JP2008064580A - Deterioration diagnosis method of electrical apparatus insulation material - Google Patents

Deterioration diagnosis method of electrical apparatus insulation material Download PDF

Info

Publication number
JP2008064580A
JP2008064580A JP2006242226A JP2006242226A JP2008064580A JP 2008064580 A JP2008064580 A JP 2008064580A JP 2006242226 A JP2006242226 A JP 2006242226A JP 2006242226 A JP2006242226 A JP 2006242226A JP 2008064580 A JP2008064580 A JP 2008064580A
Authority
JP
Japan
Prior art keywords
curve
dta
electrical equipment
weight loss
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006242226A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshioka
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006242226A priority Critical patent/JP2008064580A/en
Publication of JP2008064580A publication Critical patent/JP2008064580A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To collect a sample easily without damaging the appearance of an electrical apparatus. <P>SOLUTION: Each integrated weight loss curve of a primary weight reduction quantity and a secondary weight reduction quantity of an integrated curve of a thermal weight reduction curve at a weight changing time of an insulation material acquired from TG-DTA is converted into a differential value to acquire a differential peak, and differential multiple peak dividing processing is performed, and a secondary weight reduction peak area value is divided by a primary weight reduction peak area value, to thereby calculate a weight reduction ratio, and correlation with a weight reduction rate acquired by a conventional method is taken by using the weight reduction ratio as an index value of TG-DTA, to thereby create a master curve, and the master curve is compared with a measurement/analysis result by TG-DTA of the sample collected from the electrical apparatus. Then, the insulation material 2 for sample collection is provided at an apparatus molding time on a measuring object portion near a primary conductor 1 by TG-DTA of the electrical apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、エポキシ樹脂等の絶縁材料を用いた高電圧機器である変流器(CT)等の電気機器の絶縁材料の劣化診断方法に関するものである。   The present invention relates to a method for diagnosing deterioration of an insulating material of an electric device such as a current transformer (CT) which is a high voltage device using an insulating material such as an epoxy resin.

変流器等の電気機器においては、一旦絶縁劣化による故障が発生すると、当該機器の復旧に時間と費用が掛かり、社会的にも莫大な損失が発生するため、この故障を未然に防ぐために絶縁劣化の診断が行われている。高分子絶縁材料として代表されるエポキシ樹脂は、その電気特性、機械特性及び接着性が良好であることから、古くから回転機のコイル絶縁や変圧器等の静止機器絶縁などの大型成形品を始めとして、半導体パッケージに代表される小型・高精度品まで、電気絶縁材料として広く使用されてきた。その中で、特に変流器(CT)、特に導体一体型変流器は、導体が一次通電経路となるため、発熱により変流器をモールドしているエポキシ樹脂に熱的な影響を及ぼすことになる。変流器に限らず、エポキシ樹脂を使用した高電圧機器は、熱的影響を長期間受けたモールド樹脂が劣化し、その電気的特性(絶縁特性)及び機械的特性が低下し、閃絡もしくはモールドの亀裂発生等の悪現象を引き起こす原因となる。現在の電気機器類の絶縁診断方法としては、一般的に電気特性試験(各種耐電圧試験・部分放電測定等)による方法が主に診断方法として用いられ、劣化度測定を行っている。   In electrical devices such as current transformers, once a failure due to insulation deterioration occurs, it takes time and money to restore the device, and a huge loss occurs socially. Diagnosis of deterioration is performed. Epoxy resins typified by polymer insulation materials have good electrical properties, mechanical properties, and adhesiveness, and have long been used for large molded products such as coil insulation for rotating machines and insulation for stationary equipment such as transformers. As a result, it has been widely used as an electrical insulating material, up to small and high precision products represented by semiconductor packages. Among them, current transformers (CT), especially current transformers with integrated conductors, have a thermal effect on the epoxy resin that molds the current transformer due to heat generation because the conductor serves as the primary current path. become. Not only current transformers, but high-voltage equipment using epoxy resin deteriorates the mold resin that has been affected by heat for a long time, and its electrical characteristics (insulation characteristics) and mechanical characteristics are reduced. This may cause bad phenomena such as cracks in the mold. As a current insulation diagnosis method for electrical equipment, generally, a method based on an electrical characteristic test (various withstand voltage tests, partial discharge measurement, etc.) is mainly used as a diagnostic method, and a deterioration degree is measured.

なお、この出願の発明に関連する先行技術文献情報としては次のものがある。
特開2003−107075号公報
Note that prior art document information relating to the invention of this application includes the following.
JP 2003-107075 A

しかしながら、従来の電気特性試験では、電気機器の寿命予測は約10年単位での予測のため、試験実施時の状態は把握できるが、寿命予測としては信頼性に欠けるものがあった。又、電気特性上問題のない場合でも、補強部材の機械的強度の低下から、絶縁層に無理な応力が加わり、絶縁層が破壊して事故に至る場合があった。このような場合、電気特性試験では、電気機器の絶縁層に加わる応力による機械的強度の低下や過熱等による絶縁材料の変質(劣化)等の検出はできなかった。このようなことから、絶縁材料の破壊による電気機器の故障が生じた場合、電気機器に使用されている絶縁材料の劣化度(余寿命)を適切に評価・把握することができれば、機器故障を未然に防ぐ絶縁材料の劣化診断法が得られる。   However, in the conventional electrical characteristic test, since the life prediction of the electrical equipment is predicted in units of about 10 years, the state at the time of the test can be grasped, but the life prediction is not reliable. Even when there is no problem in electrical characteristics, an excessive stress is applied to the insulating layer due to a decrease in the mechanical strength of the reinforcing member, and the insulating layer may be broken to cause an accident. In such a case, in the electrical property test, it was not possible to detect a decrease in mechanical strength due to the stress applied to the insulating layer of the electrical equipment or a change (deterioration) in the insulating material due to overheating or the like. For this reason, if a failure of an electrical device occurs due to the destruction of the insulating material, if the deterioration degree (remaining life) of the insulating material used in the electrical device can be appropriately evaluated and understood, It is possible to obtain a method for diagnosing deterioration of an insulating material that can be prevented.

そこで、本出願人は既に出願した特開2005−338045号公報において、TG−DTA装置を用いた電気機器絶縁材料の劣化診断方法を提案した。しかし、この方法においては、電気機器の一次導体近傍等の測定対象部位から試料を採取する必要があり、測定対象部位を機械的に削り取る等、機器外観等に損傷を与え、結果的にクラック発生等の原因となるおそれがあった。   In view of this, the present applicant has proposed a method for diagnosing deterioration of an electrical equipment insulating material using a TG-DTA device in Japanese Patent Application Laid-Open No. 2005-338045 already filed. However, in this method, it is necessary to collect a sample from the measurement target site such as the vicinity of the primary conductor of the electrical equipment, which damages the external appearance of the device, such as mechanically scraping the measurement target site, resulting in cracks. There was a risk of causing this.

この発明は上記のような課題を解決するために成されたものであり、試料採取の際に電気機器の外観等に損傷を与えることがなく、クラックが発生せず、試料を容易に採取することができる電気機器絶縁材料の劣化診断方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and does not cause damage to the external appearance of the electrical equipment during sample collection, does not cause cracks, and easily collects a sample. An object of the present invention is to obtain a method for diagnosing deterioration of insulating materials for electrical equipment.

この発明の請求項1に係る電気機器絶縁材料の劣化診断方法は、TG−DTA装置から得られる電気機器絶縁材料の重量変化時の熱重量減少曲線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けたものである。   According to a first aspect of the present invention, there is provided a method for diagnosing deterioration of an electrical equipment insulating material, wherein the first weight reduction amount of the integral curve of the thermogravimetric reduction curve when the weight of the electrical equipment insulation material obtained from the TG-DTA device is changed. The integrated weight loss curve of the secondary weight loss is converted to a differential value to obtain a differential peak, and further differential multiple peak split processing is performed using a Gaussian function, and the obtained secondary weight loss peak area value is reduced to the primary weight. The weight loss ratio is calculated by dividing by the peak area value, and this weight loss ratio is used as an index value of the TG-DTA apparatus. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method of diagnosing deterioration of an electrical equipment insulating material by determining the degree of thermal degradation, an insulating material for sampling is provided at the measurement target site near the primary conductor of the TG-DTA device of the electrical equipment when the equipment is molded.

請求項2に係る電気機器絶縁材料の劣化診断方法は、TG−DTA装置から得られる電気機器絶縁材料の重量変化時の熱重量減少曲線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けたものである。   The degradation diagnosis method for electrical equipment insulating material according to claim 2 is the first weight reduction amount and the second weight of the integral curve of the thermogravimetric reduction curve when the weight of the electrical equipment insulation material obtained from the TG-DTA device changes. The integrated weight loss curve of the reduction amount is converted into a differential value to obtain a differential peak, and further, differential multiple peak split processing is performed using a Gaussian function, and the obtained secondary weight reduction peak area value is converted into the primary weight reduction peak area value. The weight loss ratio is calculated by dividing the weight loss ratio, and this weight loss ratio is used as an index value of the TG-DTA apparatus. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method of diagnosing deterioration of an electrical equipment insulating material that determines the degree of thermal degradation by the above, an insulating material for sampling is provided at the time of equipment molding at a measurement target site of the TG-DTA device of the electrical equipment.

請求項3に係る電気機器絶縁材料の劣化診断方法は、線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に該部位に設けられない部材に代わって該部材と同じ材料の試料採取用の絶縁材料を設けたものである。   According to a third aspect of the present invention, there is provided a method of diagnosing deterioration of an electrical equipment insulating material, wherein the integral weight reduction curve of the primary weight loss amount and the secondary weight loss amount of the integral curve of the line is converted into a differential value to obtain a differential peak. A differential multiple peak splitting process is performed using a function, and the weight loss ratio is calculated by dividing the obtained secondary weight loss peak area value by the primary weight loss peak area value, and this weight loss ratio is calculated as TG-DTA. As an index value of the device, IEC. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method of diagnosing deterioration of an electrical equipment insulating material by judging the degree of thermal degradation by means of a sample of the same material as the member in place of a member not provided at the site to be measured in the vicinity of the primary conductor of the TG-DTA device of the electrical equipment An insulating material for collection is provided.

