JP2006120828A - Superconducting coil and its manufacturing method - Google Patents

Superconducting coil and its manufacturing method Download PDF

Info

Publication number
JP2006120828A
JP2006120828A JP2004306642A JP2004306642A JP2006120828A JP 2006120828 A JP2006120828 A JP 2006120828A JP 2004306642 A JP2004306642 A JP 2004306642A JP 2004306642 A JP2004306642 A JP 2004306642A JP 2006120828 A JP2006120828 A JP 2006120828A
Authority
JP
Japan
Prior art keywords
insulating sheet
superconducting wire
superconducting
sheet
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004306642A
Other languages
Japanese (ja)
Other versions
JP4607540B2 (en
Inventor
Shoichi Yokoyama
彰一 横山
Shigenori Kuroda
成紀 黒田
Akihiko Ariyoshi
昭彦 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004306642A priority Critical patent/JP4607540B2/en
Publication of JP2006120828A publication Critical patent/JP2006120828A/en
Application granted granted Critical
Publication of JP4607540B2 publication Critical patent/JP4607540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting coil effectively prevented from the generation of quenching in a superconducting line by reducing separation or breakage between a filler, for filling the gap between the superconducting line and an insulating sheet. <P>SOLUTION: The superconducting coil comprises a superconducting line 3 wound across a plurality of layers, insulating sheets 4, 5 interposed between respective layers of the superconducting line 3 and consisting of an electrically insulating resin sheet, and an adhesive resin 6 filled between the superconducting line 3 and the insulating sheets 4, 5. Easy adhesion treatment is applied on the surface of the insulating sheets 4, 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数層にわたって巻回された超電導線の周りを接着性樹脂で充填固定した構造の超電導コイル、およびその製造方法に関する。   The present invention relates to a superconducting coil having a structure in which a periphery of a superconducting wire wound over a plurality of layers is filled and fixed with an adhesive resin, and a method of manufacturing the same.

従来の超電導コイルには、巻枠の周りに複数層にわたって超電導線を巻回しつつ、超電導線と巻枠との間、および超電導線の各層間に絶縁シートをそれぞれ介在し、かつ、超電導線と絶縁シートとの間をエポキシ樹脂接着剤などの接着性樹脂を充填して一体化した構成のものがある。   In a conventional superconducting coil, while winding a superconducting wire over a plurality of layers around a winding frame, an insulating sheet is interposed between the superconducting wire and the winding frame, and between each layer of the superconducting wire, and the superconducting wire There is a configuration in which an insulating resin such as an epoxy resin adhesive is filled between the insulating sheets and integrated.

ここに、上記の絶縁シートは、径方向に重なり合う超電導線が線間の窪みに落ち込んで巻き付け状態が不整列になるのを防止するとともに、超電導線の各層間や巻枠との間に十分な電気絶縁性を確保するなどのために設けられている。そして、この場合の絶縁シートとしては、従来、比較的低価格なポリエステルやポリエチレン等からなる電気絶縁性の樹脂シートが使用されている。   Here, the insulating sheet described above prevents the superconducting wires overlapping in the radial direction from falling into the depressions between the wires and causing the winding state to become misaligned, and is sufficient between the layers of the superconducting wires and the winding frame. It is provided to ensure electrical insulation. As the insulating sheet in this case, conventionally, an electrically insulating resin sheet made of polyester, polyethylene, or the like, which is relatively inexpensive, has been used.

また、超電導線と絶縁シートとの間を接着性樹脂で充填するのは、超電導線の超電導状態が破壊される現象である、いわゆるクエンチを防止するためである。すなわち、超電導コイルの冷却時にはその構成部材の熱収縮差によって冷却応力が発生し、また、超電導コイルの励磁時には電磁応力が発生する。このとき、これらの応力によって超電導線が簡単に動くと、その機械的な動きに伴う発熱によって超電導線が局部的に臨界温度以上になってクエンチするので、超電導線が容易に動かないように接着性樹脂で強固に固定している。   The reason why the space between the superconducting wire and the insulating sheet is filled with the adhesive resin is to prevent so-called quenching, which is a phenomenon that the superconducting state of the superconducting wire is destroyed. That is, when the superconducting coil is cooled, a cooling stress is generated due to the difference in thermal contraction of the constituent members, and when the superconducting coil is excited, an electromagnetic stress is generated. At this time, if the superconducting wire easily moves due to these stresses, the superconducting wire locally becomes above the critical temperature and quenches due to the heat generated by the mechanical movement, so the superconducting wire does not move easily. It is firmly fixed with an adhesive resin.

一方、従来技術では、超電導線と絶縁シートとの間を接着性樹脂で充填する代わりに、超電導線の表面に接着性被膜を施し、この接着性被膜により超電導線を絶縁シートや巻枠に接着固定することにより超電導線の動きを抑制してクエンチ発生を防止するようにしたものも提案されている(例えば、特許文献1等参照)。   On the other hand, in the prior art, instead of filling the space between the superconducting wire and the insulating sheet with an adhesive resin, an adhesive film is applied to the surface of the superconducting wire, and the superconducting wire is bonded to the insulating sheet or the winding frame by this adhesive film. There has also been proposed one that suppresses the occurrence of quenching by suppressing the movement of the superconducting wire by fixing (see, for example, Patent Document 1).

特開平10−125527号公報(2〜3頁、図1)JP-A-10-125527 (2-3 pages, FIG. 1)

ところで、超電導線と絶縁シートとの間を接着性樹脂で充填した従来構成のものは、超電導線と充填材との間の界面の接着強度が大きくても、絶縁シートと接着性樹脂との間の接着強度が小さい。そのため、上述した冷却応力や電磁応力が発生したときには両者間の界面が剥離したり割れが発生し、そのときの発熱が絶縁シートに近接する超電導線の表面に伝わって超電導線がクエンチし易いという問題がある。   By the way, in the conventional configuration in which the space between the superconducting wire and the insulating sheet is filled with the adhesive resin, even if the adhesive strength at the interface between the superconducting wire and the filler is large, the space between the insulating sheet and the adhesive resin is large. The adhesive strength of is small. Therefore, when the above-described cooling stress or electromagnetic stress occurs, the interface between the two peels off or cracks occur, and the heat generated at that time is transmitted to the surface of the superconducting wire close to the insulating sheet, and the superconducting wire is easily quenched. There's a problem.

また、特許文献1に記載されている従来技術のものは、超電導線と絶縁シートとの間に冷却通路が確保されているので超電導線に対する冷却能は高くなるものの、超電導線と絶縁シートとの間が接着性樹脂で充填されてない分だけ超電導コイル全体の固定強度が弱く、冷却応力や電磁応力が生じたとき超電導線が容易に動いてクエンチが生じ易い。また、超電導線の表面に接着性被膜を施していても、絶縁シートとの間の接着強度が高くなった分けではないので、冷却応力や電磁応力が発生したときには接着性被膜と絶縁シートとの間の界面が容易に剥離する。このため、超電導線の周りに冷却通路を確保して冷却能を高めただけでは超電導線のクエンチ発生を十分に抑制することができない。   Moreover, although the thing of the prior art described in patent document 1 has a cooling passage between the superconducting wire and the insulating sheet, the cooling capacity for the superconducting wire is improved, but the superconducting wire and the insulating sheet The fixing strength of the entire superconducting coil is weak as much as the gap is not filled with the adhesive resin, and the superconducting wire easily moves and quenches easily when cooling stress or electromagnetic stress occurs. In addition, even if an adhesive coating is applied to the surface of the superconducting wire, the adhesive strength between the insulating sheet and the insulating sheet is not high, so when cooling stress or electromagnetic stress occurs, the adhesive coating and the insulating sheet The interface between them is easily peeled off. For this reason, quenching of the superconducting wire cannot be sufficiently suppressed only by securing a cooling passage around the superconducting wire and improving the cooling ability.

本発明は、上記の課題を解決するためになされたもので、超電導線と絶縁シートとの間を接着性樹脂で充填する場合において、絶縁シートと接着性樹脂間の接着強度を従来よりも大幅に高めることにより、冷却応力や電磁応力が発生したときでも超電導線が容易に動かないようにして、クエンチが発生し難く、しかも、比較的低コストで実現することが可能な超電導コイルおよびその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In the case where the space between the superconducting wire and the insulating sheet is filled with an adhesive resin, the adhesive strength between the insulating sheet and the adhesive resin is significantly larger than the conventional one. Therefore, the superconducting coil is manufactured so that the superconducting wire does not move easily even when cooling stress or electromagnetic stress is generated, it is difficult to cause quenching, and it can be realized at a relatively low cost. It aims to provide a method.

上記の目的を達成するために、本発明は、複数層にわたって巻回された超電導線と、この超電導線の各層間に介在される電気絶縁性の樹脂シートからなる絶縁シートと、上記超電導線と絶縁シートとの間に充填される接着性樹脂とを含む超電導コイルにおいて、絶縁シートの表面は接着性向上のための表面処理(すなわち、易接着処理)が施されていることを特徴としている。   In order to achieve the above object, the present invention provides a superconducting wire wound over a plurality of layers, an insulating sheet made of an electrically insulating resin sheet interposed between the layers of the superconducting wire, and the superconducting wire. In a superconducting coil including an adhesive resin filled between an insulating sheet and the insulating sheet, the surface of the insulating sheet is subjected to a surface treatment for improving adhesion (that is, easy adhesion treatment).

本発明によれば、超電導線の各層間に易接着処理が施された絶縁シートを介在させているので、超電導線と絶縁シートとの間を接着性樹脂で充填する場合に、絶縁シートと接着性樹脂間の接着強度を従来よりも大幅に高めることができる。このため、冷却応力や電磁応力が発生したときでも接着性樹脂と絶縁シートとの界面での剥離や割れなどが生じない。したがって、絶縁シートに近接した超電導線の表面に発熱が伝わるといったことはなく、超電導線のクエンチ発生を十分に抑制することができる。   According to the present invention, since the insulating sheet subjected to the easy adhesion treatment is interposed between the layers of the superconducting wire, when the space between the superconducting wire and the insulating sheet is filled with the adhesive resin, the insulating sheet is bonded. The adhesive strength between the functional resins can be significantly increased as compared with the conventional case. For this reason, even when cooling stress or electromagnetic stress is generated, peeling or cracking at the interface between the adhesive resin and the insulating sheet does not occur. Therefore, heat is not transmitted to the surface of the superconducting wire close to the insulating sheet, and quenching of the superconducting wire can be sufficiently suppressed.

実施の形態1.
図1は本発明の実施の形態1における超電導コイルの断面図、図2は同超電導コイルの一部を拡大して示す断面図である。
Embodiment 1 FIG.
1 is a cross-sectional view of a superconducting coil according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged cross-sectional view showing a part of the superconducting coil.

この実施の形態1における超電導コイル1は、ステンレス鋼等できた糸巻円筒状の巻枠2を備える。そして、この巻枠2の胴部外周には、複数層にわたって超電導線3が巻回されている。この場合の超電導線3としては、例えば、NbTi、Nb3Sn等の線材が使用され、その表面には図示しない絶縁被膜が予め形成されている。また、巻枠2と超電導線3との間、および超電導線3の各層間にはそれぞれ絶縁シート4,5が介在されている。さらに、超電導線3と絶縁シート4,5との間にはエポキシ樹脂接着剤などの接着性樹脂6が充填されている。   The superconducting coil 1 according to the first embodiment includes a thread-wound cylindrical winding frame 2 made of stainless steel or the like. And the superconducting wire 3 is wound by the outer periphery of the trunk | drum of this winding frame 2 over several layers. As the superconducting wire 3 in this case, for example, a wire such as NbTi, Nb3Sn or the like is used, and an insulating coating (not shown) is formed on the surface thereof in advance. Insulating sheets 4 and 5 are interposed between the winding frame 2 and the superconducting wire 3 and between each layer of the superconducting wire 3. Further, an adhesive resin 6 such as an epoxy resin adhesive is filled between the superconducting wire 3 and the insulating sheets 4 and 5.

この実施の形態1の特徴として、上記の絶縁シート4,5は、ポリエチレン、ポリエステル、ポリエチレンテレフタレート(PET)等のポリオレフィン系樹脂でできた厚さ数百μm程度の樹脂シートを素材としたもので、その両面は接着性向上のための易接着処理が施されている。具体的な易接着処理として、この実施の形態1ではコロナ放電が生じる電界内を樹脂シートを通過させて表面の分子が他の樹脂と親和性をもつように改質させるコロナ放電処理が施されている。   As a feature of Embodiment 1, the insulating sheets 4 and 5 are made of a resin sheet made of polyolefin resin such as polyethylene, polyester, polyethylene terephthalate (PET) or the like and having a thickness of about several hundred μm. The both surfaces are subjected to easy adhesion treatment for improving adhesion. As a specific easy-adhesion process, in the first embodiment, a corona discharge process is performed in which a resin sheet is passed through an electric field where a corona discharge occurs to modify the surface molecules to have affinity with other resins. ing.

このように、この実施の形態1の超電導コイル1は、巻枠2と超電導線3との間、および超電導線3の各層間に易接着処理が施された絶縁シート4,5を介在させているので、超電導線3と絶縁シート4,5との隙間を接着性樹脂6で充填する場合に、絶縁シート4,5と接着性樹脂間6の接着強度を従来よりも大幅に高めることができる。したがって、冷却応力や電磁応力が発生したときでも接着性樹脂6と絶縁シート4,5との界面での剥離や割れなどが生じないので、絶縁シート4,5に近接した超電導線3の表面に発熱が伝わるといったことはなく、超電導線3のクエンチ発生を十分に抑制することができる。   As described above, the superconducting coil 1 of the first embodiment has the insulating sheets 4 and 5 subjected to the easy adhesion treatment between the winding frame 2 and the superconducting wire 3 and between each layer of the superconducting wire 3. Therefore, when the gap between the superconducting wire 3 and the insulating sheets 4 and 5 is filled with the adhesive resin 6, the adhesive strength between the insulating sheets 4 and 5 and the adhesive resin 6 can be significantly increased as compared with the prior art. . Therefore, even when cooling stress or electromagnetic stress is generated, peeling or cracking at the interface between the adhesive resin 6 and the insulating sheets 4 and 5 does not occur, so that the surface of the superconducting wire 3 close to the insulating sheets 4 and 5 is not formed. Heat generation is not transmitted, and quenching of the superconducting wire 3 can be sufficiently suppressed.

この構成の超電導コイル1の製作に際しては、まず、巻枠2の超電導線巻付側の面に易接着処理が施された絶縁シート5を施工する。なお、この実施の形態1の場合、絶縁シート5は、その両面が易接着処理されているが、巻枠2と対面する側の面は必ずしも易接着処理されていなくてもよい。   When the superconducting coil 1 having this configuration is manufactured, first, the insulating sheet 5 that has been subjected to the easy adhesion treatment is applied to the surface of the winding frame 2 on which the superconducting wire is wound. In the case of the first embodiment, the insulating sheet 5 is subjected to easy adhesion treatment on both surfaces, but the surface facing the winding frame 2 may not necessarily be subjected to easy adhesion treatment.

次に、絶縁シート5を施工した巻枠2の胴部外周に複数層にわたって超電導線3を巻き付けるが、その際、この超電導線3の各層間には、両面に易接着処理された絶縁シート4を介在させる。その後、例えば真空含漬法等によって超電導線3と絶縁シート4,5との隙間にエポキシ樹脂接着剤などの接着性樹脂6を充填して硬化させる。   Next, the superconducting wire 3 is wound over a plurality of layers around the outer periphery of the body 2 of the winding frame 2 on which the insulating sheet 5 has been applied. At that time, the insulating sheet 4 that has been subjected to easy adhesion treatment on both surfaces is provided between the layers of the superconducting wire 3. Intervene. Thereafter, an adhesive resin 6 such as an epoxy resin adhesive is filled in the gap between the superconducting wire 3 and the insulating sheets 4 and 5 by, for example, a vacuum impregnation method and cured.

この超電導コイル1の製造方法によれば、製造手順は従来と基本的に同じで、異なる点は易接着処理を施した絶縁シート4,5を使用するだけであり、それにもかかわらず超電導コイル1のクエンチ発生を有効に防止することができ、絶縁シート4,5と接着性樹脂6を溶着するなどの複雑な手法は不要である。したがって、所望の特性を有する超電導コイル1を比較的安価に製作することができる。   According to the method of manufacturing the superconducting coil 1, the manufacturing procedure is basically the same as the conventional one, except that the insulating sheets 4 and 5 subjected to the easy adhesion treatment are used. Generation of quenching can be effectively prevented, and a complicated method such as welding the insulating sheets 4 and 5 and the adhesive resin 6 is not required. Therefore, the superconducting coil 1 having desired characteristics can be manufactured at a relatively low cost.

実施の形態2.
図3はこの実施の形態2における超電導コイルの一部を示す断面図であり、図1および図2に示した実施の形態1と対応する構成部分には同一の符号を付す。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view showing a part of the superconducting coil in the second embodiment, and the same reference numerals are given to the components corresponding to those in the first embodiment shown in FIGS.

この実施の形態2における超電導コイルの特徴は、超電導線3を保持する巻枠2とこれに巻き付けられる超電導線3との間に、超電導線3側から巻枠2側に向けて、絶縁シート5およびこの絶縁シート5よりも接着強度の低い離間シート7が順次介在されていることである。   The superconducting coil according to the second embodiment is characterized in that the insulating sheet 5 is disposed between the winding 2 holding the superconducting wire 3 and the superconducting wire 3 wound around the superconducting wire 3 from the superconducting wire 3 side toward the winding frame 2 side. And the spacing sheet 7 having lower adhesive strength than the insulating sheet 5 is sequentially interposed.

この実施の形態2の場合、絶縁シート5の両面が易接着処理されているが、巻枠2と対向する側の面は必ずしも易接着処理されていなくてもよい。また、離間シート7は、絶縁シート5と同じ素材で、かつ易接着処理を施していない樹脂シートを適用することができる。この場合は絶縁シート5と離間シート7の素材が同じになるので、取り扱いが容易でコストダウンを図る上で都合がよい。なお、離間シート7としては、接着性の低いテフロン(登録商標)などの樹脂シートを使用することも可能である。   In the case of Embodiment 2, both surfaces of the insulating sheet 5 are subjected to easy adhesion treatment, but the surface on the side facing the winding frame 2 may not necessarily be subjected to easy adhesion treatment. In addition, as the separation sheet 7, a resin sheet that is the same material as the insulating sheet 5 and that has not been subjected to easy adhesion treatment can be applied. In this case, the insulating sheet 5 and the separation sheet 7 are made of the same material, which is easy to handle and convenient for cost reduction. In addition, as the separation sheet 7, a resin sheet such as Teflon (registered trademark) having low adhesiveness can be used.

このように、この実施の形態2では、巻枠7と絶縁シート5との間に離間シート7を介在させたので、超電導線3に冷却応力や電磁応力が加わっても、巻枠7と離間シート7との間で容易に滑りが生じて歪み応力が解放される。このため、超電導線3が機械的に動いて発熱することがない。しかも、その際の応力解放に伴う発熱は離間シート7や絶縁シート5によって断熱されるので、超電導線3の表面に発熱が伝わることはない。そのため、実施の形態1の場合よりもさらに超電導線のクエンチ発生を抑制することができる。   As described above, in the second embodiment, since the separation sheet 7 is interposed between the winding frame 7 and the insulating sheet 5, even if cooling stress or electromagnetic stress is applied to the superconducting wire 3, it is separated from the winding frame 7. Sliding easily occurs between the sheet 7 and the strain stress is released. For this reason, the superconducting wire 3 is not mechanically moved to generate heat. In addition, since heat generated by releasing the stress at that time is insulated by the separation sheet 7 and the insulating sheet 5, the heat is not transmitted to the surface of the superconducting wire 3. Therefore, quenching of the superconducting wire can be further suppressed than in the case of the first embodiment.

その他の構成および作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。また、その製造方法についても、巻枠2の外周に易接着処理が施された絶縁シート5を施工する前に予め離間シート7を施工しておく点を除けば実施の形態1の場合と同様であるから、詳しい説明は省略する。   Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here. Also, the manufacturing method is the same as in the case of the first embodiment except that the separation sheet 7 is applied in advance before the insulating sheet 5 subjected to the easy adhesion treatment is applied to the outer periphery of the winding frame 2. Therefore, detailed description is omitted.

なお、上記の実施の形態1,2では、絶縁シート4,5の易接着処理としてコロナ放電処理を施した場合について説明したが、易接着処理としてはこのようなコロナ放電処理に限定されるものではなく、例えば、樹脂シートを移動させながらその表面に紫外線を照射して改質させる紫外線照射処理、または樹脂シートを移動させながらその表面をガス炎であぶって表面分子に酸素結合あるいは二重結合をさせるフレーム処理、あるいは樹脂シートを移動させながらその表面に微細粒子を照射して表面を粗すブラスト処理などを適用することができる。さらに、上記の各処理の前処理として予め樹脂シートの表面を塩素系溶剤などで洗浄して不純物を除去する溶剤処理などを組み合わせることも可能である。   In the first and second embodiments, the case where the corona discharge treatment is performed as the easy adhesion treatment of the insulating sheets 4 and 5 has been described. However, the easy adhesion treatment is limited to such a corona discharge treatment. Rather, for example, ultraviolet irradiation treatment that modifies the surface of the resin sheet by irradiating it with ultraviolet rays, or the surface of the resin sheet is blown with a gas flame while moving the resin sheet to bond oxygen or double bonds to surface molecules. It is possible to apply a frame process that causes the resin sheet to move, or a blast process that roughens the surface by irradiating the surface with fine particles while moving the resin sheet. Furthermore, it is also possible to combine a solvent treatment that removes impurities by washing the surface of the resin sheet in advance with a chlorine-based solvent or the like as a pretreatment for each treatment described above.

次に、上記の実施の形態1,2で使用する易接着処理を施した絶縁シートの接着強度、およびこの絶縁シートを使用して超電導コイルを構成した場合のクエンチ抑制効果の確認実験を行った実施例について説明する。   Next, an experiment for confirming the bonding strength of the insulating sheet subjected to the easy-adhesion treatment used in the first and second embodiments and the quench suppression effect when the superconducting coil is configured using the insulating sheet was performed. Examples will be described.

実施例1.
この実施例1は、易接着処理としてコロナ放電処理を施した絶縁シートの接着強度を調べたものである。
Example 1.
This Example 1 investigated the adhesive strength of the insulating sheet which gave the corona discharge process as an easily bonding process.

測定対象となる試料は、易接着処理としてコロナ放電処理を施した一対の絶縁シートの対向面間を接着性樹脂となるべきエポキシ樹脂接着剤で接着したものを用いた。この場合の絶縁シートの厚さは100μm、横幅は25μmのものを使用している。また、この試料の接着強度の測定には、互いに接着された一対の絶縁シートを互いに引き剥がす、いわゆるピーリング試験を実施した。このピーリング試験を実施して接着強度を測定した結果を表1に示す。なお、表1には、比較のために易接着処理を施していない絶縁シートについて同様にピーリング試験を実施した結果についても記載している。

Figure 2006120828
As a sample to be measured, a sample in which the opposing surfaces of a pair of insulating sheets subjected to corona discharge treatment as an easy adhesion treatment were bonded with an epoxy resin adhesive to be an adhesive resin was used. In this case, the insulating sheet has a thickness of 100 μm and a width of 25 μm. In order to measure the adhesion strength of this sample, a so-called peeling test was performed in which a pair of insulating sheets adhered to each other was peeled off from each other. Table 1 shows the results of carrying out this peeling test and measuring the adhesive strength. For comparison, Table 1 also shows the results of performing a peeling test on an insulating sheet that has not been subjected to an easy adhesion treatment.
Figure 2006120828

この表1から明らかなように、易接着処理を施していないポリエステルやポリエチレンテレフタレートからなる絶縁シートは、接着強度が4N以下と低い値であるのに対して、易接着処理を施したポリエチレンテレフタレートからなる絶縁シートは、接着強度が15N以上になり、非処理のものに比べて接着強度が4倍以上に向上していることが理解される。   As is apparent from Table 1, the insulating sheet made of polyester or polyethylene terephthalate that has not been subjected to easy adhesion treatment has a low adhesive strength of 4 N or less, whereas polyethylene terephthalate that has undergone easy adhesion treatment has a low value. It is understood that the resulting insulating sheet has an adhesive strength of 15 N or higher, and the adhesive strength is improved by a factor of 4 or more compared to the non-treated sheet.

実施例2.
この実施例2は、易接着処理を施した絶縁シートを使用して超電導コイルを構成した場合のクエンチ抑制効果の確認実験を行ったものである。
Example 2
This Example 2 is an experiment for confirming the quench suppression effect in the case where a superconducting coil is configured using an insulating sheet subjected to easy adhesion treatment.

測定対象となる試料は、実際の超電導コイルを使用するとサイズが大き過ぎるので、模擬的に、巻付上下幅40mm、巻付厚さ30mm、奥行長100mm寸法の箱型の容器を使用し、この容器に外径が1.4mmの超電導線を複数層に積層して配列するとともに、各層間に絶縁シートを介在させた後、超電導線と絶縁シートとの隙間にエポキシ樹脂接着剤を真空含浸により充填して硬化させた。そして、この試料を液体窒素で冷却して、冷却応力による試料内部の絶縁シート界面の剥離や割れの有無をアコースティックエミッション(AE)により測定し、その経時変化を調べた。その結果を図4に示す。   Since the sample to be measured is too large when using an actual superconducting coil, a box-shaped container having a winding vertical width of 40 mm, a winding thickness of 30 mm, and a depth of 100 mm is used as a simulation. A superconducting wire with an outer diameter of 1.4 mm is laminated and arranged in a container, and after interposing an insulating sheet between each layer, an epoxy resin adhesive is vacuum impregnated between the superconducting wire and the insulating sheet. Filled and cured. Then, this sample was cooled with liquid nitrogen, and the presence or absence of peeling or cracking of the insulating sheet interface inside the sample due to cooling stress was measured by acoustic emission (AE), and the change with time was examined. The result is shown in FIG.

ここに、同図(a)は、コロナ放電処理を施したポリエチレンテレフタレートからなる絶縁シートを用いた本発明に該当する試料(以下、本発明該当試料という)の測定結果を、同図(b)は比較のために、易接着処理を施していないポリエステルからなる絶縁シートを用いた従来技術に該当する試料(以下、従来該当試料という)の測定結果をそれぞれ示している。   Here, the same figure (a) shows the measurement result of the sample applicable to this invention (henceforth this invention applicable sample) using the insulating sheet which consists of a polyethylene terephthalate which performed the corona discharge process, and the same figure (b). For comparison, each shows a measurement result of a sample corresponding to the conventional technique using an insulating sheet made of polyester not subjected to easy adhesion treatment (hereinafter referred to as a conventional corresponding sample).

図4(b)に示す従来該当試料では、初期冷却時のAE発生のカウント数が1330カウントであるのに対して、図4(a)に示す本発明該当試料では初期冷却時のAE発生のカウント数が245カウントであり、本発明該当試料のAE発生頻度は、従来該当試料の比べて1/5以下である。また、従来該当試料は、約5日間の冷却保持期間中に19回のAEが発生しているのに対して、本発明該当試料は約13日間の冷却保持期間中でもAEの発生はなく、冷却保持期間中に絶縁シートと充填材との間で剥離や割れが生じていないことが分かる。   In the conventional sample shown in FIG. 4B, the AE generation count during initial cooling is 1330, whereas in the sample corresponding to the present invention shown in FIG. 4A, AE generation during initial cooling occurs. The count number is 245 counts, and the AE occurrence frequency of the sample corresponding to the present invention is 1/5 or less than that of the conventional sample. Further, in the conventional sample, 19 AEs occurred during the cooling holding period of about 5 days, whereas in the sample of the present invention, AE did not occur during the cooling holding period of about 13 days. It can be seen that no peeling or cracking occurs between the insulating sheet and the filler during the holding period.

このように、超電導コイルに易接着処理を施した絶縁シート4,5を使用することにより、接着性樹脂6との界面での接着強度が高くなって剥離や割れが生じ難くなるので、超電導コイルのクエンチ発生を有効に防止できることが理解される。   As described above, by using the insulating sheets 4 and 5 in which the superconducting coil is subjected to the easy adhesion treatment, the adhesive strength at the interface with the adhesive resin 6 is increased, so that peeling and cracking are less likely to occur. It is understood that the occurrence of quenching can be effectively prevented.

なお、従来、樹脂シートとしてポリイミドアミド樹脂が市販されている。このポリイミドアミド樹脂は、特に易接着処理をしなくてもエポキシ樹脂接着剤などの接着性樹脂との間で比較的大きな接着強度を得ることができるが、この実施の形態1,2で使用しているポリオレフィン系樹脂に比べてはるかに高価(約一桁分の価格差)であるので、このようなポリイミドアミド樹脂を使用するのは実用上適切でない。この実施の形態1,2のように絶縁シート4,5の素材としてポリオレフィン系樹脂(例えばPET)を使用する場合、易接着処理を施しても価格はせいぜい数10%程度上昇するに留まるので実用上、極めて有益である。   Conventionally, a polyimide amide resin is commercially available as a resin sheet. Although this polyimide amide resin can obtain a relatively large adhesive strength with an adhesive resin such as an epoxy resin adhesive without particularly easy adhesion treatment, it is used in the first and second embodiments. Since it is much more expensive (price difference of about one digit) than the conventional polyolefin resin, it is not practically appropriate to use such a polyimide amide resin. When a polyolefin resin (for example, PET) is used as the material of the insulating sheets 4 and 5 as in the first and second embodiments, the price is only increased by several tens of percent even if the easy adhesion treatment is performed, so that it is practical. It is extremely useful.

本発明の実施の形態1における超電導コイルを示す断面図である。It is sectional drawing which shows the superconducting coil in Embodiment 1 of this invention. 本発明の実施の形態1における超電導コイルの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of superconducting coil in Embodiment 1 of this invention. 本発明の実施の形態2における超電導コイルの一部を示す断面図である。It is sectional drawing which shows a part of superconducting coil in Embodiment 2 of this invention. 易接着処理を施した絶縁シートと易接着処理を施さない絶縁シートをそれぞれ使用して超電導コイルを構成した場合において、絶縁シートの剥離や割れ発生頻度の経時変化をアコースティックエミッション(AE)により測定した結果を示す特性図である。In the case where a superconducting coil is configured using an insulating sheet that has been subjected to easy adhesion treatment and an insulating sheet that has not been subjected to easy adhesion treatment, the temporal change in the frequency of occurrence of peeling and cracking of the insulating sheet was measured by acoustic emission (AE). It is a characteristic view which shows a result.

符号の説明Explanation of symbols

1 超電導コイル、2 巻枠、3 超電導線、4,5 絶縁シート、6 接着性樹脂、7 離間シート。   1 superconducting coil, 2 reel, 3 superconducting wire, 4,5 insulation sheet, 6 adhesive resin, 7 spacing sheet.

Claims (4)

複数層にわたって巻回された超電導線と、この超電導線の各層間に介在された電気絶縁性の樹脂シートからなる絶縁シートと、上記超電導線と絶縁シートとの間に充填された接着性樹脂とを含む超電導コイルにおいて、上記絶縁シートは、その表面に易接着処理が施されていることを特徴とする超電導コイル。 A superconducting wire wound over a plurality of layers, an insulating sheet made of an electrically insulating resin sheet interposed between the layers of the superconducting wire, and an adhesive resin filled between the superconducting wire and the insulating sheet; A superconducting coil comprising the insulating sheet, wherein the insulating sheet is subjected to easy adhesion treatment on the surface thereof. 上記超電導線を保持する巻枠を備え、超電導線と上記巻枠と間には、超電導線側から巻枠側に向けて、上記絶縁シートおよびこの絶縁シートよりも接着強度の低い離間シートが順次介在されていることを特徴とする請求項1記載の超電導コイル。 A winding frame for holding the superconducting wire is provided, and between the superconducting wire and the winding frame, the insulating sheet and a separation sheet having a lower adhesive strength than the insulating sheet are sequentially provided from the superconducting wire side to the winding frame side. The superconducting coil according to claim 1, wherein the superconducting coil is interposed. 上記絶縁シートを構成する樹脂シートは、ポリオレフィン系の材料であることを特徴とする請求項1または請求項2記載の超電導コイル。 The superconducting coil according to claim 1 or 2, wherein the resin sheet constituting the insulating sheet is a polyolefin-based material. 巻枠に易接着処理が施された絶縁シートを施工した後、この絶縁シートの上に複数層にわたって超電導線を巻回するとともに、この超電導線の各層間に易接着処理が施された絶縁シートを介在させ、その後、上記超電導線と絶縁シートとの隙間に接着性樹脂を充填することを特徴とする超電導コイルの製造方法。 After constructing an insulating sheet with easy adhesion treatment on the winding frame, the superconducting wire is wound on the insulating sheet over a plurality of layers, and the insulating sheet is subjected to easy adhesion treatment between the layers of the superconducting wire. A method of manufacturing a superconducting coil, wherein an adhesive resin is filled in a gap between the superconducting wire and the insulating sheet.
JP2004306642A 2004-10-21 2004-10-21 Superconducting coil and manufacturing method thereof Expired - Fee Related JP4607540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306642A JP4607540B2 (en) 2004-10-21 2004-10-21 Superconducting coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306642A JP4607540B2 (en) 2004-10-21 2004-10-21 Superconducting coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006120828A true JP2006120828A (en) 2006-05-11
JP4607540B2 JP4607540B2 (en) 2011-01-05

Family

ID=36538432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306642A Expired - Fee Related JP4607540B2 (en) 2004-10-21 2004-10-21 Superconducting coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4607540B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335725A (en) * 2006-06-16 2007-12-27 Toshiba Industrial Products Manufacturing Corp Molded coil
JP2008134088A (en) * 2006-11-27 2008-06-12 Nec Corp Thin film exfoliation strength measuring device, measuring method and program
CN114068133A (en) * 2020-08-10 2022-02-18 河海大学 Novel superconducting magnet coil structure and design method
JP2022041937A (en) * 2020-08-31 2022-03-11 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714936B (en) * 2013-12-21 2016-02-03 华中科技大学 A kind of high temperature superconductor coil and technique for coiling thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193411A (en) * 1985-02-21 1986-08-27 Hitachi Ltd Thin insulator and manufacture thereof and resin molded coil employing this thin insulator
JPS61186220U (en) * 1985-05-10 1986-11-20
JPS6393101A (en) * 1986-10-08 1988-04-23 Toshiba Corp Superconducting magnet device
JPS63196016A (en) * 1987-02-09 1988-08-15 Sumitomo Electric Ind Ltd Superconducting coil
JPH047805A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Superconducting coil
JPH05347210A (en) * 1992-06-12 1993-12-27 Mitsubishi Electric Corp Superconducting magnet
JPH07161521A (en) * 1993-12-09 1995-06-23 Toshiba Corp Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JP3027396U (en) * 1996-01-31 1996-08-09 株式会社三協精機製作所 Magnetic head
JPH08316055A (en) * 1995-05-22 1996-11-29 Toshiba Corp Resin molded coil
JPH09219928A (en) * 1996-02-13 1997-08-19 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting current limiter element and superconducting member
JP2001307915A (en) * 2000-04-20 2001-11-02 Toyobo Co Ltd Composite material reinforced fiber for conduction- cooled superconducting magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327396U (en) * 1989-07-27 1991-03-19

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193411A (en) * 1985-02-21 1986-08-27 Hitachi Ltd Thin insulator and manufacture thereof and resin molded coil employing this thin insulator
JPS61186220U (en) * 1985-05-10 1986-11-20
JPS6393101A (en) * 1986-10-08 1988-04-23 Toshiba Corp Superconducting magnet device
JPS63196016A (en) * 1987-02-09 1988-08-15 Sumitomo Electric Ind Ltd Superconducting coil
JPH047805A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Superconducting coil
JPH05347210A (en) * 1992-06-12 1993-12-27 Mitsubishi Electric Corp Superconducting magnet
JPH07161521A (en) * 1993-12-09 1995-06-23 Toshiba Corp Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JPH07192912A (en) * 1993-12-27 1995-07-28 Toshiba Corp Superconducting coil and diagnostic method of stability thereof
JPH08316055A (en) * 1995-05-22 1996-11-29 Toshiba Corp Resin molded coil
JP3027396U (en) * 1996-01-31 1996-08-09 株式会社三協精機製作所 Magnetic head
JPH09219928A (en) * 1996-02-13 1997-08-19 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting current limiter element and superconducting member
JP2001307915A (en) * 2000-04-20 2001-11-02 Toyobo Co Ltd Composite material reinforced fiber for conduction- cooled superconducting magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335725A (en) * 2006-06-16 2007-12-27 Toshiba Industrial Products Manufacturing Corp Molded coil
JP2008134088A (en) * 2006-11-27 2008-06-12 Nec Corp Thin film exfoliation strength measuring device, measuring method and program
CN114068133A (en) * 2020-08-10 2022-02-18 河海大学 Novel superconducting magnet coil structure and design method
JP2022041937A (en) * 2020-08-31 2022-03-11 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coil
US11506736B2 (en) 2020-08-31 2022-11-22 Bruker Switzerland Ag Reinforcement of a superconducting magnet coil
JP7189290B2 (en) 2020-08-31 2022-12-13 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coils

Also Published As

Publication number Publication date
JP4607540B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5259487B2 (en) Superconducting coil
JP4607540B2 (en) Superconducting coil and manufacturing method thereof
JP6445165B2 (en) Superconducting coil and manufacturing method thereof
JP2015149377A (en) superconducting coil
JP2014236092A (en) Manufacturing apparatus and manufacturing method of superconducting coil
JP2020047740A (en) Superconducting coil and superconducting device
JPH07161521A (en) Superconducting magnet and winding machine of self-fusion superconducting lead wire used for the magnet
JP2014525117A (en) Insulated high temperature superconducting wire and method of manufacturing the superconducting wire
JP6035050B2 (en) Superconducting coil device and manufacturing method thereof
JP2014165383A (en) Superconducting coil and method for manufacturing the same
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
JP2018011078A (en) High temperature superconducting coil and method of manufacturing high temperature superconducting coil
JPH07192912A (en) Superconducting coil and diagnostic method of stability thereof
JP2013143460A (en) High-temperature superconducting coil and method of manufacturing the same
Michel et al. Design, construction, and operation of new duplex magnet at pulsed field facility-NHMFL
JP6262564B2 (en) Manufacturing method of superconducting deformed coil
JP2013055265A (en) High temperature superconductive coil
JPH1097919A (en) Superconducting coil
JP2011171624A (en) Superconducting coil and method for manufacturing the same
JP2009050466A (en) Manufacturing method of gradient magnetic field coil, gradient magnetic field coil, and magnetic resonance imaging apparatus
JP3199782B2 (en) Superconducting coil manufacturing method
Snead Jr et al. Mechanical-property changes of polymeric and composite materials after low-temperature proton irradiation
JP2000030930A (en) Superconducting coil and its manufacture
JP2599261Y2 (en) Nuclear fusion device
JPH09232477A (en) Semiconductor device and its manufacture and metal-resin laminate to be used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees