JP6089244B2 - Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material - Google Patents

Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material Download PDF

Info

Publication number
JP6089244B2
JP6089244B2 JP2012285520A JP2012285520A JP6089244B2 JP 6089244 B2 JP6089244 B2 JP 6089244B2 JP 2012285520 A JP2012285520 A JP 2012285520A JP 2012285520 A JP2012285520 A JP 2012285520A JP 6089244 B2 JP6089244 B2 JP 6089244B2
Authority
JP
Japan
Prior art keywords
resin
mfr value
degradation
melt flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012285520A
Other languages
Japanese (ja)
Other versions
JP2014126528A (en
Inventor
創 田島
創 田島
和田智史
鏑木哲志
靖 横山
靖 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2012285520A priority Critical patent/JP6089244B2/en
Publication of JP2014126528A publication Critical patent/JP2014126528A/en
Application granted granted Critical
Publication of JP6089244B2 publication Critical patent/JP6089244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、合成樹脂材料及びリサイクル樹脂材料の劣化状態をメルトフローレイト試験により簡便に評価し、この評価を基に合成樹脂材料及びリサイクル樹脂材料に対し添加剤を加えて長寿命化処理を施した樹脂材料と前記樹脂材料を用いた成形品とに関する。 In the present invention, the deterioration state of the synthetic resin material and the recycled resin material is simply evaluated by a melt flow rate test, and based on this evaluation, an additive is added to the synthetic resin material and the recycled resin material to extend the life. The present invention relates to a resin material and a molded product using the resin material.

樹脂の劣化は、ヒドロ過酸化物を原因とする劣化と、安定な酸化物生成に由来する劣化とに分類される。熱や光により励起された状態にある分子の側鎖や末端が酸化などの化学反応による劣化を受けたり、主鎖が切断したりすることにより劣化が進む。樹脂の劣化は、成形加工段階や使用している間にも生じ、応力、温度、酸素、水分、放射線、オゾン、そして、薬品など種々の要因が関与して促進される。樹脂の劣化状態は、主鎖又は側鎖の切断による分子量の低下とこれに伴う強度の低下、架橋化による性能の低下、そして、外観の低下などにより確認される。樹脂材料の分子量を測定することが樹脂の主鎖切断による劣化を確認する上で重要であるが、分子量を分析できる樹脂でも、機械的強さは分子量に比例して低下するわけではなく、その樹脂材料の限界分子量以下にまで低下したときに強さが急激に低下する特性がある(非特許文献1)。一方、オレフィン系樹脂などでは、そもそも溶媒に難溶であるために分子量の測定が困難である。樹脂の劣化は、このように現象が複雑であるとともに、その状態を分析する手法が煩雑であった。 The degradation of the resin is classified into degradation caused by hydroperoxide and degradation derived from stable oxide generation. Deterioration progresses when the side chains and terminals of molecules excited by heat and light undergo degradation due to chemical reactions such as oxidation, or the main chain is cleaved. The deterioration of the resin also occurs during the molding process and during use, and is accelerated by various factors such as stress, temperature, oxygen, moisture, radiation, ozone, and chemicals. The deterioration state of the resin is confirmed by a decrease in molecular weight due to cleavage of the main chain or side chain, a decrease in strength associated therewith, a decrease in performance due to cross-linking, and a decrease in appearance. Measuring the molecular weight of the resin material is important in confirming degradation due to the main chain cleavage of the resin, but even with resins that can analyze the molecular weight, the mechanical strength does not decrease in proportion to the molecular weight. There is a characteristic that the strength sharply decreases when the molecular weight is reduced below the limit molecular weight of the resin material (Non-patent Document 1). On the other hand, olefin-based resins are hardly soluble in solvents in the first place, so it is difficult to measure molecular weight. The deterioration of the resin is complicated in this way, and the method for analyzing the state is complicated.

樹脂劣化の分析は、動的には酸化が生じている過渡状態をとらえることでなされる。一方、静的には酸化された後の反応生成物として酸化や分解が生じた状態の樹脂を分析してその状態を捉えることによりなされる。樹脂の劣化状態を把握し、適切な劣化防止対策をとるためには、特に劣化の過渡的な状態、すなわち劣化過程を把握できる動的な分析手法が重要である。 The analysis of the resin deterioration is performed by capturing a transient state in which oxidation occurs dynamically. On the other hand, statically, it is made by analyzing a resin in a state where oxidation or decomposition has occurred as a reaction product after being oxidized and capturing the state. In order to grasp the deterioration state of the resin and take appropriate measures for preventing the deterioration, a dynamic analysis method capable of grasping the transient state of the deterioration, that is, the deterioration process is particularly important.

動的な分析手法として、一般に樹脂材料の耐熱性を議論する際には熱重量測定を中心とした熱分析が行われる。この方法では、樹脂材料のガス化が発生するような、主鎖切断に伴う大規模な反応温度域での劣化を評価することになる。一方、主鎖の切断前に生じる側鎖や樹脂末端の酸化劣化初期過程については、樹脂を加熱した際の酸化による発光を測定し、劣化状態を推定するオキシルミネセンス法(特許文献1、非特許文献2)が提案されている。これらの分析法は有用であるが、熱重量測定では初期の酸化による微少な重量変化を測定できず、一方のオキシルミネセンス法では主鎖の切断を発光現象として定量的にとらえることができなかった。このような背景から、初期の樹脂劣化過程である、樹脂の酸化劣化初期過程を把握する簡便な分析手法の開発と、その後に生じる主鎖切断過程を簡便に評価する手法の開発が望まれていた。 As a dynamic analysis method, in general, when discussing the heat resistance of a resin material, a thermal analysis centering on thermogravimetry is performed. In this method, deterioration in a large-scale reaction temperature region accompanying main chain cleavage that causes gasification of the resin material is evaluated. On the other hand, with respect to the initial stage of oxidative degradation of side chains and resin ends that occur before the main chain is cleaved, luminescence is measured by oxidation when the resin is heated to estimate the degradation state (Patent Document 1, Non-Patent Document 1). Patent Document 2) has been proposed. Although these analytical methods are useful, thermogravimetry cannot measure minute weight changes due to initial oxidation, while the oxyluminescence method cannot quantitatively detect main chain cleavage as a luminescence phenomenon. It was. Against this background, the development of a simple analytical method for grasping the initial process of resin oxidative degradation, which is the initial resin degradation process, and the development of a method for simply evaluating the subsequent main chain scission process are desired. It was.

公開特許公報 特開2002−195951号公報Japanese Patent Laid-Open No. 2002-195951

プラスチックス、Vol.55、No.4Plastics, Vol. 55, no. 4 平成24年11月18日 産技連 高分子分科会 発表要旨 p35November 18, 2012 Industry and Technology Federation Polymer Subcommittee Abstract p35

上述の如く、従来技術に係る課題は、樹脂の劣化を議論する際の酸化劣化初期過程と主鎖切断過程を網羅する同一の分析法が無いこと、更に、この分析法を基に樹脂の劣化過程を評価し、劣化過程の評価に基づき劣化過程を制御及び又は抑制された樹脂材料とリサイクル樹脂材料及び又は樹脂成形品、そして、リサイクル樹脂材料を適切に含んだ成形品が提供されていないことである。 As described above, the problems related to the prior art are that there is no identical analysis method covering the initial process of oxidative degradation and the main chain scission process when discussing resin degradation, and furthermore, resin degradation based on this analytical method. Resin material and recycled resin material and / or resin molded product whose degradation process is controlled and / or suppressed based on evaluation of degradation process, and molded product appropriately containing recycled resin material are not provided It is.

本発明は、このような点を鑑みてなされたものであり、その目的は、樹脂の劣化を議論する際の酸化劣化初期過程と主鎖切断過程を網羅する分析法を提供し、この分析法により劣化過程を判断して、その劣化過程を適切に制御及び又は抑止するための添加剤を加えた合成樹脂材料及び又は樹脂成形品を提供すること、更には、前記分析法により劣化を適切に制御及び又は劣化状態を把握されたリサイクル樹脂材料及び又はリサイクル樹脂材料を適切に含んだ成形品を提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to provide an analysis method that covers the initial stage of oxidative degradation and the main chain scission process when discussing resin degradation. To provide a synthetic resin material and / or a resin molded article to which an additive for appropriately controlling and / or suppressing the deterioration process is added. It is to provide a recycled resin material whose control and / or deterioration state is grasped and / or a molded article appropriately containing the recycled resin material.

発明が解決するための手段Means for Solving the Invention

本発明の請求項1は、樹脂の劣化過程を制御及び又は抑止するための酸化防止剤を加えることにより当該樹脂の劣化過程の速度を低減して寿命を長寿命化した樹脂材料及び又は当該樹脂材料を用いた樹脂成形品であって、樹脂の劣化過程を判定する工程として、
第1の工程として樹脂の劣化反応速度定数と劣化反応の活性化エネルギーを前記樹脂の融点以上の少なくとも2点の異なる温度におけるメルトフローレイトにより測定する工程
第2の工程として樹脂の劣化過程が酸化劣化初期過程を含むかどうかの判定を行う工程とを含み、
前記第1の工程として、当該樹脂材料の融点以上の少なくとも2点の異なる温度におけるメルトフローレイトを測定する工程が、第一のメルトフローレイト測定工程として少なくとも1回のメルトフローレイト試験を行ってメルトフローレイト値(第1MFR値)を得、
前記第1MFR値を得るために流れ出した樹脂材料について第二のメルトフローレイト測定工程として少なくとも1回のメルトフローレイト試験を実施してメルトフローレイト値(第2MFR値)を得る工程であり、
当該所定温度毎に測定された前記第1MFR値と第2MFR値とメルトフローレイト測定工程数より、式1を用いて劣化反応速度定数kを算出し、前記劣化反応速度定数kとそれぞれの劣化反応速度定数kを測定した温度とから式2より活性化エネルギーを算出する工程であり、
前記第2の工程が、前記樹脂の劣化過程が酸化劣化初期過程を含むかどうかの判定が、前記第1MFR値と前記第2MFR値を比較し、
前記第1MFR値が前記第2MFR値より大きく、前記第1の工程で算出された活性化エネルギーの値が80kJ/molより低い場合には、当該樹脂の劣化過程において酸化劣化初期過程が支配的であると判定され、
前記第1MFR値が前記第2MFR値より小さく、前記活性化エネルギーの値が80kJ/mol以上の場合には、当該樹脂の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う主鎖切断過程が支配的であると判断され、前記第1MFR値と前記第2MFR値との差異が0.4%以内である場合には、当該樹脂の劣化過程において、酸化劣化初期過程を含んだとしても支配的では無く主鎖切断過程が生じうると判断されるため更に測定温度を上げて再度第1MFR値と第2MFR値を測定して第1MFR値と第2MFR値を比較して樹脂が酸化劣化初期過程を含むかどうかを判定する工程であることを特徴とする、
樹脂の劣化過程を制御及び又は抑止するための酸化防止剤を加えることにより、当該樹脂の劣化過程の速度を低減して寿命を長寿命化した樹脂材料及び又は当該樹脂材料を用いた成形品である。

(式1)Ln((第1MFR値)÷ (第2MFR値))/((MFR測定工程数)−1)
= k
(式2)Ln(k)=Ln(頻度因子)−(活性化エネルギー)/(8.314J/molK×(温度))
Claim 1 of the present invention relates to a resin material and / or a resin that has an extended life by reducing the speed of the degradation process of the resin by adding an antioxidant for controlling and / or inhibiting the degradation process of the resin. It is a resin molded product using materials, and as a process of judging the deterioration process of resin,
A step of the activation energy of the resin degradation reaction rate constant degradation reaction is measured by a melt flow rate different at temperatures above the melting point of at least two points of the resin as the first step,
Determining whether the resin deterioration process includes an oxidation deterioration initial process as a second process,
The step of measuring the melt flow rate at at least two different temperatures above the melting point of the resin material as the first step includes performing at least one melt flow rate test as the first melt flow rate measurement step. Obtaining a melt flow rate value (first MFR value);
The resin material that has flowed out to obtain the first MFR value is a step of performing a melt flow rate test at least once as a second melt flow rate measurement step to obtain a melt flow rate value (second MFR value),
From the first MFR value, the second MFR value, and the melt flow rate measurement process number measured for each predetermined temperature, a degradation reaction rate constant k is calculated using Equation 1, and the degradation reaction rate constant k and each degradation reaction are calculated. It is a step of calculating the activation energy from Equation 2 from the temperature at which the rate constant k is measured ,
In the second step, the determination of whether the deterioration process of the resin includes an initial oxidation deterioration process is performed by comparing the first MFR value and the second MFR value.
When the first MFR value is larger than the second MFR value and the activation energy value calculated in the first step is lower than 80 kJ / mol, the initial oxidation deterioration process is dominant in the deterioration process of the resin. Is determined to be
When the first MFR value is smaller than the second MFR value and the activation energy value is 80 kJ / mol or more, the degradation process of the resin is not dominant even if it includes the initial oxidation degradation process, and the main chain When it is determined that the main chain cleavage process involving cleavage is dominant and the difference between the first MFR value and the second MFR value is within 0.4%, in the degradation process of the resin, the oxidation degradation initial stage Even if the process is included, it is determined that the main chain scission process may occur without being dominant. Therefore, the first MFR value and the second MFR value are compared again by raising the measurement temperature and measuring the first MFR value and the second MFR value again. And determining whether the resin includes an initial stage of oxidative degradation,
By adding an antioxidant for controlling and / or inhibiting the deterioration process of the resin , the speed of the deterioration process of the resin is reduced to increase the life of the resin material and / or a molded article using the resin material. is there.

(Formula 1) Ln ((first MFR value) ÷ (second MFR value)) / ((number of MFR measurement steps) −1)
= K
(Formula 2) Ln (k) = Ln (frequency factor) − (activation energy) / (8.314 J / molK × (temperature))

以上説明したように、従来では樹脂の劣化を議論する際に酸化劣化初期過程と主鎖切断過程を評価するためそれぞれ異なる分析法を用い実施してきたが、本発明の請求項によれば、合成樹脂の劣化を生じる反応過程と反応速度と活性化エネルギーが当該合成樹脂のメルトフローレイトを測定することにより明らかとなった当該合成樹脂の劣化過程を基に、樹脂の劣化過程を防ぐための劣化防止用の添加剤を樹脂に添加することにより、樹脂の劣化を制御及び又は抑止することにより樹脂の長寿命化が効率的に成される。また、メルトフローレイトを測定することにより、使用されたり成形されたりした樹脂の劣化状態を判定し、この判定結果を基にしてリサイクル樹脂材料の成形品への混合割合を決定することができるため、リサイクル樹脂材料の適切な管理と利用が可能となる。 As described above, the conventional has been performed using different analytical techniques, respectively to evaluate the oxidative degradation early stage and the main chain cleavage process when discussing the degradation of the resin, according to claim 1 of the present invention, Based on the degradation process of the synthetic resin, the reaction process, reaction rate, and activation energy that caused the degradation of the synthetic resin were clarified by measuring the melt flow rate of the synthetic resin. By adding an additive for preventing deterioration to the resin, it is possible to effectively extend the life of the resin by controlling and / or suppressing the deterioration of the resin. Also, by measuring the melt flow rate, it is possible to determine the deterioration state of the resin used or molded, and to determine the mixing ratio of the recycled resin material to the molded product based on the determination result This makes it possible to appropriately manage and use recycled resin materials.

本発明の分析法により分析された樹脂の劣化過程を表した図である。It is a figure showing the degradation process of resin analyzed by the analysis method of this invention. ポリスチレン(PS)とポリフェニレンエーテル(PPE)の混合樹脂を繰り返し射出成形したときの繰り返し成形回数(リサイクル回数)に対するメルトフローレイト値と重量平均分子量の図である。It is a figure of the melt flow rate value and the weight average molecular weight with respect to the frequency | count of repetition molding (number of times of recycling) when the mixed resin of polystyrene (PS) and polyphenylene ether (PPE) is repeatedly injection molded. 繰り返し射出成形を行ったポリスチレン−ポリフェニレンエーテル混合樹脂のメルトフローレイト値に対する重量平均分子量をプロットした図である。It is the figure which plotted the weight average molecular weight with respect to the melt flow rate value of the polystyrene-polyphenylene ether mixed resin which performed injection molding repeatedly. 式2を基に、温度の逆数に対しLn(k)をプロットした図である。It is the figure which plotted Ln (k) with respect to the reciprocal of temperature based on Formula 2. 低密度ポリエチレンのメルトフローレイト測定回数に対するメルトフローレイト値を示した図である。It is the figure which showed the melt flow rate value with respect to the melt flow rate measurement frequency of low density polyethylene. 本願発明の樹脂劣化状態を判定するためのフローチャートである。It is a flowchart for determining the resin deterioration state of this invention. 本願発明のリサイクル樹脂材料の劣化状態を判定するためのフローチャートである。It is a flowchart for determining the deterioration state of the recycled resin material of this invention. 実施例1乃至3、実施例5、6、8において実施された熱可塑性樹脂のメルトフローレイト値、メルトフローレイト値より評価された劣化過程、反応速度定数、そして、活性化エネルギーの一覧表である。Tables of melt flow rate values of thermoplastic resins implemented in Examples 1 to 3 and Examples 5, 6, and 8, degradation processes evaluated from melt flow rate values, reaction rate constants, and activation energies is there. ポリスチレン(PS)とポリフェニレンエーテル(PPE)の混合樹脂の繰り返し射出成形回数毎のメルトフローレイト値と重量平均分子量である。It is a melt flow rate value and a weight average molecular weight for each repeated injection molding of a mixed resin of polystyrene (PS) and polyphenylene ether (PPE).

以下、本発明の実施例を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1の実施の形態に係る分析の例として、低密度ポリエチレン(LDPE、アルドリッチ社製)のペレットを用い、乾燥後メルトフローレイト試験を行った。メルトフローレイト試験にはメルトフローレイト自動化システム(東洋精機社製、完全自動化システム520)を用いた。試験条件は、温度210℃、230℃、250℃、荷重5.0kg、温度保持時間300秒とした。結果を図8に示す。ここでの繰り返し回数とは、同一の樹脂材料についてメルトフローレイト試験を繰り返し行った回数である。LDPEペレットのメルトフローレイト値は、繰り返し回数1(温度保持時間300秒)で6.69g/10分(minと表記することもできる)であったが、繰り返し回数2(温度保持時間600秒)で6.13g/10分と低下し、繰り返し回数3(温度処理時間900秒)で5.55g/10分とさらに低下した。本実施例1の結果、LDPE樹脂については、前記第1MFR値が前記第2MFR値より大きい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程が支配的であると判定された。もし主鎖切断による劣化が生じているとすれば後述する実施例2や実施例3と同様にメルトフローレイト値の増加が確認されるはずである。ここで観察されたメルトフローレイト値の低下が分子量の増加を示すのであれば、熱処理により樹脂内で酸化劣化初期過程に伴う何らかの反応が起きていると考えられる。本実施例1において、LDPE樹脂の酸化劣化初期過程の劣化反応速度定数kを210℃において0.0981/回、230℃において0.1557/回、250℃において0.3484/回、温度の逆数に対するln(k)を図4のようにプロットし、直線の傾きから活性化エネルギーを66kJ/mol(モルと記すこともある。)と求めた。また、図5に示したように、230℃において温度繰り返し回数を増やした場合、MFR値の増加が確認され、酸化劣化初期過程に続く主鎖切断過程が生じていることが確認された。実施例1の分析結果を図8に示した。本実施例1では、樹脂の劣化過程の評価を図6に示したフローチャートを用いて行った。 As an example of the analysis according to the first embodiment of the present invention, low-density polyethylene (LDPE, manufactured by Aldrich) pellets were used, and a post-drying melt flow rate test was performed. A melt flow rate automation system (manufactured by Toyo Seiki Co., Ltd., fully automated system 520) was used for the melt flow rate test. The test conditions were a temperature of 210 ° C., 230 ° C., 250 ° C., a load of 5.0 kg, and a temperature holding time of 300 seconds. The results are shown in FIG. Here, the number of repetitions is the number of times that the melt flow rate test was repeatedly performed on the same resin material. The melt flow rate value of the LDPE pellet was 6.69 g / 10 minutes (may be expressed as min) at a repetition number of 1 (temperature holding time of 300 seconds), but the number of repetitions was 2 (temperature holding time of 600 seconds). At 6.13 g / 10 min, and further decreased to 5.55 g / 10 min at 3 repetitions (temperature treatment time 900 seconds). As a result of Example 1, since the first MFR value was larger than the second MFR value for the LDPE resin, it was determined that the initial oxidation deterioration process was dominant in the deterioration process of the resin material. If deterioration due to main chain breakage has occurred, an increase in melt flow rate value should be confirmed as in Example 2 and Example 3 described later. If the observed decrease in the melt flow rate value indicates an increase in molecular weight, it is considered that some kind of reaction has occurred in the resin during the initial stage of oxidative degradation due to heat treatment. In Example 1, the degradation reaction rate constant k in the initial stage of oxidative degradation of LDPE resin was 0.0981 / time at 210 ° C., 0.1557 / time at 230 ° C., 0.3484 / time at 250 ° C., and the inverse of temperature. Ln (k) was plotted as shown in FIG. 4, and the activation energy was determined to be 66 kJ / mol (also referred to as mol) from the slope of the straight line. Further, as shown in FIG. 5, when the number of temperature repetitions was increased at 230 ° C., an increase in MFR value was confirmed, and it was confirmed that a main chain scission process following the initial process of oxidative degradation occurred. The analysis result of Example 1 is shown in FIG. In Example 1, the degradation process of the resin was evaluated using the flowchart shown in FIG.

本発明の第2の実施の形態に係る分析の例として、主鎖がポリエチレンと同様でその側鎖の炭素に酸素が結合しているポリメチルメタアクリレート(PMMA)について、劣化過程の分析、劣化反応速度定数、劣化反応の活性化エネルギーを求めた。乾燥させたペレットを用いて、温度230℃、荷重5.0kg、温度保持時間300秒の条件でメルトフローレイト試験を繰り返し行った。メルトフローレイト試験にはメルトフローレイト自動化システム(東洋精機社製、完全自動化システム520)を用いた。結果を図8に示す。測定されたMFR値は、繰り返し回数1(温度保持時間300秒)で9.04g/10分であったが、繰り返し回数2(温度保持時間600秒)で9.00g/10分と低下し、繰り返し回数3(温度保持時間900秒)で8.96g/10分とさらに低下した。このときの劣化反応過程は、前記第1MFR値が前記第2MFR値より大きい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程が支配的であると判定された。温度230℃の酸化劣化初期過程の劣化反応速度定数は、0.0044/回とされた。また、温度を240℃とした以外は、すべて同じ条件で実験を行った場合、やはり前記第1MFR値が前記第2MFR値より大きい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程が支配的であると判定された。また、温度240℃の酸化劣化初期過程の劣化反応速度定数は、0.0058/回とされた。また、温度を250℃とした以外は、すべて同じ条件で実験を行った場合、第1MFR値が前記第2MFR値より小さい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う主鎖切断過程が支配的であると判断された。また、250℃における主鎖の切断を伴う主鎖切断過程の劣化反応速度定数は、0.0312/回とされた。以上から、PMMAについては、230℃から240℃までの酸化劣化初期過程の活性化エネルギーは、59kJ/molと算出された。実施例2の分析結果を図8に示す。本実施例では、樹脂の劣化過程の評価を図6に示したフローチャートを用いて行った。このように、本発明の樹脂の劣化過程の分析方法においては、同一樹脂であっても温度の違いにより異なる分解過程が生じることを確認できた。 As an example of analysis according to the second embodiment of the present invention, analysis of degradation process and degradation of polymethyl methacrylate (PMMA) in which the main chain is similar to polyethylene and oxygen is bonded to carbon of the side chain. The reaction rate constant and the activation energy of the degradation reaction were determined. Using the dried pellets, the melt flow rate test was repeatedly performed under the conditions of a temperature of 230 ° C., a load of 5.0 kg, and a temperature holding time of 300 seconds. A melt flow rate automation system (manufactured by Toyo Seiki Co., Ltd., fully automated system 520) was used for the melt flow rate test. The results are shown in FIG. The measured MFR value was 9.04 g / 10 minutes at a repetition number 1 (temperature holding time 300 seconds), but decreased to 9.00 g / 10 minutes at a repetition number 2 (temperature holding time 600 seconds). When the number of repetitions was 3 (temperature holding time: 900 seconds), it further decreased to 8.96 g / 10 minutes. Since the deterioration reaction process at this time is a case where the first MFR value is larger than the second MFR value, it was determined that the initial stage of oxidation deterioration was dominant in the deterioration process of the resin material. Degradation rate constant of the oxidation deterioration initial stage of temperature 230 ° C. was set to 0.0044 / dose. In addition, when the experiments were performed under the same conditions except that the temperature was 240 ° C., the first MFR value was still larger than the second MFR value. It was determined to be dominant. Further, degradation rate constant of the oxidation deterioration initial stage of temperature 240 ° C. was set to 0.0058 / dose. In addition, when the experiment was performed under the same conditions except that the temperature was 250 ° C., the first MFR value was smaller than the second MFR value, and therefore the deterioration process of the resin material included an initial stage of oxidation deterioration. However, it was judged that the main chain cutting process accompanied by main chain breakage was dominant. Further, the degradation reaction rate constant of the main chain cleavage process accompanied by main chain cleavage at 250 ° C. was set to 0.0312 / times. From the above, for the PMMA, the activation energy of the oxidative degradation initial process from 230 ° C. to 240 ° C. was calculated to 59kJ / mol. The analysis result of Example 2 is shown in FIG. In Example 2 , the degradation process of the resin was evaluated using the flowchart shown in FIG. As described above, in the method for analyzing the deterioration process of the resin of the present invention, it was confirmed that even if the same resin is used, different decomposition processes occur due to temperature differences.

本発明の第3の実施の形態に係る分析の例として、主鎖に酸素を含むポリオキシメチレン(POM)について、劣化過程の分析、劣化反応の速度、劣化反応の活性化エネルギーを求めた。乾燥させたペレットを用いて、温度200℃、荷重2.16kg、温度保持時間300秒の条件でメルトフローレイト試験を繰り返し行った。メルトフローレイト試験にはメルトフローレイト自動化システム(東洋精機社製、完全自動化システム520)を用いた。結果を図8に示す。測定されたMFR値は、繰り返し回数1(温度保持時間300秒)で20.96g/10分であったが、繰り返し回数2(温度保持時間600秒)で21.31g/10分と増加し、繰り返し回数3(温度保持時間900秒)で21.94g/10分とさらに増加した。第1MFR値が第2MFR値より小さい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う分解過程が支配的であると判断された。また、200℃における主鎖の切断を伴う主鎖切断過程の速度定数は、0.0170/回と算出された。また、温度を210℃とした以外は、すべて同じ条件で実験を行った場合、第1MFR値が第2MFR値より小さい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う分解過程が支配的であると判断された。また、210℃における主鎖の切断を伴う主鎖切断過程の速度定数は、0.0619/回と算出された。また、温度を230℃とした以外は、すべて同じ条件で実験を行った場合、第1MFR値が第2MFR値より小さい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う分解過程が支配的であると判断された。また、230℃における主鎖の切断を伴う主鎖切断過程の速度定数は、0.1001/回と算出された。以上から、POMについては、200℃から230℃までの主鎖切断に伴う活性化エネルギーは、108kJ/molと算出された。実施例3の分析結果を図8に示した。本実施例では、樹脂の劣化過程の評価を図6に示したフローチャートを用いて行った。 As an example of the analysis according to the third embodiment of the present invention, the analysis of the degradation process, the rate of the degradation reaction, and the activation energy of the degradation reaction were obtained for polyoxymethylene (POM) containing oxygen in the main chain. Using the dried pellets, the melt flow rate test was repeatedly performed under the conditions of a temperature of 200 ° C., a load of 2.16 kg, and a temperature holding time of 300 seconds. A melt flow rate automation system (manufactured by Toyo Seiki Co., Ltd., fully automated system 520) was used for the melt flow rate test. The results are shown in FIG. The measured MFR value was 20.96 g / 10 minutes at the number of repetitions 1 (temperature holding time 300 seconds), but increased to 21.31 g / 10 minutes at the number of repetitions 2 (temperature holding time 600 seconds), When the number of repetitions was 3 (temperature holding time 900 seconds), the number further increased to 21.94 g / 10 minutes. Since the first MFR value is smaller than the second MFR value, the degradation process of the resin material is not dominant even if it includes the initial oxidation degradation process, and it is determined that the degradation process involving main chain scission is dominant. It was. Moreover, the rate constant of the main chain cutting process accompanied by main chain cleavage at 200 ° C. was calculated to be 0.0170 / time. In addition, when the experiment was performed under the same conditions except that the temperature was 210 ° C., the first MFR value was smaller than the second MFR value, so that the deterioration process of the resin material included the initial stage of oxidation deterioration. However, it was judged that the degradation process accompanied by the main chain breakage was dominant. Moreover, the rate constant of the main chain cutting process accompanied by main chain cleavage at 210 ° C. was calculated to be 0.0619 / time. In addition, when the experiment was performed under the same conditions except that the temperature was 230 ° C., the first MFR value was smaller than the second MFR value, and therefore the initial deterioration process of the resin material was included in the deterioration process of the resin material. However, it was judged that the degradation process accompanied by the main chain breakage was dominant. Further, the rate constant of the main chain cleavage process accompanied by main chain cleavage at 230 ° C. was calculated to be 0.1001 / time. From the above, for POM, the activation energy accompanying main chain cleavage from 200 ° C. to 230 ° C. was calculated to be 108 kJ / mol . The analysis result of Example 3 is shown in FIG. In Example 3 , the degradation process of the resin was evaluated using the flowchart shown in FIG.

本発明の第4の実施の形態として、前記本発明の第1から第3の実施の形態を基に、樹脂の劣化過程について解析を行った。結果を図1に示す。第1の実施の形態より側鎖、主鎖ともに酸素を含まないLDPEの劣化過程は、当該樹脂の側鎖や末端が酸化される酸化劣化初期過程として観測された。また、側鎖に酸素を含むPMMAの劣化過程は、一部酸化劣化初期過程が見られたが、主鎖切断過程も観測された。一方、主鎖に酸素を含むPOMの劣化過程は、主鎖切断過程が支配的であると観測された。これらから、本願発明のように、樹脂のメルトフローレイトを繰り返し測定することは、初期の樹脂劣化過程である樹脂の酸化劣化初期過程を把握する簡便な分析手法並びにその後に生じる主鎖切断過程を簡便に評価する手法として有用であることが示された。 As the fourth embodiment of the present invention, the deterioration process of the resin was analyzed based on the first to third embodiments of the present invention. The results are shown in FIG. From the first embodiment, the degradation process of LDPE containing no oxygen in both the side chain and the main chain was observed as an initial stage of oxidative degradation in which the side chain and terminal of the resin are oxidized. Moreover, as for the degradation process of PMMA containing oxygen in the side chain, a part of the initial oxidation degradation process was observed, but the main chain cleavage process was also observed. On the other hand, the degradation process of POM containing oxygen in the main chain was observed to be dominated by the main chain cleavage process. Thus, as in the present invention, repeatedly measuring the melt flow rate of the resin is a simple analytical method for grasping the initial process of oxidative degradation of the resin, which is the initial process of resin degradation, and the subsequent main chain cleavage process. It was shown to be useful as a simple evaluation method.

本発明の第5の実施の形態に係る分析と樹脂の劣化過程防止の例として、前記第1の実施の形態に係る分析条件のうち、LDPEに添加剤として、酸化防止剤Irganox1010(商標登録)をLDPEに対し1wt%と成るように添加した以外は全て同一の条件でLDPEのメルトフローレイト値を測定した。温度210℃における添加剤を入れたLDPEのメルトフローレイト値は、繰り返し回数1(温度保持時間300秒)で6.60g/10分であったが、繰り返し回数2(温度保持時間600秒)で6.48g/10分と低下し、繰り返し回数3(温度処理時間900秒)で6.29g/10分とさらに低下した。本実施例5のLDPE樹脂については、前記第1MFR値が前記第2MFR値より大きい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程が支配的であると判定された。また、230℃、250℃においても添加剤を加えたLDPEについて、劣化過程を酸化劣化初期過程であると評価した。本実施例5において、添加剤を加えたLDPE樹脂の酸化劣化初期過程の劣化反応速度定数を210℃において0.0183/回、230℃において0.0250/回、250℃において0.0549/回、活性化エネルギーを58kJ/molと求めることができた。実施例1で実施した添加剤を加えていないLDPEに比べ、本実施例5で行った添加剤を加えたLDPEでは酸化劣化初期過程を、210℃において18%、230℃において16%、250℃において16%にそれぞれ低下することができ、樹脂を長寿命化できることが確認された。実施例5において分析された結果を図8に示す。本実施例では、樹脂の劣化過程の評価を図6に示したフローチャートを用いて行った。 As an example of analysis according to the fifth embodiment of the present invention and prevention of deterioration process of the resin, among the analysis conditions according to the first embodiment, as an additive to LDPE, an antioxidant Irganox 1010 (registered trademark) The melt flow rate value of LDPE was measured under the same conditions except that was added at 1 wt% with respect to LDPE. The melt flow rate value of LDPE with an additive at a temperature of 210 ° C. was 6.60 g / 10 min at 1 repetition (temperature holding time 300 seconds), but at 2 repetitions (temperature holding time 600 seconds). It decreased to 6.48 g / 10 min, and further decreased to 6.29 g / 10 min at 3 repetitions (temperature treatment time: 900 seconds). For the LDPE resin of Example 5, since the first MFR value is larger than the second MFR value, it was determined that the initial stage of oxidation deterioration was dominant in the deterioration process of the resin material. Moreover, the degradation process was evaluated as an initial stage of oxidation degradation for LDPE to which an additive was added even at 230 ° C. and 250 ° C. In Example 5, the degradation reaction rate constant in the initial stage of oxidative degradation of the LDPE resin to which the additive was added was 0.0183 / time at 210 ° C., 0.0250 / time at 230 ° C., and 0.0549 / time at 250 ° C. The activation energy was found to be 58 kJ / mol . Compared to LDPE without added additives was carried out in Example 1, the additive LDPE in oxidation deterioration initial stage was added conducted in Example 5, 18% at 210 ° C., 16% at 230 ° C., 250 ° C. It was confirmed that the resin life could be extended to 16%. The results analyzed in Example 5 are shown in FIG. In Example 5 , the degradation process of the resin was evaluated using the flowchart shown in FIG.

本発明の第6の実施の形態に係る分析と樹脂の劣化過程防止の例として、前記第2の実施の形態に係る分析条件のうち、PMMAに添加剤として、酸化防止剤Irganox1010(商標登録)をPMMAに対し1wt%と成るように添加した以外は全て同一の条件でPMMAのメルトフローレイト値を測定した。温度250℃における添加剤を入れたPMMAのメルトフローレイト値は、繰り返し回数1(温度保持時間300秒)で31.06g/10分であったが、繰り返し回数2(温度保持時間600秒)で28.71g/10分と低下し、繰り返し回数3(温度処理時間900秒)で28.88g/10分とさらに低下した。本実施例6のPMMAについては、前記第1MFR値が前記第2MFR値より大きい場合であるため、当該樹脂材料の劣化過程において酸化劣化初期過程が支配的であると判定された。一方、実施例2で実施した添加剤を加えていないPMMAでは、250℃では、当該樹脂材料の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う分解過程が支配的であると判断されたため、本実施例6で行った添加剤を加えたPMMAにおいて、樹脂を長寿命化できたことが確認された。本実施例6において分析された結果を図8に示す。本実施例では、樹脂の劣化過程の評価を図6に示したフローチャートを用いて行った。 As an example of analysis according to the sixth embodiment of the present invention and prevention of deterioration process of the resin, among the analysis conditions according to the second embodiment, as an additive to PMMA, an antioxidant Irganox 1010 (registered trademark) The PMMA melt flow rate value was measured under the same conditions except that 1 wt% of PMMA was added to PMMA. The melt flow rate value of PMMA containing an additive at a temperature of 250 ° C. was 31.06 g / 10 min at 1 repetition (temperature holding time 300 seconds), but at 2 repetitions (temperature holding time 600 seconds). It decreased to 28.71 g / 10 minutes, and further decreased to 28.88 g / 10 minutes after 3 repetitions (temperature treatment time: 900 seconds). For PMMA of Example 6, since the first MFR value was greater than the second MFR value, it was determined that the initial stage of oxidation deterioration was dominant in the deterioration process of the resin material. On the other hand, in PMMA with no additive added in Example 2, at 250 ° C., the degradation process of the resin material is not dominant even if it includes the initial stage of oxidation degradation, and the degradation process accompanied by the cleavage of the main chain occurs. Since it was determined to be dominant, it was confirmed that the resin life could be extended in PMMA with the additive added in Example 6 added. The results analyzed in Example 6 are shown in FIG. In Example 6 , the degradation process of the resin was evaluated using the flowchart shown in FIG.

本発明の第7の実施の形態に係る分析の例として、ポリスチレン(PS)とポリフェニレンエーテル(PPE)の混合樹脂射出成型品について繰り返し射出成形回数毎のメルトフローレイト試験と分子量分布測定を実施した。射出成形は、卓上型の射出成形機を用いてダンベル状の引張試験片を作成した。メルトフローレイト試験にはメルトフローレイト自動化システム(東洋精機社製、完全自動化システム520)を用い、分子量分布測定には分子量分布測定システム(島津製作所社製、D5280 LCS M−PDA)を用いた。繰り返し射出成形回数毎のメルトフローレイト値と重量平均分子量を図9及び図2に示す。繰り返し射出成形回数が増加するとメルトフローレイト値は増加した。繰り返し射出成形回数毎にメルトフローレイト値を繰り返し測定した場合、本実施例7のPS−PPE混合樹脂については、第1MFR値 < 第2MFR値 < 第3MFR値であるため当該樹脂材料の劣化状態が主鎖の切断が生じている状態であると判定された。重量平均分子量の低下は、樹脂の主鎖切断によると考えられ、射出成形回数が増すに従い樹脂の重量平均分子量が低下していることから、の樹脂材料の劣化状態が主鎖の切断を伴っているという判定を肯定することが確認された。また、図3に示したように、重量平均分子量の低下に伴い、メルトフローレイト値は増加した。これらのことから、繰り返し射出成形回数に対するメルトフローレイト値の増加は、樹脂の主鎖切断による低分子量化を観測できていることが確認できた。本実施例では、樹脂の劣化過程の評価を図7に示したフローチャートを用いて行った。 As an example of analysis according to the seventh embodiment of the present invention, a melt flow rate test and a molecular weight distribution measurement were repeatedly performed for each injection molding of a mixed resin injection molded product of polystyrene (PS) and polyphenylene ether (PPE). . In the injection molding, a dumbbell-shaped tensile test piece was prepared using a desktop injection molding machine. A melt flow rate automation system (manufactured by Toyo Seiki Co., Ltd., fully automated system 520) was used for the melt flow rate test, and a molecular weight distribution measurement system (D5280 LCS M-PDA, manufactured by Shimadzu Corporation) was used for the molecular weight distribution measurement. 9 and 2 show the melt flow rate value and the weight average molecular weight for each repeated injection molding. As the number of repeated injection moldings increased, the melt flow rate value increased. When the melt flow rate value is repeatedly measured for each number of repeated injection moldings, the PS-PPE mixed resin of Example 7 has the first MFR value <the second MFR value <the third MFR value, so the deterioration state of the resin material is It was determined that the main chain was broken. Lowering of the weight average molecular weight is believed to be due to the main chain scission of the resin, since the weight average molecular weight of the resin according to the injection molding count is increased is reduced, deterioration state of this resin material with a cutting of the main chain It was confirmed to affirm that it is. Moreover, as shown in FIG. 3, the melt flow rate value increased as the weight average molecular weight decreased. From these facts, it was confirmed that the increase in the melt flow rate value with respect to the number of repeated injection moldings was able to observe a decrease in the molecular weight due to the main chain cleavage of the resin. In Example 7 , evaluation of the deterioration process of the resin was performed using the flowchart shown in FIG.

本発明の第8の実施の形態に係る分析の例として、第7の実施の形態に係る分析で測定したPS−PPE混合樹脂のメルトフローレイト値に対する重量平均分子量のプロットを図3に示す。この結果より、メルトフローレイト値と重量平均分子量には相関があり、繰り返し射出成形回数が多くなるにつれて傾きが小さくなることがわかる。PPEは高軟化点を持ち機械的特性、電気的特性に優れた代表的なエンジニアリングプラスチックであるが、溶融温度が高いため成形性に劣る。そのためPPEと相溶性を持つPSをブレンドして混合樹脂とすることで溶融流動特性を改善したのがPS−PPE混合樹脂である。PSのみのメルトフローレイト値を測定した結果を、図8に示す。PSでは、繰り返し測定回数が少ない場合でもメルトフローレイト値の増加が確認された。これらのことから、PS−PPE混合樹脂における繰り返し測定回数が少ない段階での劣化は主にPSの分解によると判断される。このように、混合された樹脂についてもメルトフローレイト試験を繰り返し行うことで、混合された樹脂毎に主鎖の切断を伴う劣化過程と劣化反応速度を評価可能であることが示された。なお活性化エネルギーは83kJ/molと算出された。上述した実施例3及び実施例8で得られた主鎖切断過程に伴う劣化反応の活性化エネルギーは、80kJ/mol以上であり、実施例1、実施例2及び実施例5で得られた酸化劣化初期過程と判断された劣化反応の活性化エネルギーは、80kJ/mol未満であることが確認された。 As an example of the analysis according to the eighth embodiment of the present invention, a plot of the weight average molecular weight with respect to the melt flow rate value of the PS-PPE mixed resin measured in the analysis according to the seventh embodiment is shown in FIG. This result shows that there is a correlation between the melt flow rate value and the weight average molecular weight, and the slope decreases as the number of repeated injection moldings increases. PPE is a typical engineering plastic having a high softening point and excellent mechanical and electrical characteristics, but has poor moldability due to its high melting temperature. Therefore, PS-PPE mixed resin has improved melt flow characteristics by blending PS compatible with PPE into a mixed resin. The result of measuring the melt flow rate value of only PS is shown in FIG. In PS, an increase in melt flow rate value was confirmed even when the number of repeated measurements was small. From these facts, it is judged that the deterioration at the stage where the number of repeated measurements in the PS-PPE mixed resin is small is mainly due to the decomposition of PS. Thus, it was shown that the deterioration process and the deterioration reaction rate accompanied by the main chain breakage can be evaluated for each mixed resin by repeatedly performing the melt flow rate test on the mixed resin. The activation energy was calculated as 83 kJ / mol. The activation energy of the deterioration reaction accompanying the main chain cleavage process obtained in Example 3 and Example 8 described above is 80 kJ / mol or more, and the oxidation obtained in Example 1, Example 2 and Example 5 It was confirmed that the activation energy of the degradation reaction determined to be the initial degradation process was less than 80 kJ / mol.

本発明の第9の実施の形態に係る分析の例として、270℃で30分間熱処理したLDPE、太陽光と同様の波長分布を持つキセノンランプによる光を屋外での換算で約6ヶ月間照射したLDPE及びPMMAの3種類の劣化樹脂をリサイクル樹脂材料として作成した。これらのリサイクル樹脂材料の劣化状態は、本願発明の樹脂の劣化状態の評価法により、キセノンランプ光により劣化させたLDPEでは、第1MFR値 < 第2MFR値 < 第3MFR値 であったため、当該リサイクル樹脂材料の劣化状態が主鎖の切断が生じている状態であると判定された。270℃で30分間熱処理したLDPEは、第1MFR値 > 第2MFR値 < 第3MFR値 であったため、当該リサイクル樹脂材料の劣化状態が酸化劣化初期過程ではあるが主鎖の切断を生じうる状態であると判定された。キセノンランプ光により劣化させたPMMAでは、第1MFR値 > 第2MFR値 > 第3MFR値 であったため、当該リサイクル樹脂材料の劣化状態が酸化劣化初期過程であると判定された。本実施例9では、樹脂の劣化過程の評価を図7に示したフローチャートを用いて行った。 As an example of analysis according to the ninth embodiment of the present invention, LDPE heat-treated at 270 ° C. for 30 minutes and light from a xenon lamp having a wavelength distribution similar to sunlight were irradiated for about 6 months in terms of outdoor conversion. Three types of degraded resins, LDPE and PMMA, were prepared as recycled resin materials. The degradation state of these recycled resin materials is such that the first MFR value <the second MFR value <the third MFR value in the LDPE degraded by the xenon lamp light according to the evaluation method of the degradation state of the resin of the present invention. It was determined that the deterioration state of the material was a state in which the main chain was broken. LDPE heat-treated at 270 ° C. for 30 minutes had the first MFR value> the second MFR value <the third MFR value. Therefore, although the degradation state of the recycled resin material is in the initial stage of oxidative degradation, the main chain can be broken. It was determined. In the PMMA deteriorated by the xenon lamp light, since the first MFR value> the second MFR value> the third MFR value, the deterioration state of the recycled resin material was determined to be the initial stage of oxidation deterioration. In Example 9, the deterioration process of the resin was evaluated using the flowchart shown in FIG.

実施例9において作成された当該キセノンランプ光により劣化させたLDPEを劣化させていないLDPEと混合し、0wt%、30wt%、50wt%、80wt%、そして、100wt%(この場合、すべて劣化させたLDPEを利用)の割合で含ませた樹脂材料を作成した。LDPEの射出成形品として、卓上型射出成形機を用いダンベル状の引張試験片を作成し、引張試験を実施した。リサイクル樹脂材料の割合が0wt%の試験片の引張強度を100とした場合、30wt%では95、50wt%では80、80wt%では60、そして、100wt%では50の引張強度がそれぞれ得られた。これらの結果から、主鎖切断過程を生じている状態のリサイクル樹脂については、混合割合を1から30wt%以下にすることにより、強度については良好な結果が得られることが確認された。また、混入量を30wt%より多く含む場合には、強度低下が生じるため、用途が限定されることが確認された。しかし、酸化防止剤を加えることにより、引張強度が向上することが確認された。 The LDPE deteriorated by the xenon lamp light prepared in Example 9 was mixed with undegraded LDPE, and 0 wt%, 30 wt%, 50 wt%, 80 wt%, and 100 wt% (in this case, all deteriorated) The resin material contained at a ratio of (using LDPE) was prepared. A dumbbell-shaped tensile test piece was prepared as an LDPE injection-molded product using a desktop injection molding machine, and a tensile test was performed. When the tensile strength of a test piece having a recycled resin material ratio of 0 wt% was taken as 100, a tensile strength of 95 was obtained at 30 wt%, 80 at 80 wt%, 60 at 80 wt%, and 50 at 100 wt%. From these results, it was confirmed that, with respect to the recycled resin in a state in which the main chain cleavage process occurs, by setting the mixing ratio to 1 to 30 wt% or less, good results can be obtained in terms of strength. Further, when the mixing amount is more than 30 wt%, the strength is reduced, and it has been confirmed that the application is limited. However, it was confirmed that the tensile strength was improved by adding an antioxidant .

実施例9において作成された270℃で30分間の熱処理により劣化させたLDPEを劣化させていないLDPEと混合し、0wt%、30wt%、50wt%、80wt%、そして、100wt%(この場合、すべて劣化させたLDPEを利用)の割合で含んだ樹脂材料を作成した。LDPEの射出成形品として、ダンベル状の引張試験片を作成し、引張試験を実施した。リサイクル樹脂材料を0wt%の試験片の引張強度を100とした場合、30wt%では98、50wt%では95、80wt%では90、100wt%では80の引張強度がそれぞれ得られた。これらの結果から、樹脂材料の劣化状態が酸化劣化初期過程ではあるが主鎖の切断を生じうる主鎖切断過程を生じている状態の場合、混合割合を1wt%以上80wt%以下にすることにより、良好な結果が得られることが確認された。また、混入量を80wt%より多く含む場合には、強度低下が生じるため、用途が限定されることが確認された。しかし、添加剤を加えることにより、引張強度が向上することが確認された。 The LDPE produced in Example 9 and deteriorated by heat treatment at 270 ° C. for 30 minutes was mixed with undegraded LDPE, and 0 wt%, 30 wt%, 50 wt%, 80 wt%, and 100 wt% (in this case, all A resin material containing a ratio of (using deteriorated LDPE) was prepared. A dumbbell-shaped tensile test piece was prepared as an LDPE injection-molded product, and a tensile test was performed. When the tensile strength of the 0 wt% test piece was 100%, the tensile strength of 98 was obtained at 30 wt%, 95 at 50 wt%, 90 at 80 wt%, and 80 at 100 wt%. From these results, when the deterioration state of the resin material is a state in which the main chain cutting process that can cause the main chain to be broken is in the initial stage of oxidation deterioration, the mixing ratio is set to 1 wt% or more and 80 wt% or less. It was confirmed that good results were obtained. Further, when the mixing amount is more than 80 wt%, the strength is reduced, and it has been confirmed that the application is limited. However, it was confirmed that the tensile strength was improved by adding the additive.

実施例9において作成された当該キセノンランプ光により劣化させたPMMAを劣化させていないPMMAと混合し、0wt%、30wt%、50wt%、80wt%、そして、100wt%(この場合、すべて劣化させたPMMAを利用)の割合で含んだ樹脂材料を作成した。PMMAの射出成形品として、ダンベル状の引張試験片を作成し、引張試験を実施した。リサイクル樹脂材料の割合が0wt%の試験片の引張強度を100とした場合、30wt%では99、50wt%では99、80wt%では98、100wt%では96の引張強度がそれぞれ得られた。これらの結果から、樹脂材料の劣化状態が酸化劣化初期過程であると判断された場合、混合割合1wt%から100wt%において良好な結果が得られることが確認された。 The PMMA deteriorated by the xenon lamp light prepared in Example 9 was mixed with undegraded PMMA, 0 wt%, 30 wt%, 50 wt%, 80 wt%, and 100 wt% (in this case, all deteriorated) A resin material containing PMMA was used. As an injection molded product of PMMA, a dumbbell-shaped tensile test piece was prepared and a tensile test was performed. When the tensile strength of a test piece having a recycled resin material ratio of 0 wt% was taken as 100, 99 tensile strength was obtained at 30 wt%, 99 at 50 wt%, 98 at 80 wt%, and 96 tensile strength at 100 wt%. From these results, it was confirmed that when the deterioration state of the resin material was determined to be the initial stage of oxidation deterioration, good results were obtained at a mixing ratio of 1 wt% to 100 wt%.

以上、本発明の実施の形態を説明したが、本発明の範囲はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

従来技術では、樹脂劣化を議論するために酸化劣化初期過程と主鎖切断過程を網羅するには、複数の分析手法を用いる必要があった。本発明により、樹脂の流れ性を測定するメルトフローレイト試験を行うことで酸化劣化初期過程と主鎖切断過程を網羅する樹脂の劣化過程とその反応速度定数、反応の活性化エネルギーを得ることが可能となった。本発明により、今後、市場拡大が期待できる樹脂材料において、そのリサイクル性や耐候性の評価が従来と比べて低コストでできるようになる。また、操作も簡便で作業の標準化が容易であることから、産業上の利用可能性は大きい。 In the prior art, it was necessary to use a plurality of analytical methods to cover the initial stage of oxidation degradation and the main chain scission process in order to discuss resin degradation. According to the present invention, by performing a melt flow rate test to measure the flowability of the resin, it is possible to obtain the deterioration process of the resin covering the initial stage of oxidation deterioration and the main chain cutting process, its reaction rate constant, and the activation energy of the reaction. It has become possible. According to the present invention, it is possible to evaluate the recyclability and weather resistance of resin materials that can be expected to expand in the future at a lower cost than conventional ones. Moreover, since the operation is simple and the standardization of work is easy, the industrial applicability is great.

Claims (1)

樹脂の劣化過程を制御及び又は抑止するための酸化防止剤を加えることにより当該樹脂の劣化過程の速度を低減して寿命を長寿命化した樹脂材料及び又は当該樹脂材料を用いた樹脂成形品であって、樹脂の劣化過程を判定する工程として、
第1の工程として樹脂の劣化反応速度定数と劣化反応の活性化エネルギーを前記樹脂の融点以上の少なくとも2点の異なる温度におけるメルトフローレイトにより測定する工程
第2の工程として樹脂の劣化過程が酸化劣化初期過程を含むかどうかの判定を行う工程とを含み、
前記第1の工程として、当該樹脂材料の融点以上の少なくとも2点の異なる温度におけるメルトフローレイトを測定する工程が、第一のメルトフローレイト測定工程として少なくとも1回のメルトフローレイト試験を行ってメルトフローレイト値(第1MFR値)を得、
前記第1MFR値を得るために流れ出した樹脂材料について第二のメルトフローレイト測定工程として少なくとも1回のメルトフローレイト試験を実施してメルトフローレイト値(第2MFR値)を得る工程であり、
当該所定温度毎に測定された前記第1MFR値と第2MFR値とメルトフローレイト測定工程数より、式1を用いて劣化反応速度定数kを算出し、前記劣化反応速度定数kとそれぞれの劣化反応速度定数kを測定した温度とから式2より活性化エネルギーを算出する工程であり、
前記第2の工程が、前記樹脂の劣化過程が酸化劣化初期過程を含むかどうかの判定が、前記第1MFR値と前記第2MFR値を比較し、
前記第1MFR値が前記第2MFR値より大きく、前記第1の工程で算出された活性化エネルギーの値が80kJ/molより低い場合には、当該樹脂の劣化過程において酸化劣化初期過程が支配的であると判定され、
前記第1MFR値が前記第2MFR値より小さく、前記活性化エネルギーの値が80kJ/mol以上の場合には、当該樹脂の劣化過程において酸化劣化初期過程を含んだとしても支配的では無く主鎖の切断を伴う主鎖切断過程が支配的であると判断され、前記第1MFR値と前記第2MFR値との差異が0.4%以内である場合には、当該樹脂の劣化過程において、酸化劣化初期過程を含んだとしても支配的では無く主鎖切断過程が生じうると判断されるため更に測定温度を上げて再度第1MFR値と第2MFR値を測定して第1MFR値と第2MFR値を比較して樹脂が酸化劣化初期過程を含むかどうかを判定する工程であることを特徴とする、
樹脂の劣化過程を制御及び又は抑止するための酸化防止剤を加えることにより、当該樹脂の劣化過程の速度を低減して寿命を長寿命化した樹脂材料及び又は当該樹脂材料を用いた成形品。

(式1)Ln((第1MFR値)÷ (第2MFR値))/((MFR測定工程数)−1)
= k
(式2)Ln(k)=Ln(頻度因子)−(活性化エネルギー)/(8.314J/molK×(温度))
By adding an antioxidant for controlling and / or suppressing the deterioration process of the resin, the resin material that has reduced the speed of the deterioration process of the resin to increase the service life and / or the resin molded product using the resin material As a process of judging the deterioration process of the resin,
A step of the activation energy of the resin degradation reaction rate constant degradation reaction is measured by a melt flow rate different at temperatures above the melting point of at least two points of the resin as the first step,
Determining whether the resin deterioration process includes an oxidation deterioration initial process as a second process,
The step of measuring the melt flow rate at at least two different temperatures above the melting point of the resin material as the first step includes performing at least one melt flow rate test as the first melt flow rate measurement step. Obtaining a melt flow rate value (first MFR value);
The resin material that has flowed out to obtain the first MFR value is a step of performing a melt flow rate test at least once as a second melt flow rate measurement step to obtain a melt flow rate value (second MFR value),
From the first MFR value, the second MFR value, and the melt flow rate measurement process number measured for each predetermined temperature, a degradation reaction rate constant k is calculated using Equation 1, and the degradation reaction rate constant k and each degradation reaction are calculated. It is a step of calculating the activation energy from Equation 2 from the temperature at which the rate constant k is measured ,
In the second step, the determination of whether the deterioration process of the resin includes an initial oxidation deterioration process is performed by comparing the first MFR value and the second MFR value.
When the first MFR value is larger than the second MFR value and the activation energy value calculated in the first step is lower than 80 kJ / mol, the initial oxidation deterioration process is dominant in the deterioration process of the resin. Is determined to be
When the first MFR value is smaller than the second MFR value and the activation energy value is 80 kJ / mol or more, the degradation process of the resin is not dominant even if it includes the initial oxidation degradation process, and the main chain When it is determined that the main chain cleavage process involving cleavage is dominant and the difference between the first MFR value and the second MFR value is within 0.4%, in the degradation process of the resin, the oxidation degradation initial stage Even if the process is included, it is determined that the main chain scission process may occur without being dominant. Therefore, the first MFR value and the second MFR value are compared again by raising the measurement temperature and measuring the first MFR value and the second MFR value again. And determining whether the resin includes an initial stage of oxidative degradation,
A resin material and a molded article using the resin material, which has an increased life by reducing the speed of the deterioration process of the resin by adding an antioxidant for controlling and / or inhibiting the deterioration process of the resin.

(Formula 1) Ln ((first MFR value) ÷ (second MFR value)) / ((number of MFR measurement steps) −1)
= K
(Formula 2) Ln (k) = Ln (frequency factor) − (activation energy) / (8.314 J / molK × (temperature))
JP2012285520A 2012-12-27 2012-12-27 Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material Active JP6089244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285520A JP6089244B2 (en) 2012-12-27 2012-12-27 Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285520A JP6089244B2 (en) 2012-12-27 2012-12-27 Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016189667A Division JP6232598B2 (en) 2016-09-28 2016-09-28 Method for producing synthetic resin material and recycled resin material

Publications (2)

Publication Number Publication Date
JP2014126528A JP2014126528A (en) 2014-07-07
JP6089244B2 true JP6089244B2 (en) 2017-03-08

Family

ID=51406121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285520A Active JP6089244B2 (en) 2012-12-27 2012-12-27 Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material

Country Status (1)

Country Link
JP (1) JP6089244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018764B (en) * 2016-08-01 2017-12-12 中电投西安太阳能电力有限公司 The detection of feed back and decision method in a kind of photovoltaic component terminal box
JP7201905B2 (en) * 2018-12-14 2023-01-11 日亜化学工業株式会社 Manufacturing method of compound for recycled bonded magnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490658B2 (en) * 2003-08-28 2010-06-30 住友化学株式会社 Resin composition for engineering plastic modification and method for modifying polyester using the composition
US20060004154A1 (en) * 2004-07-02 2006-01-05 Derudder James L Thermoplastic polycarbonate compositions, method of manufacture, and method of use thereof
NO324545B1 (en) * 2004-10-22 2007-11-19 Nor X Industry As Process for the manufacture of thermoplastics having an adjustable lifetime, mixing of additives for use in carrying out the process and thermoplastics so produced.
JP2007277368A (en) * 2006-04-05 2007-10-25 Mitsubishi Rayon Co Ltd Diene rubber graft copolymer, thermoplastic resin composition containing the same, and method for producing diene rubber graft copolymer
JP5742432B2 (en) * 2011-04-27 2015-07-01 宇部興産株式会社 Method for predicting deterioration of molded product, method for producing molded product based on design obtained thereby, and molded product

Also Published As

Publication number Publication date
JP2014126528A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
Zhao et al. Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR
Zhao et al. Investigation of crosslinking in the thermooxidative aging of nitrile–butadiene rubber
Spadaro et al. Ionizing radiation-induced crosslinking and degradation of polymers
KR20190014527A (en) Molecular Modification of Polyethylene Resin
JP6089244B2 (en) Method for analyzing resin degradation process, and method for producing synthetic resin material and recycled resin material
Mani et al. Cross-linking control of PDMS rubber at high temperatures using TEMPO nitroxide
Ye et al. Photocrosslinking and related properties of intumescent flame‐retardant LLDPE/EVA/IFR blends
Laing et al. Effect of co‐agents on adhesion between peroxide cured ethylene–propylene–diene monomer and thermoplastics in two‐component injection molding
Svoboda et al. Cross‐linking of ethylene‐octene copolymer (EOC) by dicumyl peroxide (DCP)
JP6232598B2 (en) Method for producing synthetic resin material and recycled resin material
CN104710668A (en) Special flame-retardant polyethylene material for preparing wires and cables
Posadas et al. Study on peroxide vulcanization thermodynamics of ethylene–vinyl acetate copolymer rubber using 2, 2, 6, 6,‐tetramethylpiperidinyloxyl nitroxide
Sobhy et al. The influence of fiber length and concentration on the physical properties of wheat husk fibers rubber composites
Jansen et al. Effect of mercapto‐modified ethylene–vinyl acetate on the curing parameters and mechanical and dynamic mechanical properties of vulcanized nitrile rubber/ethylene–vinyl acetate blends
TCHARKHTCHI et al. Thermal degradation of polymers during their mechanical recycling
von Vacano et al. Elucidating pathways of polypropylene chain cleavage and stabilization for multiple loop mechanical recycling
Nicolini et al. Dynamically vulcanized PP/EPDM blends: Influence of curing agents on the morphology evolution
El-Kinani et al. Characterization of wood plastic composites by using positron annihilation system
Radosavljević et al. Interplay between key variables of peroxide cured EPDM and evaluation of electromechanical efficiency for MV cables
Zhang et al. Investigation on multifunctional monomer modified polypropylene and its foamability
El-Wakil Enhancement of adhesion between EPDM and polyester fabric by using natural rubber modified by maleic anhydride
JP2023087876A (en) Resin composition and resin containing member
Psarreas et al. Nitroxide‐mediated controlled degradation of polypropylene
Brigandi et al. Material properties and phase behavior of crosslinkable acrylonitrile‐butadiene copolymer/ethylene vinyl acetate/carbon black composites
Merabet et al. The Physical Modification of a Natural Rubber‐Polypropylene Thermoplastic Elastomer Blend by Azobisformamide Blowing Agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6089244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250