以上のようにこの発明の請求項1によれば、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けており、最も熱的に影響を受け易い一次導体近傍に試料採取用の絶縁材料を設けたので、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   As described above, according to the first aspect of the present invention, the insulating material for sampling is provided at the measurement target portion in the vicinity of the primary conductor of the TG-DTA device of the electric device at the time of device molding, which is most thermally affected. Since an insulating material for sampling is provided near the primary conductor that is easily received, the sample can be easily sampled without damaging the main body (winding and insulation), and the main body is nondestructively deteriorated. The degree and remaining life can be estimated.

又、請求項2によれば、電気機器のTG−DTA装置の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   According to the second aspect of the present invention, the insulating material for sampling is provided at the measurement target portion of the TG-DTA device of the electric device when the device is molded without damaging the main body (winding portion or insulating portion). The sample can be easily collected, and the main body portion can be estimated nondestructively and the deterioration degree and remaining life.

請求項3によれば、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に該部位に設けられない部材に代わって該部材と同じ材料の試料採取用の絶縁材料を設けたので、本来の部材を損傷させることなく、試料を容易に採取することができ、本来の部材は非破壊で劣化度及び余寿命を推定することができる。   According to claim 3, since the insulating material for sampling of the same material as the member is provided in place of the member that is not provided in the portion to be measured in the vicinity of the primary conductor of the TG-DTA device of the electrical equipment, The sample can be easily collected without damaging the original member, and the original member can be estimated nondestructively and its deterioration degree and remaining life.

実施最良形態1
以下、この発明を実施するための最良の形態を図面とともに説明する。この発明の実施最良形態1においては、TG−DTA(Thermogravimeter−differential thermalanalyzer)装置(熱重量示差熱分析装置)によるTG法(熱重量示差熱分析法)により、熱重量減少の試料重量変化時の熱重量減少曲線を用い、従来手法の重量減少率を組み合わせた劣化診断法である。
Best Embodiment 1
The best mode for carrying out the present invention will be described below with reference to the drawings. In Embodiment 1 of the present invention, a TG method (thermogravimetric differential thermal analyzer) using a TG-DTA (Thermogravimetric-differential thermal analyzer) device (thermogravimetric differential thermal analyzer) is used to reduce the thermogravimetric sample weight. It is a degradation diagnosis method that combines the weight loss rate of the conventional method using a thermal weight loss curve.

一般に、TG法は、温度を変化させたときの試料の重量変化を時間又は温度の関数として測定する方法であり、無機・有機材料の反応機構の解析や有機材料の耐熱性評価等に広く用いられている。絶縁材料等の高分子材料は、熱劣化を起こすと、低分子量成分や不安定な末端基を放出して、見かけ上安定となる。このような現象から高分子材料の分解開始温度が高温側にシフトして、分解機構が低音側の第一次重量減少と高温側の第二次重量減少となり、分解機構が分かれて第一次と第二次の重量比率から高分子材料の劣化度合いを評価することができる。   In general, the TG method is a method for measuring the change in weight of a sample when the temperature is changed as a function of time or temperature, and is widely used for analysis of reaction mechanisms of inorganic and organic materials and evaluation of heat resistance of organic materials. It has been. When a polymer material such as an insulating material undergoes thermal degradation, it releases a low molecular weight component or an unstable end group and becomes apparently stable. As a result of this phenomenon, the decomposition start temperature of the polymer material shifts to the high temperature side, and the decomposition mechanism becomes the primary weight decrease on the low frequency side and the secondary weight decrease on the high temperature side. The degree of deterioration of the polymer material can be evaluated from the second weight ratio.

実際の劣化診断方法としての寿命判定基準は、IEC.pub.216「電気絶縁材料の耐熱特性決定のためのガイド」の中で、材料の推奨寿命基準点は重量減少率5%の記述がある。従って、寿命判定基準としては、重量減少率5%以上が寿命領域区分となることから、安全領域は寿命領域からの安全率1/2の2.5%未満と定めて、警戒領域は2.5%〜5%以内、寿命領域区分5%以上とした仮寿命判定基準を設定した。しかし、実機の絶縁材料の巻線の耐熱性評価での運用では、破壊試験による重量減少のため、直接の評価適用ができない。そこで、評価対象とする電気機器の絶縁材料を模擬的に熱劣化加速等により重量減少率特性との相関を予め把握しておき、新たに機器分析のTG−DTA装置を取り入れて得られた重量減量比を指標値として重量減少率特性との相関関係からマスターカーブを作成した。評価対象の実機の絶縁材料の巻線に対して機器分析を行うことで、その絶縁材料特性を推測することができ、劣化度の仮寿命判定基準から劣化度合を把握することができた。   The life criterion as an actual deterioration diagnosis method is IEC. pub. In 216 “Guidelines for determining the heat resistance characteristics of electrical insulating materials”, the recommended life reference point of materials is described as a weight reduction rate of 5%. Accordingly, as the life criterion, since the weight reduction rate of 5% or more is the life region classification, the safety region is determined to be less than 2.5% of 1/2 the safety factor from the life region, and the warning region is 2. Temporary life criteria were set within 5% to 5% and with a life region category of 5% or more. However, in the operation in the heat resistance evaluation of the winding of the insulation material of the actual machine, the direct evaluation cannot be applied due to the weight reduction due to the destructive test. Therefore, the weight obtained by incorporating the TG-DTA apparatus for equipment analysis in advance by grasping in advance the correlation with the weight loss rate characteristics by simulating thermal degradation of the insulating material of the electrical equipment to be evaluated. A master curve was created from the correlation with the weight loss rate characteristic using the weight loss ratio as an index value. By conducting device analysis on the winding of the insulating material of the actual machine to be evaluated, the characteristics of the insulating material could be estimated, and the degree of deterioration could be grasped from the provisional life criterion for the degree of deterioration.

評価対象とする電気機器の絶縁材料の一つであるビスフェノール系エポキシ樹脂のTG−DTA装置による劣化度合推定(透過測定法)を劣化度判定・余寿命推定の手法とする。本手法は、発熱反応に伴う発熱ピークを検出し、そのピークが熱劣化時間の増加に伴って低温側にシフトする。この熱劣化時間と発熱ピーク温度の相関関係からマスターカーブを作成する。   Deterioration degree estimation (transmission measurement method) of a bisphenol-based epoxy resin, which is one of insulating materials of electrical equipment to be evaluated, by a TG-DTA apparatus is used as a technique for determining the deterioration degree and estimating the remaining life. In this method, an exothermic peak associated with an exothermic reaction is detected, and the peak shifts to a lower temperature side as the thermal deterioration time increases. A master curve is created from the correlation between the heat deterioration time and the exothermic peak temperature.

従来の機器分析手法では、熱重量減少曲線の積分曲線の「第一次重量減少量」と「第二次重量減少量」の積分熱重量減少曲線の境界層を目視判断により判別し、第二次重量減少量を第一次重量減少量で除して重量減量比を算出している。従って、従来法では境界層の目視判断に伴って再現性が悪く、解析精度が非常に悪くなっている。   In the conventional instrumental analysis method, the boundary layer of the integrated thermogravimetric decrease curve of the “primary weight loss” and “secondary weight loss” of the integral curve of the thermogravimetric decrease curve is determined by visual judgment, The weight loss ratio is calculated by dividing the primary weight loss by the primary weight loss. Therefore, in the conventional method, the reproducibility is poor with the visual judgment of the boundary layer, and the analysis accuracy is very poor.

これに対して、実施最良形態1では、サンプル調整された試料をTG−DTA装置によって分析、測定し、熱重量減少曲線の積分曲線の「第一次重量減少量」と「第二次重量減少量」の積分減量カーブを、市販の汎用統計ソフトウエアにより微分値に変換して微分ピークとする。さらに、ガウス関数を用いて微分多重ピーク分割処理を施した。次に、分離処理された第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で割って、重量減量比を算出する。ここで得られた重量減量比をTG−DTA装置の分析の指標値とし、従来手法(IEC.pub.216)の重量減少率結果との相関を取って、マスターカーブを作成し、このマスターカーブを用いて劣化診断・余寿命推定を行う。   On the other hand, in Embodiment 1, the sample-adjusted specimen is analyzed and measured by the TG-DTA apparatus, and the “primary weight loss amount” and “secondary weight loss” of the integral curve of the thermogravimetric weight loss curve are obtained. The integral reduction curve of “amount” is converted into a differential value by a commercially available general-purpose statistical software to obtain a differential peak. Furthermore, a differential multiple peak splitting process was performed using a Gaussian function. Next, the weight loss ratio is calculated by dividing the separated secondary weight reduction peak area value by the primary weight reduction peak area value. The weight loss ratio obtained here is used as an index value for analysis of the TG-DTA apparatus, and a master curve is created by correlating with the weight loss rate result of the conventional method (IEC.pub.216). Perform deterioration diagnosis and life expectancy estimation using.

上記した手法の実機への適用は、使用品もしくは使用中の各モールド電気機器のビスフェノール系エポキシ樹脂の絶縁モールド部から測定に必要な資料を採取(定期的又は単発採取)し、マスターカーブとTG−DTA装置により採取した試料の分析、測定結果とを照合することにより、モールド樹脂部の劣化度を推定する。ただし、前記したように、試料の採取を、一次導体近傍の対象箇所を機械的に削り取る等を行うと、電気機器の外観に損傷を与え、結果的にクラック発生等の原因となるおそれがある。図1(a)〜(c)はこの発明の実施最良形態1による巻線型モールド計器用変流器の平面図、正面図及び側面図を示し、巻線型モールド計器用変流器の一次導体1の隣接部のTG−DTA装置の測定対象部位に機器モールド時にビスフェノール系エポキシ樹脂からなる試料採取用の絶縁材料2を設けておく。   The above method is applied to actual machines by collecting data necessary for measurement from the insulating mold part of the bisphenol-based epoxy resin of the used product or each mold electric device in use (periodic or single-shot sampling), master curve and TG -The deterioration degree of the mold resin part is estimated by collating the analysis and measurement results of the sample collected by the DTA apparatus. However, as described above, if the sample is collected by mechanically scraping the target portion in the vicinity of the primary conductor, the appearance of the electrical equipment may be damaged, resulting in cracks and the like. . 1A to 1C are a plan view, a front view, and a side view of a current transformer for a wound mold instrument according to Embodiment 1 of the present invention, and a primary conductor 1 of the current transformer for the wound mold instrument. An insulating material 2 for sampling, which is made of a bisphenol-based epoxy resin, is provided at the measurement target site of the TG-DTA apparatus in the adjacent portion at the time of device molding.

上記した実施最良形態1においては、エポキシ樹脂によりモールドされた高電圧機器である巻線型モールド計器用変流器において、最も熱の影響を受け易い一次導体1の近傍の測定対象部位にモールド時に試料採取用の絶縁材料2を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   In the first embodiment described above, in a wound-type molded instrument current transformer that is a high-voltage device molded with an epoxy resin, a sample is molded at the measurement target site near the primary conductor 1 that is most susceptible to heat. Insulating material 2 for collection is provided, and it is possible to easily collect samples without damaging the main body (winding part or insulating part), and the main body is non-destructive and the degree of deterioration and remaining life can be estimated. can do.

実施最良形態2
図2(a)〜(c)はこの発明の実施最良形態2によるバープライマリ型モールド計器用変流器の正面図、平面図及び側面図を示し、バープライマリ型モールド計器用変流器の一次導体3の隣接部のTG−DTA装置の測定対象部位にエポキシ樹脂のモールド時に試料採取用の絶縁材料4を設ける。
Embodiment 2
2 (a) to 2 (c) show a front view, a plan view, and a side view of a current transformer for a bar primary mold instrument according to Embodiment 2 of the present invention, and the primary current transformer for a bar primary mold instrument. An insulating material 4 for sampling is provided at the measurement target portion of the TG-DTA apparatus adjacent to the conductor 3 when the epoxy resin is molded.

実施最良形態2においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器であるバープライマリ型モールド計器用変流器において、最も熱の影響を受け易い一次導体3の近傍の測定対象部位にモールド時に試料採取用の絶縁材料4を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   In Embodiment 2 as well, a correlation between the weight reduction ratio and the weight reduction rate is made to create a master curve, and the measurement and analysis results of the master curve and the sample collected from the electrical equipment by the TG-DTA apparatus are obtained. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. In a current transformer for a bar primary type mold instrument, which is a high voltage device molded with an epoxy resin, an insulating material 4 for sampling at the time of molding at a measurement target portion near the primary conductor 3 that is most susceptible to heat. Therefore, the sample can be easily collected without damaging the main body (winding portion or insulating portion), and the main body can be estimated nondestructively and the deterioration degree and remaining life.

実施最良形態3
図3(a)〜(c)はこの発明の実施最良形態3によるブッシング型モールド計器用変流器の正面図、左側面図及び右側面図を示し、ブッシング型モールド計器用変流器の一次導体5の隣接部のTG−DTA装置の測定対象部位にモールド時にエポキシ樹脂からなる試料採取用の絶縁材料6を設ける。
Embodiment 3
3 (a) to 3 (c) show a front view, a left side view, and a right side view of a bushing mold instrument current transformer according to Embodiment 3 of the present invention, and the primary of the bushing mold instrument current transformer. An insulating material 6 for sampling, which is made of epoxy resin, is provided at the measurement target site of the TG-DTA apparatus adjacent to the conductor 5 at the time of molding.

実施最良形態3においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器であるブッシング型モールド計器用変流器において、最も熱の影響を受け易い一次導体5の近傍の測定対象部位にモールド時に試料採取用の絶縁材料6を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   Also in the third embodiment, a correlation between the weight reduction ratio and the weight reduction rate is taken to create a master curve, and the master curve and the sample collected from the electrical equipment are measured and analyzed by the TG-DTA apparatus. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. In the current transformer for bushing type mold instrument, which is a high voltage device molded with epoxy resin, the insulating material 6 for sampling at the time of molding is applied to the measurement target part near the primary conductor 5 that is most susceptible to heat. The sample can be easily collected without damaging the main body (winding portion or insulating portion), and the main body can be estimated nondestructively and the deterioration degree and remaining life.

実施最良形態4
図4(a)〜(d)はこの発明の実施最良形態4による変流器の正面図、縦断側面図、そのA部(ブッシング部)の一部拡大正面図及びその側面図を示し、変流器用ブッシングの一次導体7の隣接部のTG−DTA装置の測定対象部位にモールド時にエポキシ樹脂からなる試料採取用の絶縁材料8を設ける。
Embodiment 4
4 (a) to 4 (d) are a front view, a longitudinal side view, a partially enlarged front view of a part A (bushing part), and a side view of a current transformer according to Embodiment 4 of the present invention. An insulating material 8 for sampling, which is made of an epoxy resin, is provided at the measurement target portion of the TG-DTA apparatus adjacent to the primary conductor 7 of the fluency bushing at the time of molding.

実施最良形態4においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器である変流器用ブッシングにおいて、最も熱の影響を受け易い一次導体7の近傍の測定対象部位にモールド時に絶縁材料8を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   Also in the fourth embodiment, a correlation between the weight reduction ratio and the weight reduction rate is made to create a master curve, and the measurement and analysis results of the master curve and the sample collected from the electrical equipment by the TG-DTA apparatus are obtained. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. In a current transformer bushing, which is a high voltage device molded with an epoxy resin, an insulating material 8 is provided at the time of molding near a primary conductor 7 that is most susceptible to heat, and a main body (winding) The sample can be easily collected without damaging the wire portion or the insulating portion, and the main body portion can be estimated nondestructively and the deterioration degree and remaining life.

実施最良形態5
図5(a),(b)はこの発明の実施最良形態5によるモールド計器用変圧器の正面図及び側面図を示し、モールド計器用変圧器のTG−DTA装置の測定対象部位にモールド時にエポキシ樹脂からなる試料採取用の絶縁材料9を設ける。
Embodiment 5
5 (a) and 5 (b) are a front view and a side view of a molded instrument transformer according to the fifth embodiment of the present invention, and an epoxy at the time of molding is applied to a measurement target portion of the TG-DTA device of the molded instrument transformer. An insulating material 9 for collecting a sample made of resin is provided.

実施最良形態5においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器であるモールド計器用変圧器において、測定対象部位にモールド時に試料採取用の絶縁材料9を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   Also in the fifth embodiment, a correlation between the weight reduction ratio and the weight reduction rate is taken to create a master curve, and the master curve and a sample collected from the electrical equipment are measured and analyzed by the TG-DTA apparatus. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. And, in a transformer for molded instrument which is a high voltage device molded with epoxy resin, an insulating material 9 for sampling is provided at the measurement target part at the time of molding, and the main body part (winding part and insulating part) is damaged. Therefore, the sample can be easily collected, and the main body portion can be estimated nondestructively and the deterioration degree and the remaining life.

実施最良形態6
図6(a),(b)はこの発明の実施最良形態6によるモールド接地型計器用変圧器の正面図及び側面図を示し、モールド接地型計器用変圧器のTG−DTA装置の測定対象部位にモールド時にエポキシ樹脂からなる試料採取用の絶縁材料10を設ける。
Embodiment 6
6 (a) and 6 (b) are a front view and a side view of a molded grounded instrument transformer according to a sixth preferred embodiment of the present invention, and a measurement target portion of a TG-DTA device of the molded grounded instrument transformer. An insulating material 10 for collecting a sample made of an epoxy resin is provided at the time of molding.

実施最良形態6においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器であるモールド接地型計器用変圧器において、測定対象部位にモールド時に試料採取用の絶縁材料10を設けており、本体部(巻線部や絶縁部)を損傷させることなく、試料を容易に採取することができ、本体部は非破壊で劣化度及び余寿命を推定することができる。   Also in the sixth embodiment, a master curve is created by correlating the weight reduction ratio and the weight reduction rate, and the measurement and analysis results of the master curve and the sample collected from the electrical equipment by the TG-DTA apparatus are used. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. In a molded grounded instrument transformer, which is a high-voltage device molded with an epoxy resin, an insulating material 10 for sampling is provided at a measurement target part at the time of molding, and a main body (winding part or insulating part) The sample can be easily collected without damaging the main body, and the main body portion can be estimated nondestructively and the deterioration degree and remaining life.

実施最良形態7
図7(a),(b)は変流器の縦断側面図及びそのB部拡大図を示し、盤面11には支持碍子12を介して一次導体13が支持される。この支持碍子12はモールド材と異なって、一次導体13の近傍に設けることができない。そこで、実施最良形態7においては、支持碍子12と同じ材料の絶縁材料14を一次導体13の隣接部に設ける。
Embodiment 7
FIGS. 7A and 7B show a longitudinal side view of the current transformer and an enlarged view of the B portion thereof. The primary conductor 13 is supported on the board surface 11 via a support insulator 12. Unlike the molding material, the supporting insulator 12 cannot be provided in the vicinity of the primary conductor 13. Therefore, in the seventh embodiment, an insulating material 14 made of the same material as that of the support insulator 12 is provided adjacent to the primary conductor 13.

実施最良形態7においても、重量減少比と重量減少率との相関を取って、マスターカーブを作成し、このマスターカーブと電気機器から採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断し、電気機器絶縁材料の劣化を診断している。そして、エポキシ樹脂によりモールドされた高電圧機器である変流器において、TG−DTA装置の最も熱的に影響を受け易い一次導体13の隣接部の測定対象部位に支持碍子12と同じ材料の試料採取用の絶縁材料14を設けており、本来の部材を損傷させることなく、試料を容易に採取することができ、本来の部材は非破壊で劣化度及び余寿命を推定することができる。   Also in the seventh embodiment, a correlation between the weight reduction ratio and the weight reduction rate is taken to create a master curve, and this master curve and a sample collected from the electrical equipment are measured and analyzed by the TG-DTA apparatus. By comparing, the degree of thermal degradation is judged, and the deterioration of the electrical equipment insulating material is diagnosed. And in the current transformer which is a high voltage device molded by epoxy resin, a sample of the same material as the supporting insulator 12 is placed on the measurement target portion of the adjacent portion of the primary conductor 13 which is most thermally affected by the TG-DTA device. The insulating material 14 for collection is provided, the sample can be easily collected without damaging the original member, and the original member can be estimated nondestructively and the deterioration degree and the remaining life.

この発明の実施最良形態1による巻線型モールド計器用変流器の平面図、正面図及び側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view, a front view, and a side view of a wound-type molded instrument current transformer according to Embodiment 1 of the present invention. 実施最良形態2によるバープライマリ型モールド計器用変流器の正面図、平面図及び側面図である。It is a front view, a top view, and a side view of a current transformer for a bar primary mold instrument according to the second embodiment. 実施最良形態3によるブッシング型モールド計器用変流器の正面図、左側面図及び右側面図である。It is a front view, a left side view, and a right side view of a bushing type mold instrument current transformer according to the third embodiment. 実施最良形態4による変流器の正面図、縦断側面図、そのA部(ブッシング部)の一部正面図及びその側面図である。It is the front view of a current transformer by Embodiment 4, a vertical side view, the partial front view of the A section (bushing part), and its side view. 実施最良形態5によるモールド計器用変圧器の正面図及び側面図である。It is the front view and side view of the transformer for mold instruments by Embodiment 5. 実施最良形態6によるモールド接地型計器用変圧器の正面図及び側面図である。It is the front view and side view of a mold grounding type instrument transformer according to the sixth embodiment. 実施最良形態7による変流器の縦断側面図及びそのB部拡大図である。It is the vertical side view of the current transformer by Embodiment 7, and the B section enlarged view.

符号の説明Explanation of symbols

1,3,5,7,13…一次導体
2,4,6,8,9,10,14…絶縁材料
12…支持碍子
DESCRIPTION OF SYMBOLS 1,3,5,7,13 ... Primary conductor 2,4,6,8,9,10,14 ... Insulation material 12 ... Support insulator

Claims (3)

TG−DTA装置から得られる電気機器絶縁材料の重量変化時の熱重量減少曲線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けたことを特徴とする電気機器絶縁材料の劣化診断方法。   The differential peak is obtained by converting the integral weight loss curve of the integral weight curve of the thermogravimetric weight loss curve at the time of weight change of the electrical equipment insulation material obtained from the TG-DTA device into the differential value. Further, a differential multiple peak splitting process is performed using a Gaussian function, and the weight loss ratio is calculated by dividing the obtained secondary weight reduction peak area value by the primary weight reduction peak area value. As an index value of the TG-DTA apparatus. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method for diagnosing deterioration of an electrical equipment insulating material that determines the degree of thermal degradation by using an insulating material for sampling at the time of equipment molding, a measurement target site near the primary conductor of the TG-DTA device of the electrical equipment is provided. Degradation diagnosis method for electrical equipment insulation materials. TG−DTA装置から得られる電気機器絶縁材料の重量変化時の熱重量減少曲線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の測定対象部位に機器モールド時に試料採取用の絶縁材料を設けたことを特徴とする電気機器絶縁材料の劣化診断方法。   The differential peak is obtained by converting the integral weight loss curve of the integral weight curve of the thermogravimetric weight loss curve at the time of weight change of the electrical equipment insulation material obtained from the TG-DTA device into the differential value. Further, a differential multiple peak splitting process is performed using a Gaussian function, and the weight loss ratio is calculated by dividing the obtained secondary weight reduction peak area value by the primary weight reduction peak area value. As an index value of the TG-DTA apparatus. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method for diagnosing deterioration of an electrical equipment insulating material by judging the degree of thermal degradation by using the electrical equipment insulation material, an insulating material for sampling is provided at the time of equipment molding at a measurement target part of the TG-DTA device of the electrical equipment Deterioration diagnosis method of TG−DTA装置から得られる電気機器絶縁材料の重量変化時の熱重量減少曲線の積分曲線の第一次重量減少量と第二次重量減少量の積分減量カーブを微分値に変換して微分ピークとし、さらにガウス関数を用いて微分多重ピーク分割処理し、得られた第二次重量減少ピーク面積値を第一次重量減少ピーク面積値で除して重量減量比を算出し、この重量減量比をTG−DTA装置の指標値としてIEC.pub.216に準拠して算出された重量減少率との相関をとってマスターカーブを作成し、このマスターカーブと前記電気機器より採取された試料のTG−DTA装置による測定、分析結果とを照合することにより熱劣化度を判断する電気機器絶縁材料の劣化診断方法において、電気機器のTG−DTA装置の一次導体近傍の測定対象部位に該部位に設けられない部材に代わって該部材と同じ材料の試料採取用の絶縁材料を設けたことを特徴とする電気機器絶縁材料の劣化診断方法。   The differential peak is obtained by converting the integral weight loss curve of the integral weight curve of the thermogravimetric weight loss curve at the time of weight change of the electrical equipment insulation material obtained from the TG-DTA device into the differential value. Further, a differential multiple peak splitting process is performed using a Gaussian function, and the weight loss ratio is calculated by dividing the obtained secondary weight reduction peak area value by the primary weight reduction peak area value. As an index value of the TG-DTA apparatus. pub. A master curve is created by correlating with the weight loss rate calculated in accordance with H.216, and the master curve is compared with the measurement and analysis results of the sample collected from the electric device by the TG-DTA device. In the method of diagnosing deterioration of an electrical equipment insulating material by judging the degree of thermal degradation by means of a sample of the same material as the member in place of a member not provided at the site to be measured in the vicinity of the primary conductor of the TG-DTA device of the electrical equipment A method for diagnosing deterioration of insulating material for electrical equipment, characterized by providing an insulating material for collection.
JP2006242226A 2006-09-07 2006-09-07 Deterioration diagnosis method of electrical apparatus insulation material Pending JP2008064580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242226A JP2008064580A (en) 2006-09-07 2006-09-07 Deterioration diagnosis method of electrical apparatus insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242226A JP2008064580A (en) 2006-09-07 2006-09-07 Deterioration diagnosis method of electrical apparatus insulation material

Publications (1)

Publication Number Publication Date
JP2008064580A true JP2008064580A (en) 2008-03-21

Family

ID=39287425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242226A Pending JP2008064580A (en) 2006-09-07 2006-09-07 Deterioration diagnosis method of electrical apparatus insulation material

Country Status (1)

Country Link
JP (1) JP2008064580A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132690A (en) * 2010-12-20 2012-07-12 Sumitomo Wiring Syst Ltd Method for evaluating thermal stability and degree of deterioration of resin product
RU2526591C1 (en) * 2013-03-22 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Quality control procedure for insulation of electrical products
WO2016167067A1 (en) * 2015-04-17 2016-10-20 株式会社日立産機システム Deterioration measurement sensor and deterioration measurement system for resin
CN108827819A (en) * 2018-04-09 2018-11-16 广东电网有限责任公司 A kind of silicon rubber glue based on regression analysis contains amount determination operation
CN109824986A (en) * 2019-01-07 2019-05-31 珠海格力电器股份有限公司 Power supply line insulating layer of enhanced water resistance and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132690A (en) * 2010-12-20 2012-07-12 Sumitomo Wiring Syst Ltd Method for evaluating thermal stability and degree of deterioration of resin product
RU2526591C1 (en) * 2013-03-22 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Quality control procedure for insulation of electrical products
WO2016167067A1 (en) * 2015-04-17 2016-10-20 株式会社日立産機システム Deterioration measurement sensor and deterioration measurement system for resin
CN108827819A (en) * 2018-04-09 2018-11-16 广东电网有限责任公司 A kind of silicon rubber glue based on regression analysis contains amount determination operation
CN109824986A (en) * 2019-01-07 2019-05-31 珠海格力电器股份有限公司 Power supply line insulating layer of enhanced water resistance and preparation method thereof
CN109824986B (en) * 2019-01-07 2022-06-14 珠海格力电器股份有限公司 Power line insulating layer with high water resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
Saha Review of time-domain polarization measurements for assessing insulation condition in aged transformers
Leibfried et al. Insulation diagnostics on power transformers using the polarisation and depolarisation current (PDC) analysis
Farahani et al. Dielectric response studies on insulating system of high voltage rotating machines
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
JP2005061901A (en) Insulation diagnostic method for electric equipment
Koch et al. Moisture diagnostics of power transformers by a fast and reliable dielectric response method
JP6147862B2 (en) Water-resistant tree evaluation method, insulation design method, and rotating electric machine
JP4103853B2 (en) Insulation degradation diagnosis method for electrical equipment
EP2315010A1 (en) Diagnostic method for oil-filled electric equipment, diagnostic device for implementing diagnostic method, and oil-filled electric equipment with built-in diagnostic device
Raetzke et al. Condition assessment of instrument transformers using dielectric response analysis
Raetzke et al. Modern insulation condition assessment for instrument transformers
JP3720291B2 (en) Degradation diagnosis method for solid insulation materials
Taib et al. Depolarization Ratio Index (DRI) as alternative method in identifying oil-filled transformer internal faults
CN107576259A (en) Deformation of transformer winding online test method based on very fast transient overvoltage characteristic
He et al. Survey of frequency response analysis on winding deformation of transformers.
JP3864063B2 (en) Degradation evaluation method for coil insulation paper
Yaroslavskiy et al. Condition assessment of belted PILC cables after 7 to 68 years of service
JP3011556B2 (en) Aging deterioration diagnosis method for oil-filled electrical equipment
JP4030281B2 (en) Insulation degradation detection method
JP5079936B1 (en) Diagnostic method for oil-filled electrical equipment
Saha Review of polarisation measurements for assessing insulation condition in aged transformers
Oyegoke Improved condition assessment of XLPE insulated cables using the isothermal relaxation current technique
Ildstad et al. Application of dielectric response measurements for condition assessment of service aged XLPE cables
Singh et al. A Method to Predict Degree of Polymerization Value of Oil-paper Insulation Using Interfacial Charge
JPH0743414A (en) Aging diagnostic method of insulating paper for oil-filled electric equipment