JPH08327512A - Resin film-peeling liquid for resin coated steel plate and resin film-peeling method - Google Patents

Resin film-peeling liquid for resin coated steel plate and resin film-peeling method

Info

Publication number
JPH08327512A
JPH08327512A JP13490595A JP13490595A JPH08327512A JP H08327512 A JPH08327512 A JP H08327512A JP 13490595 A JP13490595 A JP 13490595A JP 13490595 A JP13490595 A JP 13490595A JP H08327512 A JPH08327512 A JP H08327512A
Authority
JP
Japan
Prior art keywords
resin film
resin
methanol
peeling
maleic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13490595A
Other languages
Japanese (ja)
Inventor
Takuji Imamura
太久次 今村
Makoto Shimura
眞 志村
Yoshiko Funabashi
佳子 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13490595A priority Critical patent/JPH08327512A/en
Publication of JPH08327512A publication Critical patent/JPH08327512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To obtain a required amount of a resin sample for analysis by subjecting a galvanized steel plate to an anode dissolving process in a peeling liquid made of an electrolyte containing a specified concentration of iodide ions, and a chelating agent containing a specified concentration of maleic anhydride, using methanol as a solvent, and then electrolying the solution at hydrogen generating potential. CONSTITUTION: The resin film-peeling liquid uses methanol as a solvent, and contains 0.02 to 5mol/l of iodide ions as an electrolyte, and 0.1 to 10wt.% of maleic anhydride as a chelating agent. Methanol is liable to infiltrate to an interface between a resin film and a plated layer, and a quick dissolution process can be provided. Also, maleic anhydride is well soluble in methanol and no colored even in the formation of chelate with a metal such as zinc, thereby allowing a peeling state to be easily observed. At the final electrolytic process, the resin film is cathode-polarized and treated at a hydrogen generating potential for a short time. As the result, bubbles are generated and keep the film afloat, thereby allowing the film to be peeled off without any damage thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板上に施した有機樹
脂膜の採取方法に関し、詳しくは、有機樹脂被覆めっき
鋼板の樹脂膜の成分を分析するために、樹脂膜を、溶
解、損傷することなく下地めっき鋼板から剥離する剥離
液および剥離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for collecting an organic resin film formed on a steel sheet, and more specifically, to analyze the components of the resin film of an organic resin-coated plated steel sheet, the resin film is melted and damaged. The present invention relates to a stripping solution and a stripping method for stripping from a base plated steel sheet without performing.

【0002】[0002]

【従来の技術】冬季の道路凍結を防止するために融雪剤
として岩塩散布が実施される地域等では高耐食性を発揮
する自動車用鋼板が要求され、めっき鋼板にクロメート
処理および樹脂塗装を施した樹脂被覆鋼板が開発され、
利用されている。現在、多くの樹脂被覆鋼板が研究開発
されているが、防錆性、密着性、溶接性等の各種特性を
満足させ、かつより安価で取扱いの容易な製品開発のた
めに、鋼板上に形成する樹脂膜の分子構造、付着量、め
っき層との接着面の断面形状等の分析や観察あるいは伸
び、硬度、強度等の物性値を測定する必要がある。
2. Description of the Related Art Automotive steel sheets exhibiting high corrosion resistance are required in regions where rock salt is sprayed as a snow-melting agent to prevent road freezing in winter, and resin coated with chromate and resin coating is required for plated steel sheets. The coated steel sheet was developed,
It's being used. Currently, many resin-coated steel sheets are being researched and developed, but they are formed on steel sheets in order to satisfy various properties such as rust resistance, adhesion, and weldability, and to develop products that are cheaper and easier to handle. It is necessary to analyze and observe the molecular structure of the resin film to be applied, the amount of adhesion, the cross-sectional shape of the adhesion surface to the plating layer, or to measure physical properties such as elongation, hardness, strength and the like.

【0003】前記樹脂膜を鋼板から剥離せずに分析する
方法としては、赤外分光法(IR)、光電子分光法(E
SCA)などがあるが、表面層や一部の局所的な情報が
得られるのみで、その試料全体を代表する測定値を得る
には限界がある。さらに詳細な分子構造を知るには核磁
気共鳴分析や熱分解ガスクロマトグラフィー(熱分解G
C)などの分析法を適用することが必要で、そのために
は鋼板上の樹脂膜を剥離して樹脂のみを分析試料として
供する必要がある。
Infrared spectroscopy (IR) and photoelectron spectroscopy (E) are available as methods for analyzing the resin film without peeling it from the steel sheet.
SCA), etc., but there is a limit in obtaining a measurement value representative of the entire sample, since only local information of the surface layer and a part thereof can be obtained. To know more detailed molecular structure, nuclear magnetic resonance analysis and pyrolysis gas chromatography (pyrolysis G
It is necessary to apply an analysis method such as C), and for that purpose, it is necessary to peel off the resin film on the steel plate and use only the resin as an analysis sample.

【0004】これらの鋼板から樹脂膜のみを分析試料と
して得るために、従来は表面から刃物等で削り取る方法
が慣例であった。しかし、近年の樹脂膜は、溶接性の確
保のために薄膜化しており、樹脂のみの試料を得るため
に多大な労力と技術を要し、分析に十分な量の樹脂を得
ることは困難であった。また、薄い樹脂膜の場合、金属
層が削り取られて樹脂試料と混在することが多く、その
ような試料を用いて分析すると、装置あるいはその後の
解析に悪影響を及ぼすことがあった。
In order to obtain only a resin film as an analysis sample from these steel plates, a method of shaving off the surface with a blade or the like has been conventionally used. However, recent resin films are thinned to ensure weldability, and it requires a great deal of labor and technology to obtain a sample of resin only, and it is difficult to obtain a sufficient amount of resin for analysis. there were. Further, in the case of a thin resin film, the metal layer is often scraped off and coexists with the resin sample, and analysis using such a sample may adversely affect the apparatus or subsequent analysis.

【0005】一方、酸などの薬品を用いて下地金属を全
て溶解し去って樹脂膜を得る方法もあるが、金属の溶解
は樹脂膜のない部分から優先的になされるため、長時間
を要し、十分な量の試料を得ることができない。また、
処理に時間がかかるため樹脂の種類によっては酸などの
薬品により変性する場合がある。
On the other hand, there is also a method of obtaining a resin film by completely dissolving the underlying metal using a chemical such as an acid, but since the dissolution of the metal is performed preferentially from the portion without the resin film, it takes a long time. However, a sufficient amount of sample cannot be obtained. Also,
Since the treatment takes time, it may be modified by chemicals such as acid depending on the type of resin.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記事情に
鑑みてなされたもので、従来技術の問題点を解決し、鋼
板上に塗布、圧着または接着された樹脂膜の分析用試料
を得る方法、すなわち、金属層が混在せず、また樹脂膜
の組成、化学構造の変化を生じることなく、簡便に、十
分な量の樹脂試料を得ることが可能な樹脂被覆鋼板の樹
脂膜剥離液および樹脂膜剥離方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and solves the problems of the prior art to obtain a sample for analysis of a resin film coated, pressure-bonded or adhered on a steel plate. Method, that is, a resin film stripping solution for a resin-coated steel sheet capable of easily obtaining a sufficient amount of a resin sample without mixing a metal layer and without causing a change in the composition and chemical structure of the resin film, and An object is to provide a resin film peeling method.

【0007】[0007]

【課題を解決するための手段】本発明は、めっき鋼板上
に塗布、圧着または接着された樹脂膜、より好ましく
は、めっき鋼板上に塗布された樹脂薄膜の分析用試料の
作成に好ましく適用される。すなわち、本発明の第1の
発明は、メタノールを溶媒とし、電解質として0.02〜5
mol/l の沃素イオンを含有し、キレート剤として無水マ
レイン酸を 0.1〜10wt%含有することを特徴とする樹脂
被覆鋼板の樹脂膜剥離液である。
The present invention is preferably applied to the preparation of a sample for analysis of a resin film coated, pressure-bonded or adhered on a plated steel plate, more preferably a resin thin film applied on a plated steel plate. It That is, the first invention of the present invention uses methanol as a solvent and 0.02 to 5 as an electrolyte.
A resin film stripping solution for a resin-coated steel sheet, which contains mol / l iodine ions and 0.1 to 10% by weight of maleic anhydride as a chelating agent.

【0008】また、本発明の第2の発明は、メタノール
を溶媒とし、電解質として0.02〜5mol/l の沃素イオン
を含有し、キレート剤として無水マレイン酸を 0.1〜10
wt%含有する剥離液中で、樹脂被覆を施しためっき鋼板
を、アノード溶解した後さらに水素発生電位で電解する
ことを特徴とする樹脂被覆鋼板の樹脂膜剥離方法であ
る。
The second aspect of the present invention is to use methanol as a solvent, 0.02 to 5 mol / l of iodine ion as an electrolyte, and 0.1 to 10 maleic anhydride as a chelating agent.
A resin film stripping method for a resin-coated steel sheet, which comprises subjecting a resin-coated plated steel sheet to anodic dissolution in a stripping solution containing wt% and further electrolyzing at a hydrogen generation potential.

【0009】なお、本発明における前記めっきとして
は、電気めっき、溶融めっき、いずれにも好ましく適用
される。めっき成分としてはAl、Zn、Cr、Fe、
Co、Ni、Sn、MoおよびCuからなる群から選ば
れた1種または2種以上が好ましく、より好ましくは電
気化学的に卑な金属であるZnを主成分とする亜鉛系め
っきが好ましい。
The plating in the present invention is preferably applied to both electroplating and hot dipping. The plating components include Al, Zn, Cr, Fe,
One or more selected from the group consisting of Co, Ni, Sn, Mo and Cu are preferable, and zinc-based plating containing Zn, which is an electrochemically base metal, as a main component is preferable.

【0010】亜鉛系めっきとしてはZnめっき、Zn−
Niめっき、Zn−Feめっき、Zn−Coめっき、Z
n−Alめっき、Zn−Moめっき、またはNi、F
e、Co、Al、およびMoからなる群から選ばれた1
種または2種以上とZnとの合金めっきが例示される。
また、Zn−FeめっきとしてはZn−Fe合金化処理
溶融亜鉛めっきも含まれる。
As the zinc-based plating, Zn plating, Zn-
Ni plating, Zn-Fe plating, Zn-Co plating, Z
n-Al plating, Zn-Mo plating, or Ni, F
1 selected from the group consisting of e, Co, Al, and Mo
An example is alloy plating of Zn with one kind or two or more kinds.
The Zn-Fe plating also includes Zn-Fe alloying hot-dip galvanizing.

【0011】[0011]

【作用】以下、本発明についてさらに詳細に説明する。
有機複合被覆鋼板は下地となる冷延鋼板に亜鉛系めっき
層、クロメート層、樹脂膜の層を順次形成させたもので
あるが、本発明者らは、樹脂膜の下にあるめっき層は亜
鉛が主成分で導電性があり、電解によって溶解させるこ
とに想到した。
The present invention will be described in more detail below.
The organic composite-coated steel sheet is a cold-rolled steel sheet as an underlayer in which a zinc-based plating layer, a chromate layer, and a resin film layer are sequentially formed. However, the inventors have found that the plating layer under the resin film is zinc. It was thought that it was dissolved by electrolysis because it is the main component and has conductivity.

【0012】すなわち亜鉛は電気化学的に卑なためアノ
ード溶解により迅速、短時間に溶解でき、めっき層の上
部にある樹脂膜を剥離できると考えた。さらにめっき鋼
板を、電位をめっき層の溶解電位と下地鋼板の溶解電位
の間に設定して電解すれば、下地鋼板を全く溶解せずに
めっき層のみを選択的に迅速に溶解し得ると考えた。以
上の観点から、本発明者らは、樹脂膜と下地鋼板の間の
めっき層のみを選択的に溶解し、樹脂膜のみを全面的に
均一に分離する剥離液および剥離方法を種々検討した。
That is, it is considered that zinc is electrochemically base and can be dissolved quickly and in a short time by anodic dissolution, and the resin film on the upper portion of the plating layer can be peeled off. Furthermore, by electrolyzing the plated steel sheet by setting the potential between the dissolution potential of the plating layer and the dissolution potential of the base steel sheet, we believe that the plating layer alone can be selectively and rapidly dissolved without dissolving the base steel sheet at all. It was From the above viewpoints, the present inventors have conducted various studies on a stripping solution and a stripping method for selectively dissolving only the plating layer between the resin film and the base steel sheet, and uniformly separating only the resin film over the entire surface.

【0013】この場合、剥離液は中性で、できるだけ
強い化学作用のないこと、電解では試料の周辺部から
溶解が進行するので、多量の試料を得るためには広い面
積の試料を処理する必要があり、剥離液は樹脂膜とめっ
き層の界面へ浸透力のあるものが望ましい。そこで鋭意
検討の結果、メタノールを溶媒とし、電解質として0.02
〜5mol/l の沃素イオンを含有し、金属イオンとキレー
トを形成するキレート剤として無水マレイン酸を 0.1〜
10wt%含有する剥離液で電解すれば、めっき層全面が迅
速に溶解し、樹脂膜の剥離が可能であることを見い出し
た。
In this case, the stripping solution is neutral and has as little chemical action as possible, and since the dissolution proceeds from the peripheral portion of the sample in electrolysis, it is necessary to process a sample having a large area in order to obtain a large amount of sample. Therefore, it is desirable that the peeling liquid has a penetrating power to the interface between the resin film and the plating layer. Therefore, as a result of diligent study, methanol was used as a solvent and 0.02 as an electrolyte.
~ Maleic anhydride 0.1 ~ 5 mol / l iodine ion as a chelating agent to form a chelate with metal ions
It has been found that if electrolysis is performed with a stripping solution containing 10 wt%, the entire plating layer is rapidly dissolved and the resin film can be stripped.

【0014】ここで、溶媒をメタノールにしたのは、樹
脂膜とめっき層の界面に剥離液が浸透しやすいためであ
り、めっき層金属の溶解の進行にともなって樹脂膜とめ
っき層の界面に剥離液が浸透し、迅速な溶解が可能であ
る。剥離液が水溶性電解液の場合は、周囲より電解が進
むが電解液が界面に浸透しないため大面積の試料では樹
脂膜が剥離しにくく不適当である。
Here, the reason why the solvent is methanol is that the stripping solution easily penetrates into the interface between the resin film and the plating layer, and as the dissolution of the plating layer metal progresses, the solvent is changed to the interface between the resin film and the plating layer. Permeation of the stripping solution allows rapid dissolution. When the stripping solution is a water-soluble electrolytic solution, electrolysis proceeds from the surroundings, but the electrolytic solution does not permeate into the interface, so that the resin film is unsuitable for peeling off the resin film in a large-area sample.

【0015】キレート剤としては、無水マレイン酸が、
メタノールによく溶解し、また亜鉛等の金属とキレート
を形成しても着色せず、剥離状況を観察しやすいため好
ましい。また、その濃度は 0.1〜10wt%が好ましい。
0.1wt%未満では溶出する亜鉛等の金属とのキレート形
成速度が遅く、めっき層の溶解速度が遅くなり、10wt%
を超えると、それ以上添加してもめっき層の溶解速度に
差がなく、不経済となる。
As the chelating agent, maleic anhydride is
It is preferable because it dissolves well in methanol, and even if it forms a chelate with a metal such as zinc, it is not colored and the peeling condition is easily observed. The concentration is preferably 0.1-10 wt%.
If it is less than 0.1 wt%, the rate of chelate formation with elution metal such as zinc will be slow, and the dissolution rate of the plating layer will be slow.
If it exceeds, there is no difference in the dissolution rate of the plating layer even if more is added, which is uneconomical.

【0016】また、従来鉄鋼材料の溶解に使用されてい
る電解液には電解質として塩化リチウムや塩化亜鉛など
の塩化物を用いるものが多かったが、亜鉛系めっき層
を、電解質として塩素イオンを使用する電解液を用いて
電解で溶解した場合、塩素を含んだ亜鉛酸化物を生成
し、分析対象である樹脂膜に付着して、その後の分析操
作および測定データ上好ましくないことがわかった。
In addition, although many electrolytes conventionally used for dissolving steel materials use chlorides such as lithium chloride and zinc chloride as electrolytes, zinc-based plating layers and chloride ions are used as electrolytes. It was found that when the electrolytic solution was dissolved by electrolysis, the zinc oxide containing chlorine was generated and adhered to the resin film to be analyzed, which was not preferable in the subsequent analysis operation and measurement data.

【0017】したがって、電解質としては溶解した亜鉛
等の金属と不溶性沈澱を生成しないものがよく、検討の
結果、沃素イオンが亜鉛等の金属と反応して沈澱を生成
することがなく、好ましいことがわかった。また、沃素
イオンを生成する電解質としては、よう化カリウム等を
用いると着色せず、剥離状況を観察しやすいため好まし
い。また、沃素イオンの濃度は0.02〜5mol/l がよい。
0.02mol/l 未満ではめっき層の溶解速度が遅く実用上使
用できず、5mol/l を超すと沈澱が析出し、剥離液とし
て使用できないからである。
Therefore, it is preferable that the electrolyte does not form an insoluble precipitate with the dissolved metal such as zinc, and as a result of examination, iodine ions do not react with the metal such as zinc to form a precipitate, which is preferable. all right. Moreover, it is preferable to use potassium iodide or the like as an electrolyte for generating iodine ions, since it is not colored and the peeling state is easily observed. The concentration of iodine ions is preferably 0.02 to 5 mol / l.
This is because if it is less than 0.02 mol / l, the dissolution rate of the plating layer is slow and it cannot be practically used, and if it exceeds 5 mol / l, a precipitate is deposited and it cannot be used as a stripping solution.

【0018】さらに、電解の最終段階において、カソー
ド分極して、水素発生電位で短時間処理を行うことで発
生する気泡により樹脂膜が浮き上がり、剥離が促進され
樹脂膜を損なうことなく剥離することが可能となった。
以上の結果、前記本発明の剥離液、剥離方法を用いれ
ば、樹脂膜を全く溶解せず、めっき層を溶解でき、樹脂
膜を剥離できることを見い出した。また、本発明の剥離
液、剥離方法を用いてめっき層を溶解した後、剥離した
樹脂膜はそのまま熱分解GC法、赤外分光法、固体NM
R法により、またクロロホルム等の富溶媒に溶解する樹
脂種は溶解して液体NMR法等の方法によって塗膜樹脂
の詳細な組成、化学構造を分析できる。また、本発明に
よれば、試料量を多量に得ることも容易なので、樹脂中
に添加する微量の添加剤等の成分も分析可能となる。ま
た、剥離した樹脂膜の重量を測定することで塗膜樹脂の
塗布量を測定することも可能である。
Furthermore, in the final stage of electrolysis, the resin film is floated by the air bubbles generated by cathodic polarization and short-time treatment at the hydrogen generation potential, and the peeling is promoted so that the resin film can be peeled without damage. It has become possible.
As a result of the above, it was found that when the stripping solution and stripping method of the present invention were used, the resin film could not be dissolved at all, the plating layer could be dissolved, and the resin film could be stripped. Further, after the plating layer is dissolved by using the stripping solution and stripping method of the present invention, the stripped resin film is directly subjected to pyrolysis GC method, infrared spectroscopy, solid NM
By the R method or by dissolving a resin species that dissolves in a rich solvent such as chloroform, the detailed composition and chemical structure of the coating resin can be analyzed by a method such as the liquid NMR method. Further, according to the present invention, since it is easy to obtain a large amount of sample, it is possible to analyze a small amount of an additive or the like added to the resin. It is also possible to measure the coating amount of the coating resin by measuring the weight of the peeled resin film.

【0019】[0019]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。表1に示す各種電解液を用いて有機複合被覆鋼
板上の塗膜樹脂の剥離試験を行った。
EXAMPLES The present invention will be specifically described below based on examples. A peeling test of the coating resin on the organic composite-coated steel sheet was performed using each of the electrolytic solutions shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例1)亜鉛めっき鋼板の表面に、樹
脂種としてエポキシ系樹脂を使用した塗料を塗布した。
得られた有機複合被覆鋼板の試験片(50mm×50mm、樹脂
膜厚1μm )を電解セル内に設置した台にセットし、試
験片中央部付近の樹脂膜を一部削り取って露出させた金
属面に陽極を接触させ、セル内に電解液を注入し、窒素
ガスを導入しながら通電した。水溶性電解液では試験片
周囲より電解が始まるが、めっき層金属の溶解の進行に
よっても樹脂膜とめっき層の界面に電解液が浸透しない
ため樹脂膜は剥離せず、樹脂膜の剥離方法として不適当
であった。また、メタノール系の電解液ではアセチルア
セトンをキレート剤に使用したものはめっき層の溶解が
順次進行し、溶解速度も十分だったが、同時に鉄キレー
トが生成し、液が着色して剥離状況の観察が不可能であ
った。サリチル酸メチルを用いた系も同様の問題があっ
た。
Example 1 A coating material using an epoxy resin as a resin species was applied to the surface of a galvanized steel sheet.
The test piece (50 mm × 50 mm, resin film thickness 1 μm) of the obtained organic composite coated steel sheet was set on the table installed in the electrolytic cell, and the resin film near the center of the test piece was partially scraped off to expose the exposed metal surface. The anode was brought into contact with, the electrolytic solution was injected into the cell, and current was supplied while introducing nitrogen gas. Electrolysis starts from around the test piece in the water-soluble electrolytic solution, but the resin film does not peel off because the electrolytic solution does not penetrate into the interface between the resin film and the plating layer due to the progress of dissolution of the plating layer metal. It was inappropriate. In addition, in the case of the methanol-based electrolyte solution, which used acetylacetone as the chelating agent, the dissolution of the plating layer proceeded sequentially and the dissolution rate was sufficient, but at the same time iron chelate was generated and the solution was colored and the peeling condition was observed. Was impossible. The system using methyl salicylate had the same problem.

【0022】一方、5%無水マレイン酸−1%よう化カ
リウム−メタノール溶液(含有沃素イオン:0.060mol/
l)を剥離液にした場合、これらの問題はなく樹脂膜を
均一に剥離することができた。 (実施例2)実施例1で用いた試験片と同様の試験片
を、電解セル内に設置した台にセットし、試験片中央部
付近の樹脂膜を一部削り取って露出させた金属面に陽極
を接触させ、セル内に5%無水マレイン酸−1%よう化
カリウム−メタノール溶液を注入し、窒素ガスを導入し
ながら電解電位を−1.3V vs SCE に保持し通電した。20
分後に電解を終了し、電位を調整して水素ガスを発生さ
せ樹脂膜を剥離した。剥離して電解液中に浮遊したシー
ト状有機樹脂膜をピンセット等ですくい取り、さらに他
の容器に用意した洗浄用メタノールで洗浄した後乾燥さ
せて分析用樹脂膜を得た。この樹脂膜を熱分解GC/M
S法で分析した結果を図1に示す。
On the other hand, 5% maleic anhydride-1% potassium iodide-methanol solution (containing iodine ion: 0.060 mol /
When l) was used as the stripping solution, these problems did not occur and the resin film could be stripped uniformly. (Example 2) A test piece similar to the test piece used in Example 1 was set on a stand installed in an electrolytic cell, and a resin film near the central portion of the test piece was partially scraped off to expose an exposed metal surface. The anode was brought into contact with the cell, 5% maleic anhydride-1% potassium iodide-methanol solution was injected into the cell, and the electrolytic potential was kept at -1.3 V vs SCE while introducing nitrogen gas, and electricity was supplied. 20
After a minute, electrolysis was terminated, the potential was adjusted to generate hydrogen gas, and the resin film was peeled off. The sheet-shaped organic resin film that had been peeled off and floated in the electrolytic solution was scooped with tweezers or the like, further washed with methanol for cleaning prepared in another container, and dried to obtain a resin film for analysis. This resin film is pyrolyzed GC / M
The result of analysis by the S method is shown in FIG.

【0023】マススペクトルの解析の結果、図1のピー
クはフェノール、はイソプロピルフェノール、は
イソプロペニルフェノール、はビスフェノールA、さ
らに、、のピークはビスフェノールAの分解成分と
同定でき、ビスフェノールA型エポキシ樹脂の典型的な
熱分解GCパターンと一致し、樹脂の同定ができた。 (実施例3)亜鉛−ニッケル合金めっき鋼板の表面に、
樹脂種としてアクリル系樹脂を使用した塗料を塗布した
有機複合被覆鋼板の試験片(50mm×50mm、樹脂膜厚1μ
m )を、実施例1と同様に処理して分析用樹脂膜を得
た。この樹脂膜を熱分解GC/MS法で分析した結果を
図2に示す。
As a result of mass spectrum analysis, the peaks in FIG. 1 can be identified as phenol, isopropylphenol, isopropenylphenol, bisphenol A, and the peaks of bisphenol A can be identified as a decomposition component of bisphenol A type epoxy resin. The resin was identified in accordance with the typical pyrolysis GC pattern of (Example 3) On the surface of a zinc-nickel alloy plated steel sheet,
Test piece of organic composite coated steel sheet coated with paint using acrylic resin as resin type (50mm x 50mm, resin film thickness 1μ
m) was treated in the same manner as in Example 1 to obtain a resin film for analysis. The result of analysis of this resin film by the pyrolysis GC / MS method is shown in FIG.

【0024】マススペクトルの解析の結果、図2のピー
クはメタクリル酸メチルであり、典型的なアクリル樹
脂の熱分解GCパターンを示している。さらに、ピーク
、はアクリル酸オクチルと同定でき、この樹脂が2
種類のアクリルから成ることが分析できた。 (比較例)実施例2と同じ樹脂を塗布した有機複合被覆
鋼板の試験片から従来どおりカッターナイフを用いて樹
脂膜を削り取った試料を、熱分解GC/MS法で分析し
た結果を図3に示すが、図3では解析に十分なスペクト
ルが得られていない。これは、分析装置に導入できる試
料量が制限され、めっき層金属が混在した試料を導入し
たため結果として分析対象となる樹脂試料量が不足とな
ったためと考えられる。
As a result of mass spectrum analysis, the peak in FIG. 2 is methyl methacrylate, which shows a typical pyrolysis GC pattern of acrylic resin. In addition, the peak can be identified as octyl acrylate,
It was possible to analyze that it consisted of various kinds of acrylic. (Comparative Example) A sample obtained by scraping off a resin film from a test piece of an organic composite-coated steel sheet coated with the same resin as in Example 2 using a cutter knife as in the conventional case was analyzed by a pyrolysis GC / MS method, and the results are shown in FIG. As shown in FIG. 3, a spectrum sufficient for analysis is not obtained. It is considered that this is because the amount of the sample that can be introduced into the analyzer is limited, and the sample in which the plating layer metal is mixed is introduced, and as a result, the amount of the resin sample to be analyzed becomes insufficient.

【0025】[0025]

【発明の効果】以上詳述したように、本発明によれば、
樹脂膜の溶解、損傷および樹脂組成、化学構造の変化を
生じることなく、迅速に、分析に必要な量の樹脂試料を
得ることができるため、従来困難であった鋼板上に形成
する有機樹脂薄膜の組成、化学構造等を容易に分析する
ことが可能となった。
As described in detail above, according to the present invention,
An organic resin thin film formed on a steel plate, which has been difficult to achieve in the past, because it is possible to quickly obtain the required amount of resin sample for analysis without dissolving or damaging the resin film and changing the resin composition or chemical structure. It has become possible to easily analyze the composition, chemical structure, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られた樹脂膜の熱分解GC/MS分
析によるトータルイオンクロマトグラムを示すグラフで
ある。
FIG. 1 is a graph showing a total ion chromatogram obtained by thermal decomposition GC / MS analysis of a resin film obtained in the present invention.

【図2】本発明で得られた樹脂膜の熱分解GC/MS分
析によるトータルイオンクロマトグラムを示すグラフで
ある。
FIG. 2 is a graph showing a total ion chromatogram obtained by thermal decomposition GC / MS analysis of the resin film obtained in the present invention.

【図3】従来法で得られた樹脂膜の熱分解GC/MS分
析によるトータルイオンクロマトグラムを示すグラフで
ある。
FIG. 3 is a graph showing a total ion chromatogram obtained by thermal decomposition GC / MS analysis of a resin film obtained by a conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メタノールを溶媒とし、電解質として0.
02〜5mol/l の沃素イオンを含有し、キレート剤として
無水マレイン酸を 0.1〜10wt%含有することを特徴とす
る樹脂被覆鋼板の樹脂膜剥離液。
1. Methanol as a solvent and an electrolyte of 0.1.
A resin film stripping solution for a resin-coated steel sheet, which contains 02 to 5 mol / l iodine ion and 0.1 to 10 wt% of maleic anhydride as a chelating agent.
【請求項2】 メタノールを溶媒とし、電解質として0.
02〜5mol/l の沃素イオンを含有し、キレート剤として
無水マレイン酸を 0.1〜10wt%含有する剥離液中で、樹
脂被覆を施しためっき鋼板を、アノード溶解した後さら
に水素発生電位で電解することを特徴とする樹脂被覆鋼
板の樹脂膜剥離方法。
2. Methanol as a solvent and an electrolyte of 0.1.
In a stripping solution containing 02 to 5 mol / l iodine ion and 0.1 to 10 wt% of maleic anhydride as a chelating agent, the resin-coated plated steel sheet is subjected to anodic dissolution and further electrolyzed at a hydrogen generation potential. A method for peeling a resin film from a resin-coated steel sheet, comprising:
【請求項3】 めっきが亜鉛系めっきである請求項2記
載の樹脂被覆鋼板の樹脂膜剥離方法。
3. The resin film peeling method for a resin-coated steel sheet according to claim 2, wherein the plating is zinc-based plating.
JP13490595A 1995-06-01 1995-06-01 Resin film-peeling liquid for resin coated steel plate and resin film-peeling method Pending JPH08327512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13490595A JPH08327512A (en) 1995-06-01 1995-06-01 Resin film-peeling liquid for resin coated steel plate and resin film-peeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13490595A JPH08327512A (en) 1995-06-01 1995-06-01 Resin film-peeling liquid for resin coated steel plate and resin film-peeling method

Publications (1)

Publication Number Publication Date
JPH08327512A true JPH08327512A (en) 1996-12-13

Family

ID=15139275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13490595A Pending JPH08327512A (en) 1995-06-01 1995-06-01 Resin film-peeling liquid for resin coated steel plate and resin film-peeling method

Country Status (1)

Country Link
JP (1) JPH08327512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431819B2 (en) 2002-05-16 2008-10-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for releasing metal-resin joint
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material
JP2010243224A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of heat-resistant polyester varnish

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431819B2 (en) 2002-05-16 2008-10-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for releasing metal-resin joint
JP2010002339A (en) * 2008-06-20 2010-01-07 Asahi Kasei Homes Co Method of evaluating deterioration degree of coating film
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material
JP2010243224A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of heat-resistant polyester varnish

Similar Documents

Publication Publication Date Title
Shi et al. Influence of the β phase on the corrosion performance of anodised coatings on magnesium–aluminium alloys
Fahrenholtz et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys
Huang et al. Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31)
Popoola et al. Performance evaluation of zinc deposited mild steel in chloride medium
Abreu et al. Influence of molybdenum ion implantation on the localized corrosion resistance of a high strength aluminium alloy
TW201247941A (en) The stripping gold components and the method of stripping gold
Fedrizzi et al. Effect of chemical cleaning on the corrosion behaviour of painted aluminium alloys
Coelho et al. The inhibition efficiency of different species on AA2024/graphite galvanic coupling models depicted by SVET
Chawa et al. Compositionally modulated zinc alloy coatings for corrosion protection
Šekularac et al. Comparison of the Electrochemical Behaviour and Self-sealing of Zirconium Conversion Coatings Applied on Aluminium Alloys of series 1xxx to 7xxx
CN101397688A (en) Surface treating method of zinc alloy products
CN115901615A (en) Method for evaluating wet adhesion of metal organic coating
Vykhodtseva et al. Composition, structure, and corrosion–electrochemical properties of chromium coatings deposited from chromium (III) electrolytes containing formic acid and its derivatives
JPH08327512A (en) Resin film-peeling liquid for resin coated steel plate and resin film-peeling method
Minhas et al. Active corrosion protection by epoxy coating on Li2CO3-pretreated anodized aluminum alloy 2024-T3
CN103911649B (en) A kind of preparation method of zinc bace composite coating layer
US2899367A (en) Method of preparing surfaces for
CN100593589C (en) Microetching method on ABS engineering plastic element surface without chromium pollution
CS207731B2 (en) Method of preliminary treating for ammeliorating the adhesion of the varnish on the metal sheet
Leidheiser De-adhesion at the organic coating/metal interface in aqueous media
Ghanbari et al. Corrosion behavior of zirconium treated mild steel with and without organic coating: a comparative study
Yogesha et al. Corrosion resistant Zn-Co alloy coatings deposited using saw-tooth current pulse
JP2019203731A (en) Analysis method for interface oxide of hot dip galvanized steel sheet
Colner et al. Electroplating on titanium
Adabi et al. Improvement of adhesion, corrosion and wear resistance of Ni electrodeposited coating by applying Cu intermediate layer after zincate process