JP2012107875A - Thermal history evaluation method for molded product - Google Patents

Thermal history evaluation method for molded product Download PDF

Info

Publication number
JP2012107875A
JP2012107875A JP2010254730A JP2010254730A JP2012107875A JP 2012107875 A JP2012107875 A JP 2012107875A JP 2010254730 A JP2010254730 A JP 2010254730A JP 2010254730 A JP2010254730 A JP 2010254730A JP 2012107875 A JP2012107875 A JP 2012107875A
Authority
JP
Japan
Prior art keywords
temperature
thermal
molded product
load time
thermal history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010254730A
Other languages
Japanese (ja)
Inventor
Norio Manabe
礼男 真鍋
Hiroaki Minami
博昭 南
Masanao Ishikawa
正尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2010254730A priority Critical patent/JP2012107875A/en
Publication of JP2012107875A publication Critical patent/JP2012107875A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal history evaluation method for a molded product capable of making an accurate evaluation of a thermal load temperature or a thermal load time of the molded product influenced by thermal history as well as of facilitating a test with samples in small amounts.SOLUTION: A thermal history evaluation of a molded product comprises the steps of: conducting a quantitative analysis of a predetermined index component for a molded product that is thermally pretreated with the predetermined index component; measuring the relationship between a thermal treatment time and an amount of the index component for a plurality of thermal treatment temperatures; forming a master curve indicating the relationship between the amount of the index component and the thermal treatment time with a prescribed thermal treatment temperature used as a reference temperature; collecting a sample from the molded product influenced by thermal history to conduct the quantitative analysis of the index component to measure the amount of the index component; calculating a reference thermal load time as a thermal load time converted into the reference temperature by using the amount of index component and the master curve.

Description

本発明は、熱履歴を受けた成形品の熱負荷温度、熱負荷時間等の熱履歴を評価する方法に関する。   The present invention relates to a method for evaluating a heat history such as a heat load temperature and a heat load time of a molded product that has received a heat history.

従来、成形品として例えばポリブチレンテレフタレート(以下、PBTと略記する)等の熱可塑性樹脂成形品からなる電線接続用コネクタハウジングが公知である。PBTは機械的特性と電気的特性のバランスに優れ、かつ高温使用にも耐えうる。そのため、PBTは小型軽量化がすすむ自動車部品のコネクタの材料等に用いられている。   Conventionally, a connector housing for electric wire connection made of a thermoplastic resin molded product such as polybutylene terephthalate (hereinafter abbreviated as PBT) is known as a molded product. PBT has an excellent balance between mechanical and electrical properties and can withstand high temperature use. For this reason, PBT is used as a material for connectors for automobile parts that are becoming smaller and lighter.

自動車部品に用いられる成形品は、高温環境や屋外等の過酷な使用環境で使用される。このような使用環境では、成形品は、材料自身の劣化が進行して機械的強度が低下する。そこで、成形品の使用環境を把握して劣化の過程を評価する方法が必要である   Molded articles used for automobile parts are used in severe environments such as high temperature environments and outdoors. In such a use environment, the molded product deteriorates itself and the mechanical strength decreases. Therefore, it is necessary to have a method for evaluating the deterioration process by grasping the usage environment of the molded product.

例えば、PBT成形品の劣化度の評価方法として、下記(1)〜(3)の方法が公知である。   For example, the following methods (1) to (3) are known as methods for evaluating the degree of deterioration of a PBT molded product.

(1)機械的強度による評価方法
引張試験機により、ロック強度、端子保持力等の機械的強度を測定する方法である。
(1) Evaluation method by mechanical strength This is a method of measuring mechanical strength such as lock strength and terminal holding force by a tensile tester.

(2)分析による定量的な評価方法
SEC(Size Exclusion Chromatograph:サイズ排除クロマトグラフ)による平均分子量の測定、滴定法による末端カルボキシル基量の測定等がある。
(2) Quantitative Evaluation Method by Analysis There are measurement of average molecular weight by SEC (Size Exclusion Chromatography), measurement of terminal carboxyl group amount by titration method, and the like.

(3)熱負荷温度を評価する方法(例えば特許文献1参照)
DSC(Differential Scanning Calorimeter:示差走査熱量計)を用いて熱履歴を推定する手法がある。熱負荷を受けた成形品から試料を切り出して、この試料をDSCを用いて熱分析を行う方法である。熱負荷を受けた試料は、常温から昇温すると融解ピークとは異なる吸熱ピークを示す。この吸熱ピークのピークトップ温度から熱負荷温度を測定する方法である。
(3) Method for evaluating the thermal load temperature (for example, see Patent Document 1)
There is a technique for estimating a thermal history using a DSC (Differential Scanning Calorimeter). In this method, a sample is cut out from a molded article subjected to a thermal load, and this sample is subjected to thermal analysis using DSC. A sample subjected to a thermal load exhibits an endothermic peak different from the melting peak when the temperature is raised from room temperature. In this method, the heat load temperature is measured from the peak top temperature of the endothermic peak.

特開平5−10900号公報JP-A-5-10900

上記(1)の評価方法は、試験片としてコネクタ全体が必要であり、更に所定の形状、寸法の相手側コネクタや端子が必要である。更に、成形品が大きく劣化していない限り、試料間で差が現れにくく精度が劣るという問題があった。   The evaluation method (1) requires the entire connector as a test piece, and further requires a mating connector or terminal having a predetermined shape and size. Furthermore, unless the molded product is greatly deteriorated, there is a problem that a difference is difficult to appear between samples and accuracy is inferior.

上記(2)の評価方法は、試料の制約を受けず、精度のよい測定が可能であるが、測定にはレジンの精製等の前処理が必要であるという問題があった。更に、この方法による評価は、あくまでも成形品がどの程度劣化しているかを知ることができるだけであって、どのような熱履歴を受けて劣化したのかを推定することはできなかった。   The evaluation method (2) is capable of accurate measurement without being restricted by the sample, but has a problem that pretreatment such as purification of the resin is necessary for the measurement. Furthermore, the evaluation by this method can only know how much the molded product has deteriorated, and cannot estimate what kind of thermal history it has received and deteriorated.

上記(3)の評価方法は、DSC曲線より得られた吸熱ピークのピークトップ温度は、実際の熱負荷温度よりも高く出てしまうという問題があった。例えばポリエチレン樹脂の場合は3〜4℃、ポリプロピレン樹脂の場合は9〜13℃程度高くなる。また、成形品の熱負荷時間が長くなると、ピークトップ温度が高温側にシフトするため、精度が低く、実用的ではないという問題があった。   The evaluation method (3) has a problem that the peak top temperature of the endothermic peak obtained from the DSC curve is higher than the actual heat load temperature. For example, in the case of a polyethylene resin, it becomes 3-4 degreeC, and in the case of a polypropylene resin, it becomes about 9-13 degreeC. Further, when the heat load time of the molded product becomes long, the peak top temperature shifts to the high temperature side, so that there is a problem that the accuracy is low and it is not practical.

本発明は上記従来技術の欠点を解消するためになされたものであり、熱履歴を受けた成形品が、実際に曝された熱負荷温度や熱負荷時間等を正確に評価することが可能であるとともに、試料の形状や大きさに制約を受けず、少量の試料を採取し複雑な前処理を必要とせず、試験を容易に行うことが可能である、成形品の熱履歴評価方法を提供することを目的とする。   The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and it is possible to accurately evaluate the heat load temperature, the heat load time, and the like of the molded product that has been subjected to the heat history. In addition, there is a method for evaluating the thermal history of molded products that can be easily tested without taking a small amount of sample and requiring complicated pretreatment without being restricted by the shape and size of the sample. The purpose is to do.

上記課題を解決するために、本発明の成形品の熱履歴評価方法は、
熱履歴を受けた成形品を分析して、熱履歴を推定し評価する熱履歴評価方法において、
熱処理時間に応じて含有量が変化する成分を指標成分と定め、予め熱処理した成形品について前記指標成分の定量分析を行い、複数の熱処理温度における熱処理時間と前記指標成分量との関係を測定し、所定の熱処理温度を基準温度Tとして前記指標成分量と処理時間との関係を示すマスター曲線を作成するマスター曲線作成工程と、
熱履歴を受けた成形品から試料を採取して前記指標成分の定量分析を行い指標成分量を測定する指標成分測定工程と、
前記指標成分量と前記マスター曲線とを用いて、前記基準温度Tに換算した熱負荷時間としての基準熱負荷時間tを求める熱負荷時間推定工程を備え、
前記基準熱負荷時間tに基づいて成形品の熱履歴を評価することを要旨とするものである。
In order to solve the above problems, the thermal history evaluation method of the molded product of the present invention is:
In a thermal history evaluation method for analyzing a molded product that has received a thermal history to estimate and evaluate the thermal history,
A component whose content changes according to the heat treatment time is defined as an index component, a quantitative analysis of the index component is performed on a pre-heated molded article, and a relationship between the heat treatment time at a plurality of heat treatment temperatures and the amount of the index component is measured. A master curve creating step for creating a master curve indicating a relationship between the index component amount and the treatment time with a predetermined heat treatment temperature as a reference temperature T 0 ;
An index component measurement step for collecting a sample from a molded article that has received a thermal history and quantitatively analyzing the index component to measure the amount of the index component;
Using the index component amount and the master curve, a heat load time estimation step for obtaining a reference heat load time t 0 as a heat load time converted to the reference temperature T 0 ,
It is an gist evaluating the thermal history of the molded article based on the reference heat load time t 0.

上記成形品の熱履歴評価方法において、
更に、熱履歴を受けた成形品から試料を採取して、示差走査熱量計を用いたDSC分析を行い、成形品が使用中に曝された最高負荷温度Tを求める熱負荷温度推定工程を備え、
前記熱負荷時間推定工程により得られた基準熱負荷時間tと、前記最高負荷温度Tを用いて、成形品の熱履歴を評価することが好ましい。
In the thermal history evaluation method for the molded product,
In addition, a sample is taken from the molded product that has received a thermal history, and DSC analysis is performed using a differential scanning calorimeter, and a thermal load temperature estimation step is performed to obtain the maximum load temperature T 1 to which the molded product was exposed during use. Prepared,
A reference heat load time t 0 obtained by the thermal load time estimation step, using the maximum load temperature T 1, it is preferable to evaluate the thermal history of the molded article.

また上記成形品の熱履歴評価方法において、
前記マスター曲線作成工程において、アレニウス式を用いて移動因子と熱処理温度の逆数との関係を求め、この関係から最高負荷温度Tにおける移動因子aT1を決定し、下記式より基準温度Tの熱負荷時間である基準熱負荷時間tを前記最高負荷温度Tの熱負荷時間である実熱負荷時間tに換算する熱負荷温度換算工程を備え、前記実熱負荷時間tを利用して熱履歴を評価することを特徴とすることが好ましい。
実熱負荷時間t=基準熱負荷時間t/移動因子aT1
In the thermal history evaluation method for the molded product,
In the master curve creation step, the relationship between the transfer factor and the reciprocal of the heat treatment temperature is obtained using the Arrhenius equation, and the transfer factor a T1 at the maximum load temperature T 1 is determined from this relationship, and the reference temperature T 0 is calculated from the following equation. with a heat load temperature conversion step of converting the reference heat load time t 0 is the thermal load time to the maximum load temperature T 1 of the heat load time real thermal load time t 1, using the actual thermal load time t 1 It is preferable that the thermal history is evaluated.
Actual heat load time t 1 = reference heat load time t 0 / transfer factor a T1

また上記成形品の熱履歴評価方法において、
前記熱負荷温度推定工程が、DSC曲線における融解による吸熱ピークよりも低温側の吸熱ピークを用いて最高負荷温度Tを推定するものであり、微分DSC曲線における前記低温側の吸熱ピークの立ち上がり温度を用いて最高負荷温度Tを推定することが好ましい。
In the thermal history evaluation method for the molded product,
The thermal load temperature estimation process, which estimates the maximum load temperatures T 1 using the endothermic peak on the low temperature side than the endothermic peak due to melting in the DSC curve, the rising temperature of the low temperature side of the endothermic peak in the differential DSC curve it is preferable to estimate the maximum load temperatures T 1 using.

また上記成形品の熱履歴評価方法において、
前記成形品が、ポリブチレンテレフタレート樹脂であり、前記指標成分が、試料に水酸化テトラメチルアンモニウムを加え熱分解ガスクロマトグラフィ/質量分析装置により定量されるメチル4−メトキシブチレートとすることができる。
In the thermal history evaluation method for the molded product,
The molded article may be polybutylene terephthalate resin, and the indicator component may be methyl 4-methoxybutyrate that is quantified by adding pyromethylammonium hydroxide to a sample and pyrolyzing gas chromatography / mass spectrometer.

また上記成形品の熱履歴評価方法において、
予め成形品の前記基準温度Tにおける熱処理時間と機械的特性の関係を把握しておき、前記指標成分量を測定し、前記マスター曲線を用いて、前記基準温度Tにおける機械的特性を推定することができる。
In the thermal history evaluation method for the molded product,
The relationship between the heat treatment time and the mechanical properties at the reference temperature T 0 of the molded product is grasped in advance, the index component amount is measured, and the mechanical properties at the reference temperature T 0 are estimated using the master curve. can do.

また上記成形品の熱履歴評価方法において、
予め成形品に熱履歴を測定するための劣化判定部を成形品本体と一体に形成しておき、該劣化判定部を成形品本体から分離可能に形成することができる。
In the thermal history evaluation method for the molded product,
It is possible to previously form a deterioration determination unit for measuring the thermal history of the molded product integrally with the molded product body, and to form the deterioration determination unit so as to be separable from the molded product body.

本発明の成形品の熱履歴評価方法は、所定の熱処理温度を基準温度として指標成分量と処理時間との関係を示すマスター曲線を作成するマスター曲線作成工程と、熱履歴を受けた成形品から試料を採取して前記指標成分の定量を行う指標成分測定工程と、前記指標成分量と前記マスター曲線とを用いて、熱負荷時間を前記基準温度に換算した基準熱負荷時間を求める熱負荷時間推定工程を備え、前記基準熱負荷時間に基づいて成形品の熱履歴を評価する行う方法を採用したことにより、熱履歴を受けた成形品が曝された熱負荷時間を正確に評価することが可能である。すなわちマスター曲線を利用することで基準温度に換算した熱負荷時間を推定できるので、成形品の使用された環境が不明な場合や、成形品の温度履歴が異なる場合でも、同じ基準で劣化度を評価することができる。   The thermal history evaluation method for a molded product according to the present invention includes a master curve creating step for creating a master curve indicating a relationship between an index component amount and a processing time with a predetermined heat treatment temperature as a reference temperature, and a molded product that has received a thermal history. A heat load time for obtaining a reference heat load time obtained by converting a heat load time into the reference temperature, using an index component measurement step of collecting a sample and quantifying the index component, and the amount of the index component and the master curve. It is possible to accurately evaluate the heat load time to which the molded product that has received the heat history is exposed by adopting a method for evaluating the heat history of the molded product based on the reference heat load time, including an estimation step. Is possible. In other words, the heat load time converted to the reference temperature can be estimated by using the master curve, so even if the environment in which the molded product is used is unknown or the temperature history of the molded product is different, the degree of deterioration can be calculated using the same standard. Can be evaluated.

更に本発明熱履歴評価方法は、試料の形状や大きさに制約を受けず、少量の試料を採取して、複雑な前処理などを必要とせず、試験を容易に行うことが可能である。   Furthermore, the thermal history evaluation method of the present invention can be easily tested without being restricted by the shape and size of the sample, collecting a small amount of sample, and requiring no complicated pretreatment.

PBTの熱劣化反応の反応式である。It is a reaction formula of thermal degradation reaction of PBT. 熱劣化したPBTに水酸化テトラメチルアンモニウムを加え熱分解させた場合の反応式である。This is a reaction formula when tetramethylammonium hydroxide is added to thermally deteriorated PBT and thermally decomposed. ベンチ試験におけるMMB量と熱処理時間の関係を示すグラフである。It is a graph which shows the relationship between the amount of MMB in a bench test, and heat processing time. MMB量と熱処理時間の関係を示すマスター曲線のグラフである。It is a graph of the master curve which shows the relationship between the amount of MMB and heat processing time. アレニウス式から得られる移動量と温度の逆数の関係をプロットしたグラフである。It is the graph which plotted the relationship between the movement amount obtained from Arrhenius formula, and the reciprocal of temperature. ベンチ試験で得られたPBT成形品のDSC曲線と微分DSC曲線を示すグラフである。It is a graph which shows the DSC curve and differential DSC curve of the PBT molded article obtained by the bench test. 実施例1〜10の結果を示す表である。It is a table | surface which shows the result of Examples 1-10. 実施例1〜10の走行距離とMMB量との関係をプロットしたグラフである。It is the graph which plotted the relationship between the travel distance of Examples 1-10, and the amount of MMB. 実施例1〜10の基準熱負荷時間とMMB量との関係をプロットしたグラフである。It is the graph which plotted the relationship between the reference | standard heat load time of Examples 1-10, and the amount of MMB. PBT成形品からなるコネクタ端子を100℃で熱処理して端子保持力を測定した際の、熱処理時間とMMB量及び機械的特性の関係を示すグラフである。It is a graph which shows the relationship between the heat processing time, the amount of MMB, and a mechanical characteristic when the connector terminal which consists of PBT molded products is heat-processed at 100 degreeC, and terminal retention strength is measured. 図10のグラフのMMB量と機械的特性の関係を示すグラフである。It is a graph which shows the relationship between the amount of MMB and the mechanical characteristic of the graph of FIG.

以下、図面を用いて本発明の実施例を詳細に説明する。本発明は、成形品が実際に熱履歴を受けた後に、その成形品がどの程度劣化しているのかを、使用した成形品から試料を採取して分析を行い、その分析結果から熱履歴を正確に推定するものである。本実施例では、PBT成形品の熱履歴評価方法について説明する。このPBT成形品は、自動車の電気配線(ワイヤーハーネス)の電気接続用コネクタハウジングとして用いられるものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present invention, after a molded article actually receives a thermal history, the extent to which the molded article has deteriorated is analyzed by taking a sample from the used molded article, and the thermal history is obtained from the analysis result. It is an accurate estimate. In this example, a thermal history evaluation method for a PBT molded product will be described. This PBT molded product is used as a connector housing for electrical connection of electrical wiring (wire harness) of an automobile.

本実施例の熱履歴推定方法は、大別して下記の(a)〜(f)の工程からなる。
(a)マスター曲線作成工程
この工程は、予め対象となる成形品についてベンチ試験を行うものである。ベンチ試験は、熱処理時間に応じて生成量が増加する指標成分を決めて、複数の処理温度で処理を行い、指標成分の量と処理温度−時間の関係を測定する。所定の温度を基準温度に定めて、熱処理時間と指標成分量との関係を表すマスター曲線を作成する。
The thermal history estimation method of the present embodiment is roughly divided into the following steps (a) to (f).
(A) Master curve preparation process This process performs a bench test about the object molded object beforehand. In the bench test, an index component whose generation amount increases in accordance with the heat treatment time is determined, processing is performed at a plurality of processing temperatures, and the relationship between the amount of the index component and the processing temperature-time is measured. A predetermined curve is set as a reference temperature, and a master curve representing the relationship between the heat treatment time and the index component amount is created.

(b)指標成分測定工程
この工程は、測定対象の熱履歴を受けた成形品から試料を採取して、指標成分の定量分析を行い、熱履歴を受けた成形品が含有している指標成分量を定量するものである。
(B) Indicator component measurement step This step involves collecting a sample from a molded article that has received the thermal history of the measurement target, performing quantitative analysis of the indicator component, and the indicator component contained in the molded article that has received the thermal history. The amount is quantified.

(c)熱負荷時間推定工程
上記マスター曲線と、上記成形品の指標成分量を用いて、熱負荷温度を基準温度に換算した基準熱負荷時間(t)を求めるものである。
(C) Thermal load time estimation step Using the master curve and the index component amount of the molded product, a reference thermal load time (t 0 ) obtained by converting the thermal load temperature into a reference temperature is obtained.

(d)熱負荷温度推定工程
測定対象の熱履歴を受けた成形品から試料を採取して、示差走査熱量計を用いてDSC分析を行い、成形品が使用中に曝された最高負荷温度(T)を求めるものである。
(D) Thermal load temperature estimation step A sample is taken from the molded product that has received the thermal history of the object to be measured, subjected to DSC analysis using a differential scanning calorimeter, and the maximum load temperature to which the molded product has been exposed during use ( T 1 ) is obtained.

(e)熱負荷温度換算工程
上記基準熱負荷時間(t)を上記最高負荷温度における熱負荷時間に換算して実熱負荷時間tを求めるものである。
(E) Thermal load temperature conversion step The actual thermal load time t 1 is obtained by converting the reference thermal load time (t 0 ) into the thermal load time at the maximum load temperature.

(f)成形品の熱履歴評価工程
成形品の使用履歴、上記基準熱負荷時間t、最高負荷温度(T)、実熱負荷時間t等に基づいて、成形品の熱履歴を評価して、成形品の使用状況や劣化度等を総合的に判断するものである。
(F) Thermal history evaluation process of molded product Evaluation of thermal history of molded product based on usage history of molded product, reference heat load time t 0 , maximum load temperature (T 1 ), actual heat load time t 1, etc. Thus, the usage status and degree of deterioration of the molded product are comprehensively determined.

以下、上記各工程を詳細に説明する。
(a)マスター曲線作成工程
図1はPBTの熱劣化反応の反応式である。図1に示すように熱劣化によりPBTが酸化すると、酸無水物を形成する。図2は熱劣化したPBTに水酸化テトラメチルアンモニウム(TMAH)を加え熱分解させた場合の反応式である。図2に示すように、熱劣化したPBTにTMAHを加え加熱すると、酸無水物化した部分が加水分解して、メチル4−メトキシブチレート(MMB)が生成する。PBTの熱劣化に比例して酸無水物化する部分が増えるので、このMMB量を測定することで、熱劣化の進行度合いを示す指標とすることができる。すなわち成形品がPBTの場合、指標成分として、PBTにTMAHを加えて加熱した際に生成するMMBが用いられる。
Hereafter, each said process is demonstrated in detail.
(A) Master curve creation process FIG. 1 is a reaction formula of the thermal degradation reaction of PBT. As shown in FIG. 1, when PBT is oxidized due to thermal deterioration, an acid anhydride is formed. FIG. 2 is a reaction formula when tetramethylammonium hydroxide (TMAH) is added to PBT which has been thermally deteriorated and thermally decomposed. As shown in FIG. 2, when TMAH is added to the heat-degraded PBT and heated, the acid anhydride portion is hydrolyzed to produce methyl 4-methoxybutyrate (MMB). Since the portion of PBT that becomes acid anhydride increases in proportion to the thermal deterioration of PBT, measuring the amount of MMB can be used as an index indicating the degree of progress of the thermal deterioration. That is, when the molded product is PBT, MMB generated when TMAH is added to PBT and heated is used as the indicator component.

尚、本発明において用いられる指標成分は、熱劣化に応じて成形品中の含有量が変化する成分であればよい。指標成分は、成形品中で含有量が増加する成分でもよいし、含有量が減少する成分でもいずれでもよい。また指標成分は、上記実施例のように、成形品に反応性の試薬等を加えて化学反応させて誘導体として、定量分析可能とした成分を用いても良いが、成形品から直接定量できる成分を用いてもよい。   The index component used in the present invention may be a component whose content in the molded product changes according to thermal deterioration. The indicator component may be a component whose content increases in the molded article or a component whose content decreases. The indicator component may be a component that can be quantitatively analyzed as a derivative by adding a reactive reagent or the like to the molded product to cause a chemical reaction as in the above-described example. May be used.

このMMBの測定は、PBTにTMAHを加えた試料を熱分解ガスクロマトグラフ/質量分析法により行う。試料を熱分解ガスクロマトグラフ/質量分析法で測定し、熱分解の際の反応生成物の中のMMBを検出し、その検出ピークの面積を測定することで、MMBの量を定量することができる。MMBの定量値から劣化度の評価が可能である。このMMBの定量方法は、具体的には特開2001−356116号公報等に記載されている公知の方法を用いることができる。   The MMB is measured by pyrolysis gas chromatography / mass spectrometry on a sample obtained by adding TMAH to PBT. The amount of MMB can be quantified by measuring the sample by pyrolysis gas chromatography / mass spectrometry, detecting MMB in the reaction product during pyrolysis, and measuring the area of the detected peak. . The degree of deterioration can be evaluated from the quantitative value of MMB. As the MMB quantification method, specifically, a known method described in JP-A-2001-356116 or the like can be used.

ベンチ試験として、未使用のPBT成形品を80℃、100℃、120℃の各温度で所定の時間熱処理(熱エージング)した後、試料を採取してMMB量を定量した。試料は、PBT成形品の最表面を15μmの厚さで薄切したもの0.1mg用いた。   As a bench test, an unused PBT molded product was heat-treated (thermal aging) at 80 ° C., 100 ° C., and 120 ° C. for a predetermined time, and then a sample was taken to quantify the amount of MMB. The sample used was 0.1 mg obtained by slicing the outermost surface of the PBT molded product to a thickness of 15 μm.

図3はベンチ試験におけるMMB量と熱処理時間の関係を示すグラフである。図3に示すように、PBT成形品の各処理温度におけるMMB量と熱処理時間の関係は、3本の時間変化曲線として示す通りである。図3に示すように、MMB量はいずれの処理温度でも時間の経過と共に指数関数的に増加している。またMMB量は処理温度が高い程、短い処理時間で大きく増加している。これらの結果は、MMBがPBTの熱酸化劣化度の指標成分として適切であることを示している。   FIG. 3 is a graph showing the relationship between the amount of MMB and the heat treatment time in the bench test. As shown in FIG. 3, the relationship between the amount of MMB and the heat treatment time at each processing temperature of the PBT molded product is as shown by three time change curves. As shown in FIG. 3, the amount of MMB increases exponentially with time at any processing temperature. In addition, the amount of MMB increases greatly in a short processing time as the processing temperature increases. These results indicate that MMB is suitable as an index component of the degree of thermal oxidation degradation of PBT.

この図3のグラフの中で、熱処理温度100℃のグラフを基準として、時間−温度換算則を用いて、マスター曲線を作成する。各温度に対する特性値の曲線を時間軸に平行移動して重ねると、一つの曲線とすることができる。この曲線をマスター曲線といい、平行移動の移動量を移動因子という。マスター曲線を用いることで、種々の温度で熱処理された試料であっても、マスター曲線の基準温度で測定した値に換算することができる。   In the graph of FIG. 3, a master curve is created using a time-temperature conversion rule based on a graph at a heat treatment temperature of 100 ° C. If the curve of the characteristic value for each temperature is translated and overlapped on the time axis, it can be made one curve. This curve is called the master curve, and the amount of translation is called the movement factor. By using the master curve, even a sample heat-treated at various temperatures can be converted into a value measured at the reference temperature of the master curve.

尚、本発明において「熱処理」とは、測定者又は既知の者が、一定の条件で成形したが、成形後に一定温度・一定時間放置して、特定の熱を与えたことである。また本発明において「熱履歴」とは、未知の条件で成形されるか、未知或いは既知の使用条件において、特定されていない熱を受けたことを示すものである。   In the present invention, the term “heat treatment” means that a measurer or a known person molded a material under certain conditions, but left it at a certain temperature for a certain time after molding to give a specific heat. Further, in the present invention, “thermal history” indicates that molding is performed under unknown conditions, or heat that is not specified is received under unknown or known use conditions.

具体的にマスター曲線を作成するには、熱処理温度80℃、120℃の曲線を100℃のグラフに重なるようにシフトさせる。熱処理温度120℃の曲線は時間軸をプラス0.14平行移動させる。熱処理温度80℃の曲線は時間軸をマイナス0.1平行移動させる。図4はMMB量と熱処理時間の関係を示すマスター曲線のグラフである。このようにして図4に示す相関係数が0.893のマスター曲線が得られた。図4に示すマスター曲線のMMB量(Y)と熱処理時間(t)の関係は下記の(1)式の関係式で表すことができる。(1)式のマスター曲線の関係式を用いて、熱履歴を受けた成形品の試料のMMB量を測定した値から100℃の熱処理温度に換算した熱負荷時間(t)を求めることができる。この基準処理温度に換算した熱負荷時間(t)を基準熱負荷時間(t)という。
Y=3.07×10−8×(logt)9.76・・・(1)
In order to create a master curve specifically, the curve of heat treatment temperature 80 degreeC and 120 degreeC is shifted so that it may overlap with the graph of 100 degreeC. The curve of the heat treatment temperature of 120 ° C. translates the time axis by plus 0.14. The curve at the heat treatment temperature of 80 ° C. moves the time axis by minus 0.1 in parallel. FIG. 4 is a master curve graph showing the relationship between the amount of MMB and the heat treatment time. In this way, a master curve with a correlation coefficient of 0.893 shown in FIG. 4 was obtained. The relationship between the MMB amount (Y) of the master curve and the heat treatment time (t) shown in FIG. 4 can be expressed by the following equation (1). The thermal load time (t) converted into a heat treatment temperature of 100 ° C. can be obtained from the value obtained by measuring the amount of MMB of the sample of the molded product that has undergone the thermal history, using the relational expression of the master curve of formula (1). . The heat load time (t) converted to the reference processing temperature is referred to as a reference heat load time (t 0 ).
Y = 3.07 × 10 −8 × (logt) 9.76 (1)

次いで、アレニウス式を用いて移動因子と熱処理温度の逆数との関係を求める。アレニウス式では、各温度の移動因子(a)と任意の温度(T)と基準温度(T)との関係は下記の(2)式で表わすことができる。
log(a)=(ΔH/2.303R)〔(1/T)−(1/T)〕×10・・・(2)
上記(2)式中、ΔHは活性化エネルギー(kJ/mol)、Rはガス定数
8.31 (J/K・mol)である。
Next, the relationship between the transfer factor and the inverse of the heat treatment temperature is obtained using the Arrhenius equation. In the Arrhenius equation, the relationship between the transfer factor (a T ) of each temperature, the arbitrary temperature (T), and the reference temperature (T 0 ) can be expressed by the following equation (2).
log (a T ) = (ΔH / 2.303R) [(1 / T) − (1 / T 0 )] × 10 3 (2)
In the above formula (2), ΔH is activation energy (kJ / mol), and R is a gas constant of 8.31 (J / K · mol).

上記のアレニウス式において、基準温度(T)を100℃(373K)とした場合、各温度の移動因子を求める。移動因子(a)を各温度の移動量〔log(a)〕として表わすと、各温度の移動量は、温度80℃の場合、log(a80)が−0.10、温度120℃の場合、log(a120)が0.14であった。図5はアレニウス式から得られる移動量と温度の逆数の関係をプロットしたグラフである。図5のグラフに示すように、移動量と温度の逆数との関係は、直線で表わされる。図5のグラフの直線は、傾き−0.83、相関係数0.984であり、下記の(3)式に示す直線式として表わすことができる。
log(a)=−0.83(1/T)×10+2.24・・・(3)
In the above Arrhenius equation, when the reference temperature (T 0 ) is 100 ° C. (373 K), the transfer factor of each temperature is obtained. When the transfer factor (a T ) is expressed as the amount of movement at each temperature [log (a T )], when the temperature is 80 ° C., the log (a 80 ) is −0.10 and the temperature is 120 ° C. In this case, log (a 120 ) was 0.14. FIG. 5 is a graph plotting the relationship between the amount of movement obtained from the Arrhenius equation and the inverse of temperature. As shown in the graph of FIG. 5, the relationship between the amount of movement and the reciprocal of the temperature is represented by a straight line. The straight line in the graph of FIG. 5 has an inclination of −0.83 and a correlation coefficient of 0.984, and can be expressed as a linear expression represented by the following expression (3).
log (a T ) = − 0.83 (1 / T) × 10 3 +2.24 (3)

上記(3)式に任意の温度Tを代入すると、任意の温度Tにおける移動因子(a)を求めることができる。この移動因子(a)と下記(4)式により、上記(1)式から得られる基準熱負荷時間(t)を、任意の温度の熱負荷時間に換算することができる。この熱負荷時間は、成形品が任意の温度で何時間相当の熱負荷を受けたかということを示すものである。
任意の温度(T)の熱負荷時間=基準熱負荷時間(t)/移動因子(a)・・・(4)
When an arbitrary temperature T is substituted into the above equation (3), a transfer factor (a T ) at an arbitrary temperature T can be obtained. Based on this transfer factor (a T ) and the following equation (4), the reference heat load time (t 0 ) obtained from the above equation (1) can be converted into a heat load time at an arbitrary temperature. This heat load time indicates how many hours the heat load corresponding to the molded product is received at an arbitrary temperature.
Thermal load time at an arbitrary temperature (T) = reference heat load time (t 0 ) / transfer factor (a T ) (4)

上記の(4)式は、成形品が熱履歴を受けた際の最高負荷温度Tを推定することができれば、最高負荷温度Tにおける熱負荷時間〔これを実熱負荷時間tという〕に換算することができることを示している。(4)式の基準熱負荷時間tは(1)式から求めることができる。また実熱負荷温度Tの移動因子aT1は、(3)式から求めることができる。してみれば、下記(5)式に基準熱負荷時間tと、移動因子aT1を代入すれば、実熱負荷時間tが得られる。尚、実熱負荷温度Tは、後述する(d)熱負荷温度推定工程の示差走査熱量計を用いたDSC分析により求めることができる。
実熱負荷時間t=基準熱負荷時間t/移動因子aT1・・・(5)
In the above equation (4), if the maximum load temperature T 1 when the molded article receives a thermal history can be estimated, the heat load time at the maximum load temperature T 1 (this is referred to as the actual heat load time t 1 ). It can be converted to. The reference heat load time t 0 in the equation (4) can be obtained from the equation (1). Further, the transfer factor a T1 of the actual heat load temperature T 1 can be obtained from the equation (3). In other words, the actual heat load time t 1 can be obtained by substituting the reference heat load time t 0 and the transfer factor a T1 into the following equation (5). Note that the actual thermal load temperatures T 1 can be determined by DSC analysis using a differential scanning calorimeter described later (d) heat load temperature estimation process.
Actual heat load time t 1 = reference heat load time t 0 / transfer factor a T1 (5)

(b)指標化合物測定工程
この工程は、熱履歴を受けた成形品から試料を採取してMMB量を定量する。具体的な工程は、ベンチ試験で行った場合と全く同一の手順で行う。具体的な測定方法は、成形品から試料を採取し、試料にTMAHを加え、熱分解ガスクロマトグラフ/質量分析法を行い、MMBの検出ピークの面積からMMB量を定量する。
(B) Indicator compound measuring step In this step, the amount of MMB is quantified by taking a sample from a molded article that has received a thermal history. The specific process is performed in exactly the same procedure as in the bench test. Specifically, a sample is taken from a molded product, TMAH is added to the sample, pyrolysis gas chromatography / mass spectrometry is performed, and the amount of MMB is quantified from the area of the detection peak of MMB.

(c)熱負荷時間推定工程
上記(a)工程で得られた図4に示すマスター曲線[下記(1a)式]に、上記(b)工程で得られた成形品のMMB量を代入し、成形品の熱負荷温度を基準温度(T=100℃)に換算した基準熱負荷時間tを求める。
Y=3.07×10−8×(logt9.76・・・(1a)
(C) Thermal load time estimation step Substituting the MMB amount of the molded product obtained in the step (b) into the master curve [formula (1a) below] shown in FIG. 4 obtained in the step (a), A reference heat load time t 0 obtained by converting the heat load temperature of the molded article into a reference temperature (T 0 = 100 ° C.) is obtained.
Y = 3.07 × 10 −8 × (logt 0 ) 9.76 (1a)

(d)熱負荷温度推定工程
熱履歴を受けたPBT成形品から試料を採取して、示差走査熱量計を用いて昇温DSC分析を行い、DSC曲線と微分DSC曲線を得る。試料は10mg程度でよい。DSC曲線と微分DSC曲線から、成形品が使用中に曝された最高の温度を最高熱負荷温度Tとして求める。
(D) Thermal load temperature estimation step A sample is taken from a PBT molded product that has received a thermal history, and a temperature rise DSC analysis is performed using a differential scanning calorimeter to obtain a DSC curve and a differential DSC curve. The sample may be about 10 mg. From the DSC curve and the differential DSC curve to determine the highest temperature at which the molded article is exposed during use as a maximum heat load temperature T 1.

図6は、ベンチ試験で得られたPBT成形品のDSC曲線と微分DSC曲線を示すグラフである。ベンチ試験は、未使用のPBT成形品を、所定の温度に設定した恒温槽で所定の時間熱処理(アニーリング)した後、分析用の試料を採取し、示差走査熱量計を用いて試料を昇温し融点以上の温度まで加熱して昇温DSC分析を行い、DSC曲線と微分DSC曲線を得る。図6は、PBT成形品の熱処理条件として(a)60℃24時間、(b)100℃24時間、(c)140℃4時間、(d)180℃24時間とした4種類の試料についてDSC分析を行い、得られたDSC曲線と微分DSC曲線を示した。DSC分析は、例えば試料を3〜10mg程度採取し、市販のDSC装置を用い、昇温速度20℃/min、窒素雰囲気下で行うことができる。   FIG. 6 is a graph showing a DSC curve and a differential DSC curve of a PBT molded article obtained in a bench test. In the bench test, an unused PBT molded product is heat-treated (annealed) for a predetermined time in a thermostatic chamber set to a predetermined temperature, then a sample for analysis is taken, and the sample is heated using a differential scanning calorimeter. Then, the temperature is raised to a temperature equal to or higher than the melting point, and the temperature rising DSC analysis is performed to obtain a DSC curve and a differential DSC curve. FIG. 6 shows the DSC for four types of samples in which the heat treatment conditions of the PBT molded product are (a) 60 ° C. for 24 hours, (b) 100 ° C. for 24 hours, (c) 140 ° C. for 4 hours, and (d) 180 ° C. for 24 hours. Analysis was performed and the obtained DSC curve and differential DSC curve were shown. The DSC analysis can be performed, for example, by collecting about 3 to 10 mg of a sample and using a commercially available DSC apparatus at a heating rate of 20 ° C./min and in a nitrogen atmosphere.

図6に示すように、熱履歴を受けたPBT成形品の昇温DSC曲線は、230℃付近の融解による吸熱ピークと、それよりも低温側の吸熱ピークが現れる。低温側の吸熱ピークは、DSC曲線では微小でわかりにくいが、微分DSC曲線にすると明瞭なピークを観察できる。微分DSC曲線の低温側吸熱ピークの立ち上がり温度を読み取る。この温度が成形品の実際の負荷温度であり、最高負荷温度Tという。この最高負荷温度Tは、PBTが過去に受けた熱履歴の中で、曝された温度の中の最高の温度を意味する。 As shown in FIG. 6, an endothermic peak due to melting near 230 ° C. and an endothermic peak on the lower temperature side appear in the temperature-rising DSC curve of the PBT molded article that has received a thermal history. The endothermic peak on the low temperature side is minute and difficult to understand on the DSC curve, but a clear peak can be observed when the differential DSC curve is used. The rising temperature of the low-temperature endothermic peak of the differential DSC curve is read. This temperature is the actual load temperature of the molded article, that the maximum load temperature T 1. This maximum load temperature T 1 means the highest temperature among the exposed temperatures in the past thermal history of the PBT.

図6に示すように、DSC曲線の低温側の吸熱ピークは、熱処理温度が高くなるにつれて高温側に現れる。PBTの熱処理温度と低温側吸熱ピークの温度の間には相関関係がある。PBTの低温側吸熱ピークの微分DSC曲線の立ち上がり温度は、熱処理温度が60℃の場合は60℃、熱処理温度が100℃の場合は101℃、熱処理温度が140℃の場合は139℃、熱処理温度が180℃の場合は、180℃であった。このように、微分DSC曲線の低温側吸熱ピークの立ち上がり温度は、PBT成形品の実際の熱処理温度と良く一致している。このように昇温DSC分析は、試料の量も10mg程度と微量で良く、更に分析操作も容易であり、PBT成形品の最高負荷温度を正確且つ簡易に求めることができる。   As shown in FIG. 6, the endothermic peak on the low temperature side of the DSC curve appears on the high temperature side as the heat treatment temperature increases. There is a correlation between the heat treatment temperature of PBT and the temperature of the low-temperature endothermic peak. The rising temperature of the differential DSC curve of the low-temperature endothermic peak of PBT is 60 ° C. when the heat treatment temperature is 60 ° C., 101 ° C. when the heat treatment temperature is 100 ° C., 139 ° C. when the heat treatment temperature is 140 ° C., and the heat treatment temperature. When the temperature was 180 ° C., it was 180 ° C. Thus, the rising temperature of the low temperature side endothermic peak of the differential DSC curve is in good agreement with the actual heat treatment temperature of the PBT molded product. As described above, in the temperature rising DSC analysis, the amount of the sample may be as small as about 10 mg, the analysis operation is easy, and the maximum load temperature of the PBT molded product can be obtained accurately and easily.

(e)熱負荷温度換算工程
上記(c)熱負荷時間推定工程で求めた基準熱負荷時間tを、下記(5式を用いて、上記(d)熱負荷温度推定工程で求めた最高負荷温度Tの実熱負荷時間tに換算する。
実熱負荷時間t=基準熱負荷時間t/移動因子aT1・・・(5)
上記移動因子aT1は、最高負荷温度Tにおける移動因子であり、上記(a)マスター曲線作成工程で予めアレニウス式を用いて決定した(3)式の温度(T)を最高負荷温度Tとして下記の(6)式から得る。
log(aT1)=−0.83(1/T)×10+2.24・・・(6)
The reference heat load time t 0 obtained in (e) heat load temperature conversion step (c) above thermal load time estimation process, using the following (Equation 5, the maximum load obtained in (d) above thermal load temperature estimation process converted into real thermal load time t 1 of the temperature T 1.
Actual heat load time t 1 = reference heat load time t 0 / transfer factor a T1 (5)
The movement factor a T1 is a movement factor at the maximum load temperature T 1 , and the temperature (T) of the equation (3) determined in advance using the Arrhenius equation in the (a) master curve creation step is the maximum load temperature T 1. Is obtained from the following equation (6).
log (a T1 ) = − 0.83 (1 / T 1 ) × 10 3 +2.24 (6)

このようにして、実際に熱履歴を受けたPBT成形品の試料を分析して、基準熱負荷時間t、最高負荷温度T、実熱負荷時間tが得られる。 In this way, the sample of the PBT molded product that actually received the thermal history is analyzed, and the reference heat load time t 0 , the maximum load temperature T 1 , and the actual heat load time t 1 are obtained.

(f)成形品の熱履歴評価工程
例えばPBT成形品が実際に自動車に装着されて熱履歴を受けた場合、自動車の車種、走行距離等のPBT成形品の使用履歴、上記基準熱負荷時間t、最高負荷温度T、実熱負荷時間t等のデータに基づいて、PBT成形品の熱履歴を評価して、成形品の使用状況や劣化度等を総合的に判断する。基準熱負荷時間tからは、PBT成形品が基準温度に換算した熱負荷時間で何時間相当の熱負荷を受けたかの評価が可能である。また最高負荷温度Tからは、実際にPBT成形品が何度の最高温度の熱負荷を受けたかを推定することが可能である。更に基準熱負荷時間tと最高負荷温度Tからは、実熱負荷時間tを推定することができる。この実熱負荷時間tから、PBT成形品が使用時に最高何度で何時間相当の熱負荷を受けたかを評価することが可能である。
(F) Thermal history evaluation process of molded product For example, when a PBT molded product is actually mounted on an automobile and receives a thermal history, the usage history of the PBT molded product such as the type of vehicle and the travel distance, the reference thermal load time t Based on data such as 0 , maximum load temperature T 1 , actual heat load time t 1, etc., the thermal history of the PBT molded product is evaluated to comprehensively determine the usage status, the degree of deterioration, etc. of the molded product. From the reference heat load time t 0 , it is possible to evaluate how many hours the heat load corresponding to the PBT molded article has been subjected to the heat load time converted into the reference temperature. Also from the maximum load temperature T 1, it is possible to estimate the actual or PBT molded article is subjected to a thermal load of the maximum temperature of many times. Further, the actual heat load time t 1 can be estimated from the reference heat load time t 0 and the maximum load temperature T 1 . From the actual thermal load time t 1, it is possible to PBT molded article to assess whether subjected to thermal loads of hours corresponds with the highest number of times in use.

この評価方法では、基準熱負荷時間t及び最高負荷温度Tを推定する場合、指標物質の分析やDSC測定は、PBT成形品から極めて少量の試料を採取するだけ良く、前処理なしで測定することが可能である。 In this evaluation method, when the reference heat load time t 0 and the maximum load temperature T 1 are estimated, the analysis of the indicator substance and the DSC measurement need only be performed with a very small amount of sample from the PBT molded product, and measurement is performed without pretreatment. Is possible.

以下、実際に車両に搭載された成形品について、熱履歴を評価した例を示す。図7は実施例1〜10の結果を示す表である。市場において熱負荷を受けたPBT成形品として、図7の表に示すように、車種、登録期間、走行距離等が既知の10種類の実車から回収したエンジンルーム内のPBT成形品を実施例1〜10の試料とした。これらの試料を用いて、上記したDSC分析による最高負荷温度の測定と、上記した試料にTMAHを加え熱分解ガスクロマトグラフ/質量分法を行いMMB量の測定を行った。その測定値から上記の方法により、基準温度を100℃とした場合の熱負荷時間(基準熱負荷時間t)と、最高負荷温度、最高負荷温度での負荷時間(実熱負荷時間t)を求めた。その結果を図7の表に示した。表中、車種Aはエンジンの排気量が3000cc程度、車種Bは1500cc程度、車種Cは4000cc以上である。 Hereinafter, the example which evaluated the heat history about the molded article actually mounted in the vehicle is shown. FIG. 7 is a table showing the results of Examples 1-10. As shown in the table of FIG. 7, PBT molded products in the engine room collected from 10 types of actual vehicles whose vehicle type, registration period, mileage, etc. are known as PBT molded products subjected to heat load in the market in the first embodiment. -10 samples. Using these samples, the maximum load temperature was measured by the above-mentioned DSC analysis, and the amount of MMB was measured by adding TMAH to the above-mentioned sample and performing pyrolysis gas chromatography / mass spectrometry. From the measured values, the above method is used to calculate the heat load time when the reference temperature is 100 ° C. (reference heat load time t 0 ), the maximum load temperature, and the load time at the maximum load temperature (actual heat load time t 1 ). Asked. The results are shown in the table of FIG. In the table, the vehicle type A has an engine displacement of about 3000 cc, the vehicle type B has about 1500 cc, and the vehicle type C has 4000 cc or more.

図8は、実施例1〜10の走行距離とMMB量との関係をプロットしたグラフである。図8に示すように、走行距離が長い試料ほどMMB量が多く、劣化が進行している傾向が見られる。同一車種A(実施例1〜5)間では両者の相関関係が良い。しかし車種が異なる場合は、直線から外れる。例えば実施例5と実施例7は走行距離がほぼ同じにも関わらず、MMB量が相違する。また実施例6と実施例8のMMB量がほぼ同じにも関わらず、走行距離が大きく異なる。これらは、車種によりエンジンルームの内部の温度が異なり、車種による熱履歴温度が相違することに起因するものである。   FIG. 8 is a graph in which the relationship between the travel distance and the MMB amount in Examples 1 to 10 is plotted. As shown in FIG. 8, the sample with a longer traveling distance has a larger amount of MMB and a tendency for deterioration to progress. There is a good correlation between the same vehicle type A (Examples 1 to 5). However, if the vehicle type is different, it will deviate from the straight line. For example, the fifth embodiment and the seventh embodiment differ in the amount of MMB although the traveling distance is substantially the same. Moreover, although the MMB amount of Example 6 and Example 8 is substantially the same, the travel distance is greatly different. These are due to the fact that the temperature inside the engine room differs depending on the vehicle type, and the thermal history temperature differs depending on the vehicle type.

図9は、100℃の場合の熱負荷時間(基準熱負荷時間t)とMMB量との関係をプロットしたグラフである。図9に示すように、非常に直線性の高い相関が見られた。図8の直線の相関係数が0.9678であるのに対し、図9の直線の相関係数は0.9999である。このように、図8及び図9に示す結果は、実車から回収したエンジンルーム内のPBT成形品について、MMB量を定量することで、100℃の場合の熱負荷時間を正確に推定することが可能であることを裏付けるものである。そして基準熱負荷時間tを用いて熱履歴を評価する方法は、走行距離だけで熱履歴を評価する方法と比較して、異なる車種間であっても的確に相互比較が可能である。 FIG. 9 is a graph plotting the relationship between the heat load time (reference heat load time t 0 ) at 100 ° C. and the amount of MMB. As shown in FIG. 9, a correlation with very high linearity was observed. The correlation coefficient of the straight line in FIG. 8 is 0.9678, whereas the correlation coefficient of the straight line in FIG. 9 is 0.9999. As described above, the results shown in FIGS. 8 and 9 show that the heat load time at 100 ° C. can be accurately estimated by quantifying the amount of MMB for the PBT molded product in the engine room collected from the actual vehicle. It confirms that it is possible. The method of evaluating the heat history using the reference heat load time t 0 can accurately compare with each other even between different vehicle types, compared to the method of evaluating the heat history only with the travel distance.

更に実施例1〜10を車種別で最高負荷温度Tを見ると、一般大衆車A(実施例1〜5)が83〜86℃、小型大衆車B(実施例6、7)が76℃、高級車C(実施例8〜10)が90〜113℃であった。実際のエンジンルームの環境温度は、エンジン排気量が大きく成る程、温度が高くなることが判っている。この実施例で推定した最高負荷温度Tは、コネクタが取り付けられているエンジンルームの環境温度を正確に反映していることを示している。 Further, when looking at the maximum load temperature T1 for each of the examples 1 to 10, the general passenger car A (Examples 1 to 5) is 83 to 86 ° C, and the small passenger car B (Examples 6 and 7) is 76 ° C. The luxury car C (Examples 8 to 10) was 90 to 113 ° C. It has been found that the actual environmental temperature of the engine room increases as the engine displacement increases. Maximum load temperatures T 1 was estimated in this example shows that accurately reflect the environment temperature of the engine room where the connector is mounted.

この表を用いて、車種の異なる実施例6と実施例8の熱履歴について評価してみる。車種B、Cの中では両車両共にMMB量が少ない方である。これは、熱酸化劣化が小さいことを示している。最高負荷温度Tは、実施例6が76℃であり、実施例8の90℃よりも14℃も低い。実熱負荷時間tは、実施例6が4900時間であり、実施例8の3800時間より1100時間多い。これは実施例6の方が1100時間も長く走行したにも関わらず、小型大衆車のため走行時の温度が76℃と低かったため、熱酸化劣化が少なかったと判断できる。このように、最高負荷温度や、実熱負荷時間を用いて熱履歴を評価することで、使用年数や走行距離だけでは判断できなかった成形品の熱履歴や使用状況などの情報を得ることができる。 Using this table, the thermal history of Examples 6 and 8 with different vehicle types will be evaluated. Among vehicle types B and C, both vehicles have the smaller amount of MMB. This indicates that the thermal oxidation deterioration is small. The maximum load temperature T 1 is 76 ° C. in Example 6, which is 14 ° C. lower than 90 ° C. in Example 8. The actual heat load time t 1 is 4900 hours in Example 6, which is 1100 hours longer than 3800 hours in Example 8. It can be judged that the thermal oxidation deterioration was small because the temperature at the time of traveling was as low as 76 ° C. because the small passenger car in Example 6 traveled for 1100 hours longer. In this way, by evaluating the thermal history using the maximum load temperature and actual heat load time, it is possible to obtain information such as the thermal history and usage status of molded products that could not be determined by the years of use or travel distance alone. it can.

図10はPBT成形品からなるコネクタ端子を100℃で熱処理して端子保持力を測定した際の、熱処理時間とMMB量及び機械的特性の関係を示すグラフである。機械的特性の測定は、コネクタの端子保持力を引張り試験により測定した荷重とチャックのストロークの関係を示す荷重−ストローク曲線から、引張り破断荷重(ピークの最大値)、弾性率(ピーク立ち上がりの勾配)、及び破断エネルギー(ピーク面積)を求めた。図10に示すように熱処理時間に対し、成形品の機械的特性は、ある一定時間から急に特性が変化しており、変曲点がある。これは、市場から回収された熱履歴を受けた成形品の場合、機械的特性を測定しただけでは、劣化度を定量的に把握することが困難であることを示している。これに対し、図8、9に示すように、MMBの量の変化は熱処理時間と直線的な関係がある。MMBの量からは、劣化度を定量的に比較することが容易である。   FIG. 10 is a graph showing the relationship between the heat treatment time, the amount of MMB, and the mechanical characteristics when a connector terminal made of a PBT molded product is heat treated at 100 ° C. and the terminal holding force is measured. The mechanical characteristics are measured from the load-stroke curve indicating the relationship between the load measured by the tensile test of the connector terminal holding force and the chuck stroke, the tensile breaking load (maximum peak value), and the elastic modulus (peak rise gradient). ) And breaking energy (peak area). As shown in FIG. 10, with respect to the heat treatment time, the mechanical properties of the molded product suddenly change from a certain time and there is an inflection point. This indicates that in the case of a molded article that has received a thermal history recovered from the market, it is difficult to quantitatively grasp the degree of deterioration only by measuring the mechanical characteristics. On the other hand, as shown in FIGS. 8 and 9, the change in the amount of MMB has a linear relationship with the heat treatment time. From the amount of MMB, it is easy to quantitatively compare the degree of deterioration.

図11は、図10のグラフのMMB量と機械的特性の関係を示すグラフである。図11に示すように、予め一定形状の成形品の前記基準温度Tにおける熱処理時間と機械的特性とMMB量を把握しておけば、前記指標成分量を測定し、前記マスター曲線を用いて、前記基準温度Tにおける機械的特性を推定することができるから、成形品の寿命や、市場回収品の劣化度確定が容易となる。このように成形品の劣化度確定を行うことで、成形品のリサイクルの可否を判定することができる。またMMB量を測定することで、新規な樹脂組成物の成形品を評価する場合に、金型を起して実際の成形品を作製しなくても、樹脂組成物のMMB量を測定することで、機械的特性の変化を推定して、耐熱酸化性能等の評価を行うことが可能である。 FIG. 11 is a graph showing the relationship between the amount of MMB and the mechanical characteristics of the graph of FIG. As shown in FIG. 11, if you know the heat treatment time and the mechanical properties and the MMB amount in the reference temperature T 0 of the molded article in advance a certain shape, and measuring the index component amount, using the master curve Since the mechanical characteristics at the reference temperature T 0 can be estimated, it is easy to determine the life of the molded product and the degree of deterioration of the market-collected product. By determining the degree of deterioration of the molded product in this way, it is possible to determine whether the molded product can be recycled. In addition, by measuring the amount of MMB, when evaluating a molded product of a new resin composition, the amount of MMB of the resin composition can be measured without raising a mold and producing an actual molded product. Thus, it is possible to evaluate the heat-resistant oxidation performance and the like by estimating the change in mechanical characteristics.

また本発明の評価方法では、少量の試料で熱履歴を測定して、劣化度を定量的に判断できるので、予め成形品に劣化判定部を形成しておくことができる。成形品に熱履歴を測定するための劣化判定部は、成形品本体と一体に形成しておく。更に劣化判定部は成形品本体から分離可能に形成されていることが好ましい。このような成形品本体から分離可能な形状に形成するには、成形品本体から切り離して回収しやすいように切り欠きを設ける方法や、劣化判定部を成形品本体から切断しやすいピン状突起として形成すること等が挙げられる。これらの劣化判定部は、部品組立時に干渉しないところに形成しておく。成形品に、このような劣化判定部を設けておけば、製品の性能を損なうことなく、熱履歴を測定して劣化度を評価することが可能である。これにより、配索部品(ワイヤーハーネス)全体の劣化状態を判定して、安全状態の確認及び以後の安全確保に役立てたり、他の部材を含めた再利用の可否判定を容易に行うことができる。   Further, in the evaluation method of the present invention, the thermal history can be measured with a small amount of sample, and the degree of deterioration can be determined quantitatively. Therefore, the deterioration determining part can be formed in advance on the molded product. The deterioration determination unit for measuring the thermal history of the molded product is formed integrally with the molded product body. Furthermore, it is preferable that the deterioration determination part is formed so as to be separable from the molded product body. In order to form such a shape that can be separated from the molded product body, a method of providing a notch so that it can be easily separated from the molded product body and recovered, or the deterioration judgment part as a pin-shaped protrusion that can be easily cut from the molded product body For example. These deterioration determination sections are formed where there is no interference when assembling the parts. If such a deterioration determination unit is provided in the molded product, the degree of deterioration can be evaluated by measuring the heat history without impairing the performance of the product. Thereby, the deterioration state of the whole wiring component (wire harness) can be determined, and it can be used for confirmation of a safe state and subsequent safety ensuring, or the possibility of reuse including other members can be easily performed. .

上記実施例に示すように、本発明は自動車用部品として用いられるPBT成形品の熱履歴評価方法として好適に用いることができる。本発明評価方法は、成形品が自動車のエンジンルーム等の高温に曝される環境で使用される材料の耐熱性を基準として選定する場合や、或いは実車に搭載・使用されたコネクタの熱履歴を推定するのに、特に有効である。   As shown in the above embodiments, the present invention can be suitably used as a thermal history evaluation method for PBT molded products used as automotive parts. The evaluation method of the present invention is based on the case where the molded product is selected based on the heat resistance of the material used in an environment exposed to high temperatures such as the engine room of an automobile, or the thermal history of a connector mounted / used in an actual vehicle. It is particularly effective for estimation.

本発明は上記実施例に限定されるものではなく、各種の変更が可能である。例えば、上記実施例では成形品としてPBTを用いたものであるが、他の樹脂成形品であっても、予め指標成分を定め、定量分析法を適宜選択して、ベンチ試験を行い各種の熱劣化させた成形品について熱劣化と指標成分量との関係を測定し、マスター曲線を作成して、熱劣化を受けた成形品から指標成分量を定量して基準熱負荷時間tを求めることができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above embodiment, PBT is used as a molded product, but even with other resin molded products, an index component is determined in advance, a quantitative analysis method is appropriately selected, a bench test is performed, and various heat treatments are performed. the relationship between the thermal deterioration and the index component amount was measured on the molded article obtained by degradation, by creating a master curve, to determine the reference heat load time t 0 by quantifying the index component amount from molded articles subjected to thermal degradation Can do.

また、PBT以外の樹脂であってもDSC分析により熱履歴を推定することが可能な樹脂成形品であれば、同様にして最高負荷温度Tを求めることができる。例えばポリエステル樹脂やポリアミド樹脂等の結晶性高分子では、DSC曲線に融解の吸熱ピークよりも低温の吸熱ピークが現れるので、PBTの場合と同様の手順で最高負荷温度Tを推定することができる。更に最高負荷温度Tらか、アレニウス式を用いて移動因子aT1を決定し、上記基準熱負荷時間tと移動因子aT1から実熱負荷時間tを求めることができる。 Further, as long as it is a resin molded article capable of estimating thermal history by even DSC analysis a resin other than PBT, it is possible to obtain the maximum load temperatures T 1 in the same manner. For example, in a crystalline polymer such as a polyester resin or a polyamide resin, an endothermic peak at a temperature lower than the endothermic peak of melting appears in the DSC curve, so that the maximum load temperature T 1 can be estimated by the same procedure as in the case of PBT. . Further, the transfer factor a T1 is determined from the maximum load temperature T 1 or the Arrhenius equation, and the actual heat load time t 1 can be obtained from the reference heat load time t 0 and the transfer factor a T1 .

t:熱負荷時間、t:基準熱負荷時間(基準温度に換算した熱負荷時間)、t:実熱負荷時間(最高負荷温度の熱負荷時間)、T:任意の温度、T:基準温度、T:最高負荷温度、aT1:最高負荷温度Tにおける移動因子 t: heat load time, t 0 : reference heat load time (heat load time converted into reference temperature), t 1 : actual heat load time (heat load time of maximum load temperature), T: arbitrary temperature, T 0 : Reference temperature, T 1 : Maximum load temperature, a T1 : Transfer factor at maximum load temperature T 1

Claims (7)

熱履歴を受けた成形品を分析して、熱履歴を推定し評価する熱履歴評価方法において、
熱処理時間に応じて含有量が変化する成分を指標成分と定め、予め熱処理した成形品について前記指標成分の定量分析を行い、複数の熱処理温度における熱処理時間と前記指標成分量との関係を測定し、所定の熱処理温度を基準温度Tとして前記指標成分量と処理時間との関係を示すマスター曲線を作成するマスター曲線作成工程と、
熱履歴を受けた成形品から試料を採取して前記指標成分の定量分析を行い指標成分量を測定する指標成分測定工程と、
前記指標成分量と前記マスター曲線とを用いて、前記基準温度Tに換算した熱負荷時間としての基準熱負荷時間tを求める熱負荷時間推定工程を備え、
前記基準熱負荷時間tに基づいて成形品の熱履歴を評価することを特徴とする成形品の熱履歴評価方法。
In a thermal history evaluation method for analyzing a molded product that has received a thermal history to estimate and evaluate the thermal history,
A component whose content changes according to the heat treatment time is defined as an index component, a quantitative analysis of the index component is performed on a pre-heated molded article, and a relationship between the heat treatment time at a plurality of heat treatment temperatures and the amount of the index component is measured. A master curve creating step for creating a master curve indicating a relationship between the index component amount and the treatment time with a predetermined heat treatment temperature as a reference temperature T 0 ;
An index component measurement step for collecting a sample from a molded article that has received a thermal history and quantitatively analyzing the index component to measure the amount of the index component;
Using the index component amount and the master curve, a heat load time estimation step for obtaining a reference heat load time t 0 as a heat load time converted to the reference temperature T 0 ,
Thermal history evaluation method of a molded article and evaluating the thermal history of the molded article based on the reference heat load time t 0.
更に、熱履歴を受けた成形品から試料を採取して、示差走査熱量計を用いたDSC分析を行い、成形品が使用中に曝された最高負荷温度Tを求める熱負荷温度推定工程を備え、
前記熱負荷時間推定工程により得られた基準熱負荷時間tと、前記最高負荷温度Tを用いて、成形品の熱履歴を評価することを特徴とする請求項1記載の成形品の熱履歴評価方法。
In addition, a sample is taken from the molded product that has received a thermal history, and DSC analysis is performed using a differential scanning calorimeter, and a thermal load temperature estimation step is performed to obtain the maximum load temperature T 1 to which the molded product was exposed during use. Prepared,
A reference heat load time t 0 obtained by the thermal load time estimation step, the maximum load temperatures T 1 using a molded product of heat according to claim 1, wherein evaluating the thermal history of the molded article History evaluation method.
前記マスター曲線作成工程において、アレニウス式を用いて移動因子と熱処理温度の逆数との関係を求め、この関係から最高負荷温度Tにおける移動因子aT1を決定し、下記式より基準温度Tの熱負荷時間である基準熱負荷時間tを前記最高負荷温度Tの熱負荷時間である実熱負荷時間tに換算する熱負荷温度換算工程を備え、前記実熱負荷時間tを利用して熱履歴を評価することを特徴とする請求項2記載の成形品の熱履歴評価方法。
実熱負荷時間t=基準熱負荷時間t/移動因子aT1
In the master curve creation step, the relationship between the transfer factor and the reciprocal of the heat treatment temperature is obtained using the Arrhenius equation, and the transfer factor a T1 at the maximum load temperature T 1 is determined from this relationship, and the reference temperature T 0 is calculated from the following equation. with a heat load temperature conversion step of converting the reference heat load time t 0 is the thermal load time to the maximum load temperature T 1 of the heat load time real thermal load time t 1, using the actual thermal load time t 1 The method according to claim 2, wherein the thermal history is evaluated.
Actual heat load time t 1 = reference heat load time t 0 / transfer factor a T1
前記熱負荷温度推定工程が、DSC曲線における融解による吸熱ピークよりも低温側の吸熱ピークを用いて最高負荷温度Tを推定するものであり、微分DSC曲線における前記低温側の吸熱ピークの立ち上がり温度を用いて最高負荷温度Tを推定することを特徴とする請求項2又は3記載の成形品の熱履歴評価方法。 The thermal load temperature estimation process, which estimates the maximum load temperatures T 1 using the endothermic peak on the low temperature side than the endothermic peak due to melting in the DSC curve, the rising temperature of the low temperature side of the endothermic peak in the differential DSC curve The maximum load temperature T 1 is estimated by using the method, and the thermal history evaluation method for a molded product according to claim 2 or 3. 前記成形品が、ポリブチレンテレフタレート樹脂であり、前記指標成分が、試料に水酸化テトラメチルアンモニウムを加え熱分解ガスクロマトグラフィ/質量分析装置により定量されるメチル4−メトキシブチレートであることを特徴とする請求項1〜4のいずれか1項に記載の成形品の熱履歴評価方法。   The molded article is a polybutylene terephthalate resin, and the indicator component is methyl 4-methoxybutyrate which is quantified with a pyrolysis gas chromatography / mass spectrometer by adding tetramethylammonium hydroxide to a sample. The thermal-history evaluation method of the molded article of any one of Claims 1-4 to do. 予め成形品の前記基準温度Tにおける熱処理時間と機械的特性の関係を把握しておき、前記指標成分量を測定し、前記マスター曲線を用いて、前記基準温度Tにおける機械的特性を推定することを特徴とする請求項1〜5のいずれか1項に記載の成形品の熱履歴評価方法。 The relationship between the heat treatment time and the mechanical properties at the reference temperature T 0 of the molded product is grasped in advance, the index component amount is measured, and the mechanical properties at the reference temperature T 0 are estimated using the master curve. The thermal history evaluation method for a molded product according to any one of claims 1 to 5, wherein: 予め成形品に熱履歴を測定するための劣化判定部を成形品本体と一体に形成しておき、該劣化判定部が成形品本体から分離可能に形成されていることを特徴とする請求項1〜6のいずれか1項に記載の成形品の熱履歴評価方法。


The deterioration determination unit for measuring the thermal history in the molded product is formed integrally with the molded product main body in advance, and the deterioration determination unit is formed so as to be separable from the molded product main body. The thermal-history evaluation method of the molded article of any one of -6.


JP2010254730A 2010-11-15 2010-11-15 Thermal history evaluation method for molded product Abandoned JP2012107875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254730A JP2012107875A (en) 2010-11-15 2010-11-15 Thermal history evaluation method for molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254730A JP2012107875A (en) 2010-11-15 2010-11-15 Thermal history evaluation method for molded product

Publications (1)

Publication Number Publication Date
JP2012107875A true JP2012107875A (en) 2012-06-07

Family

ID=46493678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254730A Abandoned JP2012107875A (en) 2010-11-15 2010-11-15 Thermal history evaluation method for molded product

Country Status (1)

Country Link
JP (1) JP2012107875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217952A (en) * 2015-05-22 2016-12-22 日産自動車株式会社 Heat history detection method for lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217952A (en) * 2015-05-22 2016-12-22 日産自動車株式会社 Heat history detection method for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN104793111B (en) Based on reason, change, the insulated cable residual life comprehensive estimation methods of electrical characteristics
CN105388403B (en) A kind of low-voltage cable remaining life quick determination method based on hardness retention rate
CN112257232B (en) Life model establishing method based on ethanol in oil and transformer paper polymerization degree
CN109030548B (en) Polymer material thermal aging life evaluation method based on activation energy variation
JP4121430B2 (en) Insulation diagnosis method for electrical equipment
CN112331281B (en) High polymer material service life prediction method based on environmental big data and machine learning
JP2012107875A (en) Thermal history evaluation method for molded product
Simmons et al. Determining remaining useful life of aging cables in nuclear power plants-interim study FY13
JP5737042B2 (en) Thermal history evaluation method for molded products
Toivola et al. Detection of incipient thermal damage in carbon fiber-bismaleimide composites using hand-held FTIR
JP2014119385A (en) Heat hysteresis evaluation method for molding
Lohmann et al. Employing real automotive driving data for electrochemical impedance spectroscopy on lithium-ion cells
CN109269866B (en) Method for rapidly judging electric heating aging of polypropylene film for capacitor and application and verification method thereof
JP5505291B2 (en) Evaluation method of thermal stability and degree of deterioration of resin products
Lellinger et al. Accelerated thermal aging of thermoplastic materials for the motor compartment: Characterization, degradation model and lifetime prediction
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
JP2010085340A (en) Method for estimation of tire performance
JP6060198B2 (en) Thermal degradation test method
JPH10253520A (en) Method for estimating heat resisting life of inorganic material
CN106092763A (en) Detection method based on cable insulating high temperature resistant sheath pressure
JP3570344B2 (en) Method for measuring the degree of deterioration of polybutylene terephthalate
JP2004354375A (en) Deterioration diagnostic method and system for electric wire
CN114113850B (en) Crosslinked polyethylene cable insulation life prediction method and system based on consumption dynamics model
CN115791885B (en) Method for measuring resin content in glass fiber reinforced crystalline resin composite material
CN116702461A (en) Component accelerated life prediction method based on temperature-humidity interaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20140305