JP2010243225A - Method for diagnosing deterioration of insulating material - Google Patents
Method for diagnosing deterioration of insulating material Download PDFInfo
- Publication number
- JP2010243225A JP2010243225A JP2009089683A JP2009089683A JP2010243225A JP 2010243225 A JP2010243225 A JP 2010243225A JP 2009089683 A JP2009089683 A JP 2009089683A JP 2009089683 A JP2009089683 A JP 2009089683A JP 2010243225 A JP2010243225 A JP 2010243225A
- Authority
- JP
- Japan
- Prior art keywords
- peak
- deterioration
- insulating material
- area ratio
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
電気機器等に使用されている絶縁材料の劣化診断技術に関する。熱分解GC−MS方法により、絶縁材料の劣化により増加するピーク面積を測定し、このピーク面積に基づいて絶縁材料の劣化度を診断する技術に関する。 The present invention relates to a deterioration diagnosis technique for insulating materials used in electrical equipment. The present invention relates to a technique for measuring a peak area that increases due to deterioration of an insulating material by a pyrolysis GC-MS method and diagnosing the degree of deterioration of the insulating material based on the peak area.
現在、電気機器などの配線をまとめて支持固定するために、ポリアミド系樹脂製の結束バンドが使用されている。この結束バンドは屋内外で使用され、屋外で長期間使用する場合には、紫外線が照射されることにより経年的に劣化が進行し、配線等を支持することができなくなる。 At present, a binding band made of polyamide resin is used to collectively support and fix wiring of electric devices and the like. This binding band is used indoors and outdoors, and when it is used outdoors for a long period of time, it deteriorates with time due to the irradiation of ultraviolet rays and cannot support wiring or the like.
結束バンドが配線を支持できなくなった場合、配線の端子部に異常な負荷がかかって配線切れが発生するおそれがあるので、定期的に目視により点検し配線の状態を管理している。また、結束バンドの品質管理は、ループ引張強度試験((社)電気設備学会規格 「配線用合成樹脂結束帯」 IEIEJ−P−0001 (2005)、JESC−E0017 (2005)規格品)により計測される新品の基準値を指標として管理している。 When the cable tie cannot support the wiring, an abnormal load may be applied to the terminal portion of the wiring and the wiring may be cut off. Therefore, the state of the wiring is managed by regular visual inspection. Moreover, the quality control of the binding band is measured by a loop tensile strength test (Electrical Equipment Association Standard “Synthetic Resin Bundling Band for Wiring” IEIEJ-P-0001 (2005), JESC-E0017 (2005) standard product). The new standard value is managed as an index.
電気機器の絶縁材料の劣化診断方法として、従来から用いられている診断方法(例えば、重量減少率を測定する方法)と新しい診断方法(例えば、TG−DTA法)の相関をとり、その相関関係に基づいて、新しい診断方法による絶縁材料の劣化診断を行う手法がある(例えば、特許文献1)。 As a method for diagnosing deterioration of insulating materials of electrical equipment, a correlation between a conventionally used diagnostic method (for example, a method for measuring a weight reduction rate) and a new diagnostic method (for example, a TG-DTA method) is taken, and the correlation Based on the above, there is a technique for performing a deterioration diagnosis of an insulating material by a new diagnosis method (for example, Patent Document 1).
しかしながら、ループ引張強度試験のような物理的な試験は、試験結果にバラツキがある、数多くの試験試料が必要となる、手間と時間がかかる等の問題がある。また、結束バンドを頻繁に回収して引張強度測定を行い、結束バンドの状態を管理することは事実上不可能である。 However, physical tests such as the loop tensile strength test have problems such as variations in test results, the need for many test samples, and labor and time. Moreover, it is virtually impossible to manage the state of the binding band by frequently collecting the binding band and measuring the tensile strength.
そこで、結束バンドから少量の試料をサンプリングし、劣化診断して寿命予測することが求められるが、現状ではそのような技術はない。したがって、本発明の目的は、少量の試料を採取し、絶縁材料(たとえば、結束バンド)の劣化度を精度よく診断する方法を提供することにある。 Therefore, it is required to sample a small amount of sample from the binding band, diagnose the deterioration and predict the life, but there is no such technique at present. Accordingly, an object of the present invention is to provide a method for accurately diagnosing the degree of deterioration of an insulating material (for example, a binding band) by collecting a small amount of sample.
上記目的を達成する本発明の絶縁材料劣化診断方法は、絶縁材料を熱分解GC−MS方法により測定し、該測定により得られるトータルイオンクロマトグラムのピークに基づき絶縁材料の劣化度を診断する方法において、前記ピークのうち前記絶縁材料の劣化により増加するピークを劣化ピークとし、前記ピークのうち前記絶縁材料の劣化に依存しないピークを基本ピークとし、前記劣化ピークの面積を前記基本ピークの面積で除したピーク面積比率に基づき前記絶縁材料の劣化度を診断することを特徴としている。 The insulating material deterioration diagnosis method of the present invention that achieves the above object is a method of measuring an insulating material by a pyrolysis GC-MS method and diagnosing the degree of deterioration of the insulating material based on a peak of a total ion chromatogram obtained by the measurement. The peak that increases due to the deterioration of the insulating material among the peaks is a deterioration peak, the peak that does not depend on the deterioration of the insulating material is the basic peak, and the area of the deterioration peak is the area of the basic peak. The deterioration degree of the insulating material is diagnosed based on the divided peak area ratio.
したがって、以上の発明によれば、極微量の試料を採取することにより、短時間で絶縁材料の劣化度を精度よく診断することができる。 Therefore, according to the above invention, it is possible to accurately diagnose the deterioration degree of the insulating material in a short time by collecting a very small amount of sample.
本発明は、熱分解ガスクロマトグラフ質量分析装置(Pyrolisis−Gas Chromatography−Mass Spectrometory、以下熱分解GC−MS装置と略す)を用いて電子機器等に使用されるポリアミド系樹脂の劣化判定を行う。 In the present invention, deterioration determination of a polyamide-based resin used in an electronic device or the like is performed using a pyrolysis gas chromatograph mass spectrometer (Pyrolysis-Gas Chromatography-Mass Spectrometry, hereinafter abbreviated as a pyrolysis GC-MS apparatus).
熱分解GC−MS方法の原理は、不活性ガス雰囲気の加熱炉において高分子材料等の試料を一定の昇温速度で加熱し、試料から脱離発生するガスを質量分析装置に導入するものである。発生ガスは、電子衝撃イオン化法(EI法)により発生ガスである有機物質がイオン状態となり、四重極ロッド内で質量を振り分けて光電子倍増管で質量を検出する。この熱分解GC−MS装置を用いてEGA−MS手法により劣化度の判定を行う。 The principle of the pyrolysis GC-MS method is that a sample such as a polymer material is heated at a constant temperature rise rate in a heating furnace in an inert gas atmosphere, and a gas desorbed from the sample is introduced into the mass spectrometer. is there. As for the generated gas, an organic substance that is the generated gas is converted into an ion state by an electron impact ionization method (EI method), and the mass is distributed in the quadrupole rod and the mass is detected by a photomultiplier tube. Degradation is determined by the EGA-MS method using this pyrolysis GC-MS apparatus.
劣化度を判定する手法としては、劣化度の異なるポリアミド系樹脂を熱分解GC−MS方法で測定して分解生成物を分離し、トータルイオンクロマトグラム(以下TICと略す)測定を行い、分解生成物を同定する。 As a method for determining the degree of deterioration, a polyamide resin having a different degree of deterioration is measured by a pyrolysis GC-MS method, a decomposition product is separated, a total ion chromatogram (hereinafter abbreviated as TIC) is measured, and a decomposition product is generated. Identify the thing.
熱分解GC−MS方法で測定する際に試料を測定試料カップに約50μg秤量して測定するが、μgオーダーを一定採取して測定試料カップに秤量することは非常に困難である。 When measuring by the pyrolysis GC-MS method, about 50 μg of the sample is weighed into the measurement sample cup and measured. However, it is very difficult to take a constant μg order and weigh it into the measurement sample cup.
そこで、熱分解GC−MS方法による測定から得られるTICにおいて、劣化に伴ってピーク強度が強くなるピークを劣化ピークとし、劣化に依存しないピークを基準ピークとして定める。この劣化ピークに基づく劣化ピーク面積を前記基準ピークに基づく基準ピーク面積で除してピーク面積比率を算出する。 Therefore, in the TIC obtained from the measurement by the pyrolysis GC-MS method, a peak whose peak intensity increases with deterioration is defined as a degradation peak, and a peak that does not depend on degradation is defined as a reference peak. The peak area ratio is calculated by dividing the deterioration peak area based on the deterioration peak by the reference peak area based on the reference peak.
つまり、試料採取重量を一定にすれば紫外線照射時間を変化させた時、紫外線照射時間が長くなれば劣化ピーク面積値は大きくなる。一方、基本ピークは試料採取重量と相関関係を持つので、試料採取重量が一定であれば紫外線照射時間を変化させても基本ピーク面積は変化しない。したがって、劣化ピーク面積を基本ピーク面積で割ることにより算出されるピーク面積比率で各試料を比較評価することにより、試料採取重量を補正することができるのでサンプル重量に依存しない測定結果を得ることができる。 In other words, if the sampling weight is constant, when the ultraviolet irradiation time is changed, the deterioration peak area value increases as the ultraviolet irradiation time becomes longer. On the other hand, since the basic peak has a correlation with the sample weight, if the sample weight is constant, the basic peak area does not change even if the ultraviolet irradiation time is changed. Therefore, by comparing each sample with the peak area ratio calculated by dividing the degradation peak area by the basic peak area, the sample collection weight can be corrected, so that a measurement result independent of the sample weight can be obtained. it can.
まず、劣化診断の基準となるマスターカーブを得るために、ポリアミド系樹脂に紫外線を照射し、人工的に劣化させた試料を作成する。例えば、紫外線曝露時間が0h、500h、1000h、2000hを模擬試料とする。 First, in order to obtain a master curve serving as a reference for deterioration diagnosis, a polyamide resin is irradiated with ultraviolet rays to create a sample that is artificially deteriorated. For example, UV exposure times of 0h, 500h, 1000h, and 2000h are used as simulated samples.
この紫外線曝露試料を熱分解GC−MS方法で測定し、ピーク面積比率を算出し、紫外線曝露時間とピーク面積比率の関係を算出する。 The ultraviolet exposure sample is measured by a pyrolysis GC-MS method, the peak area ratio is calculated, and the relationship between the ultraviolet exposure time and the peak area ratio is calculated.
一方で、紫外線曝露試料のループ引張強度試験を行い、引張強度が初期の半分(50%)となった値を寿命点とする。 On the other hand, a loop tensile strength test is performed on the UV-exposed sample, and the value at which the tensile strength is half the initial value (50%) is defined as the life point.
そして、熱分解GC−MS方法での測定結果とループ引張強度試験の試験結果の相関関係であるマスターカーブを作成することにより、評価対象試料であるポリアミド系樹脂を熱分解GC−MS方法で測定し、算出されたピーク面積比率とマスターカーブに基づいて評価対象試料の劣化診断をすることが可能となる。 Then, by creating a master curve that is a correlation between the measurement result of the pyrolysis GC-MS method and the test result of the loop tensile strength test, the polyamide resin as the evaluation target sample is measured by the pyrolysis GC-MS method. In addition, it is possible to diagnose deterioration of the sample to be evaluated based on the calculated peak area ratio and the master curve.
