JP4030281B2 - Insulation degradation detection method - Google Patents

Insulation degradation detection method Download PDF

Info

Publication number
JP4030281B2
JP4030281B2 JP2001301025A JP2001301025A JP4030281B2 JP 4030281 B2 JP4030281 B2 JP 4030281B2 JP 2001301025 A JP2001301025 A JP 2001301025A JP 2001301025 A JP2001301025 A JP 2001301025A JP 4030281 B2 JP4030281 B2 JP 4030281B2
Authority
JP
Japan
Prior art keywords
insulating layer
insulation
coil
amount
hydrolysis product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001301025A
Other languages
Japanese (ja)
Other versions
JP2003107075A (en
Inventor
博子 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001301025A priority Critical patent/JP4030281B2/en
Publication of JP2003107075A publication Critical patent/JP2003107075A/en
Application granted granted Critical
Publication of JP4030281B2 publication Critical patent/JP4030281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば回転機のコイル絶縁層等、電気機器の樹脂を含む固体形状の絶縁層の絶縁劣化検出方法に関するものである。
【0002】
【従来の技術】
回転機等の電気機器に用いられる固体形状の絶縁層(以下、単に絶縁層と称する)は、様々なストレスによってその電気絶縁性能が徐々に劣化することが知られている。
このため、水車発電機やタービン発電機などの高電圧、大容量の電気機器の固定子コイル等、絶縁層を有する機器の補修時期を確定して絶縁層の劣化による事故を防止する目的で、電気機器の絶縁部分の絶縁劣化検出および絶縁寿命予測が行われている。
【0003】
従来の絶縁劣化検出方法としては、例えば、電気学会技術報告(II部)第182号13頁〜14頁に示された、高電圧回転機のコイルに電圧を印加して電気的特性の変化から絶縁層の状態を判断する方法や、絶縁層を構成する有機物の熱による化学的変化から絶縁層の劣化状態を把握する方法、あるいは、特開平12−155150号公報に開示された、高電圧回転機のコイル絶縁層の劣化に起因する絶縁層表面近傍の放電によって生成される放電劣化生成物を検出する方法等が提案されている。
なお、図5は特開平12−155150号公報に開示された高電圧回転機のコイル絶縁層の絶縁劣化検出方法を説明するための図で、1はコイル導体、2はコイル絶縁層、3はスロット、4はウェッジ、5はコア、6はスロットライナ、10は放電劣化生成物を検出する純水を含ませた水素イオン濃度試験紙、11は水素イオン濃度試験紙10を貼り付ける粘着テープである。
【0004】
【発明が解決しようとする課題】
以上のように、高電圧回転機のコイル絶縁層に対して例示された絶縁層の絶縁劣化を検出する方法としては、従来いくつかの方法が提案されてきたがいずれも有効ではない。例えば、電気的特性の変化を測定する方法では、絶縁層の劣化状態を直接測定するものではないので劣化に対する感度が不十分であると共に、巻線状態での評価であるため多くの絶縁層の情報が複合されたものであり精度が低いという問題があった。
また、絶縁層の化学的変化から絶縁層の劣化を検出する方法では、熱的要因による絶縁層を構成する有機物の劣化状態の把握に限定されていた。
【0005】
また、絶縁層表面近傍の放電によって生成される放電生成物を検出する方法では、コイル絶縁層の表面近傍に発生したボイドや、コイル・コア間において放電が発生したのちに検出されるため、絶縁材の劣化がかなり進行しており、早期に絶縁層の劣化を把握することが難しいという問題があった。
【0006】
この発明は、上記のような問題点を解消するためになされたもので、電気機器の固体形状の絶縁層の劣化状態を直接測定し、絶縁層の劣化を早期に検出できる絶縁劣化検出方法を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係わる絶縁劣化検出方法は、電気機器の絶縁層中および絶縁層の表面に付着した、絶縁層を構成する樹脂の加水分解生成物量を測定することにより、絶縁層の絶縁劣化の状態を検出するものである。
また、絶縁層を構成する樹脂の加水分解生成物とは、無水マレイン酸、マレイン酸、フマール酸、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸などの有機酸のうちのいずれかもしくは複数の有機酸である。
【0008】
また、絶縁層を構成する樹脂の加水分解生成物量の測定は、サンプリングした絶縁層の溶媒抽出液をイオンクロマトグラフ分析、もしくはサンプリングした上記絶縁層の付着物を赤外線吸収分析法の有機物定量分析方法を用いて定量分析することにより行うものである。
また、絶縁層に含有される絶縁層を構成する樹脂の加水分解生成物量を測定するためのサンプリングは、絶縁劣化検出対象である絶縁層と同一仕様を有しかつ同一環境下にさらされている他の絶縁層から行うものである。
【0009
【発明の実施の形態】
実施の形態1.
以下、この発明の一実施の形態である電気機器の固体形状の絶縁層(以下、単に絶縁層と称する)の絶縁劣化検出方法を図について説明する。図1はこの発明の実施の形態1による電気機器の絶縁層(本実施の形態では回転機固定子のコイル絶縁層)の絶縁劣化検出方法を説明するための図で、回転機固定子の一例を示す部分斜視図である。
図において、1はコイル導体、2はコイル導体1を覆うコイル絶縁層で、樹脂、例えばポリエステル樹脂などを含んでいる。3はスロット、4はウェッジ、5はコア、6はスロットライナ、7はコイル絶縁層2のサンプリング位置の一例である。
【0010
本実施の形態による絶縁層の絶縁劣化検出方法は、樹脂を含む絶縁層の化学的な劣化の一つである樹脂の加水分解に着目し、樹脂の加水分解によって生成される加水分解生成物を検出すると共に定量することにより絶縁層の劣化を検出する方法である。
【0011
次に、本実施の形態による絶縁層の絶縁劣化検出方法について具体的に説明する。本実施の形態では、回転機固定子のコイル絶縁層を例示して説明する。
まず、回転機の固定子コイルのコイル絶縁層2の一部、望ましくはコイル絶縁層2の表層近傍から約1gを採取して正確にその重量を測定し、導電率1μS/cmのイオン交換水50ccに浸漬して、約30分間超音波抽出を行った後、イオンクロマト分析法等により樹脂の加水分解生成物である無水マレイン酸、マレイン酸、フマール酸、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸などの有機酸のうちのいずれか、もしくは複数の有機酸の検出および定量を行う。
このとき、コイル絶縁層2の抽出液には複数の成分が含まれるが、樹脂の加水分解生成物は絶縁層に劣化が生じていない場合にはほとんど検出されないことから、加水分解生成物の生成状態をコイル絶縁層2の劣化の判定指標とすることができる。
【0012
図2はコイル絶縁層2の抽出液に含まれる樹脂の加水分解生成物の量による絶縁層の劣化状態の判定基準の一例を示したもので、劣化状態の判定基準となる加水分解生成物量の数値は、予め予備実験を行うことによって定めたものである。
なお、有機酸量の測定は、コイル絶縁層2の抽出液中に含まれる有機酸量(樹脂の加水分解生成物量)を測定するイオンクロマト分析に限定するものではなく、コイル絶縁層2の表面付着物中に含まれる有機酸量(樹脂の加水分解生成物量)を測定する赤外吸収分析等、有機酸を検出できる定量分析方法であればよい。
【0013
本実施の形態によれば、樹脂を含む絶縁層の化学的な劣化の一つとして考えられる樹脂の加水分解に着目し、絶縁層を構成する樹脂の加水分解生成物は絶縁層に劣化が生じていない場合にはほとんど検出されないことから、絶縁層を直接サンプリングして分析し、絶縁層を構成する樹脂の加水分解生成物である特定の有機酸のみを測定することにより、絶縁層の劣化状態を直接測定して判定することができると共に、絶縁層を構成する樹脂の加水分解生成物の量をモニタすることにより絶縁層の劣化を早期に検出することができる。
【0014
実施の形態2.
図3はこの発明の実施の形態2による電気機器の絶縁層(本実施の形態では回転機固定子のコイル絶縁層)の絶縁寿命予測方法を説明するための図の一例で、絶縁寿命予測対象の絶縁層(コイル絶縁層)の有機酸量(絶縁層を構成する樹脂の加水分解生成物量)と残存耐電圧値の関係を示す図の一例である。
【0015
次に、本実施の形態による絶縁層の絶縁寿命予測方法について説明する。
まず、任意の時間運転した回転機のコイル絶縁層に対して測定した、絶縁層の劣化と関連する化学的特性値の一つであるコイル絶縁層を構成する樹脂の加水分解生成物量(有機酸量)と残存耐電圧値との複数のデータ対を用いて、コイル絶縁層の有機酸量と残存耐電圧値の関係を図式化する(図3)。
次に、寿命予測対象のコイル絶縁層において得られた有機酸量を図3に当てはめることにより、このコイル絶縁層の残存耐電圧値を推定する。
なお、コイル絶縁層の有機酸量と残存耐電圧値の関係図を得るために任意の時間運転した回転機のコイル絶縁層を用いたが、任意の条件で加速劣化させた回転機のコイル絶縁層を用いて作成してもよい。
【0016
本実施の形態によれば、予め作成された絶縁層を構成する樹脂の加水分解生成物量(有機酸量)と絶縁層の残存耐電圧値の関係を示す図式に、寿命予測対象の絶縁層における絶縁層を構成する樹脂の加水分解生成物量の測定値を当てはめることにより、絶縁層の推定残存耐電圧値を得ることができ、この絶縁層の寿命(余寿命)を早期かつ容易に予測することができる。
【0017
実施の形態3.
図4はこの発明の実施の形態3による電気機器の絶縁層(本実施の形態では回転機固定子のコイル絶縁層)の絶縁寿命予測方法を説明するための図である。図において、5は回転機固定子のコア、8はコイルエンド部、9はコイル口出し線(機外部)、9aはコイル口出し線9に施された絶縁層である。
【0018
本実施の形態によるコイル絶縁層の絶縁寿命予測方法は、絶縁層中の樹脂の加水分解による劣化は環境からの要因によって生じる劣化であり、熱、電気、機械等に起因する劣化とは異なりコイル絶縁層にのみ生じるものではないことから、絶縁寿命予測対象のコイル絶縁層と同一仕様を有しかつ同一環境化にさらされた他の絶縁層に対して測定した絶縁層を構成する樹脂の加水分解生成物量を、実施の形態2と同様の方法で得られた絶縁層を構成する樹脂の加水分解生成物量(有機酸量)と残存耐電圧値との関係図式に代入することにより、コイル絶縁層における残存耐電圧値を推定して寿命(余寿命)を予測するものである。
【0019
ここでは、絶縁寿命予測対象であるコイル絶縁層の代わりに、コイル口出し線9機外部に施された絶縁層9aに対して絶縁層9aを構成する樹脂の加水分解生成物量を測定し、コイル絶縁層を構成する樹脂の加水分解生成物量とコイル絶縁層の残存耐電圧値との関係図式に代入することにより、コイル絶縁層の残存耐電圧値を推定して寿命(余寿命)を予測する。
【0020
また、寿命予測対象の絶縁層を有する電気機器の一部に施された絶縁層ではなく、寿命予測対象の絶縁層と同一仕様を有する絶縁層からなる測定用サンプルを寿命予測対象の絶縁層の近傍に設置し、測定用サンプルを用いて樹脂の加水分解生成物量を測定することにより、寿命予測対象の絶縁層の残存耐電圧値を推定して寿命(余寿命)を予測してもよい。
【0021
本実施の形態によれば、予め作成された絶縁層を構成する樹脂の加水分解生成物量(有機酸量)と絶縁層の残存耐電圧値の関係図式に、寿命予測対象の絶縁層と同一仕様でかつ近傍に設置された絶縁層に対して測定した絶縁層を構成する樹脂の加水分解生成物量を代入し、寿命予測対象の絶縁層における寿命(余寿命)を予測するため、実機からの絶縁層形成部の抜き取りや、絶縁層のサンプリングおよびサンプリングに伴う補修の必要がなくなり、サンプリング作業が容易かつ迅速に行うことができる。
【0022
なお、実施の形態3では、コイル絶縁層の寿命予測のためのサンプリングについて示したが、実施の形態1におけるコイル絶縁層の絶縁劣化検出のためのサンプリングに適用してもよく、サンプリング作業において同様の効果が得られる。
また、上記実施の形態では、回転機固定子のコイル絶縁層の劣化検出および寿命予測について説明したが、本発明は樹脂を含む絶縁層に対して適用でき、同様の効果が得られる。
【0023
【発明の効果】
以上のように、この発明による絶縁劣化検出方法によれば、樹脂を含む固体形状の絶縁層の化学的な劣化の一つとして考えられる樹脂の加水分解に着目し、絶縁層を構成する樹脂の加水分解生成物は絶縁層に劣化が生じていない場合にはほとんど検出されないことから、絶縁層をサンプリングして分析することにより、絶縁層の劣化状態を直接測定して判定することができると共に、絶縁層を構成する樹脂の加水分解生成物の量をモニタすることにより、絶縁層の劣化を早期に検出することができる。
【0024
また、絶縁層を構成する樹脂の加水分解生成物である特定の有機酸のみを分析して定量するため、絶縁層を構成する樹脂の加水分解生成物量の測定を容易に行うことができる。
【0025
また、絶縁層を構成する樹脂の加水分解生成物量の測定は、一般的な分析機器を用いて周知の手法により行うことができる。
【0026
また、絶縁層を構成する樹脂の加水分解生成物量を測定するためのサンプリングを、絶縁劣化検出対象である絶縁層と同一仕様を有しかつ同一環境化にさらされている他の絶縁層から行うことにより、実機からの絶縁層形成部の抜き取りや、サンプリング後の補修の必要がなくなり、サンプリング作業が容易かつ迅速に行うことができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電気機器の絶縁層の絶縁劣化検出方法を説明するための図である。
【図2】 この発明の実施の形態1による電気機器の絶縁層の絶縁劣化検出方法において、絶縁層の劣化状態の判定基準の一例を示す図である。
【図3】 この発明の実施の形態2による電気機器の絶縁層の絶縁寿命予測方法を説明するための図である。
【図4】 この発明の実施の形態3による電気機器の絶縁層の絶縁寿命予測方法の一例を説明するための図である。
【図5】 従来のこの種電気機器の絶縁層の絶縁劣化検出方法を説明するための図である。
【符号の説明】
1 コイル導体、2 コイル絶縁層、3 スロット、4 ウェッジ、5 コア、
6 スロットライナ、7 サンプリング位置、8 コイルエンド部、
9 コイル口出し線、9a 絶縁層。
[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, a coil insulating layer of the rotating machine or the like, and relates to the insulation deterioration detection method of the insulating layer of a solid shape including a resin of the electrical device.
[0002]
[Prior art]
It is known that a solid-shaped insulating layer (hereinafter simply referred to as an insulating layer) used for an electric device such as a rotating machine gradually deteriorates its electric insulating performance due to various stresses.
Therefore, in order to prevent accidents due to deterioration of the insulation layer by determining the repair time of equipment having an insulation layer, such as stator coils of high-voltage, large-capacity electrical equipment such as turbine generators and turbine generators, Insulation deterioration detection and insulation life prediction of insulation parts of electrical equipment are performed.
[0003]
As a conventional insulation deterioration detection method, for example, from the change in electrical characteristics by applying a voltage to a coil of a high-voltage rotating machine shown in the Technical Report of the Institute of Electrical Engineers (Part II) No. 182, pages 13-14. A method for judging the state of the insulating layer, a method for grasping the deterioration state of the insulating layer from the chemical change caused by the heat of the organic matter constituting the insulating layer, or the high voltage rotation disclosed in JP-A-12-155150 A method for detecting a discharge deterioration product generated by a discharge in the vicinity of the surface of the insulating layer due to deterioration of the coil insulating layer of the machine has been proposed.
FIG. 5 is a diagram for explaining a method for detecting insulation deterioration of a coil insulation layer of a high-voltage rotating machine disclosed in Japanese Patent Application Laid-Open No. 12-155150. 1 is a coil conductor, 2 is a coil insulation layer, Slot, 4 is a wedge, 5 is a core, 6 is a slot liner, 10 is a hydrogen ion concentration test paper containing pure water to detect discharge deterioration products, and 11 is an adhesive tape to which the hydrogen ion concentration test paper 10 is attached. is there.
[0004]
[Problems to be solved by the invention]
As described above, several methods have been proposed for detecting the insulation deterioration of the insulating layer exemplified for the coil insulating layer of the high-voltage rotating machine, but none of them is effective. For example, the method of measuring the change in electrical characteristics does not directly measure the deterioration state of the insulating layer, so the sensitivity to deterioration is insufficient, and since it is an evaluation in the winding state, many insulating layers There was a problem that the information was composited and the accuracy was low.
Further, the method for detecting the deterioration of the insulating layer from the chemical change of the insulating layer is limited to grasping the deterioration state of the organic matter constituting the insulating layer due to a thermal factor.
[0005]
Also, in the method of detecting the discharge product generated by the discharge near the surface of the insulating layer, it is detected after the void generated near the surface of the coil insulating layer or the discharge between the coil and the core. There was a problem that the deterioration of the material has progressed considerably and it is difficult to grasp the deterioration of the insulating layer at an early stage.
[0006]
The present invention has been made to solve the above-described problems, and provides an insulation deterioration detection method capable of directly measuring the deterioration state of a solid insulating layer of an electric device and detecting the deterioration of the insulating layer at an early stage. The purpose is to obtain.
[0007]
[Means for Solving the Problems]
The insulation deterioration detection method according to the present invention measures the state of insulation deterioration of the insulating layer by measuring the amount of hydrolysis product of the resin constituting the insulating layer in the insulating layer of the electrical equipment and on the surface of the insulating layer. It is to detect.
The hydrolysis product of the resin constituting the insulating layer is any one or more of organic acids such as maleic anhydride, maleic acid, fumaric acid, phthalic anhydride, isophthalic acid, terephthalic acid, and adipic acid. Organic acid.
[0008]
In addition, the amount of hydrolysis product of the resin constituting the insulating layer can be measured by ion chromatographic analysis of the solvent extract of the sampled insulating layer, or the organic substance quantitative analysis method using infrared absorption analysis of the sampled deposit of the insulating layer. This is done by quantitative analysis using
In addition, the sampling for measuring the amount of hydrolysis product of the resin constituting the insulating layer contained in the insulating layer has the same specifications as the insulating layer that is the object of detection of insulation deterioration and is exposed to the same environment. It is performed from another insulating layer.
[00 09 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A method for detecting insulation deterioration of a solid insulating layer (hereinafter simply referred to as an insulating layer) of an electrical apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a method for detecting insulation deterioration of an insulating layer of an electrical device (in this embodiment, a coil insulating layer of a rotating machine stator) according to Embodiment 1 of the present invention, and is an example of a rotating machine stator. FIG.
In the figure, 1 is a coil conductor, 2 is a coil insulating layer covering the coil conductor 1, and contains a resin such as a polyester resin. 3 is a slot, 4 is a wedge, 5 is a core, 6 is a slot liner, and 7 is an example of a sampling position of the coil insulating layer 2.
[00 10 ]
The insulation deterioration detection method of the insulating layer according to the present embodiment pays attention to the hydrolysis of the resin, which is one of the chemical deteriorations of the insulating layer containing the resin, and uses the hydrolysis product generated by the hydrolysis of the resin. In this method, the deterioration of the insulating layer is detected by detecting and quantifying.
[00 11 ]
Next, a method for detecting insulation deterioration of an insulating layer according to this embodiment will be specifically described. In the present embodiment, a coil insulating layer of a rotating machine stator will be described as an example.
First, a portion of the coil insulation layer 2 of the stator coil of the rotating machine, preferably about 1 g from the vicinity of the surface of the coil insulation layer 2 is sampled and accurately measured for its weight, and ion-exchanged water having a conductivity of 1 μS / cm. After immersion in 50 cc and ultrasonic extraction for about 30 minutes, maleic anhydride, maleic acid, fumaric acid, phthalic anhydride, isophthalic acid, terephthalic acid, which are hydrolysis products of the resin by ion chromatography analysis etc. And detecting and quantifying one or more organic acids such as adipic acid.
At this time, the extract of the coil insulating layer 2 contains a plurality of components, but the hydrolysis product of the resin is hardly detected when the insulating layer is not deteriorated. The state can be used as a determination index for deterioration of the coil insulating layer 2.
[00 12 ]
FIG. 2 shows an example of a criterion for determining the deterioration state of the insulating layer according to the amount of the hydrolysis product of the resin contained in the extract of the coil insulating layer 2. The amount of hydrolysis product that is a criterion for determining the deterioration state is shown in FIG. The numerical value is determined in advance by conducting a preliminary experiment.
The measurement of the amount of organic acid is not limited to ion chromatographic analysis for measuring the amount of organic acid (the amount of hydrolysis product of resin) contained in the extract of coil insulating layer 2, but the surface of coil insulating layer 2 Any quantitative analysis method capable of detecting an organic acid, such as infrared absorption analysis for measuring the amount of organic acid contained in the deposit (the amount of hydrolysis product of the resin) may be used.
[00 13 ]
According to the present embodiment, focusing on the hydrolysis of the resin, which is considered as one of the chemical degradations of the insulating layer containing the resin, the hydrolysis product of the resin constituting the insulating layer deteriorates in the insulating layer. In this case, the insulation layer is sampled and analyzed directly, and the degradation state of the insulation layer is determined by measuring only the specific organic acid that is the hydrolysis product of the resin that constitutes the insulation layer. It is possible to determine the deterioration of the insulating layer at an early stage by monitoring the amount of the hydrolysis product of the resin constituting the insulating layer.
[00 14 ]
Embodiment 2. FIG.
FIG. 3 is an example of a diagram for explaining a method for predicting an insulation life of an insulation layer (in this embodiment, a coil insulation layer of a rotating machine stator) of an electrical device according to Embodiment 2 of the present invention. It is an example of the figure which shows the relationship between the amount of organic acids (the amount of hydrolysis products of the resin which comprises an insulating layer) of an insulating layer (coil insulating layer), and a residual withstand voltage value.
[00 15 ]
Next, a method for predicting the insulation lifetime of the insulating layer according to the present embodiment will be described.
First, the amount of hydrolysis product of the resin constituting the coil insulating layer (organic acid), which is one of the chemical characteristic values related to the deterioration of the insulating layer, measured for the coil insulating layer of the rotating machine operated for an arbitrary time. The relationship between the amount of organic acid in the coil insulating layer and the remaining withstand voltage value is graphically represented using a plurality of data pairs of ( quantity) and the remaining withstand voltage value (FIG. 3).
Next, the residual withstand voltage value of this coil insulating layer is estimated by applying the amount of organic acid obtained in the coil insulating layer subject to life prediction to FIG.
In order to obtain the relationship between the amount of organic acid in the coil insulation layer and the residual withstand voltage value, the coil insulation layer of the rotating machine operated for an arbitrary time was used. It may be created using layers.
[00 16 ]
According to the present embodiment, the diagram showing the relationship between the amount of hydrolysis product (organic acid amount) of the resin constituting the insulating layer prepared in advance and the residual withstand voltage value of the insulating layer, By applying the measured value of the hydrolysis product amount of the resin constituting the insulating layer, the estimated residual withstand voltage value of the insulating layer can be obtained, and the life (remaining life) of this insulating layer can be predicted early and easily Can do.
[00 17 ]
Embodiment 3 FIG.
FIG. 4 is a diagram for explaining a method for predicting an insulation life of an insulating layer of an electric device (in this embodiment, a coil insulating layer of a rotating machine stator) according to Embodiment 3 of the present invention. In the figure, 5 is a core of a rotating machine stator, 8 is a coil end portion, 9 is a coil lead wire (outside the machine), and 9a is an insulating layer applied to the coil lead wire 9.
[00 18 ]
In the method for predicting the insulation life of the coil insulation layer according to the present embodiment, degradation due to hydrolysis of the resin in the insulation layer is caused by environmental factors, and unlike the degradation caused by heat, electricity, machinery, etc., the coil Since it does not occur only in the insulation layer, the amount of resin in the insulation layer measured with respect to other insulation layers that have the same specifications as the coil insulation layer subject to insulation life prediction and is exposed to the same environment By substituting the amount of decomposition products into the relationship diagram between the amount of hydrolysis products (organic acid amount) of the resin constituting the insulating layer obtained by the same method as in Embodiment 2 and the residual withstand voltage value, coil insulation is obtained. The lifetime (remaining lifetime) is predicted by estimating the residual withstand voltage value in the layer.
[00 19 ]
Here, instead of the coil insulation layer that is the object of insulation life prediction, the amount of the hydrolysis product of the resin constituting the insulation layer 9a is measured with respect to the insulation layer 9a applied to the outside of the coil lead wire 9 machine, and the coil insulation By substituting into the relationship diagram between the amount of the hydrolysis product of the resin constituting the layer and the remaining withstand voltage value of the coil insulating layer, the remaining withstand voltage value of the coil insulating layer is estimated to predict the life (remaining life).
[00 20 ]
In addition, instead of an insulation layer applied to a part of an electrical device having a life prediction target insulation layer, a measurement sample made of an insulation layer having the same specifications as the life prediction target insulation layer is used for the life prediction target insulation layer. The life (remaining life) may be estimated by estimating the residual withstand voltage value of the insulation layer of the life prediction target by installing it in the vicinity and measuring the amount of hydrolysis product of the resin using a measurement sample.
[00 21 ]
According to the present embodiment, the relationship between the amount of hydrolysis product (organic acid amount) of the resin constituting the insulating layer prepared in advance and the residual withstand voltage value of the insulating layer is the same as that of the insulating layer subject to life prediction. In order to predict the life (remaining life) of the insulation layer subject to life prediction by substituting the amount of hydrolysis product of the resin constituting the insulation layer measured with respect to the insulation layer installed in the vicinity. There is no need to extract the layer forming portion, sampling the insulating layer, and repairs accompanying the sampling, and the sampling operation can be performed easily and quickly.
[00 22 ]
In the third embodiment, the sampling for predicting the life of the coil insulating layer has been described. However, the present invention may be applied to the sampling for detecting the insulation deterioration of the coil insulating layer in the first embodiment. The effect is obtained.
In the above-described embodiment, the deterioration detection and life prediction of the coil insulating layer of the rotating machine stator have been described. However, the present invention can be applied to an insulating layer containing a resin, and the same effect can be obtained.
[00 23 ]
【The invention's effect】
As described above, according to the insulation deterioration detection method according to the present invention, focusing on the hydrolysis of the resin, which is considered as one of the chemical deterioration of the solid-shaped insulation layer containing the resin, the resin constituting the insulation layer is noticed. Since the hydrolysis product is hardly detected when the insulating layer has not deteriorated, it can be determined by directly measuring the deterioration state of the insulating layer by sampling and analyzing the insulating layer, By monitoring the amount of the hydrolysis product of the resin constituting the insulating layer, deterioration of the insulating layer can be detected at an early stage.
[00 24 ]
Moreover, since only the specific organic acid which is the hydrolysis product of the resin constituting the insulating layer is analyzed and quantified, the amount of the hydrolysis product of the resin constituting the insulating layer can be easily measured.
[00 25 ]
Moreover, the measurement of the hydrolysis product amount of resin which comprises an insulating layer can be performed by a well-known method using a general analytical instrument.
[00 26 ]
In addition, sampling for measuring the amount of hydrolysis product of the resin constituting the insulating layer is performed from another insulating layer that has the same specifications as the insulating layer that is the object of detection of insulation deterioration and is exposed to the same environment. This eliminates the need for extracting the insulating layer forming portion from the actual machine and repairing after sampling, and allows the sampling operation to be performed easily and quickly.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an insulation deterioration detection method for an insulating layer of an electric device according to Embodiment 1 of the present invention;
FIG. 2 is a diagram showing an example of a criterion for determining a deterioration state of an insulating layer in the insulating deterioration detection method for an insulating layer of an electric device according to Embodiment 1 of the present invention;
FIG. 3 is a diagram for explaining a method for predicting an insulation lifetime of an insulating layer of an electric device according to Embodiment 2 of the present invention;
FIG. 4 is a diagram for explaining an example of a method for predicting an insulation lifetime of an insulating layer of an electric device according to Embodiment 3 of the present invention.
FIG. 5 is a diagram for explaining a conventional method for detecting insulation deterioration of an insulating layer of this type of electrical apparatus.
[Explanation of symbols]
1 coil conductor, 2 coil insulation layer, 3 slots, 4 wedges, 5 cores,
6 slot liner, 7 sampling position, 8 coil end,
9 Coil lead wire, 9a Insulating layer.

Claims (4)

電気機器の絶縁層中および上記絶縁層の表面に付着した、上記絶縁層を構成する樹脂の加水分解生成物量を測定することにより、上記絶縁層の絶縁劣化の状態を検出することを特徴とする絶縁劣化検出方法。  The state of insulation deterioration of the insulating layer is detected by measuring the amount of hydrolysis product of the resin constituting the insulating layer, which is attached to the surface of the insulating layer of the electrical equipment and to the surface of the insulating layer. Insulation deterioration detection method. 上記絶縁層を構成する樹脂の加水分解生成物とは、無水マレイン酸、マレイン酸、フマール酸、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸など有機酸のうちのいずれかもしくは複数の有機酸であることを特徴とする請求項1記載の絶縁劣化検出方法。  The hydrolysis product of the resin constituting the insulating layer is any one or more organic acids such as maleic anhydride, maleic acid, fumaric acid, phthalic anhydride, isophthalic acid, terephthalic acid, and adipic acid. The insulation deterioration detection method according to claim 1, wherein: 上記絶縁層を構成する樹脂の加水分解生成物量の測定は、サンプリングした上記絶縁層の溶媒抽出液をイオンクロマト分析法、もしくはサンプリングした上記絶縁層の付着物を赤外線吸収分析法の有機物定量分析方法を用いて定量分析することにより行うことを特徴とする請求項2記載の絶縁劣化検出方法。  The measurement of the hydrolysis product amount of the resin constituting the insulating layer is carried out by ion chromatography analysis of the sampled solvent extract of the insulating layer, or organic substance quantitative analysis method of infrared absorption analysis of the sampled insulating layer deposits. The insulation deterioration detection method according to claim 2, wherein the insulation deterioration detection method is carried out by quantitative analysis using the method. 上記絶縁層を構成する樹脂の加水分解生成物量を測定するためのサンプリングは、絶縁劣化検出対象である絶縁層と同一仕様を有しかつ同一環境下にさらされている他の絶縁層から行うことを特徴とする請求項1〜3のいずれか一項記載の絶縁劣化検出方法。  Sampling to measure the amount of hydrolysis product of the resin that constitutes the insulating layer should be performed from another insulating layer that has the same specifications as the insulating layer that is the object of insulation deterioration detection and is exposed to the same environment. The insulation deterioration detection method according to any one of claims 1 to 3.
JP2001301025A 2001-09-28 2001-09-28 Insulation degradation detection method Expired - Lifetime JP4030281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301025A JP4030281B2 (en) 2001-09-28 2001-09-28 Insulation degradation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301025A JP4030281B2 (en) 2001-09-28 2001-09-28 Insulation degradation detection method

Publications (2)

Publication Number Publication Date
JP2003107075A JP2003107075A (en) 2003-04-09
JP4030281B2 true JP4030281B2 (en) 2008-01-09

Family

ID=19121503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301025A Expired - Lifetime JP4030281B2 (en) 2001-09-28 2001-09-28 Insulation degradation detection method

Country Status (1)

Country Link
JP (1) JP4030281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793111A (en) * 2015-03-31 2015-07-22 华南理工大学 Insulating cable residual service life comprehensive evaluation method based on physical, chemical and electric properties

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243225A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of insulating material
JP2010243224A (en) * 2009-04-02 2010-10-28 Meidensha Corp Method for diagnosing deterioration of heat-resistant polyester varnish
US11885848B2 (en) * 2018-11-20 2024-01-30 Mitsubishi Electric Corporation Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793111A (en) * 2015-03-31 2015-07-22 华南理工大学 Insulating cable residual service life comprehensive evaluation method based on physical, chemical and electric properties
CN104793111B (en) * 2015-03-31 2017-11-07 华南理工大学 Based on reason, change, the insulated cable residual life comprehensive estimation methods of electrical characteristics

Also Published As

Publication number Publication date
JP2003107075A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
Madonna et al. Evaluation of strand‐to‐strand capacitance and dissipation factor in thermally aged enamelled coils for low‐voltage electrical machines
JP2005061901A (en) Insulation diagnostic method for electric equipment
US5736655A (en) Method for evaluating a remaining life of a rotating machine coil
Stone et al. Prediction of stator winding remaining life from diagnostic measurements
JP4030281B2 (en) Insulation degradation detection method
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
Simons Diagnostic testing of high-voltage machine insulation. A review of ten years' experience in the field
Koch et al. Moisture diagnostics of power transformers by a fast and reliable dielectric response method
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
JP4323396B2 (en) Power transformer remaining life diagnosis apparatus and remaining life diagnosis method
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
JP2005265492A (en) Method for diagnosing dielectric deterioration of electric device and electric device operating method after diagnosis
Schwarz et al. Diagnostic methods for transformers
JPS6159242A (en) Method for diagnosing deterioration of insulating material
Nelson et al. Theory and application of dynamic aging for life estimation in machine insulation
JP2006300532A (en) Quality inspection method of coil and quality inspection device of coil
JP6848748B2 (en) Remaining life diagnosis method and remaining life diagnosis device for electrical equipment
GB2312964A (en) Method for evaluating a remaining life of a rotating machine coil insulating layer
JP2005338045A (en) Method for diagnosing insulation degradation of electric equipment
JP4497916B2 (en) Coil remaining life estimation method and coil remaining life estimation apparatus
Pradhan et al. Diagnostic testing of oil-impregnated paper insulation in prorated power transformers under accelerated stress
JP2001027662A (en) Estimation method of residual dielectric breakdown voltage value of rotary electric machine
McDermid How useful are diagnostic tests on rotating machine insulation?
Cselkó et al. Speciality and applicability of advanced response methods in contrast to the traditional dielectric measurements for condition assessment of power transformers
Wei et al. Research progress on insulation condition estimation for oil-immersed power transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R151 Written notification of patent or utility model registration

Ref document number: 4030281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250