JPH0277664A - Method for diagnosing insulation of winding of electric machine - Google Patents

Method for diagnosing insulation of winding of electric machine

Info

Publication number
JPH0277664A
JPH0277664A JP63238311A JP23831188A JPH0277664A JP H0277664 A JPH0277664 A JP H0277664A JP 63238311 A JP63238311 A JP 63238311A JP 23831188 A JP23831188 A JP 23831188A JP H0277664 A JPH0277664 A JP H0277664A
Authority
JP
Japan
Prior art keywords
insulation
winding
deterioration
detecting
diagnosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63238311A
Other languages
Japanese (ja)
Other versions
JP2717814B2 (en
Inventor
Shuichi Sakuma
秀一 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP63238311A priority Critical patent/JP2717814B2/en
Publication of JPH0277664A publication Critical patent/JPH0277664A/en
Application granted granted Critical
Publication of JP2717814B2 publication Critical patent/JP2717814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To easily diagnose an extent of deterioration of insulation nondestructively by detecting change in mechanical qualities of winding insulation due to thermal deterioration and mechanical deterioration of the winding insulation by an acoustic emission (AE) method. CONSTITUTION:Four windings 2 of a DC machine whose insulation is to be diagnosed are located combined with a field core 3 at intervals of 90 deg. on the inner of a frame 1, and wiring is made to permit power to be supplied. AE generated at the time of change in temperature of the winding 2 is detected by an AE sensor 4 provided on the outer of the frame 1. A parameter obtained by detecting AE, which the insulation layer of said winding 2 is subject to, due to change in temperature with the AE sensor 4 at the time of newly producing the winding 2 is used as reference, and a parameter obtained by detecting AE generated due to change in temperature of the winding 2 to be inspected is compared with the above parameter to diagnose the extent of deterioration in insulation.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は電気機械の巻線の絶縁劣化の程度を、アコース
ティック・エミッション(以下人Eという)法により計
測する絶縁診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insulation diagnosis method for measuring the degree of insulation deterioration of windings of an electric machine using an acoustic emission (hereinafter referred to as "E") method.

〔従来の技術〕[Conventional technology]

一般に、発電機や電動機の電気機械の信頼性や寿命に影
響する大きな要因として、巻線の絶縁劣化がある。さら
に、機器の寿命番こ対して絶縁の更新を行う場合にも絶
縁の劣化程度の正確な評価が望まれている。
In general, a major factor that affects the reliability and lifespan of electric machines such as generators and motors is insulation deterioration of windings. Furthermore, accurate evaluation of the degree of deterioration of the insulation is desired when renewing the insulation at the end of the life of the equipment.

非破壊的な絶縁劣化診断試験としては電気的・化学的・
機械的な各種の方法が研究されているが、それらのうち
、主として電気的な手法が用いられて右り、それは巻線
に直流あるいは交流電圧を印加したときの漏れ電流や部
分放電に関する緒特性から、絶縁物の性状を判断する方
法である。
Non-destructive insulation deterioration diagnostic tests include electrical, chemical,
Various mechanical methods have been studied, but electrical methods are mainly used to investigate the characteristics of leakage current and partial discharge when DC or AC voltage is applied to the windings. This is a method for determining the properties of an insulator.

また、機械的に絶縁劣化を診断する方法として□は打音
などが行なわれているが、これは巻線の絶縁層の温度が
変化しない言わば静的な状態の時に外部から局部的に外
力を加え、その反応で絶縁層を評価しようとした方法で
ある。
In addition, as a method for mechanically diagnosing insulation deterioration, hammering sounds are used, but this is done by locally applying an external force from the outside when the temperature of the insulating layer of the winding is static and the temperature does not change. In addition, this method attempted to evaluate the insulating layer based on the reaction.

〔発明が解決しようとした問題点〕[Problem that the invention sought to solve]

しかしながら、電気的試験の場合、絶縁層内のクラ、り
とかボイドなどの欠陥を検知して絶縁劣化の程度を診断
していたのであるが、絶縁層の機械的な弾性の大きさな
どは検知できなかった。
However, in the case of electrical tests, the degree of insulation deterioration was diagnosed by detecting defects such as cracks, holes, and voids within the insulating layer, but the degree of mechanical elasticity of the insulating layer was not detected. could not.

また、機械的な弾性を調査する場合、打音では定量化す
ることができず、個人差が生じて好ましい方法ではなか
った。
In addition, when investigating mechanical elasticity, it was not possible to quantify it using the hammering sound, and individual differences occurred, so this was not the preferred method.

また、これらは巻線の絶縁層の温度が変化しない静的な
状態での診断法であるので、巻線の温度変化が実際の運
転状態と同じか、それに近いような言わば動的な状態で
の診断法の開発が望まれていた。
In addition, these diagnostic methods are performed under a static state in which the temperature of the insulating layer of the winding does not change, so it is not possible to perform the diagnosis under a dynamic state in which the temperature change of the winding is the same as or close to the actual operating state. There was a desire to develop a diagnostic method for

本発明は上述した点ζこ鑑みて創案された方法で、その
目的としたところは、巻線絶縁の熱的劣化、機械的劣化
による巻線絶縁の機械的性質の変化をAB法で検出する
ことkより、絶縁劣化の程度を非破壊で簡単に診断でき
る電気機械の巻線絶縁診断方法を提供することにある。
The present invention is a method devised in view of the above-mentioned points, and its purpose is to use the AB method to detect changes in the mechanical properties of winding insulation due to thermal deterioration and mechanical deterioration of winding insulation. The object of the present invention is to provide a method for diagnosing the winding insulation of an electric machine, which can easily and non-destructively diagnose the degree of insulation deterioration.

〔問題点を解決するための手段〕[Means for solving problems]

つまり、その目的を達成するための手段は、先に出願し
た特願昭63−161908号の基礎出願として、巻線
の絶縁層に温度変化が起こると絶縁層は熱的な歪(絶縁
システム内の温度差により生じる材料の膨張率の違いに
よる機械的なストレス)を受けるのでクラ、りなどが発
生し、同時にAIが発生する・現在、実際の運転と同じ
かそれに近い状態での診断が望まれているので、このよ
うな温度変化状態で発生する人Eを計測、解析すること
ξζよって絶縁診断を行なう。その診断とし工請求項第
(1)環lζ記載したよう番ζ、診断には同一絶縁シス
テムの絶縁新製時のAEデータとの比較が必要である。
In other words, the means to achieve this purpose is based on the basic application of Japanese Patent Application No. 161908/1986, which was filed earlier. (Mechanical stress caused by the difference in the expansion coefficient of the material caused by the temperature difference between the Therefore, insulation diagnosis is carried out by measuring and analyzing the human E that occurs under such temperature change conditions ξζ. For the diagnosis, it is necessary to compare with the AE data of the same insulation system when the insulation was newly manufactured.

すなわち、絶縁新製時に温度変化により発生したABの
パラメータ(例えば発生イベント数。
That is, AB parameters (for example, the number of occurrence events) that occur due to temperature changes when new insulation is manufactured.

累積エネルギーなど)を基準値として、絶縁診断を行な
う対象の巻線の温度変化により発生したAIのパラメー
タを新製時のパラメータとの比によって絶縁劣化の程度
を診断する方法である。
This is a method of diagnosing the degree of insulation deterioration by comparing the parameters of AI generated due to temperature changes in the winding to be inspected with the parameters at the time of new manufacture, using the accumulated energy (accumulated energy, etc.) as a reference value.

次に今回出願した請求項第(鋤項番とおいては、診断1
とは計測、解析したAIデータ群が、AHの特定のパラ
メータ、例えば持続時間でAIデータがどのような分布
形状をしているかを数値化して判断する。数値化する方
法は特定のパラメータ、例えば持続時間の値をある幅に
分割して複数の帯域に分けである複数(通常は2つ)の
特定の帯域間に怠けるAIデータ数の比を演算する。
Next, the claim number filed this time (in terms of claim number, diagnosis 1
This means that a group of measured and analyzed AI data is quantified to determine what kind of distribution shape the AI data has based on a specific parameter of AH, such as duration. The method of quantifying is to divide the value of a specific parameter, for example, the duration, into multiple bands and calculate the ratio of the number of AI data being idle between multiple (usually two) specific bands. .

以上のようにして得られた比の数値によって絶縁劣化の
程度を診断する方法である。
This is a method of diagnosing the degree of insulation deterioration based on the numerical value of the ratio obtained as described above.

〔作 用〕[For production]

その作用は、電気機械が運転されるとき、絶縁層の温度
は通電電流のジュール熱により加熱されて上昇し、停止
すると冷却されて温度は下降する。
The effect is that when the electric machine is operated, the temperature of the insulating layer is heated by the Joule heat of the flowing current and rises, and when the electric machine is stopped, it is cooled and the temperature falls.

同時化発熱している導体と冷えている鉄心や空気の間に
ある絶縁層iζは、時間と共に変化する温度勾配が生じ
る。このために絶縁層は熱的な歪を受け、この歪を解放
するために絶縁層内にクレーズやクラ、りが、また絶縁
層と他の界面間に剥離や摩擦などが起り、同時にAEが
発生する。
The insulating layer iζ between the conductor that is simultaneously generating heat and the cold core or air has a temperature gradient that changes over time. For this reason, the insulating layer is subjected to thermal strain, and to release this strain, crazes, cracks, and cracks occur within the insulating layer, as well as peeling and friction between the insulating layer and other interfaces, and at the same time, AE occurs. Occur.

かようなごとくして絶縁劣化が進行する時、絶縁層内の
熱的な歪を解放するこれらの現象の現われ方は、その絶
縁システムによって異なるが、対地絶縁にフィルム巻絶
縁を施し、無溶剤樹脂を真空含浸処理した絶縁システム
では次のように考えられる。
When insulation deterioration progresses in this way, the appearance of these phenomena, which release thermal strain within the insulation layer, differs depending on the insulation system, but it is possible to Insulating systems in which resin is vacuum-impregnated can be considered as follows.

(υ 請求項第(1)項に詔いては 絶縁システム製作当初は鉄心、絶縁層、導体間は樹脂に
より固化されて完全に一体の状態になりている。劣化初
期は絶縁層に熱的歪が加わると絶縁層にクレーズやクラ
、りが発生する。しかし、絶縁層がまだ新しく樹脂層に
歪を吸収する弾性があるため一定限度のAEが計測され
るにとどまる(絶縁劣化過程の第1段階)。
(υ Claim (1) states that when the insulation system is first manufactured, the core, insulation layer, and conductor are solidified by resin and are completely integrated. At the beginning of deterioration, thermal strain occurs in the insulation layer. When stress is applied, crazes, cracks, and cracks occur in the insulating layer.However, since the insulating layer is still new and the resin layer has elasticity to absorb strain, only a certain limit of AE can be measured (the first step in the insulation deterioration process). step).

絶縁劣化がもう少し進行すると樹脂層が加熱。As insulation deterioration progresses a little further, the resin layer heats up.

冷却の繰り返しにより硬化し、歪を吸収する弾性カナく
なり、クレーズやクラ、りまたフィルムの切断さらには
剥離や摩擦なども生じAEの発生もピークとなる(第2
段階)、さらに絶縁劣化が進行すると、絶縁層内には既
に発生した多数のクレーズやクラ、りがあるために発生
する熱的な歪は減少し、それと共に発生するAEも減少
する(第3段階)・ 絶縁劣化が末期になると、絶縁層内の熱的歪はさらに少
なくなり、発生するAEイベント数が初期の3割程度に
低下すると絶縁層の絶縁破壊電圧が新製時の2割程度番
こ低下する(第4段階)。
After repeated cooling, it hardens and becomes an elastic material that absorbs strain, which causes crazes, cracks, and cuts in the film, as well as peeling and friction, and the occurrence of AE also reaches its peak (second stage).
As the insulation deteriorates further, the thermal strain that occurs due to the large number of crazes, cracks, and cracks that have already occurred in the insulation layer decreases, and the AE that occurs with it also decreases (Step 3). Stage) When insulation deterioration reaches its final stage, the thermal strain within the insulation layer will further decrease, and when the number of AE events that occur decreases to about 30% of the initial level, the dielectric breakdown voltage of the insulation layer will decrease to about 20% of that when it was new. The number decreases (4th stage).

(2!J  請求項第(2!J項においては絶縁システ
ム製作当初は鉄心、絶縁層、導体間は樹脂により固化さ
れて完全に一体の状態になっている。劣化初期は絶縁層
にクレーズやクラ、りが発生していないため熱的歪が加
わるとクレーズやクラックが発生しやすい。その時に計
測されるAEを例えば持続時間の分布で解析すると、持
続時間が短時間のものが圧倒的に多いが、長時間のもの
も存在する。これは微少なりレーダやクラックの発生が
ほとんどであるが、少数の大きなりう、りの発生がある
ことを示唆している。
(2!J Claim No. 2!J, when the insulation system is first manufactured, the iron core, insulation layer, and conductor are solidified with resin and are completely integrated. At the beginning of deterioration, the insulation layer may have crazes or Crazes and cracks are likely to occur when thermal strain is applied because no cracks or cracks occur.If you analyze the AE measured at that time, for example, by looking at the distribution of duration, you will find that those with short durations are overwhelmingly There are many cases, but there are some that last for a long time.This suggests that although most of the cases are small radar or cracks, there are a few large cases.

絶縁劣化が進行すると、絶縁層内の熱的歪が加わりやす
い箇所には既にクラ、りが発生してしまっているので、
熱的歪も減少しAEの発生数も減少するが特に持続時間
の長いもの、すなわち大きなりう、りの発生は短時間の
ものに較べて減少するO そして絶縁劣化が末期ζこなると、絶縁層内の熱的歪は
さらに少なくなると共に、絶縁層の機械的弾性はほとん
どなくなり、発生するAEイベントのうち持続時間の大
きなりう、りの発生はまずます減少する。持続時間が短
時間のものと、長時間のものとのAEイベント数の比が
、ある値にまで低下すると、巻線の絶縁破壊電圧は新製
時の2割程度に低下する。
As insulation deterioration progresses, cracks and cracks have already occurred in areas where thermal strain is likely to occur within the insulation layer.
Thermal strain also decreases, and the number of AEs that occur decreases, but the occurrence of AEs that last a long time, that is, the occurrence of large AEs, decreases compared to those that last a short time. Thermal strain within the insulation layer is further reduced, the mechanical elasticity of the insulating layer is almost eliminated, and among the AE events that occur, the occurrence of long-duration ripples is further reduced. When the ratio of the number of AE events of short duration to those of long duration decreases to a certain value, the dielectric breakdown voltage of the winding decreases to about 20% of that of a new one.

以下、本発明の絶縁診断方法の一実施例を、回天に基づ
いて詳述する。
Hereinafter, one embodiment of the insulation diagnosis method of the present invention will be described in detail based on rotation.

、〔実施 例〕 第1図(a) 、 (b)は本郷明の絶縁診断方法の一
実施例として「転電機の直流機界磁巻線が鉄心と枠に組
み込まれた組立品を示し〕−1図((転)はそ″)半面
図と人E計測法を示す説明図、第1図(b)は第1図(
1)の組立品の側面図である。
, [Example of implementation] Figures 1 (a) and (b) show an example of Akira Hongo's insulation diagnosis method, ``showing an assembly in which the DC machine field winding of a converting machine is assembled into an iron core and a frame.'' Figure 1 (b) is a half-view diagram showing the human E measurement method.
1) is a side view of the assembled product.

第1図(,10、(b)において、絶縁診断を行なう直
流機の巻線2は、枠1の内厘化90°間隔で界磁鉄心3
と組み合わされた状態で4個配置され、通電が出来るよ
うに配線されている。
In Fig. 1 (, 10, (b), the winding 2 of the DC machine for which insulation diagnosis is performed is placed between the field cores 3 and 3 at 90° intervals within the frame 1.
Four of them are arranged in combination with each other, and they are wired so that they can be energized.

巻線2が温度変化状態の時発生するAEはAEセンサ4
で検出されるが、このAEセンサ4は枠1の外周番ζ平
面を設け、ここにグリスを塗布した上書こ押し付は密着
するように機械的に固定される。
The AE that occurs when the winding 2 is in a state of temperature change is detected by the AE sensor 4.
The AE sensor 4 is provided with a plane on the outer periphery of the frame 1, and the overwriting surface coated with grease is mechanically fixed so as to be in close contact therewith.

なお、5はプリアンプ、6はAEアナライザ、7はプリ
ンタである。
Note that 5 is a preamplifier, 6 is an AE analyzer, and 7 is a printer.

次に、かような状態でセットされた巻線の絶縁劣化の診
断方法を第2図(a) 、 (b)〜第4図を参照しな
がら説明する・なお、検出されたAE信号イは、プリア
ンプ5を通りAIアナライザ6で解析され、解析結果は
AHアナライザ6に内東のORTξこ表示されると共に
、プリンタ7#ζ出力することができる。使用したAH
センサ4は150k)h iC共振周波数をもつもので
、プリアンプ5のゲインは40dB。
Next, a method for diagnosing insulation deterioration of windings set in such conditions will be explained with reference to Figures 2 (a) and (b) to Figure 4.The detected AE signal , a preamplifier 5, and is analyzed by an AI analyzer 6, and the analysis results are displayed on the AH analyzer 6 as well as output to a printer 7#ζ. AH used
The sensor 4 has a resonant frequency of 150 k) h iC, and the gain of the preamplifier 5 is 40 dB.

AHアナライザ6内のメインアンプゲインは20dB。The main amplifier gain in AH analyzer 6 is 20dB.

しきい値は0.1vに設定して計測した。また、界磁巻
線の絶縁システムとして対地絶縁iζフィルム巻絶縁を
施し、無溶剤樹脂を真空含浸処理した絶縁システムを用
意し、実際の運転条件と熱的に同じkなるように連続定
格電流より少し低い一定電流を流し、加熱時間5時間、
冷却時間1時間のヒートサイクルを行なった。
The threshold value was set to 0.1v for measurement. In addition, as an insulation system for the field winding, we have prepared an insulation system that uses ground insulation iζ film-wound insulation and vacuum-impregnated solvent-free resin. Apply a slightly lower constant current and heat for 5 hours.
A heat cycle was performed with a cooling time of 1 hour.

第2図(−はヒートサイクルによる巻線の抵抗性温度と
経過時間とのあるヒートサイクル数での特性図、第2図
(b)はこの時巻線に発生したAIイベント数と経過時
間との特性図である。
Figure 2 (- is a characteristic diagram of the resistance temperature of the winding due to the heat cycle and the elapsed time at a certain number of heat cycles, and Figure 2 (b) is the number of AI events that occurred in the winding at this time and the elapsed time. FIG.

第2開缶)から、ヒートサイクル経過時間初期の温度上
昇が急なときにAEが多数発生していることが判る。
From the second open can), it can be seen that a large number of AEs occur when the temperature rises rapidly at the beginning of the heat cycle elapsed time.

次に請求項第(1)項において説明する。Next, it will be explained in claim (1).

第3図において、縦軸は第2図(b)で示したある1回
のヒートサイクルで発生するAEイベント数が新製時の
ヒートサイクルで発生するAIイベント数との比率で示
し、横軸はヒートサイクル数を示し、AEイベント数が
ヒートサイクルが進行するとどのように変化していくか
を示す特性図であり、その特性図の上部に1〜4で示さ
れている数字は〔作用〕の項で説明した絶縁劣化の過程
段階を示している。
In Figure 3, the vertical axis shows the ratio of the number of AE events that occur in one heat cycle shown in Figure 2 (b) to the number of AI events that occur in the heat cycle when newly manufactured, and the horizontal axis indicates the number of heat cycles, and is a characteristic diagram showing how the number of AE events changes as the heat cycle progresses, and the numbers 1 to 4 at the top of the characteristic diagram indicate [effect]. It shows the process steps of insulation deterioration as explained in section.

第3図から、ヒートサイクル初期から1ooサイクル前
後までは含浸樹脂が弾性を保持している絶縁劣化の第1
・第2段階で、それ以後はクラック等により熱的歪が吸
収され発生イベント数が緩やかに減少する第3・第4段
階を示す。
From Figure 3, it can be seen that the impregnated resin retains its elasticity from the beginning of the heat cycle to around 100 cycles, which is the first stage of insulation deterioration.
・The second stage is followed by the third and fourth stages in which the thermal strain is absorbed by cracks, etc., and the number of occurrence events gradually decreases.

次に、第4図においては、第3図で縦軸は1回のヒート
サイクル(6時間)で発生するAEイベント数の比率で
表示したが、ヒートサイクルを開始して最初の5分間に
発生するAEイベント数の比率を表示した特性図である
Next, in Figure 4, the vertical axis in Figure 3 is expressed as the ratio of the number of AE events that occur in one heat cycle (6 hours); FIG. 3 is a characteristic diagram showing the ratio of the number of AE events.

その後、ヒートサイクル試験を行なりた4個の界磁巻線
2は、絶縁劣化により600〜700サイクルで5kV
の耐電圧チエ、り1こより絶縁破壊した。
After that, the four field windings 2 that were subjected to the heat cycle test showed a voltage of 5kV after 600 to 700 cycles due to insulation deterioration.
Dielectric breakdown occurred due to the withstand voltage.

このことから、ABイベント数の比率が第3図では3o
*、第4図では2O4程度まで減少すると絶縁破壊する
可能性があることが判った。なお、本実施例では絶縁劣
化の程度を診断するパラメータとしてAEイベント数を
用いたが、これに代ってAIのエネルギーの累積値、カ
ウントの累積値。
From this, the ratio of the number of AB events is 3o in Figure 3.
*, Fig. 4 shows that there is a possibility of dielectric breakdown when the concentration decreases to about 2O4. In this embodiment, the number of AE events is used as a parameter for diagnosing the degree of insulation deterioration, but instead of this, the cumulative value of AI energy and the cumulative value of counts are used.

持続時間の累積値などでも診断可能である。さらに、同
一絶縁システムでも巻線の形状により発生するAPイベ
ント数が変化するので、その都度新製時の特性を計測し
てそれとの比較で診断を行なう必要がある。
Diagnosis can also be made by the cumulative value of duration. Furthermore, even in the same insulation system, the number of AP events that occur varies depending on the shape of the windings, so it is necessary to measure the characteristics when newly manufactured each time and perform diagnosis by comparing with the characteristics.

また請求項第(2)項について説明すると、第5図(姐
b)(eJはヒートサイクルによる熱劣化の過程で、第
2図(b)に示すように1ヒートサイクル中lこ発生す
るABイベントのうちの最初の約1割1すなわち加熱時
のAEが多数発生する部分のAEデータについて横軸が
持続時間(対数表示)、縦軸がAHイベントの発生比率
を百分率で示した特性図である。
Further, to explain claim (2), FIG. This is a characteristic diagram in which the horizontal axis is the duration (logarithm display) and the vertical axis is the occurrence rate of AH events as a percentage for the AE data of the first 10% of events, that is, the part where many AEs occur during heating. be.

これは発生したAIがどのような持続時間の分布を持っ
ているか示したものであり、持続時間を対数表示とした
のは長時間側のA1発生数を短時間側のものと較べて強
調したいからである。第5図(補はヒートサイクル試験
開始時、第5図(b)は200サイクル前後、第5図(
ejは600サイクル前後での特性を示す@ 第6図は第5図の中で右上がり二重斜線の部分Aと右下
がり一重斜線の部分BとのABイベント発生比率の比B
/Aがヒートサイクル数によりどのように変化するかを
示したものである。これによるとヒートサイクル試験開
始時では、1.4前後であり、ヒートサイクル試験が進
むと単調減少し、200サイクル前後では1.1,60
0サイクル前後では0.6〜0.7の間の値となってい
る。
This shows what kind of duration distribution the generated AI has, and the reason why the duration is displayed logarithmically is to emphasize the number of A1 occurrences on the long side compared to those on the short side. It is from. Figure 5 (supplemented) is at the start of the heat cycle test, Figure 5 (b) is around 200 cycles, Figure 5 (
ej shows the characteristics around 600 cycles @ Figure 6 is the ratio B of the AB event occurrence ratio between the double diagonal line area A going up to the right and the single diagonal line area B going down to the right in Figure 5.
This figure shows how /A changes depending on the number of heat cycles. According to this, at the start of the heat cycle test, it is around 1.4, and as the heat cycle test progresses, it monotonically decreases, and around 200 cycles, it is around 1.1,60.
Around 0 cycles, the value is between 0.6 and 0.7.

以上のようにしてヒートサイクル試験を行なった4個の
界磁巻線2はヒートサイクルによる熱劣化のため600
〜700サイクルの間で5kVの耐電圧チエツクによっ
て絶縁破壊した。このことから、AIイベント発生比率
の比B/Aが0.6前後にまで減少すると絶縁破壊する
可能性があることが判った。なお本実施例では絶縁劣化
の程度を診断するためのパラメータとしてAEイベント
の持続時間を用いたが、これに代りてエネルギー、リン
グダウンカウントなどでも診断可能と考えられる。
The four field windings 2 that were subjected to the heat cycle test as described above had a temperature of 600 mm due to thermal deterioration due to the heat cycle.
Dielectric breakdown was caused by a 5 kV withstand voltage check during ~700 cycles. From this, it was found that there is a possibility of dielectric breakdown when the ratio B/A of the AI event occurrence rate decreases to around 0.6. In this embodiment, the duration of the AE event was used as a parameter for diagnosing the degree of insulation deterioration, but instead of this, energy, ring down count, etc. may also be used for diagnosis.

第5図(a)(b)(c)の特性図は1ヒートサイクル
中の最初の約1割のAIデータについて解析したもので
あるが、この特性は1ヒートサイクル中の全AEデータ
を解析した特性と比較してもほとんど同じである。その
ため1回の診断に必要な時間は1ヒートサイクルの所要
時間6時間よりも大幅に少なくてよく、15〜20分あ
れば十分である。
The characteristic diagrams in Figure 5 (a), (b), and (c) are obtained by analyzing the first 10% of AI data during one heat cycle, but these characteristics are based on the analysis of all AE data during one heat cycle. The characteristics are almost the same. Therefore, the time required for one diagnosis may be significantly less than the six hours required for one heat cycle, and 15 to 20 minutes is sufficient.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、従来絶縁層の機械
的な性質の変化を定量的に検知することが出来なかった
が、AE法を用い絶縁層の熱的歪から発生するAEを検
出、計測することにより巻線絶縁の劣化の程度を定量的
に非破壊で簡単に診断出来るようになった。また請求項
第(2)項において、本絶縁診断法は診断対象となる巻
線の新製時のAEデータと診断時のAEデータを演算し
て診断する方法ではないので、何個の巻線の新製時のデ
ータは必要ない。このため巻線新製時のAEデータ測定
が省略できる。
As explained above, according to the present invention, although conventionally it was not possible to quantitatively detect changes in the mechanical properties of an insulating layer, the AE method is used to detect AE generated from thermal strain in an insulating layer. Through measurement, it has become possible to easily and quantitatively diagnose the degree of deterioration of winding insulation in a non-destructive manner. In addition, in claim (2), the present insulation diagnosis method is not a method of diagnosing by calculating the AE data of the winding to be diagnosed when it is newly manufactured and the AE data at the time of diagnosis. There is no need for data when the new product is manufactured. Therefore, AE data measurement when newly manufacturing the winding can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の診断法の一実施例
であり、第1図(a)はその平面図とAB計測法を示す
説明図、第1図(b)は側爾図、第2図(a)はあるヒ
ートサイクルでの巻線抵抗法温度と経過時間との関係を
示す特性図、第2図(b)は第2図(a)のヒートサイ
クルでの巻線に発生したAEイベント数と経過時間との
関係を示す特性図、第3図は1回のヒートサイクルで発
生するAEイベントの比率とヒートサイクル数との関係
を示す特性図、第4図はヒートサイクルの最初の5分間
で発生するAEイベントの比率とヒートサイクル数との
関係を示す特性図、第5図(a)(b)(C)はヒート
サイクル中に発生するAEが持続時間に対してどのよう
な分布をしているかを示し、第5図(a)はヒートサイ
クル試験開始時、第5図(b)は200サイクル前後、
第5図(e)は600サイクル前後での特性図、第6図
は第3図中のAの部分とBの部分の人Eイベント発生比
率の比B/Aがヒートサイクル数によりどのように変化
するかを示す特性図である。 1・・・・・・枠、2・・・・・・界磁巻線、3・・・
・・・界磁鉄心、4・・・・・・AEセンサ、5・・・
・・・プリアンプ、6・・・・・・AEアナライザ、7
・・・・・・プリンタ。
1(a) and 1(b) show an embodiment of the diagnostic method of the present invention, FIG. 1(a) is a plan view thereof and an explanatory diagram showing the AB measurement method, and FIG. 1(b) is a side view. Figure 2(a) is a characteristic diagram showing the relationship between winding resistance method temperature and elapsed time in a certain heat cycle, and Figure 2(b) is a characteristic diagram showing the relationship between winding resistance method temperature and elapsed time in a certain heat cycle. Figure 3 is a characteristic diagram showing the relationship between the number of AE events occurring in a line and elapsed time, Figure 3 is a characteristic diagram showing the relationship between the ratio of AE events occurring in one heat cycle and the number of heat cycles, and Figure 4 is a characteristic diagram showing the relationship between the number of AE events occurring in one heat cycle and the number of heat cycles. Characteristic diagrams showing the relationship between the ratio of AE events that occur during the first 5 minutes of a heat cycle and the number of heat cycles, Figures 5 (a), (b), and (C) show the relationship between the AE events that occur during the heat cycle and the number of heat cycles. Figure 5 (a) shows the distribution at the start of the heat cycle test, Figure 5 (b) shows the distribution around 200 cycles,
Figure 5 (e) is a characteristic diagram around 600 cycles, and Figure 6 shows how the ratio B/A of the human E event occurrence rate in parts A and B in Figure 3 changes depending on the number of heat cycles. FIG. 1... Frame, 2... Field winding, 3...
...Field iron core, 4...AE sensor, 5...
...Preamplifier, 6...AE analyzer, 7
...Printer.

Claims (2)

【特許請求の範囲】[Claims] (1)電気機械巻線の絶縁劣化を診断する方法において
、前記巻線の新製時に、この巻線の絶縁層が温度変化に
より受ける熱的歪によって発生するアコースティック・
エミッションをアコースティック・エミッションセンサ
ーで検出して得られたパラメータを基準値とし、絶縁診
断を行う対象の巻線の温度変化により発生したアコース
ティック・エミッションを検出して得られたパラメータ
を前記基準値と比較することによって絶縁劣化の程度を
診断することを特徴とした電気機械の巻線の絶縁診断方
法。
(1) In a method for diagnosing insulation deterioration of an electromechanical winding, when the winding is newly manufactured, acoustic damage occurs due to thermal strain that the insulating layer of the winding undergoes due to temperature changes.
The parameters obtained by detecting emissions with an acoustic emission sensor are used as reference values, and the parameters obtained by detecting acoustic emissions generated due to temperature changes in the windings subject to insulation diagnosis are compared with the reference values. A method for diagnosing insulation of electrical machine windings, characterized by diagnosing the degree of insulation deterioration by
(2)前記巻線の新製時に、この巻線の絶縁層が温度変
化により受ける熱的歪によって発生するアコースティッ
ク・エミッションをアコースティック・エミッションセ
ンサーで検出して得られたパラメータを基準値とし、絶
縁診断を行う対象の巻線の温度変化により発生したアコ
ースティック・エミッションを検出して得られたパラメ
ータを前記基準値と比較する方法を、巻線の絶縁層が受
ける熱的歪によって発生するアコースティック・エミッ
ションをアコースティック・エミッションセンサーで検
出して計測した結果を、アコースティック・エミッショ
ン発生イベント数がアコースティック・エミッションの
特定のパラメータによってどのように分布しているかを
調べ、その分布形状を数値化してその数値で絶縁劣化の
程度を診断することを特徴とした請求項第(1)項記載
の電気機械の巻線の絶縁劣化診断方法。
(2) When the winding is newly manufactured, the parameters obtained by detecting the acoustic emissions generated by the thermal strain that the insulating layer of the winding undergoes due to temperature changes with an acoustic emission sensor are used as reference values, and the insulation A method for detecting acoustic emissions caused by temperature changes in the windings to be diagnosed and comparing the obtained parameters with the reference values. Detected and measured by an acoustic emission sensor, examine how the number of acoustic emission occurrence events is distributed according to specific parameters of acoustic emission, quantify the distribution shape, and insulate it with that value. A method for diagnosing insulation deterioration of a winding of an electric machine according to claim 1, characterized in that the degree of deterioration is diagnosed.
JP63238311A 1988-06-29 1988-09-22 Diagnosis method for insulation of windings of electric machines Expired - Lifetime JP2717814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238311A JP2717814B2 (en) 1988-06-29 1988-09-22 Diagnosis method for insulation of windings of electric machines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16190888 1988-06-29
JP63-161908 1988-06-29
JP63238311A JP2717814B2 (en) 1988-06-29 1988-09-22 Diagnosis method for insulation of windings of electric machines

Publications (2)

Publication Number Publication Date
JPH0277664A true JPH0277664A (en) 1990-03-16
JP2717814B2 JP2717814B2 (en) 1998-02-25

Family

ID=26487857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238311A Expired - Lifetime JP2717814B2 (en) 1988-06-29 1988-09-22 Diagnosis method for insulation of windings of electric machines

Country Status (1)

Country Link
JP (1) JP2717814B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134088A (en) * 2006-11-27 2008-06-12 Nec Corp Thin film exfoliation strength measuring device, measuring method and program
JP2010223761A (en) * 2009-03-24 2010-10-07 Taiheiyo Cement Corp Method of estimating cracking load of high-strength fiber-reinforced concrete
CN111899972A (en) * 2020-07-16 2020-11-06 江苏扬电科技股份有限公司 Special silicon steel iron core multifunctional combined positioning assembly
WO2023072174A1 (en) * 2021-11-01 2023-05-04 南方电网调峰调频发电有限公司检修试验分公司 Method for determining insulation thermomechanical deterioration of vpi wire rod of pumped storage power generation motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010184A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Insulation diagnosing apparatus for solid insulator in electric appliance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010184A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Insulation diagnosing apparatus for solid insulator in electric appliance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134088A (en) * 2006-11-27 2008-06-12 Nec Corp Thin film exfoliation strength measuring device, measuring method and program
JP2010223761A (en) * 2009-03-24 2010-10-07 Taiheiyo Cement Corp Method of estimating cracking load of high-strength fiber-reinforced concrete
CN111899972A (en) * 2020-07-16 2020-11-06 江苏扬电科技股份有限公司 Special silicon steel iron core multifunctional combined positioning assembly
CN111899972B (en) * 2020-07-16 2024-05-14 江苏扬电科技股份有限公司 Special silicon steel core multifunctional combined positioning assembly
WO2023072174A1 (en) * 2021-11-01 2023-05-04 南方电网调峰调频发电有限公司检修试验分公司 Method for determining insulation thermomechanical deterioration of vpi wire rod of pumped storage power generation motor
US11892496B1 (en) 2021-11-01 2024-02-06 Csg Power Generation Co., Ltd. Maintenance And Test Company Method for determining insulation thermomechanical deterioration of VPI wire rod of pumped storage power generation motor

Also Published As

Publication number Publication date
JP2717814B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
CN114779021A (en) Method for detecting insulation level of generator stator of gas turbine unit
US5736655A (en) Method for evaluating a remaining life of a rotating machine coil
US6392419B1 (en) Apparatus for and method of monitoring the status of the insulation on the wire in a winding
JPH0277664A (en) Method for diagnosing insulation of winding of electric machine
Cimino et al. Causes of cyclic mechanical aging and its detection in stator winding insulation systems
KR20140033979A (en) Apparatus for diagnosing a power transformer
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
Williamson et al. Investigation of equivalent stator-winding thermal resistance during insulation system ageing
Jia et al. Evaluation of the degradation of generator stator ground wall insulation under multistresses aging
US11892496B1 (en) Method for determining insulation thermomechanical deterioration of VPI wire rod of pumped storage power generation motor
Huang et al. Dielectric properties modeling and measurement of single tooth coil insulation system under accelerated degradation test
Schwarz et al. Diagnostic methods for transformers
JP2000146929A (en) Method and device for diagnosing deterioration of insulating layer
EP3754348A1 (en) Systems and methods for acoustically detecting dielectric breakdown and partial discharge events in electrical devices
JP2004347523A (en) Method for testing insulating property of coil
Ostendorp Assessing the integrity and remaining service life of vintage high voltage ceramic insulators
Rux High-voltage dc tests for evaluating stator winding insulation: Uniform step, graded step, and ramped test methods
JPS6279375A (en) Evaluation of insulation film
Elspass et al. Thermomechanical ageing of rotating high-voltage machines: introducing a novel test setup to replicate thermomechanical stress
Zhu et al. Quality evaluation of generator and motor stator windings
JPS6010184A (en) Insulation diagnosing apparatus for solid insulator in electric appliance
JPS60131476A (en) Method and device for deciding on quality of insulator of electric equipment
Piombo et al. Non-Destructive Testing Methodology for Impregnation Quality Identification of Segmented Stators in a Traction Motor
JPH0217465A (en) Method for advance detection of dielectric breakdown of winding of electric machine
Farahani et al. Investigations on characteristic parameters to evaluate the condition of the insulation system for high voltage rotating machines