図1(a)、図1(b)に熱分解GC−MS方法でポリアミド系樹脂(紫外線曝露時間0h、500h、1000h、2000h)の測定を行って、検出されたTICを示す。図1(b)は図1(a)の拡大図である。
FIG. 1 (a) and FIG. 1 (b) show the TIC detected by measuring a polyamide-based resin (ultraviolet
熱分解GC−MS方法での測定に用いた測定装置及び測定条件を示す。
測定装置
・ガスクロマトグラフ質量分析計((株)島津製作所)
GC−MS装置(Gas Chromatography−Mass Spectrometer)
QP−2010型[データ処理ソフト:GC−MS solution Ver.2.20]
・熱分解装置(フロンティア・ラボ(株))
D−SP(Double−Shot Pyrolzer)装置
PY−2020iD型
測定条件
ガスクロマトグラフ(GC)
・カラムオーブン温度:300℃、気化室温度:330℃
・イオン源温度:200℃、注入モード:スプリット
・全流量:50ml/min、カラム流量:0.65ml/min
・線速度:32.1cm/sec、パージ流量:3ml/min
・スプリット比:71.5対1.0
検出器
・検出モード:EI(Electron Impact)、検出器電圧:0.1kV
質量検出
・測定モード:スキャン、測定時間[開始〜終了]:0.1min〜28min
・質量範囲:35m/z〜500m/z、計測インターバル:0.5sec
・スキャン速度:1000
EGA
・昇温範囲:600℃
図1(b)に示すTICにおいて点線で囲った部分から明らかなように、紫外線曝露時間の増加に伴いピーク強度が増加するピーク(およそ21分に検出されるピーク、以下劣化ピークとする)が確認できた。このピークの成分について質量スペクトル測定を行った結果を図2(a)に示す。
The measurement apparatus and measurement conditions used for the measurement by the pyrolysis GC-MS method are shown.
Measuring device / gas chromatograph mass spectrometer (Shimadzu Corporation)
GC-MS equipment (Gas Chromatography-Mass Spectrometer)
QP-2010 [Data processing software: GC-MS solution Ver. 2.20]
・ Pyrolysis device (Frontier Lab Co., Ltd.)
D-SP (Double-Shot Pyrolzer) apparatus PY-2020iD type measurement condition gas chromatograph (GC)
-Column oven temperature: 300 ° C, vaporization chamber temperature: 330 ° C
-Ion source temperature: 200 ° C, injection mode: split-Total flow rate: 50 ml / min, column flow rate: 0.65 ml / min
-Linear velocity: 32.1 cm / sec, purge flow rate: 3 ml / min
Split ratio: 71.5 to 1.0
Detector / detection mode: EI (Electron Impact), detector voltage: 0.1 kV
Mass detection / measurement mode: scan, measurement time [start to end]: 0.1 min to 28 min
Mass range: 35 m / z to 500 m / z, measurement interval: 0.5 sec
・ Scanning speed: 1000
EGA
・ Temperature range: 600 ° C
As is apparent from the portion surrounded by the dotted line in the TIC shown in FIG. 1B, a peak (peak detected at about 21 minutes, hereinafter referred to as a degradation peak) where the peak intensity increases as the ultraviolet exposure time increases is observed. It could be confirmed. FIG. 2A shows the result of mass spectrum measurement for the peak component.
標準データベースに基づき、劣化ピークの成分の検索同定をすると、図2(b)に示される2−Cyclopen−1−one、2−methyl−3pentyl−に非常に類似していた。 When searching and identifying the components of the degradation peak based on the standard database, they were very similar to 2-Cyclopen-1-one and 2-methyl-3pentyl- shown in FIG.
また、図1(a)に示すTICにおいて、点線で囲った部分(約3分に検出されるピーク)を基準ピークとして選択した。このピークの成分について質量スペクトル測定を行った結果を図3(a)に示す。 In the TIC shown in FIG. 1A, a portion surrounded by a dotted line (a peak detected at about 3 minutes) was selected as a reference peak. FIG. 3A shows the result of mass spectrum measurement for the peak component.
標準データベースに基づき、基準ピークの成分の検索同定をすると、図3(b)に示されるCyclopentanoneに非常に類似していた。 When searching and identifying the components of the reference peak based on the standard database, it was very similar to the Cyclopentane shown in FIG.
一般的に、熱分解GC−MS方法では、ポリアミド系樹脂の種類を同定することができる。例えば、Cyclopentanoneが検出された場合、ナイロン6、6であると判断され、Caprolactamが検出されるとナイロン6であると判断される。 Generally, in the pyrolysis GC-MS method, the type of polyamide resin can be identified. For example, when Cyclopentanone is detected, it is determined that it is nylon 6 and 6, and when Caprolactam is detected, it is determined that it is nylon 6.
表1に、熱分解GC−MS方法でポリアミド系樹脂(紫外線曝露時間0h、500h、1000h、2000h)を測定した時の、劣化ピークと基準ピーク及びピーク面積比率を示す。そして、紫外線曝露時間とピーク面積比率をプロットして得られたマスターカーブを図4に示す。
Table 1 shows deterioration peaks, reference peaks, and peak area ratios when polyamide resins (
一方で、紫外線曝露時間とループ引張強度値の関係を求め、ピーク面積比率とループ引張強度値の相関関係を得た。ピーク面積比率とループ引張強度値の関係を図5に示す。 On the other hand, the relationship between the ultraviolet exposure time and the loop tensile strength value was obtained, and the correlation between the peak area ratio and the loop tensile strength value was obtained. The relationship between the peak area ratio and the loop tensile strength value is shown in FIG.
紫外線曝露時間が0hでの結束バンドのループ引張強度値が179.3Nであったので、ループ引張強度値が半減した値である約90N以下を寿命領域と設定し、図5に寿命境界ラインを引くことにより、ピーク面積比率における寿命領域が設定される。 Since the loop tensile strength value of the binding band when the UV exposure time was 0 h was 179.3 N, the lifetime region was set to about 90 N or less, which is a value obtained by halving the loop tensile strength value. By subtracting, the lifetime region in the peak area ratio is set.
したがって、図5に示すようなマスターカーブを作成しておけば、実際に使用されている結束バンドのピーク面積比率を算出し、劣化度・余寿命を測定することができる。 Therefore, if a master curve as shown in FIG. 5 is created, the peak area ratio of the binding band actually used can be calculated, and the degree of deterioration and the remaining life can be measured.
以上説明したように、本発明に係る絶縁材料劣化診断方法によれば、熱分解GC−MS方法を用いることで、極微量(約50μg)の試料で劣化度の診断が可能となった。 As described above, according to the method for diagnosing deterioration of an insulating material according to the present invention, the degree of deterioration can be diagnosed with a very small amount (about 50 μg) of a sample by using the pyrolysis GC-MS method.
また、実際の環境下に置いた結束バンドを熱分解GC−MS方法とループ引張強度測定し、得られたピーク面積比率とループ引張強度値との相関関係を示すマスターカーブを作成しておけば、結束バンドの劣化診断・余寿命推定を精度よく行うことが可能となる。 In addition, if the binding band placed in the actual environment is measured by pyrolysis GC-MS method and loop tensile strength, a master curve showing the correlation between the obtained peak area ratio and loop tensile strength value should be prepared. Therefore, it is possible to accurately perform the deterioration diagnosis and the remaining life estimation of the binding band.
このように、熱分解GC−MS方法を用いれば、短時間で劣化度を評価することが可能であるので、結束バンドの品質管理に適用できる。 As described above, if the pyrolysis GC-MS method is used, the degree of deterioration can be evaluated in a short time, and therefore, it can be applied to the quality control of the binding band.
なお、本発明の絶縁材料劣化診断方法は、実施形態で説明した内容に限定されるものではなく、測定方法及び測定条件は適宜設定可能であり、ピーク面積比率と相関をとるデータもループ引張強度に限定することなく従来用いられている方法(例えば、曲げ強度、質量減少率測定)を用いればよい。特に、絶縁材料としてはポリアミド系樹脂に限定せず、劣化ピークが存在する絶縁材料であれば適宜適用が可能である。 The insulation material deterioration diagnosis method of the present invention is not limited to the contents described in the embodiment, the measurement method and measurement conditions can be set as appropriate, and the data correlated with the peak area ratio is also the loop tensile strength. A conventionally used method (for example, bending strength, mass reduction rate measurement) may be used without being limited to the above. In particular, the insulating material is not limited to a polyamide-based resin, and any insulating material having a degradation peak can be applied as appropriate.
Claims (5)
前記ピークのうち前記絶縁材料の劣化により増加するピークを劣化ピークとし、
前記ピークのうち前記絶縁材料の劣化に依存しないピークを基本ピークとし、
前記劣化ピークの面積を前記基本ピークの面積で除したピーク面積比率に基づき前記絶縁材料の劣化度を診断する
ことを特徴とする絶縁材料劣化診断方法。 In a method of measuring an insulating material by a pyrolysis GC-MS method and diagnosing the degree of deterioration of the insulating material based on a peak of a total ion chromatogram obtained by the measurement,
Among the peaks, a peak that increases due to deterioration of the insulating material is a deterioration peak,
The peak that does not depend on the deterioration of the insulating material among the peaks is a basic peak,
A method for diagnosing deterioration of an insulating material, wherein the deterioration degree of the insulating material is diagnosed based on a peak area ratio obtained by dividing the area of the deterioration peak by the area of the basic peak.
ことを特徴とする請求項1に記載の絶縁材料劣化診断方法。 The insulation material deterioration diagnosis method according to claim 1, wherein the deterioration degree of the insulating material is diagnosed by correlating the peak area ratio with a result of a physical tensile strength test.
前記基本ピークに基づき、前記ポリアミド樹脂の種類を特定する
ことを特徴とする請求項1又は請求項2に記載の絶縁材料劣化診断方法。 The insulating material is a polyamide resin,
The insulation material deterioration diagnosis method according to claim 1 or 2, wherein the type of the polyamide resin is specified based on the basic peak.
ことを特徴とする請求項3に記載の絶縁材料劣化診断方法。 The insulation material deterioration diagnosis method according to claim 3, wherein the polyamide resin is a binding band of wiring.
該採取した試料毎に、前記ピーク面積比率と物理的な引張強度試験による結果との相関をとる
ことを特徴とする請求項4に記載の絶縁材料劣化診断方法。 Periodically collect the binding band,
5. The insulation material deterioration diagnosis method according to claim 4, wherein a correlation between the peak area ratio and a result of a physical tensile strength test is taken for each of the collected samples.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009089683A JP2010243225A (en) | 2009-04-02 | 2009-04-02 | Method for diagnosing deterioration of insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009089683A JP2010243225A (en) | 2009-04-02 | 2009-04-02 | Method for diagnosing deterioration of insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010243225A true JP2010243225A (en) | 2010-10-28 |
Family
ID=43096401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009089683A Pending JP2010243225A (en) | 2009-04-02 | 2009-04-02 | Method for diagnosing deterioration of insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010243225A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010243224A (en) * | 2009-04-02 | 2010-10-28 | Meidensha Corp | Method for diagnosing deterioration of heat-resistant polyester varnish |
JP2013032958A (en) * | 2011-08-02 | 2013-02-14 | Hitachi Cable Ltd | Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0485362A (en) * | 1990-07-27 | 1992-03-18 | Asahi Chem Ind Co Ltd | Polyamide resin composition |
JPH08327512A (en) * | 1995-06-01 | 1996-12-13 | Kawasaki Steel Corp | Resin film-peeling liquid for resin coated steel plate and resin film-peeling method |
JPH09178727A (en) * | 1995-10-25 | 1997-07-11 | Nippon Paint Co Ltd | Method and equipment for testing organic material |
JPH09257780A (en) * | 1996-03-21 | 1997-10-03 | Shimadzu Corp | Data processing apparatus of chromatography/mass analyser |
JP2003107075A (en) * | 2001-09-28 | 2003-04-09 | Mitsubishi Electric Corp | Insulation degradation detecting method and insulation life predicting method |
JP2003253014A (en) * | 2002-02-28 | 2003-09-10 | Toyobo Co Ltd | Method for securing polyester molded article |
JP2004354375A (en) * | 2003-05-02 | 2004-12-16 | Meidensha Corp | Deterioration diagnostic method and system for electric wire |
JP2005338045A (en) * | 2004-04-27 | 2005-12-08 | Meidensha Corp | Method for diagnosing insulation degradation of electric equipment |
JP2007017196A (en) * | 2005-07-05 | 2007-01-25 | Frontier Lab Kk | Analyzer of high-molecular sample |
JP2010002339A (en) * | 2008-06-20 | 2010-01-07 | Asahi Kasei Homes Co | Method of evaluating deterioration degree of coating film |
JP2010243224A (en) * | 2009-04-02 | 2010-10-28 | Meidensha Corp | Method for diagnosing deterioration of heat-resistant polyester varnish |
-
2009
- 2009-04-02 JP JP2009089683A patent/JP2010243225A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0485362A (en) * | 1990-07-27 | 1992-03-18 | Asahi Chem Ind Co Ltd | Polyamide resin composition |
JPH08327512A (en) * | 1995-06-01 | 1996-12-13 | Kawasaki Steel Corp | Resin film-peeling liquid for resin coated steel plate and resin film-peeling method |
JPH09178727A (en) * | 1995-10-25 | 1997-07-11 | Nippon Paint Co Ltd | Method and equipment for testing organic material |
JPH09257780A (en) * | 1996-03-21 | 1997-10-03 | Shimadzu Corp | Data processing apparatus of chromatography/mass analyser |
JP2003107075A (en) * | 2001-09-28 | 2003-04-09 | Mitsubishi Electric Corp | Insulation degradation detecting method and insulation life predicting method |
JP2003253014A (en) * | 2002-02-28 | 2003-09-10 | Toyobo Co Ltd | Method for securing polyester molded article |
JP2004354375A (en) * | 2003-05-02 | 2004-12-16 | Meidensha Corp | Deterioration diagnostic method and system for electric wire |
JP2005338045A (en) * | 2004-04-27 | 2005-12-08 | Meidensha Corp | Method for diagnosing insulation degradation of electric equipment |
JP2007017196A (en) * | 2005-07-05 | 2007-01-25 | Frontier Lab Kk | Analyzer of high-molecular sample |
JP2010002339A (en) * | 2008-06-20 | 2010-01-07 | Asahi Kasei Homes Co | Method of evaluating deterioration degree of coating film |
JP2010243224A (en) * | 2009-04-02 | 2010-10-28 | Meidensha Corp | Method for diagnosing deterioration of heat-resistant polyester varnish |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010243224A (en) * | 2009-04-02 | 2010-10-28 | Meidensha Corp | Method for diagnosing deterioration of heat-resistant polyester varnish |
JP2013032958A (en) * | 2011-08-02 | 2013-02-14 | Hitachi Cable Ltd | Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010243224A (en) | Method for diagnosing deterioration of heat-resistant polyester varnish | |
US20100100335A1 (en) | Method for quantitating substance to be measured | |
WO2018076430A1 (en) | Method for testing surface hardness of composite insulating material | |
Chiari et al. | Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters | |
CN108603849B (en) | Device for determining the effective energy spectrum of an X-ray tube | |
CN107064396A (en) | Produce the bearing calibration of gas analyzing apparatus and produce gas analyzing apparatus | |
Reinecke et al. | A compact high-resolution X-ray ion mobility spectrometer | |
Watson et al. | Air monitoring: New advances in sampling and detection | |
JP2010243225A (en) | Method for diagnosing deterioration of insulating material | |
JP5760817B2 (en) | Life determination method, life prediction method, life inspection method, and computer program for resin material containing antioxidant | |
JP2006284371A (en) | Method of analyzing mass | |
JP6419406B1 (en) | Diagnostic method for oil-filled electrical equipment | |
CN115389683A (en) | Quantitative device for brominated flame-retardant compound | |
Manard et al. | Differential mobility spectrometry/mass spectrometry: The design of a new mass spectrometer for real-time chemical analysis in the field | |
US8134121B2 (en) | Chromatographic mass spectrometer | |
Liebich et al. | Identification of dihydrothiazoles in urine of male mice | |
Grange et al. | Utility of three types of mass spectrometers for determining elemental compositions of ions formed from chromatographically separated compounds | |
JP2010281633A (en) | Method of determining quantity of red phosphorus in resin | |
Bolliger et al. | Partial discharge based diagnostics for impurities in insulating fluid | |
Spezia et al. | Comparison of inductively coupled plasma mass spectrometry techniques in the determination of platinum in urine: quadrupole vs. sector field | |
CN106404810B (en) | The shifted radiation equivalent damage evaluation method of aromatic polymer insulating materials | |
JP5055157B2 (en) | Mass spectrometer | |
JP6367762B2 (en) | Analysis method | |
JP5627338B2 (en) | Mass spectrometry method | |
Teymurazyan et al. | High precision photon flux determination for photon tagging experiments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |