JP2000081401A - Deterioration diagnostic method for organic insulating material - Google Patents

Deterioration diagnostic method for organic insulating material

Info

Publication number
JP2000081401A
JP2000081401A JP25263498A JP25263498A JP2000081401A JP 2000081401 A JP2000081401 A JP 2000081401A JP 25263498 A JP25263498 A JP 25263498A JP 25263498 A JP25263498 A JP 25263498A JP 2000081401 A JP2000081401 A JP 2000081401A
Authority
JP
Japan
Prior art keywords
deterioration
measured
degree
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25263498A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takezawa
由高 竹澤
Yuzo Ito
雄三 伊藤
Minokichi Miura
巳之吉 三浦
Masateru Nakano
政輝 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Building Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP25263498A priority Critical patent/JP2000081401A/en
Publication of JP2000081401A publication Critical patent/JP2000081401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration diagnostic method capable of accurate deterioration diagnosis of an organic insulation material with a plurality of peaks in measured values of a loss tangent without effects of a thickness and shape of a piece being measured and of a difference in resin content, for example. SOLUTION: This deterioration diagnostic method for an organic insulation material used for the insulation of electrical machinery and apparatus determines a degree of deterioration of a sample being measured, by preparing a master curve from a relation of a storage-to-loss elastic modulus ratio (a loss tangent) to a degree of deterioration of a model sample containing an organic insulation material, computing a temperature characteristic of the loss tangent of the sample being measured that contains an organic insulation material, and plotting on the master curve a peak temperature appearing on the highest temperature side of temperature characteristic peaks of the loss tangent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転機、発電機、
変圧器等の電気機器に用いられている有機絶縁材料の劣
化診断方法に関する。
TECHNICAL FIELD The present invention relates to a rotating machine, a generator,
The present invention relates to a method for diagnosing deterioration of an organic insulating material used in electrical equipment such as a transformer.

【0002】[0002]

【従来の技術】電気機器に用いられた有機絶縁材料の寿
命は、その電気機器の寿命を支配する。こうした電気機
器の絶縁樹脂の熱劣化を検出する方法が特公平3−50
977号公報に開示されている。
2. Description of the Related Art The life of an organic insulating material used for an electric device governs the life of the electric device. Such a method for detecting thermal deterioration of insulating resin of electric equipment is disclosed in Japanese Patent Publication No. 3-50
No. 977 discloses this.

【0003】上記の方法は、被測定物質と同一材料の試
料を種々の温度で劣化させ、その試料の劣化による動的
粘弾性特性の変化を求め、一方の軸にアレニウス速度反
応式に基づく劣化温度と劣化時間の関数の換算時間をと
り、他方の軸に動的粘弾性特性をとり、前記種々の温度
での動的粘弾性特性の変化を前記2軸で表わされる座標
上にプロットしてマスターカーブを求め、実稼働機器か
ら採取した物質の動的粘弾性特性を前記マスターカーブ
に対比させて実稼働機器の劣化度を検出するものであ
る。
In the above-mentioned method, a sample of the same material as the substance to be measured is deteriorated at various temperatures, a change in dynamic viscoelastic properties due to the deterioration of the sample is obtained, and the deterioration based on the Arrhenius velocity response equation is plotted on one axis. Take the conversion time of the function of temperature and aging time, take the dynamic viscoelastic properties on the other axis, plot the change in dynamic viscoelastic properties at the various temperatures on the coordinates represented by the two axes A master curve is determined, and the degree of deterioration of the actual operating device is detected by comparing the dynamic viscoelastic characteristics of a substance collected from the actual operating device with the master curve.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
では、被測定片の厚みや形状、樹脂含有量の違いによっ
てピーク値が大きく変化してしまうので、ポリエチレン
テレフタレート(PET)フィルム材のような均一の厚
みを有する被測定片でないと判定を誤ることがあった。
However, in the above prior art, the peak value greatly changes depending on the thickness, shape, and resin content of the piece to be measured, and therefore, such a material as a polyethylene terephthalate (PET) film material is used. In some cases, the determination was erroneous unless the test piece had a uniform thickness.

【0005】また、電気機器の絶縁層には厚みがあるた
めに、経年劣化が進行すると熱伝導と冷却による影響
で、絶縁層の表面層と内部層とでは劣化度が異なってく
る。また、オーバーホール等の際に、絶縁層表面に仕上
げワニス等が上塗りされると、やはり、表面層と内部層
とで劣化度が異なる。
[0005] In addition, since the insulating layer of an electric device has a thickness, as the aging progresses, the degree of deterioration differs between the surface layer and the inner layer of the insulating layer due to the influence of heat conduction and cooling. Further, when a finish varnish or the like is overcoated on the surface of the insulating layer at the time of overhaul or the like, the degree of deterioration differs between the surface layer and the inner layer.

【0006】従って、表面層と内部層とで劣化度が異な
るような絶縁層を持った電気機器から採取した被測定片
では、損失正接の温度分散特性のピークが、それぞれの
層に対応して複数現われることが多い。このように、ピ
ークが複数現われる場合には、上記従来技術では、正確
な劣化判定ができないと云う問題がある。
Accordingly, in a test piece taken from an electric device having an insulating layer in which the degree of deterioration differs between the surface layer and the inner layer, the peak of the temperature dispersion characteristic of the loss tangent corresponds to each layer. More than one often appears. As described above, in the case where a plurality of peaks appear, there is a problem in that the above-described related art cannot accurately determine deterioration.

【0007】本発明の目的は、被測定片の厚みや形状、
樹脂含有量の違い等の影響を受けず、また、被測定片の
損失正接のピークが複数あるような電気機器の絶縁材料
の劣化を正しく診断する有機絶縁材料の劣化診断方法を
提供することにある。
An object of the present invention is to measure the thickness and shape of a piece to be measured,
In order to provide a method for diagnosing deterioration of an organic insulating material, which is not affected by a difference in resin content and the like, and which correctly diagnoses deterioration of an insulating material of an electrical device having a plurality of loss tangent peaks of a measured piece. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は次のとおりである。
The gist of the present invention to achieve the above object is as follows.

【0009】〔1〕 電気機器の絶縁に用いられている
有機絶縁材料の劣化診断方法であって、前記有機絶縁材
料を含むモデル試料の劣化度に対する貯蔵弾性率と損失
弾性率との比(損失正接)との関係を予め求めてマスタ
ーカーブを作成しておき、前記有機絶縁材料を含む被測
定試料の前記損失正接の温度特性を求め、該損失正接の
温度特性ピークの内、最も高い温度側に現れたピークの
温度を前記マスターカーブにプロットして被測定試料の
劣化度を判定することを特徴とする有機絶縁材料の劣化
診断方法。
[1] A method for diagnosing deterioration of an organic insulating material used for insulating electrical equipment, comprising: a ratio (loss) of a storage elastic modulus and a loss elastic modulus to a degree of deterioration of a model sample containing the organic insulating material. Tangent) is determined in advance to create a master curve, the temperature characteristic of the loss tangent of the sample to be measured including the organic insulating material is determined, and the highest temperature side of the temperature characteristic peak of the loss tangent is determined. A method of diagnosing deterioration of an organic insulating material, wherein the degree of deterioration of a sample to be measured is determined by plotting a temperature of a peak appearing on the master curve.

【0010】〔2〕 求められた前記被測定試料の前記
劣化度と、予め求めた前記モデル試料の寿命とから、前
記被測定試料の余寿命を判定する上記の有機絶縁材料の
劣化診断方法。
[2] The method for diagnosing deterioration of an organic insulating material as described above, wherein the remaining life of the sample to be measured is determined from the obtained degree of deterioration of the sample to be measured and the life of the model sample obtained in advance.

【0011】本発明では、上記損失正接のピークが複数
ある被測定片でも、複数のピークのうち最も高い温度に
現れたピークの温度で劣化度を求めるので、被測定片の
厚みや形状、樹脂含有量の違いの影響を受けず、絶縁樹
脂の劣化を従来よりも正確に診断することができる。
According to the present invention, even for a test piece having a plurality of peaks of the loss tangent, the degree of deterioration is determined at the temperature of the peak that appears at the highest temperature among the plurality of peaks. The deterioration of the insulating resin can be diagnosed more accurately than before, without being affected by the difference in the content.

【0012】また、求められた被測定試料の劣化度と、
予め求められたモデル試料の寿命とに基づいて、絶縁樹
脂の余寿命を従来よりも正確に求めることができる。
Further, the obtained degree of deterioration of the sample to be measured is
The remaining life of the insulating resin can be obtained more accurately than before, based on the life of the model sample obtained in advance.

【0013】[0013]

【発明の実施の形態】本発明者らは、絶縁樹脂の劣化度
と、動的粘弾性特性の損失正接の温度依存性との関係を
詳細に検討した結果、損失正接の温度依存性曲線に複数
のピークが現れた場合、それらのピークの内の最も高い
温度側のピークの温度を用いて劣化度を診断すれば、被
測定片の厚みや形状、樹脂含有量によらずに、正確な劣
化診断ができることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have examined in detail the relationship between the degree of deterioration of an insulating resin and the temperature dependence of the loss tangent of the dynamic viscoelastic properties. When a plurality of peaks appear, if the degree of deterioration is diagnosed using the temperature of the peak on the highest temperature side of those peaks, accurate measurement is possible regardless of the thickness, shape, and resin content of the test piece. It has been found that deterioration diagnosis can be performed.

【0014】本発明の劣化診断方法について、回転機の
場合をそれに用いられている絶縁樹脂で説明する。本実
施例の絶縁樹脂の劣化診断を行うに当たって、予め、診
断マスターカーブを用意しておく。この診断マスターカ
ーブの一例を図5に示す。
The method of diagnosing deterioration of the present invention will be described in the case of a rotating machine by using the insulating resin used therein. In performing the deterioration diagnosis of the insulating resin of the present embodiment, a diagnosis master curve is prepared in advance. FIG. 5 shows an example of the diagnostic master curve.

【0015】図5に示す診断マスターカーブは、劣化度
を知りたい絶縁樹脂と同じ材料を用いたモデル試料につ
いて、4種の温度(図5中、4種類のドットで表示)で
加速劣化試験を行い、化学反応速度論に基づいて劣化の
活性化エネルギーを算出して換算時間を劣化度のパラメ
ータとし、損失正接(tanδ)のピーク値の最高温度
との関係を表したものである。
The diagnostic master curve shown in FIG. 5 is obtained by performing an accelerated deterioration test on a model sample using the same material as the insulating resin whose deterioration degree is to be determined at four temperatures (indicated by four dots in FIG. 5). In this example, the activation energy of deterioration is calculated based on the chemical reaction kinetics, the conversion time is used as a parameter of the degree of deterioration, and the relationship between the peak value of the loss tangent (tan δ) and the maximum temperature is shown.

【0016】本実施例では、被測定片に用いられている
黒色顔料を含む不透明エポキシ樹脂からなる仕上げワニ
スを、ガラスクロステープに塗布したモデル試料を用
い、診断マスターカーブを予め作成した。このモデル試
料においては、tanδの最高ピーク温度が150℃な
ので、寿命点θ0は8×10~9(h)と判定する。
In this embodiment, a diagnostic master curve was prepared in advance using a model sample obtained by applying a finishing varnish made of an opaque epoxy resin containing a black pigment used for a piece to be measured to a glass cloth tape. In this model sample, since the maximum peak temperature of tan δ is 150 ° C., the life point θ 0 is determined to be 8 × 10 9 (h).

【0017】劣化度は、特公平3−50977号公報に
記載されているように、アレニウス則に基づく温度と時
間の関数である換算時間θで表すことが一般的である。
この換算時間θでは、様々な劣化履歴を有する材料であ
っても、換算時間θが等しければ同じ劣化度であること
を意味する。上記の換算時間θは〔式1〕で定義され
る。
As described in Japanese Patent Publication No. 3-50977, the degree of deterioration is generally represented by a conversion time θ which is a function of temperature and time based on the Arrhenius law.
In this conversion time θ, even if the materials have various deterioration histories, the same degree of deterioration means that the conversion times θ are equal. The above conversion time θ is defined by [Equation 1].

【0018】[0018]

【数1】 θ=t×exp(−ΔE/RT) …〔式1〕 ここで、ΔEは劣化の見かけの活性化エネルギー(J/
mol)、Rは気体定数(J/K/mol)、Tは劣化
の絶対温度(K)、tは劣化時間(h)である。
Equation 1 θ = t × exp (−ΔE / RT) (Equation 1) where ΔE is the apparent activation energy (J /
mol), R is a gas constant (J / K / mol), T is the absolute temperature of degradation (K), and t is the degradation time (h).

【0019】ΔEはアレニウスプロットにより容易に算
出できる。さらに、予め求めておいた材料の寿命点にお
ける換算時間をθ0とすると、実測から求めた換算時間
θとの差Δθが余寿命に相当する換算時間となり、劣化
度診断の尺度となる。即ち、Δθ(=θ0−θ)は〔式
2〕で表される。
ΔE can be easily calculated from an Arrhenius plot. Furthermore, assuming that the conversion time at the life point of the material determined in advance is θ 0 , the difference Δθ from the conversion time θ obtained from the actual measurement becomes the conversion time corresponding to the remaining life, and serves as a scale of deterioration degree diagnosis. That is, Δθ (= θ 0 −θ) is represented by [Equation 2].

【0020】[0020]

【数2】 Δθ=(t0−t)×exp(−ΔE/RTt) …〔式2〕 上式より時間t以降の平均使用温度条件(Tt)が定ま
れば、余寿命Δt(=t0−t)を求めることができ
る。
[Expression 2] Δθ = (t 0 −t) × exp (−ΔE / RT t ) (Equation 2) From the above expression, if the average operating temperature condition (T t ) after time t is determined, the remaining life Δt ( = t 0 -t) can be obtained.

【0021】本実施例の絶縁樹脂の劣化診断方法を図1
のフローを用いて説明する。
FIG. 1 shows a method for diagnosing deterioration of an insulating resin according to this embodiment.
This will be described using the flow of FIG.

【0022】(1)まず、回転機固定子のコイルエンド
部の絶縁部から被測定片を採取する。コイルエンド部か
ら被測定片を採取するのは、コイルエンド部は製造初期
に絶縁部に用いられた絶縁樹脂と同一の樹脂が用いられ
ており、コイルエンド部と絶縁部とで絶縁樹脂の経年変
化も同等であり、かつ、採取により絶縁部にダメージを
与えない点で好ましいからである。
(1) First, a piece to be measured is sampled from the insulating portion at the coil end of the rotating machine stator. The sample to be measured is collected from the coil end part because the same resin as the insulating resin used for the insulating part in the initial stage of manufacturing is used for the coil end part. This is because the change is equivalent and the insulating portion is not damaged by sampling.

【0023】従って、採取により絶縁部にダメージを与
えなければコイルエンド部以外で、例えば、リード線を
バインドしているガラスクロステープを用いてもよい。
こうした部位であれば、特に、評価用のモニター材を取
り付けていない既設の実機に対しても診断を行うことが
できる。
Therefore, if the insulating portion is not damaged by the sampling, a glass cloth tape to which a lead wire is bound may be used other than the coil end portion.
With such a part, diagnosis can be performed even on an existing actual machine to which no monitor material for evaluation is attached.

【0024】(2)次に、採取した被測定片の動的粘弾
性特性の温度依存性を測定する。
(2) Next, the temperature dependence of the dynamic viscoelastic properties of the sample to be measured is measured.

【0025】(3)被測定片の動的粘弾性特性の温度依
存性から、貯蔵弾性率と損失弾性率との比である損失正
接(tanδ)の温度依存性を求める。
(3) From the temperature dependence of the dynamic viscoelastic properties of the test piece, the temperature dependence of the loss tangent (tan δ), which is the ratio between the storage modulus and the loss modulus, is determined.

【0026】(4)上記損失正接(tanδ)の温度依
存性に現れるピークの内、最も高い温度で現れたピーク
の温度を求める。
(4) Among the peaks that appear in the temperature dependence of the loss tangent (tan δ), the temperature of the peak that appears at the highest temperature is determined.

【0027】(5)上記の温度を、診断マスターカーブ
(図5)に当てはめ、被測定片の劣化度(時間換算θ)
を求める。
(5) The above temperature is applied to a diagnostic master curve (FIG. 5) to determine the degree of deterioration of the measured object (time conversion θ).
Ask for.

【0028】さらに、絶縁材料の余寿命を求める場合に
は、 (6)前記の〔式2〕を用いて求められた劣化度(時間
換算θ)、予め求められたモデル試料の寿命点(時間換
算θ0)、および、平均使用温度条件(Tt)とから余寿
命(Δt)を求める。
Further, when the remaining life of the insulating material is obtained, (6) the degree of deterioration (time conversion θ) obtained by using the above-mentioned [Equation 2] and the life point (time The remaining life (Δt) is determined from the converted θ 0 ) and the average operating temperature condition (T t ).

【0029】次に、絶縁樹脂の本実施例の劣化診断例
を、従来の診断例と比較説明する。
Next, a description will be given of a comparative example of a diagnosis of deterioration of the insulating resin according to the present embodiment with a conventional diagnosis.

【0030】〔診断例 1〕同じコイルエンド部から採
取した、大きさ、形、厚みが異なる被測定片A〜Eにつ
いての劣化診断例を説明する。
[Diagnosis Example 1] A description will be given of an example of deterioration diagnosis for the test pieces A to E having different sizes, shapes, and thicknesses collected from the same coil end portion.

【0031】回転機のコイルエンド部から、図3に示す
ような大きさが約5mm×15mmの短冊状の被測定片
(ガラスクロステープ試料1)を複数個採取した。これ
らの被測定片は、それぞれ湾曲していたり、大きさ、
形、厚みが異なっており、ばらつきが大きく、絶縁樹脂
の塗布状態も一様でなかった。
A plurality of strips to be measured (glass cloth tape samples 1) each having a size of about 5 mm × 15 mm as shown in FIG. 3 were collected from the coil end portion of the rotating machine. Each of these test pieces is curved,
The shapes and thicknesses were different, the dispersion was large, and the application state of the insulating resin was not uniform.

【0032】これらの被測定片を用いて、正弦波歪みを
用いた引張り振動試験(周波数10Hz,変位1μm)
を行い、動的粘弾性特性〔貯蔵(動的)弾性率、損失弾
性率および損失正接(tanδ)の温度依存性〕を空気
雰囲気中で測定した。
Using these test pieces, a tensile vibration test using sinusoidal distortion (frequency: 10 Hz, displacement: 1 μm)
And the dynamic viscoelastic properties [temperature dependence of storage (dynamic) modulus, loss modulus and loss tangent (tan δ)] were measured in an air atmosphere.

【0033】測定条件はこれに限定されるものではない
が、診断マスターカーブを作成したときの測定条件と同
一にするほうが望ましい。なお、被測定片は、ガラスク
ロステープ、絶縁樹脂、および、仕上げワニスが用いら
れている。仕上げワニスには黒色の顔料を含む不透明エ
ポキシ樹脂が用いられており、従って、絶縁樹脂の光学
的な劣化度評価は不可能であった。
Although the measurement conditions are not limited to those described above, it is desirable that the measurement conditions are the same as those when the diagnostic master curve was created. In addition, a glass cloth tape, an insulating resin, and a finish varnish are used for the measured piece. An opaque epoxy resin containing a black pigment is used for the finishing varnish, and therefore, it was impossible to evaluate the degree of optical deterioration of the insulating resin.

【0034】図2に、形状、厚み等が異なる5つの被測
定片(A〜E)の動的粘弾性特性の測定結果を示す。
FIG. 2 shows the measurement results of the dynamic viscoelastic characteristics of five pieces (A to E) having different shapes, thicknesses, and the like.

【0035】5つの被測定片は熱履歴が等しい、即ち、
劣化は同等であるが測定結果は同一とならず、ばらつい
ている。
The five test pieces have the same thermal history, that is,
Although the deterioration is the same, the measurement results are not the same and vary.

【0036】このように実機から採取した被測定片で
は、試料の厚みや形状、樹脂含有量がそれぞれ異なるた
め、たとえ同じ熱履歴を受けた材料であっても、動的粘
弾性特性の貯蔵弾性率と損失弾性率の比である損失正接
(tanδ)の温度分散特性は、図2のA〜Eに示され
るようにばらついている。
As described above, the test pieces taken from the actual machine have different thicknesses, shapes, and resin contents, so that even if the materials have the same thermal history, the storage elasticity of the dynamic viscoelasticity characteristics The temperature dispersion characteristics of the loss tangent (tan δ), which is the ratio between the modulus and the loss elastic modulus, vary as shown in FIGS.

【0037】従来のように被測定片A〜Eのtanδの
ピーク値の温度を診断マスターカーブ(図5)に当ては
めたり、最大ピーク値から劣化度を求めたりすると、劣
化度もばらつくので、製造初期に絶縁部に用いられた絶
縁樹脂の本来の劣化度を正しく診断できない。
If the temperature of the peak value of tan δ of the test pieces A to E is applied to the diagnostic master curve (FIG. 5) or the degree of deterioration is obtained from the maximum peak value as in the prior art, the degree of deterioration varies. It is not possible to correctly diagnose the original degree of deterioration of the insulating resin used for the insulating portion at the beginning.

【0038】これに対し本発明では、最も高い温度にお
けるピークの温度で判断するので、どのサンプルについ
ても、図2からほぼ同一の結果(83℃)が得られ、図
5の診断マスターカーブに当てはめると、製造初期に絶
縁部に用いられた絶縁樹脂の本来の劣化度の時間換算θ
=8×10~11(h)であることを知ることができる。
On the other hand, in the present invention, since the judgment is made based on the peak temperature at the highest temperature, almost the same result (83 ° C.) is obtained from FIG. 2 for each sample, and is applied to the diagnosis master curve in FIG. And the time conversion θ of the original degree of deterioration of the insulating resin used for the insulating portion in the early stage of manufacturing.
= 8 × 10 to 11 (h).

【0039】〔診断例 2〕次に、回転機のコイルから
採取した、仕上げワニスの厚さが異なる被測定片F,
G,Hについて劣化度を診断した例について説明する。
[Diagnosis Example 2] Next, the test pieces F, having different thicknesses of the finishing varnish, obtained from the coils of the rotating machine,
An example in which the degree of deterioration is diagnosed for G and H will be described.

【0040】図4に、被測定片F,G,Hのtanδの
温度分散特性を示す。被測定片F,G,Hは、絶縁部の
下地ワニスの表面に仕上げワニスを上塗りした回転機コ
イルから採取したものである。
FIG. 4 shows the tan δ temperature dispersion characteristics of the test pieces F, G, and H. The pieces to be measured F, G, and H were obtained from a coil of a rotating machine in which the surface of a base varnish of an insulating portion was overcoated with a finish varnish.

【0041】これらのtanδの温度分散特性には2つ
のピークがある。低温側のT1(78℃付近)のピーク
は、上塗りした仕上げワニスに起因する。高温側のT2
(130℃付近)のピークは製造時に塗布された下地ワ
ニスに起因する。図4から被測定片F,G,Hは、いず
れも同じ熱履歴を持つが、その各ピーク値は、被測定片
AはT2側が、また、被測定片B,CはT1側が大きい
ことが分かる。このピーク値の違いは、上塗りした仕上
げワニスの厚さに起因している。
These tan δ temperature dispersion characteristics have two peaks. The peak at T1 (around 78 ° C.) on the low temperature side is attributable to the overcoated varnish. T2 on high temperature side
The peak at (around 130 ° C.) is attributable to the base varnish applied during manufacture. From FIG. 4, the test pieces F, G, and H all have the same thermal history, but their peak values are that the test piece A is larger on the T2 side and the test pieces B and C are larger on the T1 side. I understand. This difference in peak value is due to the thickness of the overcoated varnish.

【0042】被測定片Fのtanδの最大ピーク値の温
度はT2側で、従来のように温度T2を診断マスターカ
ーブ(図5)に当てはめると、換算時間θは4×10~9
となり、かなり劣化が進行していると判断される。
The temperature of the maximum peak value of tan δ of the test piece F is on the T2 side. When the temperature T2 is applied to the diagnostic master curve (FIG. 5) as in the conventional case, the conversion time θ is 4 × 10 to 9
, And it is determined that the deterioration has progressed considerably.

【0043】一方、被測定片G,Hでは、そのtanδ
の最大ピーク値の温度(T1側)を用いて診断すること
になり、その結果、被測定片G,Hの換算時間θは5×
10~11となって、あまり劣化していないことになる。
On the other hand, in the test pieces G and H, their tan δ
Will be diagnosed using the temperature (T1 side) of the maximum peak value of the measurement result. As a result, the conversion time θ of the test pieces G and H is 5 ×
10 to 11 , which means that there is not much deterioration.

【0044】本実施例では、各被測定片の最も高い温度
側に現れたピークの温度で判断するので、被測定片F,
G,HはいずれもT2側で判断され、その換算時間θは
いずれも4×10~9となって、コイルの絶縁部の本来の
劣化度を知ることができる。
In this embodiment, since the determination is made based on the peak temperature that appears on the highest temperature side of each of the test pieces, the test pieces F and
G and H are both determined on the T2 side, and the converted time θ is 4 × 10 to 9 so that the original degree of deterioration of the insulating portion of the coil can be known.

【0045】本実施例によれば、被測定片の厚みや形
状、樹脂含有量の違いの影響を受けることがなく、ま
た、tanδの温度分散特性のピークが2ヶ以上現れる
ような被測定片についても、その劣化の程度を正確に診
断することができる。
According to the present embodiment, the test piece is not affected by differences in thickness, shape, and resin content of the test piece, and has two or more peaks in the temperature dispersion characteristic of tan δ. , The degree of deterioration can be accurately diagnosed.

【0046】[0046]

【発明の効果】本発明によれば、損失正接のピークが複
数個あるような被測定片についても、それらの複数のピ
ークから最も高い温度で現れたピークの温度に基づいて
劣化度を求めるので、従来より正確に診断することがで
きる。
According to the present invention, even for a test piece having a plurality of loss tangent peaks, the degree of deterioration is obtained based on the temperature of the peak that appears at the highest temperature from the plurality of peaks. The diagnosis can be made more accurately than before.

【0047】また、被測定片の厚みや形状、樹脂含有量
の違い等の影響を受けず、絶縁樹脂の劣化を従来の方法
よりも、より正確に診断することができ、余寿命もこれ
までになく正確に求めることができる。
In addition, the deterioration of the insulating resin can be diagnosed more accurately than the conventional method without being affected by the difference in the thickness and the shape of the piece to be measured, the resin content, and the like. Can be determined accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である絶縁樹脂の劣化診断方
法のフロー図である。
FIG. 1 is a flowchart of a method for diagnosing deterioration of an insulating resin according to an embodiment of the present invention.

【図2】厚みや形状、樹脂含有量の異なる被測定片A〜
Eのtanδの温度分散特性を示すグラフである。
FIG. 2 shows pieces A to be measured having different thicknesses, shapes, and resin contents.
5 is a graph showing a temperature dispersion characteristic of tan δ of E.

【図3】被測定片の形状を示す模式図である。FIG. 3 is a schematic diagram showing a shape of a piece to be measured.

【図4】仕上げワニスを上塗りした被測定片のtanδ
の温度分散特性を示すグラフである。
FIG. 4 shows tan δ of a test piece coated with a finish varnish.
3 is a graph showing the temperature dispersion characteristics of the sample.

【図5】モデル試料の診断マスターカーブを示すグラフ
である。
FIG. 5 is a graph showing a diagnostic master curve of a model sample.

【符号の説明】[Explanation of symbols]

1…ガラスクロステープ試料。 1: Glass cloth tape sample.

フロントページの続き (72)発明者 伊藤 雄三 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三浦 巳之吉 東京都千代田区神田錦町一丁目6番地 株 式会社日立ビルシステム内 (72)発明者 中野 政輝 東京都千代田区神田錦町一丁目6番地 株 式会社日立ビルシステム内 Fターム(参考) 2G015 AA05 AA07 AA13 AA14 AA18 AA19 CA07 CA20 2G016 BA00 BC02 2G040 AA05 AB20 BA02 BA27 CA02 CA13 CA22 DA02 EB02 EC09 HA05 HA11 HA16 HA18 Continuing from the front page (72) Inventor Yuzo Ito 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Minokichi Miura 1-6-6 Kanda Nishikicho, Chiyoda-ku, Tokyo Hitachi Building Systems Co., Ltd. (72) Inventor Masateru Nakano 1-6-6 Kandanishikicho, Chiyoda-ku, Tokyo F-term in Hitachi Building Systems Co., Ltd. (Reference) 2G015 AA05 AA07 AA13 AA14 AA18 AA19 CA07 CA20 2G016 BA00 BC02 2G040 AA05 AB20 BA02 BA27 CA02 CA13 CA22 DA02 EB02 EC09 HA05 HA11 HA16 HA18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気機器の絶縁に用いられている有機絶
縁材料の劣化診断方法であって、 前記有機絶縁材料を含むモデル試料の劣化度に対する貯
蔵弾性率と損失弾性率との比(損失正接)との関係を予
め求めてマスターカーブを作成しておき、 前記有機絶縁材料を含む被測定試料の前記損失正接の温
度特性を求め、該損失正接の温度特性ピークの内、最も
高い温度側に現れたピークの温度を前記マスターカーブ
にプロットして被測定試料の劣化度を判定することを特
徴とする有機絶縁材料の劣化診断方法。
1. A method for diagnosing deterioration of an organic insulating material used for insulating electrical equipment, comprising: a ratio of a storage elastic modulus and a loss elastic modulus to a deterioration degree of a model sample containing the organic insulating material (loss tangent). ) Is determined in advance, and a master curve is created. The temperature characteristic of the loss tangent of the sample to be measured including the organic insulating material is determined. A method for diagnosing deterioration of an organic insulating material, wherein the temperature of a peak that appears is plotted on the master curve to determine the degree of deterioration of the sample to be measured.
【請求項2】 求められた前記被測定試料の前記劣化度
と、予め求めた前記モデル試料の寿命とから、前記被測
定試料の余寿命を判定する請求項1に記載の有機絶縁材
料の劣化診断方法。
2. The deterioration of the organic insulating material according to claim 1, wherein the remaining life of the measured sample is determined from the determined degree of deterioration of the measured sample and the life of the model sample determined in advance. Diagnostic method.
JP25263498A 1998-09-07 1998-09-07 Deterioration diagnostic method for organic insulating material Pending JP2000081401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25263498A JP2000081401A (en) 1998-09-07 1998-09-07 Deterioration diagnostic method for organic insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25263498A JP2000081401A (en) 1998-09-07 1998-09-07 Deterioration diagnostic method for organic insulating material

Publications (1)

Publication Number Publication Date
JP2000081401A true JP2000081401A (en) 2000-03-21

Family

ID=17240090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25263498A Pending JP2000081401A (en) 1998-09-07 1998-09-07 Deterioration diagnostic method for organic insulating material

Country Status (1)

Country Link
JP (1) JP2000081401A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132690A (en) * 2010-12-20 2012-07-12 Sumitomo Wiring Syst Ltd Method for evaluating thermal stability and degree of deterioration of resin product
CN102944782A (en) * 2012-11-07 2013-02-27 沈阳变压器研究院股份有限公司 Insulating thermal stability test system
JP2013063400A (en) * 2011-09-20 2013-04-11 Nippon Telegr & Teleph Corp <Ntt> Coating film deterioration detection method
JP2013092443A (en) * 2011-10-26 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting coating film degradation
CN112698161A (en) * 2020-12-02 2021-04-23 西南交通大学 Method for predicting residual life of oil-paper insulation of traction transformer bushing
CN113740238A (en) * 2021-08-20 2021-12-03 西安交通大学 Method for detecting uneven aging of thermosetting insulating material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132690A (en) * 2010-12-20 2012-07-12 Sumitomo Wiring Syst Ltd Method for evaluating thermal stability and degree of deterioration of resin product
JP2013063400A (en) * 2011-09-20 2013-04-11 Nippon Telegr & Teleph Corp <Ntt> Coating film deterioration detection method
JP2013092443A (en) * 2011-10-26 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting coating film degradation
CN102944782A (en) * 2012-11-07 2013-02-27 沈阳变压器研究院股份有限公司 Insulating thermal stability test system
CN112698161A (en) * 2020-12-02 2021-04-23 西南交通大学 Method for predicting residual life of oil-paper insulation of traction transformer bushing
CN112698161B (en) * 2020-12-02 2021-09-28 西南交通大学 Method for predicting residual life of oil-paper insulation of traction transformer bushing
CN113740238A (en) * 2021-08-20 2021-12-03 西安交通大学 Method for detecting uneven aging of thermosetting insulating material

Similar Documents

Publication Publication Date Title
KR101751073B1 (en) Portable polymer tester
CN104634950B (en) A kind of utilization becomes the method that energy of activation analyzes silicon rubber agine mechaism
CN112345435A (en) Composite insulator silicon rubber humid heat aging performance test and evaluation method
JP2000081401A (en) Deterioration diagnostic method for organic insulating material
JPH03103746A (en) Diagnostic method for insulation deterioration of electric wire - cable and measuring instrument used for the same
Johlitz et al. Chemical ageing of elastomers: experiments and modelling
CN113960298A (en) Method for predicting wet and heat aging performance of silicone rubber
JPS6159242A (en) Method for diagnosing deterioration of insulating material
JPH06273326A (en) Nondestructive deterioration diagnostic method for synthetic resin molded item containing plasticizer and filler
JP2004236465A (en) Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment
CN106600031A (en) High-voltage power transmission strain clamp residual life prediction method
CN110426320A (en) The judgment method of composite insulator degree of aging
JP3316182B2 (en) Method for estimating remaining life of coated cable
JPH08211115A (en) Deterioration diagnostic apparatus for insulation coating of coated wire
CN113916763A (en) Method for predicting wet heat aging life of methyl vinyl silicone rubber
JP3045626B2 (en) Degradation diagnosis method for laminated products
CN110229640A (en) A kind of preparation from sensing composite material adhesive and its from monitoring method
JP3147186B2 (en) Thermal degradation detection method for insulating materials
RU2794392C1 (en) Method for determining the area of damage to the skin of an aircraft
JPH0277664A (en) Method for diagnosing insulation of winding of electric machine
Lofaro et al. Aging and condition monitoring of electric cables in nuclear power plants
Woo Study on Adhesives Performance by Dynamic Mechanical Techniques
JP2000002744A (en) Method for diagnosing coil insulation of rotating machine and device therefor
JPH08219966A (en) Method for diagnosing deterioration of wire/cable
CN108120730A (en) A kind of hydrothermal aging evaluation method of aramid fiber