JP2012132690A - Method for evaluating thermal stability and degree of deterioration of resin product - Google Patents

Method for evaluating thermal stability and degree of deterioration of resin product Download PDF

Info

Publication number
JP2012132690A
JP2012132690A JP2010282553A JP2010282553A JP2012132690A JP 2012132690 A JP2012132690 A JP 2012132690A JP 2010282553 A JP2010282553 A JP 2010282553A JP 2010282553 A JP2010282553 A JP 2010282553A JP 2012132690 A JP2012132690 A JP 2012132690A
Authority
JP
Japan
Prior art keywords
deterioration
resin
product
degree
onset temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010282553A
Other languages
Japanese (ja)
Other versions
JP5505291B2 (en
Inventor
Norio Manabe
礼男 真鍋
Hiroaki Minami
博昭 南
Masanao Ishikawa
正尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2010282553A priority Critical patent/JP5505291B2/en
Publication of JP2012132690A publication Critical patent/JP2012132690A/en
Application granted granted Critical
Publication of JP5505291B2 publication Critical patent/JP5505291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating thermal stability of a resin product, capable of simply and clearly classifying and evaluating thermal stability of an initial article of a resin product, and to provide a method for evaluating the degree of deterioration of the resin product, capable of simply and clearly evaluating the degree of deterioration of a heat deterioration article after used under various kinds of use conditions.SOLUTION: The method comprises the steps of: performing a predetermined heat-treatment of a known resin product using specimens with different deterioration factors and a plurality of shapes, measuring an oxidation onset temperature with a differential scanning calorimeter, creating a deterioration degree curve, composing the deterioration degree curves of a plurality of resin products with different grades to create a deterioration degree master curve; obtaining a specimen from an initial article of an unknown resin product and measuring an oxidation onset temperature with the differential scanning calorimeter; and applying the oxidation onset temperature of the initial article to the deterioration degree master curve and evaluating a thermal stability level of the unknown resin product.

Description

本発明は、樹脂製品の初期品の熱安定性と熱劣化品の劣化度を評価する方法に関する。   The present invention relates to a method for evaluating the thermal stability of an initial resin product and the degree of degradation of a thermally deteriorated product.

樹脂製品として、例えばポリプロピレン樹脂成形品が広く用いられている。ポリプロピレン樹脂は、耐水性や耐薬品性に優れる安価な樹脂である。更にポリプロピレン樹脂は、汎用樹脂の中で比重が最も小さい。このような点から、ポリプロピレン樹脂は、小型軽量化が進む自動車用部品に多く用いられている。ポリプロピレン樹脂からなる自動車用部品としては、例えば、バンパーやインパネ等の外装部品が挙げられる。   For example, polypropylene resin molded products are widely used as resin products. Polypropylene resin is an inexpensive resin excellent in water resistance and chemical resistance. Furthermore, polypropylene resin has the smallest specific gravity among general-purpose resins. In view of this, polypropylene resins are often used in automotive parts that are becoming smaller and lighter. Examples of automotive parts made of polypropylene resin include exterior parts such as bumpers and instrument panels.

またポリプロピレン樹脂は、高温に曝されるエンジンルーム内の部品として、配線ボックス等に用いられている。ポリプロピレン樹脂は、コネクタ等の筐体(端子を絶縁保持する構造部品)へ適用することが考えられる。しかしコネクタ等では、樹脂が銅およびその合金等からなる端子と接触した状態で高温に曝されることになる。ポリプロピレン樹脂は、接触している銅により熱劣化が促進される(銅害)ため、銅等と接触する部分に使用するのが難しいとされていた。   Polypropylene resin is used in wiring boxes and the like as parts in engine rooms that are exposed to high temperatures. Polypropylene resin can be applied to a housing such as a connector (a structural component that insulates and holds terminals). However, in a connector or the like, the resin is exposed to a high temperature while being in contact with a terminal made of copper and its alloy. Polypropylene resin is said to be difficult to use in a portion that comes into contact with copper or the like because thermal degradation is accelerated by copper in contact (copper damage).

ポリプロピレン樹脂は、劣化すると機械的強度が低下する。ポリプロピレン樹脂を用いてコネクタ等筐体の成形品を製造する場合、信頼性の観点から、簡易に精度良く、初期品の熱安定性と熱劣化品の劣化度を評価する方法が必要である。   When the polypropylene resin deteriorates, the mechanical strength decreases. When manufacturing a molded product of a housing such as a connector using polypropylene resin, a method for evaluating the thermal stability of the initial product and the degree of deterioration of the thermally deteriorated product simply and accurately is necessary from the viewpoint of reliability.

従来、ポリプロピレン樹脂を用いたコネクタ等の成形品の熱劣化等による劣化度評価方法は、下記の表1に示す(1)〜(5)の方法が挙げられる。   Conventionally, methods for evaluating the degree of deterioration of molded products such as connectors using polypropylene resin due to thermal deterioration include the methods (1) to (5) shown in Table 1 below.

表1に示すように、(1)引っ張り試験によるロック強度、端子保持力の測定は、実施するためには所定の形状、寸法の相手側コネクタや端子が必要である等の問題がある。   As shown in Table 1, there is a problem that (1) measurement of the lock strength and terminal holding force by the tensile test requires a mating connector or terminal having a predetermined shape and size in order to be carried out.

上記(2)SEC(Size Exclusion Chromatograph:サイズ排除クロマトグラフ)による平均分子量の測定、(3)FT-IR(Fourier Transform
Infrared Rays spectrometer:フーリエ変換赤外分光光度計)による劣化で生成するカルボニル基の吸収強度の測定、(4)滴定法によるHPO(Hydroperoxide:過酸化物価)の測定、(5)DSC(Differential Scanning Calorimeter:示差走査熱量計)によるOOT(Oxidation Onset Temperature:酸化オンセット温度)の測定(非特許文献1参照)等の方法は、機器分析による評価である。表1の(2)〜(5)の方法は、試料の前処理が必要なものもあるが、形状による制約は受けず、少量で試料間の劣化度の差を精度よく評価することが可能である。
(2) Measurement of average molecular weight by SEC (Size Exclusion Chromatograph), (3) FT-IR (Fourier Transform
Infrared Rays spectrometer (Fourier transform infrared spectrophotometer) measurement of carbonyl group absorption intensity by degradation, (4) HPO (Hydroperoxide: peroxide value) measurement by titration method, (5) DSC (Differential Scanning Calorimeter : Measurement of OOT (Oxidation Onset Temperature) using a differential scanning calorimeter (see Non-Patent Document 1) is an evaluation by instrumental analysis. The methods (2) to (5) in Table 1 may require pre-treatment of the sample, but are not limited by the shape, and it is possible to accurately evaluate the difference in degradation between samples with a small amount. It is.

ASTM E2009-08 Standard Test Method for Oxidation Onset Temperatureof Hydrocarbons by Differential Scanning Calorimetry(2008年)ASTM E2009-08 Standard Test Method for Oxidation Onset Temperatureof Hydrocarbons by Differential Scanning Calorimetry (2008)

ポリプロピレン樹脂からなる樹脂原料として用いられる樹脂製品は、各社から添加剤を配合して熱安定性を向上させた様々なグレードが市販されている。ポリプロピレン樹脂は、グレードにより配合内容が違うため、初期品の熱安定性が全く異なり、先述の方法で熱安定性のレベルを単純に分類することは困難であった。   Various grades of resin products used as resin raw materials made of polypropylene resin are commercially available from various companies in which additives are added to improve thermal stability. Since the blending contents of polypropylene resins differ depending on the grade, the thermal stability of the initial product is completely different, and it has been difficult to simply classify the thermal stability level by the method described above.

更に、上述のようにポリプロピレン樹脂から成形されたコネクタは、銅もしくは銅合金に錫等のメッキが施された端子が樹脂中に挿入された状態で使用されることがある。ポリプロピレン樹脂の熱劣化は、銅により促進される。コネクタの樹脂が端子と接触している場合、端子と接触しない場合と比較して熱安定性が低下するという問題がある。   Furthermore, a connector molded from a polypropylene resin as described above may be used in a state where a terminal in which copper or a copper alloy is plated with tin or the like is inserted into the resin. Thermal degradation of the polypropylene resin is accelerated by copper. When the resin of the connector is in contact with the terminal, there is a problem that the thermal stability is reduced as compared with the case where the resin is not in contact with the terminal.

このようにポリプロピレン樹脂のグレードや、組み付けた端子の種類等によって、劣化の進み方は全く異なる。従って、市場で劣化したコネクタを回収して、上述のいずれかの方法で劣化度の評価を行っても、初期品の熱安定性のレベルが予め分かっていないと、どの程度劣化が進んでいるか評価できないという問題があった。   As described above, the progress of deterioration is completely different depending on the grade of the polypropylene resin, the type of the assembled terminal, and the like. Therefore, even if a connector deteriorated in the market is collected and the degree of deterioration is evaluated by any of the above-mentioned methods, the degree of deterioration is advanced if the thermal stability level of the initial product is not known in advance. There was a problem that could not be evaluated.

例えば、元々熱安定性の良くないグレードのポリプロピレン樹脂を使用していれば、初期の熱安定性の評価は非常に低い値しか得られない。このグレードのポリプロピレン樹脂製のコネクタを自動車から回収して、上記従来技術に記載した各種の機器分析法により劣化度を評価した場合、短期化の使用後でも熱安定性が低い評価になるはずである。しかし、それは初期品と比較して劣化が進んでいるということではないのは明らかである。   For example, if a grade of polypropylene resin having poor heat stability is used, the evaluation of the initial heat stability can be obtained only at a very low value. When a connector made of polypropylene resin of this grade is collected from an automobile and the degree of deterioration is evaluated by various instrumental analysis methods described in the above prior art, the thermal stability should be evaluated even after short-term use. is there. However, it is clear that the deterioration is not progressing compared to the initial product.

本発明は、上記従来技術の欠点を解消するためになされたものであり、各種の熱安定性の異なるグレードが市販されている同種の樹脂の場合に、樹脂製品の初期品の熱安定性について簡易且つ明確に分類、評価できる樹脂製品の熱安定性の評価方法、及び、各種の使用条件で使用された後の熱劣化品の劣化度を簡易且つ明確に評価することが可能である樹脂製品の劣化度の評価方法を提供することを目的とする。   The present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and in the case of the same kind of resin on which various grades having different thermal stability are commercially available, the thermal stability of the initial product of the resin product is as follows. Evaluation method of thermal stability of resin products that can be easily and clearly classified and evaluated, and resin products that can easily and clearly evaluate the degree of deterioration of thermally deteriorated products after being used under various usage conditions The purpose is to provide a method for evaluating the degree of degradation of the slag.

上記課題を解決するために、本発明の樹脂製品の熱安定性の評価方法は、
特定の樹脂からなる既知の樹脂製品について、熱劣化に影響を与える劣化因子が異なる複数の形態の試験体を用いて所定の熱処理を行い、熱処理前及び熱処理後の前記試験体から試料を採取して示差走査熱量計により酸化オンセット温度を測定し、前記複数の形態の試験体の前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードが異なる樹脂製品について前記と同様にして、前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードの異なる複数の樹脂製品の劣化度曲線を合成して、劣化度マスターカーブを作成する工程と、
未知の樹脂製品の初期品から試料を採取して、示差走査熱量計により酸化オンセット温度を測定する工程と、
前記初期品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、未知の樹脂製品の熱安定性のレベルを評価する工程と、
を有することを要旨とするものである。
In order to solve the above problems, the evaluation method of the thermal stability of the resin product of the present invention is:
For a known resin product made of a specific resin, a predetermined heat treatment is performed using a plurality of test specimens having different deterioration factors that affect thermal deterioration, and samples are collected from the test specimen before and after the heat treatment. Measuring the oxidation onset temperature with a differential scanning calorimeter, creating a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor of the plurality of test specimens,
In the same manner as described above for resin products with different grades, a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor is created,
A process of creating a deterioration degree master curve by synthesizing deterioration degree curves of a plurality of resin products of different grades,
Taking a sample from an initial product of an unknown resin product and measuring the oxidation onset temperature with a differential scanning calorimeter;
Applying the oxidation onset temperature of the initial product to the deterioration master curve to evaluate the level of thermal stability of the unknown resin product;
The main point is to have.

上記樹脂製品の熱安定性の評価方法において、樹脂製品の熱劣化に影響を与える劣化因子が、樹脂と接触している金属材料の種類とすることができる。また前記特定の樹脂はポリプロピレン樹脂を用いることができる。   In the evaluation method of the thermal stability of the resin product, the degradation factor that affects the thermal degradation of the resin product can be the type of the metal material in contact with the resin. The specific resin may be a polypropylene resin.

本発明の樹脂製品の劣化度の評価方法は、
特定の樹脂からなる既知の樹脂製品について、熱劣化に影響を与える劣化因子が異なる複数の形態の試験体を用いて所定の熱処理を行い、熱処理前及び熱処理後の前記試験体から試料を採取して示差走査熱量計により酸化オンセット温度を測定し、前記複数の形態の試験体の前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードが異なる樹脂製品について前記と同様にして、前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードの異なる複数の樹脂製品の劣化度曲線を合成して、劣化度マスターカーブを作成する工程と、
特定の樹脂からなる樹脂製品が実際に使用された後の熱劣化品から試料を採取して、示差走査熱量計により熱劣化品の酸化オンセット温度を測定する工程と、
前記熱劣化品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、熱劣化品の劣化度を評価する工程と、
を有することを要旨とするものである。
The evaluation method of the degree of deterioration of the resin product of the present invention is:
For a known resin product made of a specific resin, a predetermined heat treatment is performed using a plurality of test specimens having different deterioration factors that affect thermal deterioration, and samples are collected from the test specimen before and after the heat treatment. Measuring the oxidation onset temperature with a differential scanning calorimeter, creating a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor of the plurality of test specimens,
In the same manner as described above for resin products with different grades, a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor is created,
A process of creating a deterioration degree master curve by synthesizing deterioration degree curves of a plurality of resin products of different grades,
Taking a sample from a thermally deteriorated product after a resin product made of a specific resin is actually used, and measuring the oxidation onset temperature of the thermally deteriorated product with a differential scanning calorimeter;
Applying the oxidation onset temperature of the thermally degraded product to the degradation master curve, and evaluating the degradation degree of the thermally degraded product;
The main point is to have.

上記樹脂製品の劣化度の測定方法において、樹脂製品の熱劣化に影響を与える劣化因子が、樹脂と接触している金属材料の種類とすることができる。また前記特定の樹脂はポリプロピレン樹脂を用いることができる。   In the method for measuring the degree of deterioration of the resin product, the deterioration factor that affects the thermal deterioration of the resin product may be the type of the metal material in contact with the resin. The specific resin may be a polypropylene resin.

本発明の樹脂成形品の初期品の熱安定性の評価方法は、既知の樹脂製品から劣化度マスターカーブを作成する工程と、未知の樹脂製品の初期品から試料を採取して、示差走査熱量計により酸化オンセット温度を測定する工程と、前記初期品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、未知の樹脂製品の熱安定性のレベルを評価する工程とを有することにより、各種の熱安定性の異なるグレードが市販されている同種の樹脂の場合に、樹脂製品の初期品の熱安定性について簡易且つ明確に分類、評価することができる。   The method for evaluating the thermal stability of the initial product of the resin molded product of the present invention includes a step of creating a deterioration degree master curve from a known resin product, a sample taken from the initial product of an unknown resin product, and differential scanning calorimetry. By measuring the oxidation onset temperature by a meter and applying the oxidation onset temperature of the initial product to the deterioration master curve and evaluating the level of thermal stability of the unknown resin product, In the case of the same kind of resin in which various grades having different thermal stability are commercially available, the thermal stability of the initial resin product can be easily and clearly classified and evaluated.

本発明の樹脂製品の使用後の劣化度の評価方法は、既知の樹脂製品から劣化度マスターカーブを作成する工程と、特定の樹脂からなる樹脂製品が実際に使用された後の熱劣化品から試料を採取して、示差走査熱量計により熱劣化品の酸化オンセット温度を測定する工程と、前記熱劣化品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、熱劣化品の劣化度を評価する工程とを有することにより、各種の使用条件で使用された後の熱劣化品の劣化度を簡易且つ明確に評価することが可能である。   The evaluation method of the deterioration degree after use of the resin product of the present invention is based on a process of creating a deterioration degree master curve from a known resin product and a heat deterioration product after a resin product made of a specific resin is actually used. Taking a sample and measuring the oxidation onset temperature of the thermally deteriorated product using a differential scanning calorimeter, and applying the oxidation onset temperature of the thermally deteriorated product to the deterioration master curve, the deterioration degree of the thermally deteriorated product It is possible to simply and clearly evaluate the degree of deterioration of the thermally deteriorated product after being used under various use conditions.

DSCによる酸化オンセット温度の決定方法の説明図である。It is explanatory drawing of the determination method of the oxidation onset temperature by DSC. ポリプロピレン樹脂Aの複数の使用形態の酸化オンセット温度の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation onset temperature of the several usage form of the polypropylene resin A. ポリプロピレン樹脂Bの複数の使用形態の酸化オンセット温度の測定結果を示すグラフである。It is a graph which shows the measurement result of the oxidation onset temperature of the several usage form of the polypropylene resin B. 図2及び図3の酸化オンセット温度と劣化因子の関係を示す劣化度曲線のグラフである。FIG. 4 is a graph of a deterioration degree curve showing the relationship between the oxidation onset temperature and the deterioration factor of FIGS. 図4の二つの劣化度曲線を合成した劣化度マスターカーブのグラフである。It is a graph of the deterioration degree master curve which synthesize | combined two deterioration degree curves of FIG. 市販のPP樹脂の初期品のOOTを図5のグラフにプロットしたグラフである。It is the graph which plotted the OOT of the initial stage product of commercially available PP resin on the graph of FIG.

以下、本発明の実施例を用いて、本発明を詳細に説明する。本実施例では、特定の樹脂としてポリプロピレン樹脂(以下、PP樹脂ということもある)を用いた例を示す。まず本発明の樹脂製品の初期品の熱安定性の評価方法について説明する。初期品の熱安定性の評価方法は、大別して、酸化オンセット温度と劣化因子の関係を示す劣化度曲線を作成し、グレードの異なる複数の樹脂製品の劣化度曲線を合成して、劣化度マスターカーブを作成する工程と、未知の樹脂製品の初期品から試料を採取して、示差走査熱量計により酸化オンセット温度を測定する工程と、初期品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、未知の樹脂製品の熱安定性のレベルを評価する工程とを有する。   Hereinafter, the present invention will be described in detail using examples of the present invention. In this embodiment, an example in which a polypropylene resin (hereinafter sometimes referred to as a PP resin) is used as a specific resin is shown. First, a method for evaluating the thermal stability of the initial product of the resin product of the present invention will be described. The method for evaluating the thermal stability of the initial product can be broadly divided into a degradation curve that shows the relationship between the oxidation onset temperature and the degradation factor, and the degradation curves of multiple resin products of different grades are synthesized. A step of creating a master curve, a step of collecting a sample from an initial product of an unknown resin product, measuring an oxidation onset temperature with a differential scanning calorimeter, and an oxidation onset temperature of the initial product from the deterioration degree master curve And evaluating the level of thermal stability of the unknown resin product.

先ず、劣化度マスターカーブを作製する方法を説明する。既知の樹脂製品として、グレードが異なる少なくとも2種類の樹脂製品を用いて、それぞれ劣化度曲線を作成する。劣化度曲線は、示差走査熱量計(以下、DSCと略記することもある)を用いて酸化オンセット温度(以下、OOTと略記することもある)を測定する方法が用いられる。OOTの具体的な測定条件等は、上記非特許文献1等に記載されている公知の測定方法が用いられる。   First, a method for producing a deterioration degree master curve will be described. Using at least two types of resin products having different grades as known resin products, a deterioration degree curve is created respectively. For the deterioration degree curve, a method of measuring an oxidation onset temperature (hereinafter also abbreviated as OOT) using a differential scanning calorimeter (hereinafter abbreviated as DSC) is used. As specific measurement conditions and the like of OOT, known measurement methods described in Non-Patent Document 1 and the like are used.

図1はDSCによるOOTの決定方法の説明図である。図1に示すように、PP樹脂を酸素雰囲気中で加熱して常温から昇温してDSC測定すると、酸化反応による発熱ピーク1が得られる。この発熱ピーク1のベースライン2と発熱ピーク1との接線3の交点の温度がOOT4である。通常、PP樹脂の劣化が進行しているもの程、OOTは低温になる。   FIG. 1 is an explanatory diagram of a method for determining OOT by DSC. As shown in FIG. 1, when a PP resin is heated in an oxygen atmosphere, heated from room temperature and subjected to DSC measurement, an exothermic peak 1 due to an oxidation reaction is obtained. The temperature at the intersection of the tangent line 3 between the base line 2 of the exothermic peak 1 and the exothermic peak 1 is OOT4. Usually, as the deterioration of the PP resin progresses, the OOT becomes lower in temperature.

既知の樹脂製品として、市販のグレードの異なる2種類のPP樹脂(PP−A及びPP−B)を準備して、それぞれ、コネクタの成形品を作製する。コネクタは端子無しと、端子が挿入された端子有りのコネクタを試験体として準備した。端子有りのコネクタは、端子の種類が異なる4種類の端子が挿入されたものを用いた。   Two types of PP resins (PP-A and PP-B) with different commercial grades are prepared as known resin products, and connector molded articles are respectively produced. A connector with no terminal and a terminal with a terminal inserted therein was prepared as a test specimen. The connector with terminals used was one in which four types of terminals with different types of terminals were inserted.

具体的な端子の種類としては、(3)錫メッキ付き黄銅端子、(4)錫メッキ付き高銅合金(銅量>98%)端子、(5)黄銅端子、(6)高銅合金端子を用いた。これらの端子を挿入したコネクタは、端子と接触している部分のPP樹脂中の銅の濃度が、端子の種類により異なる。上記の端子有りコネクタのPP樹脂中の銅の濃度は、(3)〜(6)の順に高くなる。これらの銅濃度は、熱劣化に影響を与える。すなわち、上記端子の種類が、該端子と接触しているPP樹脂の熱劣化に影響を与える劣化因子である。   Specific types of terminals include (3) tin-plated brass terminals, (4) tin-plated high copper alloy (copper amount> 98%) terminals, (5) brass terminals, and (6) high copper alloy terminals. Using. In the connector into which these terminals are inserted, the concentration of copper in the PP resin in contact with the terminals varies depending on the type of the terminals. The concentration of copper in the PP resin of the connector with terminals described above increases in the order of (3) to (6). These copper concentrations affect thermal degradation. That is, the type of the terminal is a deterioration factor that affects the thermal deterioration of the PP resin in contact with the terminal.

表2に示すPP−A、PP−Bのコネクタ(2)〜(6)について、所定の温度、所定の時間で熱処理(熱エージングということもある)を行った。この実施例では、熱処理の条件は140℃×120hとした。熱処理を施した試験体(2)〜(6)と、熱処理しない試験体(1)から、試料0.5mgを採取して、DSCによるOOT測定を行った。   The PP-A and PP-B connectors (2) to (6) shown in Table 2 were subjected to heat treatment (sometimes referred to as thermal aging) at a predetermined temperature for a predetermined time. In this example, the heat treatment conditions were 140 ° C. × 120 h. A 0.5 mg sample was taken from the heat-treated specimens (2) to (6) and the non-heat-treated specimen (1) and subjected to OOT measurement by DSC.

図2はPP−Aの複数の使用形態の酸化オンセット温度の測定結果を示すグラフであり、図3はPP−Bの複数の使用形態のOOTの測定結果を示すグラフである。また、表2にPP−AとPP−BのOOTの測定結果をまとめて示す。   FIG. 2 is a graph showing the measurement results of oxidation onset temperatures for a plurality of usage patterns of PP-A, and FIG. 3 is a graph showing the measurement results of OOT for a plurality of usage patterns of PP-B. Table 2 summarizes the OOT measurement results of PP-A and PP-B.

図2、図3及び表2に示すように、2種類のPPコネクタ(PP−AとPP−B)は、いずれも、熱処理前よりも熱処理後のOOTが低くなっている。また、熱処理品の中では、(3)〜(6)の順に銅の濃度が低くなり、それに対応してOOTが低くなっている。この結果をグラフで示したのが図4である。同じ温度、同じ時間で熱エージングしても、銅の濃度が高いコネクタほど劣化が進行していることを示している。   As shown in FIG. 2, FIG. 3, and Table 2, the two types of PP connectors (PP-A and PP-B) both have lower OOT after heat treatment than before heat treatment. Moreover, in the heat-treated product, the copper concentration decreases in the order of (3) to (6), and the OOT correspondingly decreases. FIG. 4 shows the result in a graph. Even if heat aging is performed at the same temperature and the same time, the connector having a higher copper concentration is more deteriorated.

図4は縦軸がOOT温度であり、横軸が、熱処理の有無、端子の種類等の因子である。図4に示すように、PP−A、PP−Bいずれも(1)〜(6)の順にOOTが低くなっていて、曲線の形状は似ている。しかし双方の劣化度曲線は一致しない。PP−Bの劣化度曲線は、PP−Aの劣化度曲線の下側にある。PP−B(1)の値はPP−A(4)、(5)の値に近く、PP−B(2)の値は、PP−A(5)、(6)の値に近いものであった。   In FIG. 4, the vertical axis represents the OOT temperature, and the horizontal axis represents factors such as the presence / absence of heat treatment and the type of terminal. As shown in FIG. 4, both PP-A and PP-B have lower OOTs in the order of (1) to (6), and the shapes of the curves are similar. However, the two deterioration curves do not match. The degradation curve of PP-B is below the degradation curve of PP-A. The value of PP-B (1) is close to the values of PP-A (4) and (5), and the value of PP-B (2) is close to the values of PP-A (5) and (6). there were.

そこで図4の2つの劣化度曲線のうち、PP−Bの劣化度曲線を横軸の図中右方向に平行移動させて、PP−Bの劣化度曲線と曲線の一部が重なるように重ね合わせた。このPP−AとPP−Bの劣化度曲線を重ね合わせて、2つの劣化度曲線を合成した曲線が図5のグラフに示す曲線である。この曲線が劣化度マスターカーブである。図5の劣化度マスターカーブにおいて、図中矢印Iで示した位置が、2つの劣化度曲線の重ね合わせの開始箇所(PP−Bの(1)初期−端子無し)である。図5の劣化度曲線の横軸は、PP−Aの(1)〜(6)を(a)〜(f)とし、(f)から図中右側は、等間隔に(g)〜(i)の符号を付けた。図5に示す劣化度マスターカーブの横軸は、グレードに関係のないPP樹脂の熱安定性レベルと言うことができる。   Therefore, of the two deterioration degree curves in FIG. 4, the PP-B deterioration degree curve is translated in the right direction in the horizontal axis so that the PP-B deterioration degree curve overlaps with a part of the curve. Combined. A curve obtained by superposing the deterioration degree curves of PP-A and PP-B and synthesizing two deterioration degree curves is a curve shown in the graph of FIG. This curve is the deterioration degree master curve. In the deterioration degree master curve of FIG. 5, the position indicated by the arrow I in the figure is the start point of superposition of the two deterioration degree curves ((1) Initial-No terminal of PP-B). The horizontal axis of the deterioration degree curve in FIG. 5 is (a) to (f) from (1) to (6) of PP-A, and the right side in the figure from (f) to (g) to (i) at equal intervals. ). The horizontal axis of the deterioration degree master curve shown in FIG. 5 can be said to be the thermal stability level of the PP resin not related to the grade.

図5のPP樹脂の劣化度マスターカーブは、(a)から(i)の順に劣化度が大きくなっている。図5の劣化度マスターカーブにおいて、例えば横軸が(a)の位置を初期品相当、(b)〜(d)の間を初期劣化品相当、(d)〜(f)の間を中期劣化品相当、(f)〜(g)の間を後期劣化品相当、(g)〜(i)の間を末期劣化品相当と評価することができる。   The deterioration degree master curve of the PP resin in FIG. 5 increases in the order of (a) to (i). In the deterioration master curve of FIG. 5, for example, the position of the horizontal axis (a) is equivalent to the initial product, the range between (b) to (d) is equivalent to the initial product, and the period between (d) to (f) is medium term degradation. It can be evaluated that the product is equivalent, the period between (f) to (g) is equivalent to the late-stage deterioration product, and the period between (g) to (i) is equivalent to the end-stage deterioration product.

そこで未知のグレードのPP樹脂の初期品(端子無し)について、試料を採取してDSCによるOOTを測定し、得られたOOTを図5に示す劣化度マスターカーブに当てはめることで、初期品の熱安定性を評価することができる。上記劣化度マスターカーブから、未知のグレードのPP樹脂の初期品の熱安定性のレベルを分類して評価することができる。また、OOT測定は、コネクタの初期品の極めて少量の試料を採取するだけで行うことができ、コネクタの初期品の熱安定性のレベルの分類を容易に行うことができる。   Therefore, with regard to an initial product of unknown grade PP resin (no terminal), a sample is taken, OOT by DSC is measured, and the obtained OOT is applied to the deterioration master curve shown in FIG. Stability can be evaluated. From the above deterioration degree master curve, it is possible to classify and evaluate the thermal stability level of the initial product of an unknown grade PP resin. Further, the OOT measurement can be performed by collecting a very small sample of the initial product of the connector, and the thermal stability level of the initial product of the connector can be easily classified.

また、コネクタとして実際に自動車等に装着されて使用された後の熱劣化品の劣化度も、上記の劣化度マスターカーブを用いて評価することができる。具体的には、実際に市場等で使用されたものを回収した熱劣化品から試料を採取して、DSCにより熱劣化品のOOTを測定する。このOOTを図5に示す劣化度マスターカーブに当てはめて、横軸の熱劣化品の劣化度を読み取ることで、熱劣化品の劣化が(a)〜(i)のどの程度の劣化に相当するところまで進んでいるか評価することができる。   In addition, the degree of deterioration of a thermally deteriorated product after it is actually mounted and used as a connector or the like can be evaluated using the above-described deterioration degree master curve. Specifically, a sample is collected from a heat-degraded product collected from what is actually used in the market or the like, and the OOT of the heat-degraded product is measured by DSC. By applying this OOT to the deterioration degree master curve shown in FIG. 5 and reading the deterioration degree of the thermally deteriorated product on the horizontal axis, the deterioration of the thermally deteriorated product corresponds to the degree of deterioration (a) to (i). It can be evaluated whether it has progressed so far.

更に、この市場等から回収した熱劣化品について、上記した初期品の熱安定性のレベルと合わせて評価すれば、劣化がどの程度のまで進んでいるかを、簡易且つ明確に評価することができる。   Furthermore, it is possible to easily and clearly evaluate how far the deterioration has progressed by evaluating the heat-degraded products collected from this market together with the above-mentioned thermal stability level of the initial product. .

例えば、実際に市販のPP樹脂の熱安定性を評価した結果を示す。市販の6種類のPP樹脂(PP−C、PP−D、PP−E、PP−F、PP−G、PP−H)の初期品を試料として、OOTを測定した。その測定値を図5の劣化度マスターカーブの上にプロットしたのが図6に示すグラフである。   For example, the result of actually evaluating the thermal stability of a commercially available PP resin is shown. OOT was measured using samples of six types of commercially available PP resins (PP-C, PP-D, PP-E, PP-F, PP-G, PP-H). FIG. 6 is a graph in which the measured values are plotted on the deterioration degree master curve of FIG.

図6に示す測定結果より、PP−Cの初期品は熱安定性レベル(c)に該当し、PP−Aの錫メッキ付き黄銅端子挿入品140℃×120hに相当する。また、PP−D、PP−E、PP−Fの初期品は、熱安定性レベル(d)に該当し、PP−Aの錫メッキ付き高銅合金端子挿入品140℃×120hに相当する。PP−G、PP−Hの初期品は熱安定性レベル(d)〜(e)に該当し、PP−B初期品に相当する。このように、未知のPP樹脂についても、初期品の熱安定性のレベルを分類することができた。また、市場劣化品についても、上記初期品の熱安定性のレベルを予め評価した上で同様の測定を行い、劣化度マスターカーブにあてはめれば、劣化がどのレベルまで進んでいるか評価可能である。   From the measurement results shown in FIG. 6, the initial product of PP-C corresponds to the thermal stability level (c) and corresponds to a PP-A tin-plated brass terminal insert 140 ° C. × 120 h. Further, the initial products of PP-D, PP-E, and PP-F correspond to the thermal stability level (d), and correspond to PP-A tin-plated high copper alloy terminal inserted product 140 ° C. × 120 h. The initial products of PP-G and PP-H correspond to the thermal stability levels (d) to (e) and correspond to the PP-B initial products. Thus, it was possible to classify the thermal stability level of the initial product for unknown PP resins. For the market-deteriorated products, it is possible to evaluate to what level the degradation has progressed by applying the same measurement after evaluating the thermal stability level of the initial product in advance and applying it to the degradation master curve. .

上記実施例に示すように、本発明は自動車用部品として用いられる樹脂成形品の初期品の熱安定性の評価方法、及び熱劣化品の劣化度の評価方法として好適に用いることができる。   As shown in the above embodiment, the present invention can be suitably used as a method for evaluating the thermal stability of an initial resin molded product used as an automotive part and a method for evaluating the degree of deterioration of a thermally deteriorated product.

以上の実施例では、コネクタ等筐体に用いられるPP樹脂の評価に関して、まとめると、以下の(1)〜(3)の効果が得られた。(1)初期品の熱安定性のレベル(成形品になった時の耐久性)を分類できる。尚、この評価は、成形品に限らず、材料(樹脂製品自体)でも評価可能である。(2)市場劣化品についても予め初期品の熱安定性のレベルを評価しておけば、劣化がどの程度進んでいるか評価できる。(3)成形品の形状や大きさに制約されず、ごく一部を採取し、OOT測定するだけで、簡易且つ明確に評価できる。(4)OOTは先述の評価方法のうちで、最も簡易に測定可能である。 In the above examples, the following effects (1) to (3) were obtained with regard to the evaluation of the PP resin used for the housing such as the connector. (1) The thermal stability level of the initial product (durability when it becomes a molded product) can be classified. This evaluation can be performed not only on the molded product but also on the material (resin product itself). (2) As for the market-deteriorated products, if the level of thermal stability of the initial products is evaluated in advance, it can be evaluated how much the degradation has progressed. (3) Without being restricted by the shape or size of the molded product, simple and clear evaluation can be performed by collecting only a small part and performing OOT measurement. (4) OOT can be measured most easily among the aforementioned evaluation methods.

本発明は上記実施例に限定されるものではなく、各種の変更が可能である。例えば、樹脂の種類もPP樹脂以外の各種樹脂製品に適用することができる。また熱劣化に影響を与える因子としては、上記の樹脂と接触している金属材料の種類に限定されず、その他の因子であってもよい。 The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the type of resin can also be applied to various resin products other than PP resin. Moreover, as a factor which influences thermal deterioration, it is not limited to the kind of metal material which is contacting with said resin, Other factors may be sufficient.

1:発熱ピーク、2:ベースライン、3:接線、4:酸化オンセット温度(OOT)
1: Exothermic peak, 2: Baseline, 3: Tangent, 4: Oxidation onset temperature (OOT)

Claims (6)

特定の樹脂からなる既知の樹脂製品について、熱劣化に影響を与える劣化因子が異なる複数の形態の試験体を用いて所定の熱処理を行い、熱処理前及び熱処理後の前記試験体から試料を採取して示差走査熱量計により酸化オンセット温度を測定し、前記複数の形態の試験体の前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードが異なる樹脂製品について前記と同様にして、前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードの異なる複数の樹脂製品の劣化度曲線を合成して、劣化度マスターカーブを作成する工程と、
未知の樹脂製品の初期品から試料を採取して、示差走査熱量計により酸化オンセット温度を測定する工程と、
前記初期品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、未知の樹脂製品の熱安定性のレベルを評価する工程と、
を有することを特徴とする樹脂製品の熱安定性の評価方法。
For a known resin product made of a specific resin, a predetermined heat treatment is performed using a plurality of test specimens having different deterioration factors that affect thermal deterioration, and samples are collected from the test specimen before and after the heat treatment. Measuring the oxidation onset temperature with a differential scanning calorimeter, creating a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor of the plurality of test specimens,
In the same manner as described above for resin products with different grades, a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor is created,
A process of creating a deterioration degree master curve by synthesizing deterioration degree curves of a plurality of resin products of different grades,
Taking a sample from an initial product of an unknown resin product and measuring the oxidation onset temperature with a differential scanning calorimeter;
Applying the oxidation onset temperature of the initial product to the deterioration master curve to evaluate the level of thermal stability of the unknown resin product;
A method for evaluating the thermal stability of a resin product, comprising:
樹脂製品の熱劣化に影響を与える劣化因子が、樹脂と接触している金属材料の種類であることを特徴とする請求項1記載の樹脂製品の熱安定性の評価方法。   2. The method for evaluating the thermal stability of a resin product according to claim 1, wherein the degradation factor that affects the thermal degradation of the resin product is the type of the metal material in contact with the resin. 前記特定の樹脂がポリプロピレン樹脂であることを特徴とする請求項1又は2記載の樹脂製品の初期品の熱安定性の評価方法。   The method for evaluating the thermal stability of an initial resin product according to claim 1 or 2, wherein the specific resin is a polypropylene resin. 特定の樹脂からなる既知の樹脂製品について、熱劣化に影響を与える劣化因子が異なる複数の形態の試験体を用いて所定の熱処理を行い、熱処理前及び熱処理後の前記試験体から試料を採取して示差走査熱量計により酸化オンセット温度を測定し、前記複数の形態の試験体の前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードが異なる樹脂製品について前記と同様にして、前記酸化オンセット温度と前記劣化因子の関係を示す劣化度曲線を作成し、
グレードの異なる複数の樹脂製品の劣化度曲線を合成して、劣化度マスターカーブを作成する工程と、
特定の樹脂からなる樹脂製品が実際に使用された後の熱劣化品から試料を採取して、示差走査熱量計により熱劣化品の酸化オンセット温度を測定する工程と、
前記熱劣化品の酸化オンセット温度を前記劣化度マスターカーブに当てはめて、熱劣化品の劣化度を評価する工程と、
を有することを特徴とする樹脂製品の劣化度の評価方法。
For a known resin product made of a specific resin, a predetermined heat treatment is performed using a plurality of test specimens having different deterioration factors that affect thermal deterioration, and samples are collected from the test specimen before and after the heat treatment. Measuring the oxidation onset temperature with a differential scanning calorimeter, creating a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor of the plurality of test specimens,
In the same manner as described above for resin products with different grades, a deterioration degree curve indicating the relationship between the oxidation onset temperature and the deterioration factor is created,
A process of creating a deterioration degree master curve by synthesizing deterioration degree curves of a plurality of resin products of different grades,
Taking a sample from a thermally deteriorated product after a resin product made of a specific resin is actually used, and measuring the oxidation onset temperature of the thermally deteriorated product with a differential scanning calorimeter;
Applying the oxidation onset temperature of the thermally degraded product to the degradation master curve, and evaluating the degradation degree of the thermally degraded product;
A method for evaluating the degree of deterioration of a resin product, comprising:
樹脂製品の熱劣化に影響を与える劣化因子が、樹脂と接触している金属材料の種類であることを特徴とする請求項4記載の樹脂製品の劣化度の評価方法。   5. The evaluation method for the degree of deterioration of a resin product according to claim 4, wherein the deterioration factor that affects the thermal deterioration of the resin product is a kind of a metal material in contact with the resin. 前記特定の樹脂がポリプロピレン樹脂であることを特徴とする請求項4又は5記載の樹脂製品の劣化度の評価方法。
6. The method for evaluating a deterioration degree of a resin product according to claim 4, wherein the specific resin is a polypropylene resin.
JP2010282553A 2010-12-20 2010-12-20 Evaluation method of thermal stability and degree of deterioration of resin products Expired - Fee Related JP5505291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282553A JP5505291B2 (en) 2010-12-20 2010-12-20 Evaluation method of thermal stability and degree of deterioration of resin products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282553A JP5505291B2 (en) 2010-12-20 2010-12-20 Evaluation method of thermal stability and degree of deterioration of resin products

Publications (2)

Publication Number Publication Date
JP2012132690A true JP2012132690A (en) 2012-07-12
JP5505291B2 JP5505291B2 (en) 2014-05-28

Family

ID=46648466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282553A Expired - Fee Related JP5505291B2 (en) 2010-12-20 2010-12-20 Evaluation method of thermal stability and degree of deterioration of resin products

Country Status (1)

Country Link
JP (1) JP5505291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102377A (en) * 2013-11-22 2015-06-04 千代田化工建設株式会社 Evaluation method of resin
JP2017015623A (en) * 2015-07-03 2017-01-19 トヨタ車体株式会社 Degradation evaluating/testing method for resin molding

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163552A (en) * 1983-03-08 1984-09-14 Yaskawa Electric Mfg Co Ltd Thermal deterioration detecting method
JPS6247540A (en) * 1985-08-27 1987-03-02 Yaskawa Electric Mfg Co Ltd Detection of thermal deterioration
JPH05322811A (en) * 1992-05-19 1993-12-07 Shimadzu Corp Method for sorting remolding of crystalline thermoplastic
JP2000065771A (en) * 1998-08-20 2000-03-03 Sumitomo Wiring Syst Ltd Method for measuring deterioration degree of polypropylene resin molded product
JP2000081401A (en) * 1998-09-07 2000-03-21 Hitachi Ltd Deterioration diagnostic method for organic insulating material
JP2005265492A (en) * 2004-03-17 2005-09-29 Meidensha Corp Method for diagnosing dielectric deterioration of electric device and electric device operating method after diagnosis
JP2005338045A (en) * 2004-04-27 2005-12-08 Meidensha Corp Method for diagnosing insulation degradation of electric equipment
JP2006234802A (en) * 2005-01-26 2006-09-07 Jfe Steel Kk Method for predicting anticorrosive property of metal and coated metal plate, method for selecting coated metal plate, and coated metal plate and member
JP2008064580A (en) * 2006-09-07 2008-03-21 Meidensha Corp Deterioration diagnosis method of electrical apparatus insulation material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163552A (en) * 1983-03-08 1984-09-14 Yaskawa Electric Mfg Co Ltd Thermal deterioration detecting method
JPS6247540A (en) * 1985-08-27 1987-03-02 Yaskawa Electric Mfg Co Ltd Detection of thermal deterioration
JPH05322811A (en) * 1992-05-19 1993-12-07 Shimadzu Corp Method for sorting remolding of crystalline thermoplastic
JP2000065771A (en) * 1998-08-20 2000-03-03 Sumitomo Wiring Syst Ltd Method for measuring deterioration degree of polypropylene resin molded product
JP2000081401A (en) * 1998-09-07 2000-03-21 Hitachi Ltd Deterioration diagnostic method for organic insulating material
JP2005265492A (en) * 2004-03-17 2005-09-29 Meidensha Corp Method for diagnosing dielectric deterioration of electric device and electric device operating method after diagnosis
JP2005338045A (en) * 2004-04-27 2005-12-08 Meidensha Corp Method for diagnosing insulation degradation of electric equipment
JP2006234802A (en) * 2005-01-26 2006-09-07 Jfe Steel Kk Method for predicting anticorrosive property of metal and coated metal plate, method for selecting coated metal plate, and coated metal plate and member
JP2008064580A (en) * 2006-09-07 2008-03-21 Meidensha Corp Deterioration diagnosis method of electrical apparatus insulation material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014005156; 仲山 和海 他: '"示差走査熱量計による昇温法と等温法の測定値の制度検討と劣化検出"' 日本ゴム協会誌 第81巻 第11号 , 20081115, pp.447-453 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102377A (en) * 2013-11-22 2015-06-04 千代田化工建設株式会社 Evaluation method of resin
JP2017015623A (en) * 2015-07-03 2017-01-19 トヨタ車体株式会社 Degradation evaluating/testing method for resin molding

Also Published As

Publication number Publication date
JP5505291B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
Nishikida et al. Infrared and Raman analysis of polymers
Quirós‐Ovies et al. Controlled covalent functionalization of 2 H‐MoS2 with molecular or polymeric adlayers
JP5505291B2 (en) Evaluation method of thermal stability and degree of deterioration of resin products
Vilà Ramirez et al. Enhancement of POM thermooxidation resistance through POSS nanoparticles
Sethi et al. Fluorescent hydrogel of chitosan and gelatin cross‐linked with maleic acid for optical detection of heavy metals
Nevshupa et al. Influence of thermal ageing on surface degradation of ethylene‐propylene‐diene elastomer
Jones et al. Influence of biodiesel on base oil oxidation as measured by FTICR mass spectrometry
Juarez-Mosqueda et al. Elucidating the optical spectra of [Au 25 (SR) 18] q nanoclusters
Furukawa et al. Discrimination of various poly (propylene) copolymers and prediction of their ethylene content by near‐infrared and Raman spectroscopy in combination with chemometric methods
CN109709060B (en) Method for measuring asphalt softening point, penetration degree and mass loss
Forrest Rubber analysis: polymers, compounds and products
KR101734214B1 (en) Analytical Method and System for Composition of Monomer in Modified (poly(vinylidene fluoride) Resin
JP2020046293A (en) Polyester degradation evaluation method
Camacho et al. Near infrared (NIR) spectroscopy compared with thermogravimetric analysis as a tool for on‐line prediction of water diffusion in polyamide 6, 6
George et al. Utilization of tall oil to enhance natural fibers for composite applications and production of a bioplastic
KR100757539B1 (en) Quantity analysis method of pc/pbt blend materials for pc and pbt contents by thermal degradation mechanism
JP3570344B2 (en) Method for measuring the degree of deterioration of polybutylene terephthalate
JP5737042B2 (en) Thermal history evaluation method for molded products
JP6089244B2 (en) Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material
JP2017040508A (en) Analysis method of unvulcanized rubber composition
JP2012107875A (en) Thermal history evaluation method for molded product
JP2014119385A (en) Heat hysteresis evaluation method for molding
Haensel et al. Pyrolysis of wood-based polymer compounds
Zieba-Palus et al. Application of Infrared Spectroscopy and Pyrolysis-Gas Chromatography-Mass Spectrometry to the...
CN114235736B (en) Qualitative and quantitative analysis method for PP-PET blending material for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees