JP2008134088A - Thin film exfoliation strength measuring device, measuring method and program - Google Patents

Thin film exfoliation strength measuring device, measuring method and program Download PDF

Info

Publication number
JP2008134088A
JP2008134088A JP2006318799A JP2006318799A JP2008134088A JP 2008134088 A JP2008134088 A JP 2008134088A JP 2006318799 A JP2006318799 A JP 2006318799A JP 2006318799 A JP2006318799 A JP 2006318799A JP 2008134088 A JP2008134088 A JP 2008134088A
Authority
JP
Japan
Prior art keywords
thin film
sample
temperature
signal
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006318799A
Other languages
Japanese (ja)
Inventor
Kunihiko Ishihara
邦彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006318799A priority Critical patent/JP2008134088A/en
Publication of JP2008134088A publication Critical patent/JP2008134088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To derive highly accurately exfoliation strength of a thin film by reducing dispersion of exfoliation temperature determination. <P>SOLUTION: A sample is acquired by forming a resin 13 layer on the thin film 12 side of a substrate 11 on which the thin film 12 is laminated, and after mounting an AE sensor 21 on the sample 1, the sample 1 is cooled to exfoliate the thin film 12. An AE signal generated when the thin film 12 is exfoliated is detected by the AE sensor 21, and simultaneously a cooling temperature is detected by a temperature detector 31, and thereby the exfoliation strength of the thin film 12 is derived. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜剥離強度を測定する技術に関し、特に、高精度な剥離検出を可能にする薄膜剥離強度測定技術に関する。   The present invention relates to a technique for measuring thin film peel strength, and more particularly to a thin film peel strength measuring technique that enables highly accurate peel detection.

半導体デバイスの微細化、高速化実現のためには配線間容量の低減が極めて重要であり、低誘電率絶縁膜を用いたデバイスの開発が急速に進められている。   In order to realize miniaturization and high speed of semiconductor devices, it is extremely important to reduce the capacitance between wirings, and development of devices using low dielectric constant insulating films is being rapidly advanced.

しかし、低誘電率絶縁膜を用いたデバイスは、低誘電率絶縁膜と他の材料との界面で密着性が不足して界面剥離が発生しやすい、という問題が指摘されており、簡便で高精度な剥離強度評価技術の開発が望まれている。   However, it has been pointed out that a device using a low dielectric constant insulating film has a problem that the interface between the low dielectric constant insulating film and another material is insufficient, and interface peeling is likely to occur. Development of accurate peel strength evaluation technology is desired.

薄膜の密着性評価手法としては、近年、m−ELT(modified Edge Lift−off Test)法と呼ばれる手法が広く使われつつある(E.O.Shaffer II、Designing Reliable Polymer Coatings、Polymer Engineering and Science、Vol36、p2375(1996))。   As a thin film adhesion evaluation method, a method called m-ELT (modified Edge Lift-off Test) method has been widely used in recent years (EO Shaffer II, Designing Reliable Polymer Coatings, Polymer Enginger, Vol 36, p2375 (1996)).

本手法は、試料にエポキシ樹脂を塗布および硬化処理した後、試料を冷却することで、冷却により生じた樹脂の内部応力によって薄膜の端面に引き剥がし力が加わり剥離が促進されるものである。この際、樹脂の内部応力と温度の関係をあらかじめ測定しておくことにより、薄膜が剥離した温度から、樹脂の内部応力(σ0)を導出することができる。 In this method, an epoxy resin is applied to a sample and cured, and then the sample is cooled, whereby a peeling force is applied to the end face of the thin film due to internal stress of the resin generated by the cooling, thereby promoting peeling. At this time, the internal stress (σ 0 ) of the resin can be derived from the temperature at which the thin film peeled by measuring the relationship between the internal stress of the resin and the temperature in advance.

さらに、剥離時に放出されるエネルギーが樹脂層に保存されたエネルギーにほぼ等しいと仮定すると、樹脂層の厚さ(h)が薄膜の厚さより十分厚い場合には、薄膜に加えられる応力強度(剥離強度=Kapp)が次式により導出される。
Kapp=σ0・(h/2)1/2 (1)
Furthermore, assuming that the energy released at the time of peeling is almost equal to the energy stored in the resin layer, if the thickness (h) of the resin layer is sufficiently thicker than the thickness of the thin film, the stress intensity applied to the thin film (peeling) Intensity = Kapp) is derived by the following equation.
Kapp = σ 0 · (h / 2) 1/2 (1)

この手法は、比較的簡単に試験を行うことができ、また薄膜の剥離強度の定量化が可能であるという特徴を有する。   This technique is characterized in that the test can be performed relatively easily and the peel strength of the thin film can be quantified.

ここで、養生槽の内部温度を変化させ、供試体に取り付けられた低温用AEセンサから出力されるAE発生数と、温度センサの出力値とを基にして、供試体のひびわれ発生を評価することで、微細ひびわれ発生開始温度および低温ひび割れ発生温度を特定できる技術が提案されている(例えば、特許文献1参照)。
特開2002−082102号公報
Here, the internal temperature of the curing tank is changed, and the occurrence of cracks in the specimen is evaluated based on the number of AEs generated from the low-temperature AE sensor attached to the specimen and the output value of the temperature sensor. Thus, a technique has been proposed that can specify the fine crack initiation temperature and the low temperature crack initiation temperature (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-082102

しかしながら、上記のm−ELT法による測定方法では、薄膜が剥離する際の判定を目視観察により行うため、剥離が発生する瞬間の温度を正確に決定することが困難であり、かつ、判定結果にばらつきが大きいという問題がある。このため、この方法では高い定量精度を得ることは困難である。   However, in the measurement method using the m-ELT method described above, since the determination when the thin film is peeled is performed by visual observation, it is difficult to accurately determine the temperature at the moment when the peeling occurs, and the determination result is There is a problem that the variation is large. For this reason, it is difficult to obtain high quantitative accuracy by this method.

本発明は、以上説明した問題点を解決するためになされたものである。その目的は、剥離温度判定のばらつきを低減し、薄膜の剥離強度を高精度で導出することである。   The present invention has been made to solve the above-described problems. The purpose is to reduce the variation in the peeling temperature judgment and derive the peeling strength of the thin film with high accuracy.

本発明は、薄膜が積層された基板の薄膜側に樹脂層が形成されたものを試料とし、試料を冷却するための冷却手段および冷却温度を検出する検出手段と、薄膜が基板あるいは隣接した層から剥離する際に発生するAE(アコースティック・エミッション)信号を検出する検出手段とを有することを特徴とする薄膜剥離強度測定装置を提供する。この測定装置によれば、AE信号検出手段によって、AE信号、すなわち、薄膜の剥離にともなって開放されるエネルギーの一部である弾性波が高精度に検出できるため、目視観察による場合に比べて薄膜剥離強度を高精度に導出することが可能になる。   The present invention uses a sample in which a resin layer is formed on the thin film side of a substrate on which a thin film is laminated, a cooling means for cooling the sample and a detection means for detecting a cooling temperature, and a thin film on the substrate or an adjacent layer. And a detecting means for detecting an AE (acoustic emission) signal generated at the time of peeling from the film. According to this measuring apparatus, the AE signal, that is, the elastic wave that is a part of the energy released as the thin film is peeled can be detected with high accuracy by the AE signal detection means. It becomes possible to derive the thin film peeling strength with high accuracy.

また、本発明において、AE信号検出手段は試料に取り付けられた状態で使用することが望ましい。このように試料に取り付けた状態とすることで、高感度な検出が可能となる。   In the present invention, it is desirable that the AE signal detection means be used while attached to the sample. Such a state of being attached to the sample enables highly sensitive detection.

さらに、本発明において、AE信号が発生した温度を記録する手段を有することが望ましく、また、AE信号が発生した温度から薄膜の剥離強度を算出するための演算部を備えるように構成されることが望ましい。これにより、薄膜の剥離強度を容易に定量化することができる。   Furthermore, in the present invention, it is desirable to have a means for recording the temperature at which the AE signal is generated, and it is configured to include an arithmetic unit for calculating the peel strength of the thin film from the temperature at which the AE signal is generated. Is desirable. Thereby, the peel strength of the thin film can be easily quantified.

本発明によれば、薄膜が剥離する温度を高精度に判定することができ、高精度な剥離強度の導出が可能になる。   According to the present invention, the temperature at which the thin film peels can be determined with high accuracy, and the peeling strength can be derived with high accuracy.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、各図において共通する部分には、同一の符号が付されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure.

図1および図2は、本発明による薄膜剥離強度測定装置の概略図を示したものである。薄膜剥離強度測定装置は、試料1から発生するAE信号を検出するためのAEセンサ21および試料1を冷却するための冷却装置41および冷却温度を検出する温度検出器31を有し、試料1は、AEセンサ21が取り付けられた状態で冷却装置41内にて保持され冷却される。   1 and 2 are schematic views of a thin film peel strength measuring apparatus according to the present invention. The thin film peel strength measuring device has an AE sensor 21 for detecting an AE signal generated from the sample 1, a cooling device 41 for cooling the sample 1, and a temperature detector 31 for detecting a cooling temperature. The AE sensor 21 is attached and cooled in the cooling device 41.

試料1は、薄膜12が積層された基板11の薄膜12側に樹脂13を形成することにより用意される。なお、薄膜12は基板11上に複数の層として形成されていてもよい。この場合、薄膜12の剥離は、複数の層の最も弱い界面において発生する。   The sample 1 is prepared by forming a resin 13 on the thin film 12 side of the substrate 11 on which the thin film 12 is laminated. The thin film 12 may be formed on the substrate 11 as a plurality of layers. In this case, peeling of the thin film 12 occurs at the weakest interface of the plurality of layers.

樹脂13は、内部応力と温度の関係がわかっていることが必要である。また、剥離が想定される薄膜12よりも破壊靱性が高いこと、接着力が高いことが望まれる。樹脂13は、例えば、エポキシ樹脂が用いられるが、前記特性を有するものであれば、特にエポキシ樹脂に限定されるものではない。   The resin 13 needs to know the relationship between internal stress and temperature. Moreover, it is desired that the fracture toughness is higher than that of the thin film 12 that is supposed to be peeled off and the adhesive strength is high. For example, an epoxy resin is used as the resin 13, but the resin 13 is not particularly limited to the epoxy resin as long as it has the above characteristics.

試料1の作製は、例えば、下記の手順により行われる。薄膜12が積層された基板11の薄膜12側に、エポキシ樹脂を均一に塗布した後、オーブンまたはホットプレートにて硬化させる。樹脂13の膜厚は、剥離が想定される薄膜12の膜厚や剥離強度によって異なるが、通常、10μmから1000μm程度である。なお、エポキシ樹脂の硬化は、使用するエポキシ樹脂の特性により、所定の硬化温度および硬化時間によって行われる。樹脂13の硬化後、例えば、ダイシングによって10から20mm□程度に切り出したものを試料1とする。   The sample 1 is manufactured, for example, according to the following procedure. An epoxy resin is uniformly applied to the thin film 12 side of the substrate 11 on which the thin film 12 is laminated, and then cured in an oven or a hot plate. The film thickness of the resin 13 varies depending on the film thickness and the peeling strength of the thin film 12 that is supposed to be peeled, but is usually about 10 μm to 1000 μm. The epoxy resin is cured at a predetermined curing temperature and curing time depending on the characteristics of the epoxy resin used. After the resin 13 is cured, for example, a sample 1 is cut into about 10 to 20 mm □ by dicing.

次に、試料1にAE信号検出手段を取り付ける。このAE信号検出手段としては、市販のいわゆるAEセンサ21を使用することができる。本実施形態では、AE信号検出手段として、AEセンサ21を試料1の基板11側表面に接触させて取り付ける。   Next, AE signal detection means is attached to the sample 1. A commercially available so-called AE sensor 21 can be used as the AE signal detection means. In the present embodiment, as the AE signal detection means, the AE sensor 21 is attached in contact with the surface of the sample 1 on the substrate 11 side.

なお、AEセンサ21は、試料1の樹脂13側表面に取り付けても良く、また試料1の任意の位置に取り付けることができるが、AEセンサ21の感度が高くなる側の表面および位置に取り付けることが望ましい。   The AE sensor 21 may be attached to the resin 13 side surface of the sample 1 and can be attached to any position of the sample 1, but it is attached to the surface and position on the side where the sensitivity of the AE sensor 21 is increased. Is desirable.

また、AEセンサ21は、両面テープや粘着性のあるもの、あるいはホットメルト型の固形ワックス等を介して試料1に接触させ、固定する。なお、固定の手段は、前記方法に限定されるものではないが、試料1の冷却の際にAEセンサ21のノイズレベルが増大せず、かつ、AEセンサ21の感度が高くなる手段が望ましい。   Further, the AE sensor 21 is fixed by being brought into contact with the sample 1 via a double-sided tape, an adhesive, or a hot-melt solid wax. The fixing means is not limited to the above method, but it is desirable that the noise level of the AE sensor 21 does not increase when the sample 1 is cooled and the sensitivity of the AE sensor 21 is increased.

次に、AEセンサ21を取り付けた試料1を冷却装置41に入れ、室温から徐々に冷却する。冷却装置41内の温度は、例えば、熱電対により検出される。なお、試料1は、例えば、−2℃/分のように一定速度で冷却することが望ましく、冷却装置41には、前述のような温度制御機構51を備えることが望ましい。   Next, the sample 1 to which the AE sensor 21 is attached is placed in the cooling device 41 and gradually cooled from room temperature. The temperature in the cooling device 41 is detected by, for example, a thermocouple. The sample 1 is desirably cooled at a constant rate, for example, −2 ° C./min, and the cooling device 41 is desirably provided with the temperature control mechanism 51 as described above.

試料1が冷却されると樹脂13は熱収縮を開始し、冷却温度に応じた内部応力が発生する。この冷却による樹脂13の内部応力発生によって薄膜12の端面に引き剥がし力が発生し、薄膜12の剥離が生じる。この薄膜12の剥離にともなって発生するAE信号を、AEセンサ21によって検出する。   When the sample 1 is cooled, the resin 13 starts to shrink and an internal stress corresponding to the cooling temperature is generated. Due to the internal stress of the resin 13 generated by this cooling, a peeling force is generated on the end face of the thin film 12, and the thin film 12 is peeled off. An AE signal generated with the peeling of the thin film 12 is detected by the AE sensor 21.

AE信号の検出にあたっては、剥離によって発生したAE信号の振動波形をAEセンサ21によって電気信号に変換した後、増幅器52によって増幅し、さらに電気信号に含まれるノイズをフィルタ53によって除去することが望ましい。ノイズが除去された電気信号は、弁別器54によって、ある閾値以上のAE信号のみを取り出すよう設定することが望ましい。なお、増幅の程度、フィルタの範囲および弁別器の閾値の設定は、試料に応じて適切に設定されることが望ましい。   In detecting the AE signal, it is desirable that the vibration waveform of the AE signal generated by the separation is converted into an electric signal by the AE sensor 21, amplified by the amplifier 52, and further, noise included in the electric signal is removed by the filter 53. . The electrical signal from which noise has been removed is preferably set so that the discriminator 54 extracts only an AE signal having a certain threshold value or more. It should be noted that the degree of amplification, the filter range, and the threshold value of the discriminator are desirably set appropriately according to the sample.

薄膜12の剥離によって発生したAE信号は、AE信号が発生した温度とともに記録装置55に記録されることが望ましい。さらに、剥離が発生した温度を演算器56に取り込むことによって、樹脂13の内部応力と温度の関係および式(1)より、薄膜12の剥離強度を容易に定量化することができる。   The AE signal generated by the peeling of the thin film 12 is preferably recorded in the recording device 55 together with the temperature at which the AE signal is generated. Furthermore, by taking the temperature at which the peeling occurred into the computing unit 56, the peeling strength of the thin film 12 can be easily quantified from the relationship between the internal stress of the resin 13 and the temperature and Equation (1).

次に、本発明の実施例を説明する。
まず、厚さ725μmのシリコン基板上に、厚さ600nmの二酸化珪素、厚さ50nmの窒素添加シリコンカーバイド、厚さ200nmの低誘電率絶縁膜、厚さ600nmの二酸化珪素を順次積層した。低誘電率絶縁膜は、従来絶縁膜として用いられてきた二酸化珪素に比べて、密着性が低いことが知られている。次に、最表面の二酸化珪素の上にエポキシ樹脂を塗布し、厚さがほぼ均一に120μmとなるようにスキージ等の治具を用いて調節した後、オーブンにて120℃、10分の硬化処理を行った。最後に、ダイシングにて10mm□に切り出すことにより、剥離強度測定の試料とした。
Next, examples of the present invention will be described.
First, 600 nm thick silicon dioxide, 50 nm thick nitrogen-added silicon carbide, 200 nm thick low dielectric constant insulating film, and 600 nm thick silicon dioxide were sequentially stacked on a 725 μm thick silicon substrate. It is known that the low dielectric constant insulating film has lower adhesion than silicon dioxide that has been used as an insulating film. Next, an epoxy resin is applied on the outermost silicon dioxide, adjusted using a jig such as a squeegee so that the thickness becomes 120 μm substantially uniformly, and then cured in an oven at 120 ° C. for 10 minutes. Processed. Finally, it was cut into 10 mm □ by dicing to prepare a sample for measuring peel strength.

次に、試料のシリコン基板側に、カプトン両面テープでAEセンサを固定した。AEセンサは、直径5mmの小型タイプのものを使用した。AEセンサからの信号は、増幅器にて50dB増幅され、50kHzの高域通過フィルタを通った後、弁別器にて閾値400mV以上の信号が記録されるように設定した。   Next, the AE sensor was fixed to the silicon substrate side of the sample with Kapton double-sided tape. As the AE sensor, a small type having a diameter of 5 mm was used. The signal from the AE sensor was amplified by an amplifier by 50 dB, passed through a 50 kHz high-pass filter, and then set so that a signal with a threshold of 400 mV or more was recorded by a discriminator.

AEセンサを取り付けた試料を温度コントローラがついた冷却装置内に設置し室温から−2℃/分にて温度を低下させると、−18℃付近にて剥離にともなうAE信号が検出された。この際、AE信号は温度とともに記録される。   When the sample to which the AE sensor was attached was placed in a cooling device equipped with a temperature controller and the temperature was decreased from room temperature at −2 ° C./min, an AE signal accompanying peeling was detected at around −18 ° C. At this time, the AE signal is recorded together with the temperature.

図3および図4は、上記の方法で測定した2つの試料(それぞれ、試料A、試料B)のAE信号の検出結果を示したものである。横軸は温度、縦軸は検出されたAE信号の発生数である。   3 and 4 show the detection results of the AE signals of two samples (sample A and sample B, respectively) measured by the above method. The horizontal axis is temperature, and the vertical axis is the number of detected AE signals.

また、図5は、横軸を温度、縦軸を積算したAE信号の発生数とし、試料Aと試料Bの結果を同一のグラフに描画したものである。試料A、試料Bともに−18℃付近で最初のAE信号が発生していることがわかる。しかし、試料AではAE信号の発生が−18℃から−20℃の狭い範囲に集中しているのに対し、試料Bでは−19℃から−26℃の広い範囲にわたって発生している。   In FIG. 5, the horizontal axis represents temperature, and the vertical axis represents the number of generated AE signals, and the results of sample A and sample B are plotted on the same graph. It can be seen that the first AE signal is generated at around −18 ° C. for both sample A and sample B. However, in the sample A, the generation of the AE signal is concentrated in a narrow range of −18 ° C. to −20 ° C., whereas in the sample B, the generation of the AE signal is generated over a wide range of −19 ° C. to −26 ° C.

特に試料Bの場合、AE信号が多く発生している温度が−25℃付近であり、薄膜の剥離が大きく進展しているのはこの−25℃付近であると推定される。このため、従来の目視観察による剥離判定方法で試料Aと試料Bを判定した場合、剥離温度はそれぞれ−18℃付近と−25℃付近となる可能性が高く、大きな誤差が生じる。一方、AE信号の検出結果を用いた場合、剥離温度は試料A、試料Bでそれぞれ−18℃、−19℃となり、誤差は非常に小さく高精度である。   In particular, in the case of Sample B, the temperature at which many AE signals are generated is around −25 ° C., and it is estimated that the peeling of the thin film is greatly advanced at around −25 ° C. For this reason, when the sample A and the sample B are determined by the conventional peeling determination method by visual observation, the peeling temperatures are likely to be around −18 ° C. and around −25 ° C., respectively, and a large error occurs. On the other hand, when the detection result of the AE signal is used, the peeling temperature is −18 ° C. and −19 ° C. for the sample A and the sample B, respectively, and the error is very small and highly accurate.

エポキシ樹脂の内部応力と温度の関係および式(1)を用いると、本実施例における薄膜の剥離強度は、試料A、試料Bでそれぞれ、0.273MPa・m1/2、0.274MPa・m1/2、となり、薄膜の剥離強度が高精度に検出できることがわかる。 Using the relationship between the internal stress and temperature of the epoxy resin and Equation (1), the peel strength of the thin film in this example is 0.273 MPa · m 1/2 and 0.274 MPa · m for Sample A and Sample B, respectively. It can be seen that the peel strength of the thin film can be detected with high accuracy.

以上説明したように、本発明による薄膜剥離強度測定装置および測定方法を用いれば、高精度な薄膜剥離強度の導出が可能となる。   As described above, by using the thin film peel strength measuring device and measurement method according to the present invention, it is possible to derive the thin film peel strength with high accuracy.

なお、上述する各実施の形態は、本発明の好適な実施の形態であり、本発明の要旨を逸脱しない範囲内において種々変更実施が可能である。例えば、薄膜剥離強度測定装置の機能を実現するためのプログラムを装置に読込ませて実行することにより装置の機能を実現する処理を行ってもよい。さらに、そのプログラムは、コンピュータ読み取り可能な記録媒体であるCD−ROMまたは光磁気ディスクなどを介して、または伝送媒体であるインターネット、電話回線などを介して伝送波により他のコンピュータシステムに伝送されてもよい。   Each of the above-described embodiments is a preferred embodiment of the present invention, and various modifications can be made without departing from the scope of the present invention. For example, you may perform the process which implement | achieves the function of an apparatus by making a device read and run the program for implement | achieving the function of a thin film peeling strength measuring apparatus. Further, the program is transmitted to another computer system by a transmission wave via a computer-readable recording medium such as a CD-ROM or a magneto-optical disk, or via a transmission medium such as the Internet or a telephone line. Also good.

本発明の実施の形態の薄膜剥離強度測定装置を示す第1の図である。It is a 1st figure which shows the thin film peeling strength measuring apparatus of embodiment of this invention. 本発明の実施の形態の薄膜剥離強度測定装置を示す第2の図である。It is a 2nd figure which shows the thin film peeling strength measuring apparatus of embodiment of this invention. 本発明の実施例における試料AのAE信号検出結果を示す図である。It is a figure which shows the AE signal detection result of the sample A in the Example of this invention. 本発明の実施例における試料BのAE信号検出結果を示す図である。It is a figure which shows the AE signal detection result of the sample B in the Example of this invention. 本発明の実施例における試料Aおよび試料Bの積算AE発生数を示す図である。It is a figure which shows the integrated AE generation | occurrence | production number of the sample A and the sample B in the Example of this invention.

符号の説明Explanation of symbols

1 試料
11 基板
12 薄膜
13 樹脂
21 AEセンサ
31 温度検出器
41 冷却装置
51 温度制御機構
52 増幅器
53 フィルタ
54 弁別器
55 記憶装置
56 演算器
DESCRIPTION OF SYMBOLS 1 Sample 11 Board | substrate 12 Thin film 13 Resin 21 AE sensor 31 Temperature detector 41 Cooling device 51 Temperature control mechanism 52 Amplifier 53 Filter 54 Discriminator 55 Memory | storage device 56 Calculator

Claims (6)

薄膜が積層された基板の前記薄膜側に樹脂層が形成されたものを試料とし、前記試料を冷却するための冷却手段および冷却温度を検出する検出手段と、前記薄膜が基板あるいは隣接した層から剥離する際に発生するAE信号を検出する検出手段と、を備えることを特徴とする薄膜剥離強度測定装置。   A sample in which a resin layer is formed on the thin film side of a substrate on which a thin film is laminated, a cooling means for cooling the sample, a detection means for detecting a cooling temperature, and the thin film from the substrate or an adjacent layer And a detecting means for detecting an AE signal generated at the time of peeling. 前記検出手段は、前記試料に取り付けられたAE信号検出手段を使用することを特徴とする請求項1記載の薄膜剥離強度測定装置。   2. The thin film peel strength measuring apparatus according to claim 1, wherein the detecting means uses an AE signal detecting means attached to the sample. 前記AE信号が発生した温度を検出する手段と、前記温度を記録する手段とを備えることを特徴とする請求項1または2記載の薄膜剥離強度測定装置。   3. The thin film peel strength measuring device according to claim 1, further comprising means for detecting a temperature at which the AE signal is generated and means for recording the temperature. 前記AE信号が発生した温度から薄膜の剥離強度を算出するための演算部を備えることを特徴とする請求項1から3のいずれか1項に記載の薄膜剥離強度測定装置。   The thin film peel strength measuring apparatus according to any one of claims 1 to 3, further comprising an arithmetic unit for calculating a peel strength of the thin film from a temperature at which the AE signal is generated. 薄膜が積層された基板の前記薄膜側に樹脂層が形成されたものを試料とし、前記試料を冷却するための冷却方法および冷却温度を検出するステップと、前記薄膜が基板あるいは隣接した層から剥離する際に発生するAE信号を検出するステップと、を有することを特徴とする薄膜剥離強度測定方法。   Using a thin film laminated substrate with a resin layer formed on the thin film side as a sample, a cooling method for cooling the sample and a step of detecting a cooling temperature, and the thin film is peeled off from the substrate or an adjacent layer And a step of detecting an AE signal generated when the thin film peel strength is measured. コンピュータシステムに請求項1から4のいずれか1項に記載の機能を実現させることを特徴とするプログラム。   A program for causing a computer system to realize the function according to any one of claims 1 to 4.
JP2006318799A 2006-11-27 2006-11-27 Thin film exfoliation strength measuring device, measuring method and program Pending JP2008134088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318799A JP2008134088A (en) 2006-11-27 2006-11-27 Thin film exfoliation strength measuring device, measuring method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318799A JP2008134088A (en) 2006-11-27 2006-11-27 Thin film exfoliation strength measuring device, measuring method and program

Publications (1)

Publication Number Publication Date
JP2008134088A true JP2008134088A (en) 2008-06-12

Family

ID=39559042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318799A Pending JP2008134088A (en) 2006-11-27 2006-11-27 Thin film exfoliation strength measuring device, measuring method and program

Country Status (1)

Country Link
JP (1) JP2008134088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572034A (en) * 2014-10-30 2016-05-11 现代自动车株式会社 Process for separating electrode for membrane-electrode assembly of fuel cell and apparatus therefor
JP2020063986A (en) * 2018-10-17 2020-04-23 日本製鉄株式会社 Measurement method and measuring device of ae wave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277664A (en) * 1988-06-29 1990-03-16 Toyo Electric Mfg Co Ltd Method for diagnosing insulation of winding of electric machine
JPH03243846A (en) * 1990-02-21 1991-10-30 Nec Corp On-the-spot detector for peeling of film
JP2003302318A (en) * 1992-05-18 2003-10-24 Hitachi Ltd Method for indicating resin material
JP2006120828A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Superconducting coil and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277664A (en) * 1988-06-29 1990-03-16 Toyo Electric Mfg Co Ltd Method for diagnosing insulation of winding of electric machine
JPH03243846A (en) * 1990-02-21 1991-10-30 Nec Corp On-the-spot detector for peeling of film
JP2003302318A (en) * 1992-05-18 2003-10-24 Hitachi Ltd Method for indicating resin material
JP2006120828A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Superconducting coil and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572034A (en) * 2014-10-30 2016-05-11 现代自动车株式会社 Process for separating electrode for membrane-electrode assembly of fuel cell and apparatus therefor
CN105572034B (en) * 2014-10-30 2019-07-02 现代自动车株式会社 For separating the method and device thereof of the electrode of the membrane electrode assembly of fuel cell
US10749197B2 (en) 2014-10-30 2020-08-18 Hyundai Motor Company Process for separating electrode for membrane-electrode assembly of fuel cell and apparatus therefor
JP2020063986A (en) * 2018-10-17 2020-04-23 日本製鉄株式会社 Measurement method and measuring device of ae wave
JP7070319B2 (en) 2018-10-17 2022-05-18 日本製鉄株式会社 AE wave measurement method and measuring device

Similar Documents

Publication Publication Date Title
JP4674363B2 (en) Abnormal state detection method and sheet-like piezoelectric sensor
CN104089727B (en) The high performance pressure sensor chip and manufacture method of integrated temperature
TW201510536A (en) Probe guide plate, semiconductor inspection apparatus and method of manufacturing probe guide plate
Xiao et al. Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model
WO2001090687A3 (en) Monitoring temperature and sample characteristics using rotating compensator ellipsometer
JP2008134088A (en) Thin film exfoliation strength measuring device, measuring method and program
JP2009258079A (en) Acoustic emission signal detection device, detection method, and thin-film peel strength measuring device
CN108807229B (en) Method for monitoring bonding machine table
CN102714048A (en) Breakdown prediction device, breakdown prediction method, and breakdown prediction program
Lin et al. Investigation of acoustic emission source localization performance on the plate structure using piezoelectric fiber composites
Xiao et al. Evaluation and criterion determination of the low-k thin film adhesion by the surface acoustic waves with cohesive zone model
JP2006170707A (en) Pressure sensor and its manufacturing method
JP2005214918A (en) Device for evaluating adhesive force of laminated component, and its method
Wang et al. Heavy aluminum wire wedge bonding strength prediction using a transducer driven current signal and an artificial neural network
Sankarasubramanian et al. High-temperature interfacial adhesion strength measurement in electronic packaging using the double cantilever beam method
CN105653784B (en) The method of the complex parameter of characterization film adherability is determined based on cohesive zone model
Salowitz et al. Structural health monitoring of high temperature composites
CN111279173A (en) Method for testing semiconductor device and method for manufacturing semiconductor device
Reuther et al. Acoustic detection of micro-cracks in small electronic devices
CN111959095B (en) Online health monitoring method for fiber reinforced metal laminated plate material
JP2009258077A (en) Acoustic emission sensor, cooling device, and manufacturing method of the acoustic emission sensor
JPH0612320B2 (en) Device and method for evaluating mechanical properties of thin film
KR102206920B1 (en) Circuit bonding test board and test method of built-in circuit products
JP2006294904A (en) Method for evaluating delamination characteristics
Palavesam et al. A novel test method for robustness assessment of very small, functional ultra-thin chips embedded in flexible foils

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025