP(Double−Shot Pyrolzer)装置
PY−2020iD型
測定条件
ガスクロマトグラフ(GC)
・カラムオーブン温度:50℃(3min)→[10℃/min]→250℃(5min)
・気化室温度:330℃
・イオン源温度:200℃、注入モード:スプリット
・制御モード:圧力制御、キャリアガス圧力:100kPa
・全流量:89.3ml/min、カラム流量:1.69ml/min
・線速度:47.2cm/sec、パージ流量:3ml/min
・スプリット比:71.5対1.0
検出器
・検出モード:EI(Electron Impact)、検出器電圧:0.8kV
質量検出
・測定モード:スキャン、測定時間[開始〜終了]:0.1min〜28min
・質量範囲:35m/z〜500m/z、計測インターバル:0.5sec
・スキャン速度:1000
試料投入量
・重量:約50μm
図1に示すTICにおいて、約10分に検出される分解生成物のピーク成分の質量スペクトル分析を行った結果を図2(a)に示す。
The measurement apparatus and measurement conditions used for the measurement by the pyrolysis GC-MS method are shown.
Measuring device / gas chromatograph mass spectrometer (Shimadzu Corporation)
GC-MS equipment (Gas Chromatography-Mass Spectrometer)
QP-2010 [Data processing software: GC-MS solution Ver. 2.20]
・ Pyrolysis device (Frontier Lab Co., Ltd.)
D-SP (Double-Shot Pyrolzer) apparatus PY-2020iD type measurement condition gas chromatograph (GC)
-Column oven temperature: 50 ° C. (3 min) → [10 ° C./min]→250° C. (5 min)
・ Vaporization chamber temperature: 330 ℃
-Ion source temperature: 200 ° C, injection mode: split-Control mode: pressure control, carrier gas pressure: 100 kPa
Total flow rate: 89.3 ml / min, column flow rate: 1.69 ml / min
-Linear velocity: 47.2 cm / sec, purge flow rate: 3 ml / min
Split ratio: 71.5 to 1.0
Detector / detection mode: EI (Electron Impact), detector voltage: 0.8 kV
Mass detection / measurement mode: scan, measurement time [start to end]: 0.1 min to 28 min
Mass range: 35 m / z to 500 m / z, measurement interval: 0.5 sec
・ Scanning speed: 1000
Sample input amount / weight: approx. 50 μm
FIG. 2A shows the result of mass spectral analysis of the peak component of the decomposition product detected at about 10 minutes in the TIC shown in FIG.

図2(b)は、標準データベース(安息香酸)の質量スペクトルである。   FIG. 2 (b) is a mass spectrum of a standard database (benzoic acid).

図2(a)、図2(b)に示した質量スペクトルから、耐熱性ポリエステルワニスの分解生成物が安息香酸であると判断できる。そこで、耐熱性ポリエステルワニスの分解メカニズム図3を参照して説明する。   From the mass spectra shown in FIGS. 2 (a) and 2 (b), it can be determined that the decomposition product of the heat-resistant polyester varnish is benzoic acid. Therefore, the decomposition mechanism of the heat-resistant polyester varnish will be described with reference to FIG.

図3に示す耐熱性ポリエステルワニスの主骨格の分子構造中において、分子結合力の弱いC−C結合とC−O結合が熱分解により切断される(図3の点線部分)。生成した分解物のエステル結合の酸素部分に水素が1個付加して、耐熱性ポリエステルワニスの主骨格に起因する分解物(安息香酸)が生成する。   In the molecular structure of the main skeleton of the heat-resistant polyester varnish shown in FIG. 3, the C—C bond and the C—O bond having a weak molecular bonding force are broken by thermal decomposition (dotted line portion in FIG. 3). One hydrogen is added to the oxygen part of the ester bond of the generated decomposition product, and a decomposition product (benzoic acid) resulting from the main skeleton of the heat-resistant polyester varnish is generated.

劣化度の判定手法について図4、図5を参照して説明する。   A method for determining the degree of deterioration will be described with reference to FIGS.

劣化していない耐熱性ポリエステルワニスと劣化した耐熱性ポリエステルワニスを熱分解GC−MS方法で測定して、TIC(図4(a)、図4(b))を得る。そして、この得られたTICを比較する。   The heat-resistant polyester varnish not deteriorated and the heat-resistant polyester varnish deteriorated are measured by a pyrolysis GC-MS method to obtain TIC (FIG. 4 (a), FIG. 4 (b)). Then, the obtained TICs are compared.

図4(b)のTICにおいて矢印で示すように、劣化した耐熱性ポリエステルワニスでは約7分に、劣化度合いに応じて増加するピークが検出される。このピークを劣化ピークとする。劣化ピークは、劣化していない耐熱性ポリエステルワニス(図4(a))と比較して明らかなように、劣化により増加している。   As indicated by an arrow in the TIC in FIG. 4B, in the deteriorated heat-resistant polyester varnish, a peak that increases depending on the degree of deterioration is detected in about 7 minutes. This peak is defined as a degradation peak. The degradation peak increases due to the degradation, as is clear as compared with the heat-resistant polyester varnish that is not degraded (FIG. 4A).

また、劣化していない耐熱性ポリエステルワニスと劣化した耐熱性ポリエステルワニスの両者に共通するTICのピークとして約10分に検出された主骨格に起因するピークを基本ピークとする。   Further, a peak due to the main skeleton detected at about 10 minutes as a peak of TIC common to both the heat-resistant polyester varnish not deteriorated and the heat-resistant polyester varnish deteriorated is set as a basic peak.

熱分解GC−MS方法による測定時に、試料を天秤で秤量して約50μg程度入れる。試料をμgオーダーで一定採取して測定試料容器に秤量することは非常に困難である。   At the time of measurement by the pyrolysis GC-MS method, the sample is weighed with a balance and about 50 μg is put. It is very difficult to sample a sample on the order of μg and weigh it in a measurement sample container.

そこで、TICで示されるピークにおいて劣化に伴ってピーク強度が強くなるピークを劣化ピークとし、劣化に依存しないピークを基準ピークとして定める。そして、この劣化ピークに基づく劣化ピーク面積を前記基準ピークに基づく基準ピーク面積で割ってピーク面積比率を算出する。   In view of this, in the peak indicated by TIC, a peak whose peak intensity increases with deterioration is defined as a degradation peak, and a peak that does not depend on degradation is defined as a reference peak. Then, the peak area ratio is calculated by dividing the deterioration peak area based on the deterioration peak by the reference peak area based on the reference peak.

つまり、試料採取重量を一定にすれば、劣化に伴って劣化ピーク面積値は大きくなる。一方、基本ピークは試料採取重量と相関関係を持つので、試料採取重量が一定であれば劣化しても基本ピーク面積は変化しない。したがって、劣化ピーク面積を基本ピーク面積で割ることで算出されるピーク面積比率で各試料を比較評価することにより、試料採取重量を補正することができるのでサンプル重量に依存しない測定結果を得ることができる。   That is, if the sampling weight is made constant, the degradation peak area value increases with degradation. On the other hand, since the basic peak has a correlation with the sampled weight, even if the sampled weight is constant, the basic peak area does not change. Therefore, by comparing and evaluating each sample with the peak area ratio calculated by dividing the degradation peak area by the basic peak area, the sampling weight can be corrected, so that a measurement result independent of the sample weight can be obtained. it can.

このピーク面積比率により、耐熱性ポリエステルワニスの劣化度を評価する。   The degree of deterioration of the heat-resistant polyester varnish is evaluated based on the peak area ratio.

まず、耐熱性ポリエステルワニスを220℃の一定温度の熱風循環式恒温槽内で熱加速劣化試験を行った。熱加速劣化試験時間は、1h、24h、72h、120h、240h、480h毎に恒温槽内の試料を取り出し、質量減少率の測定を行った。表1に熱加速劣化試験による試料の質量減少率の測定結果を示す。   First, the heat-resistant polyester varnish was subjected to a thermal accelerated deterioration test in a hot air circulation type thermostatic chamber at a constant temperature of 220 ° C. The thermal accelerated degradation test time was taken out of the sample in the thermostatic chamber every 1h, 24h, 72h, 120h, 240h, and 480h, and the mass reduction rate was measured. Table 1 shows the measurement result of the mass reduction rate of the sample by the thermal accelerated deterioration test.

Figure 2010243224
Figure 2010243224

また、熱加速劣化試験のサンプルを熱分解GC−MS方法で測定した。各サンプルを試料容器に約50μg天秤で秤量した。この試料容器をヘリウム雰囲気中の熱分解炉に設置して、炉中の温度を600℃に加熱して試料から発生する熱分解ガスを測定した。   Moreover, the sample of the thermal accelerated deterioration test was measured by the pyrolysis GC-MS method. Each sample was weighed into a sample container with a balance of about 50 μg. This sample container was placed in a pyrolysis furnace in a helium atmosphere, and the temperature in the furnace was heated to 600 ° C., and pyrolysis gas generated from the sample was measured.

熱分解GC−MS方法による前記熱分解ガスの測定結果であるTICより、劣化ピーク面積を基本ピーク面積で除したピーク面積比率を算出した。   The peak area ratio obtained by dividing the degradation peak area by the basic peak area was calculated from TIC, which is the measurement result of the pyrolysis gas by the pyrolysis GC-MS method.

そして、質量減少率とピーク面積比率の相関関係をプロットし、図5に示すマスターカーブを得た。   And the correlation of mass reduction rate and peak area ratio was plotted, and the master curve shown in FIG. 5 was obtained.

暫定的な寿命判定として、IEC Pub.216「電気絶縁材料の耐熱特性決定のためのガイド」では、材料の推奨寿命基準点を質量減少率5%としている。これは、回転機に対しての推奨寿命基準点である。   As a temporary life determination, IEC Pub. In 216 “Guide for determining the heat resistance characteristics of an electrically insulating material”, the recommended life reference point of the material is a mass reduction rate of 5%. This is the recommended life reference point for rotating machines.

今回のH種含浸モールド形乾式変圧器に用いられる絶縁材料である耐熱性ポリエステルワニスの熱分解による質量減少率の増加は、質量減少率が約7%から急激に増加している。   The increase in the mass reduction rate due to thermal decomposition of the heat-resistant polyester varnish, which is an insulating material used in the H-impregnated mold-type dry transformer, has rapidly increased from about 7%.

そこで、回転機の推奨寿命基準に2%上乗せした質量減少率7%以上を寿命領域区分とし、安全領域を5%未満、警戒領域を5%〜7%以内とした暫定的な判定基準を定め、劣化度判定を行えばよい。   Therefore, a provisional judgment standard is established with a mass reduction rate of 7% or more, which is 2% higher than the recommended life standard for rotating machines, as a life area classification, a safety area of less than 5%, and a warning area of 5% to 7%. Deterioration degree determination may be performed.

劣化度の判定に供する試料の採取は、実際にフィールドで稼動しているH種含浸モールド形乾式変圧器の定期点検時にモールド部から数mg程度削り取った後に、削った部分に耐熱性ポリエステルワニスを塗布及び乾燥させて補修する。   Samples to be used for determining the degree of deterioration are obtained by scraping several mg from the mold part during periodic inspection of the H-type impregnated mold type dry transformer that is actually operating in the field, and then applying the heat-resistant polyester varnish to the shaved part. Apply and dry to repair.

この採取した試料を熱分解GC−MS方法で測定し、ピーク面積比率を算出し、図5のマスターカーブに照らし合わせて質量減少率を求めることで、耐熱性ポリエステルワニスの劣化判定を行うことができる。   This collected sample is measured by the pyrolysis GC-MS method, the peak area ratio is calculated, and the deterioration rate of the heat-resistant polyester varnish can be determined by obtaining the mass reduction rate in light of the master curve in FIG. it can.

以上説明したように、本発明に係る耐熱性ポリエステルワニス劣化診断方法によれば、極微量の試料を採取することにより、重電機器等に用いられる耐熱性ポリエステルワニスの劣化診断が可能となった。微量の試料により劣化診断ができるので、機器から採取される試料が微量であり機器への損傷度合いが非常に少なくなる。   As described above, according to the heat-resistant polyester varnish deterioration diagnosis method according to the present invention, it is possible to diagnose deterioration of heat-resistant polyester varnish used in heavy electrical equipment by collecting a very small amount of sample. . Since deterioration diagnosis can be performed with a very small amount of sample, the amount of sample collected from the device is very small, and the degree of damage to the device is greatly reduced.

また、劣化診断する絶縁材料が異なる場合には、劣化判定マスターカーブを事前に作成することで異なる絶縁材料の劣化度を判定することもできる。なお、劣化判定マスターカーブは、絶縁材料の熱加速劣化試験した試料があれば熱分解GC−MS方法により数日で作成することができる。   In addition, when the insulating materials for deterioration diagnosis are different, the deterioration degree of different insulating materials can be determined by creating a deterioration determination master curve in advance. The degradation determination master curve can be created in a few days by the pyrolysis GC-MS method if there is a sample subjected to a thermal accelerated degradation test of the insulating material.

劣化診断において、指標となるマスターカーブは、実施例に示したように熱加速劣化試験により作成することが可能である。そして、重電機器の回転機、乾式変圧器、高電圧配電盤等に使用されている耐熱性ポリエステルワニスから試料を採取し、ピーク面積比率と従来手法(例えば、重量減少率又は引張強度、曲げ強度測定等)による測定値との相関をとったマスターカーブを作成すれば、より精度よく劣化診断・余寿命推定を行うことができる。   In the deterioration diagnosis, a master curve serving as an index can be created by a thermal acceleration deterioration test as shown in the examples. Then, samples are taken from heat-resistant polyester varnishes used in heavy electrical equipment rotating machines, dry transformers, high voltage switchboards, etc., and peak area ratios and conventional methods (for example, weight reduction rate or tensile strength, bending strength) If a master curve that correlates with the measured value obtained by measurement or the like is created, deterioration diagnosis and remaining life estimation can be performed more accurately.

本発明は上記実施例に限定されるものではなく、測定条件、TICのピーク面積比率と相関をとるための従来の劣化測定方法等は適宜選択可能である。特に、測定対象も耐熱性ポリエステルワニスに限定するものではなく劣化により増加するピークがあれば、熱分解GC−MS方法により劣化診断することができる。   The present invention is not limited to the above-described embodiments, and conventional degradation measurement methods for correlating with measurement conditions and the peak area ratio of TIC can be appropriately selected. In particular, the measurement object is not limited to the heat-resistant polyester varnish, and if there is a peak that increases due to deterioration, deterioration diagnosis can be performed by a pyrolysis GC-MS method.

Claims (4)

耐熱性ポリエステルワニスを熱分解GC−MS方法により測定し、該測定で得られるトータルイオンクロマトグラムのピークに基づき前記耐熱性ポリエステルワニスの劣化度を診断する方法において、
前記ピークのうち前記耐熱性ポリエステルワニスの劣化により増加するピークを劣化ピークとし、
前記ピークのうち前記耐熱性ポリエステルワニスの劣化に依存しないピークを基本ピークとし、
前記劣化ピークの面積を前記基本ピークの面積で除したピーク面積比率に基づき前記耐熱性ポリエステルワニスの劣化度を診断する
ことを特徴とする耐熱性ポリエステルワニス劣化診断方法。
In the method of measuring the heat-resistant polyester varnish by pyrolysis GC-MS method and diagnosing the degree of deterioration of the heat-resistant polyester varnish based on the peak of the total ion chromatogram obtained by the measurement,
Among the peaks, the peak that increases due to the deterioration of the heat-resistant polyester varnish is a degradation peak,
Among the peaks, a peak that does not depend on deterioration of the heat-resistant polyester varnish is a basic peak,
A method for diagnosing deterioration of a heat-resistant polyester varnish, comprising diagnosing the degree of deterioration of the heat-resistant polyester varnish based on a peak area ratio obtained by dividing the area of the deterioration peak by the area of the basic peak.
前記ピーク面積比率と質量減少率又は引張強度又は曲げ強度との相関をとり前記耐熱性ポリエステルワニスの劣化度を診断する
ことを特徴とする請求項1に記載の耐熱性ポリエステルワニス劣化診断方法。
The method for diagnosing deterioration of a heat-resistant polyester varnish according to claim 1, wherein the deterioration degree of the heat-resistant polyester varnish is diagnosed by correlating the peak area ratio with a mass reduction rate, tensile strength or bending strength.
重電機器の回転機、乾式変圧器、高電圧配電盤に使用された耐熱性ポリエステルワニスを定期的に採取し、
該採取した耐熱性ポリエステルワニス毎に、前記ピーク面積比率と質量減少率又は引張強度又は曲げ強度との相関をとる
ことを特徴とする請求項2に記載の耐熱性ポリエステルワニス劣化診断方法。
Regularly collect heat-resistant polyester varnishes used in rotating machines, dry-type transformers, and high-voltage switchboards for heavy electrical equipment,
3. The heat-resistant polyester varnish deterioration diagnosis method according to claim 2, wherein a correlation between the peak area ratio and mass reduction rate, tensile strength or bending strength is taken for each of the collected heat-resistant polyester varnishes.
前記ピーク面積比率と前記質量減少率との相関をとり前記耐熱性ポリエステルワニスの劣化度を診断する場合、
前記質量減少率が7%以上である場合、前記耐熱性ポリエステルワニスが劣化により使用に適さない寿命領域にあると判断する
ことを特徴とする請求項2又は請求項3に記載の耐熱性ポリエステルワニス劣化診断方法。
When diagnosing the degree of deterioration of the heat-resistant polyester varnish by correlating the peak area ratio and the mass reduction rate,
4. The heat-resistant polyester varnish according to claim 2, wherein when the mass reduction rate is 7% or more, the heat-resistant polyester varnish is determined to be in a lifetime region unsuitable for use due to deterioration. 5. Degradation diagnosis method.
JP2009089682A 2009-04-02 2009-04-02 Method for diagnosing deterioration of heat-resistant polyester varnish Pending JP2010243224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089682A JP2010243224A (en) 2009-04-02 2009-04-02 Method for diagnosing deterioration of heat-resistant polyester varnish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089682A JP2010243224A (en) 2009-04-02 2009-04-02 Method for diagnosing deterioration of heat-resistant polyester varnish

Publications (1)

Publication Number Publication Date
JP2010243224A true JP2010243224A (en) 2010-10-28

Family

ID=43096400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089682A Pending JP2010243224A (en) 2009-04-02 2009-04-02 Method for diagnosing deterioration of heat-resistant polyester varnish

Country Status (1)

Country Link
JP (1) JP2010243224A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material
CN102928749A (en) * 2012-10-30 2013-02-13 山东电力集团公司烟台供电公司 High-precision transformer oil gas online monitoring device
CN105223398A (en) * 2015-11-16 2016-01-06 赵玉洁 Voltage transformer (VT)
CN105259531A (en) * 2015-11-16 2016-01-20 郝建 Current transformer
CN105445517A (en) * 2015-11-16 2016-03-30 郝建 Current transformer application method
CN105445518A (en) * 2015-11-16 2016-03-30 赵玉洁 Voltage transformer application method
CN105445584A (en) * 2015-11-27 2016-03-30 云南电网有限责任公司电力科学研究院 Transformer safety state assessment method based on oil chromatography
CN105699731A (en) * 2015-11-16 2016-06-22 王爱玲 Electronic voltage transformer
JP2017146112A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Electric facility diagnostic method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327512A (en) * 1995-06-01 1996-12-13 Kawasaki Steel Corp Resin film-peeling liquid for resin coated steel plate and resin film-peeling method
JPH09178727A (en) * 1995-10-25 1997-07-11 Nippon Paint Co Ltd Method and equipment for testing organic material
JPH09257780A (en) * 1996-03-21 1997-10-03 Shimadzu Corp Data processing apparatus of chromatography/mass analyser
JP2003107075A (en) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp Insulation degradation detecting method and insulation life predicting method
JP2004354375A (en) * 2003-05-02 2004-12-16 Meidensha Corp Deterioration diagnostic method and system for electric wire
JP2005338045A (en) * 2004-04-27 2005-12-08 Meidensha Corp Method for diagnosing insulation degradation of electric equipment
JP2007017196A (en) * 2005-07-05 2007-01-25 Frontier Lab Kk Analyzer of high-molecular sample
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327512A (en) * 1995-06-01 1996-12-13 Kawasaki Steel Corp Resin film-peeling liquid for resin coated steel plate and resin film-peeling method
JPH09178727A (en) * 1995-10-25 1997-07-11 Nippon Paint Co Ltd Method and equipment for testing organic material
JPH09257780A (en) * 1996-03-21 1997-10-03 Shimadzu Corp Data processing apparatus of chromatography/mass analyser
JP2003107075A (en) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp Insulation degradation detecting method and insulation life predicting method
JP2004354375A (en) * 2003-05-02 2004-12-16 Meidensha Corp Deterioration diagnostic method and system for electric wire
JP2005338045A (en) * 2004-04-27 2005-12-08 Meidensha Corp Method for diagnosing insulation degradation of electric equipment
JP2007017196A (en) * 2005-07-05 2007-01-25 Frontier Lab Kk Analyzer of high-molecular sample
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material
CN102928749A (en) * 2012-10-30 2013-02-13 山东电力集团公司烟台供电公司 High-precision transformer oil gas online monitoring device
CN105699731A (en) * 2015-11-16 2016-06-22 王爱玲 Electronic voltage transformer
CN105259531A (en) * 2015-11-16 2016-01-20 郝建 Current transformer
CN105445517A (en) * 2015-11-16 2016-03-30 郝建 Current transformer application method
CN105445518A (en) * 2015-11-16 2016-03-30 赵玉洁 Voltage transformer application method
CN105467349A (en) * 2015-11-16 2016-04-06 郝建 Current transformer
CN105629021A (en) * 2015-11-16 2016-06-01 赵玉洁 Voltage transformer
CN105223398A (en) * 2015-11-16 2016-01-06 赵玉洁 Voltage transformer (VT)
CN105629021B (en) * 2015-11-16 2016-11-30 国网山东省电力公司蓬莱市供电公司 Voltage transformer
CN105445584A (en) * 2015-11-27 2016-03-30 云南电网有限责任公司电力科学研究院 Transformer safety state assessment method based on oil chromatography
CN105445584B (en) * 2015-11-27 2018-03-27 云南电网有限责任公司电力科学研究院 A kind of transformer safety state evaluating method based on oil chromatography
JP2017146112A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Electric facility diagnostic method

Similar Documents

Publication Publication Date Title
JP2010243224A (en) Method for diagnosing deterioration of heat-resistant polyester varnish
Chen et al. Insulation condition monitoring of epoxy spacers in GIS using a decomposed gas CS 2
Thakur et al. Thermal aging of cellulosic pressboard material and its surface discharge and chemical characterization
Zhou et al. Detection of intense partial discharge of epoxy insulation in SF6 insulated equipment using carbonyl sulfide
Mayoux Partial-discharge phenomena and the effect of their constituents on polyethylene
Franck et al. Electric Performance of New Non-SF 6 Gases and Gas Mixtures for Gas-Insulated Systems
JP5760817B2 (en) Life determination method, life prediction method, life inspection method, and computer program for resin material containing antioxidant
Ji et al. Investigation on combined effect of humidity–temperature on partial discharge through dielectric performance evaluation
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
CN110726785B (en) SF analysis based on GC-Q-ToF-MS6Method for medium trace permanent gas
JP2007327877A (en) Analysis method of polyvinyl chloride composition
CN106248912A (en) A kind of characterizing method of transformer oil ageing
Turner et al. Surface chemical changes of polymer cavities with currents above and below corona inception voltage
JPH0350977B2 (en)
Kassi et al. Comparative study between conventional and hybrid solid insulation systems
JP2010071961A (en) Deterioration diagnosis method of polymer material
KR100776641B1 (en) Evaluation method on degradation of polymeric materials by using dielectric relaxation properties
JP2010243225A (en) Method for diagnosing deterioration of insulating material
Kim et al. Study on decomposition gas characteristics and condition diagnosis for gas-insulated transformer by chemical analysis
Li et al. Study on decomposition gas for faults diagnostic of electrical equipment using fluorocarbons
Zhao et al. Effect of frequency on discharge characteristics of inter-layer materials in HV-HF transformers
Fofana et al. INFLUENCE OF TRANSFORMER OIL AGING BYPRODUCTS ON THE DISSOLVED GAS ANALYSIS
Zhao et al. Time-domain dielectric response characteristics of XLPE cable insulation under different water conten
JP3325220B2 (en) Life diagnosis method for gas insulated electrical equipment
Hao et al. Analysis of electrical and physicochemical properties of GIS spacer with long-term service

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111209

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402