JP5640884B2 - Secondary battery type fuel cell system - Google Patents

Secondary battery type fuel cell system Download PDF

Info

Publication number
JP5640884B2
JP5640884B2 JP2011103674A JP2011103674A JP5640884B2 JP 5640884 B2 JP5640884 B2 JP 5640884B2 JP 2011103674 A JP2011103674 A JP 2011103674A JP 2011103674 A JP2011103674 A JP 2011103674A JP 5640884 B2 JP5640884 B2 JP 5640884B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
heat
storage material
cell unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011103674A
Other languages
Japanese (ja)
Other versions
JP2012234745A (en
Inventor
雅之 上山
雅之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011103674A priority Critical patent/JP5640884B2/en
Publication of JP2012234745A publication Critical patent/JP2012234745A/en
Application granted granted Critical
Publication of JP5640884B2 publication Critical patent/JP5640884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。   The present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.

水素と酸素から水を生成した際に電気を取り出す燃料電池の開発が近年盛んに行われている。燃料電池は、原理的には二酸化炭素を排出しないため、クリーンなエネルギー源として注目を浴びているだけでなく、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになり、さらに、発電時に発生する熱を回収することにより、熱エネルギーをも利用することができるといった特徴を有しており、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   In recent years, fuel cells that take out electricity when water is generated from hydrogen and oxygen have been actively developed. Since fuel cells do not emit carbon dioxide in principle, they are not only attracting attention as a clean energy source, but they are also energy efficient because of the high efficiency of power energy that can be extracted in principle. By recovering the heat, the heat energy can be used, and it is expected as a trump card for solving global energy and environmental problems.

このような燃料電池は、例えば、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、このような構成のセルには、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   Such fuel cells include, for example, a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), and the like as a fuel electrode (anode) and an oxidizer electrode ( One cell structure is sandwiched between both sides of the cathode). In the cell having such a configuration, a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode, and an oxidant gas flow for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode. The fuel gas and the oxidant gas are supplied to the fuel electrode and the oxidant electrode through these flow paths, respectively, and electricity is generated.

燃料電池の利用形態は様々であるが、その一つにEV(electric vehicle)に搭載され、EVの動力源として利用される形態がある。このような利用形態では、EVが移動体であるため、燃料電池を、外部から燃料が供給されるタイプではなく、再生可能な燃料発生装置を附属するタイプ(2次電池型)にする必要がある。   There are various usage forms of the fuel cell, one of which is mounted on an EV (electric vehicle) and used as a power source for the EV. In such a usage mode, since the EV is a moving body, it is necessary to make the fuel cell not a type to which fuel is supplied from the outside but a type (secondary battery type) to which a renewable fuel generator is attached. is there.

再生可能な燃料発生装置としては、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置が挙げられる。そして、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置としては、例えば基材料(主成分)が鉄であって、水との酸化反応により水素を発生し水素との還元反応により再生可能な水素発生装置が挙げられる。   Examples of the renewable fuel generator include a fuel generator that generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. As a fuel generator that generates hydrogen-containing fuel by chemical reaction and can be regenerated by reverse reaction of the chemical reaction, for example, the base material (main component) is iron, and hydrogen is generated by oxidation reaction with water. Examples of the hydrogen generator that can be generated and regenerated by a reduction reaction with hydrogen are given.

特開2004−186097号公報JP 2004-186097 A 特開2004−247096号公報Japanese Patent Laid-Open No. 2004-247096 特開2006−185657号公報JP 2006-185657 A 特開2007−273251号公報JP 2007-273251 A 特開2009−94062号公報JP 2009-94062 A 特開2009−140786号公報JP 2009-140786 A

燃料電池装置と、基材料(主成分)が鉄である水素発生装置とを備える2次電池型燃料電池システムの課題を具体的に説明するために、まず、化学反応におけるエネルギーのやり取りについて説明する。   In order to specifically describe the problem of a secondary battery type fuel cell system including a fuel cell device and a hydrogen generator whose base material (main component) is iron, first, the exchange of energy in a chemical reaction will be described. .

ある化学反応が起こる際、その反応前後の化学的エネルギー(エンタルピ)の差ΔHのエネルギーが放出もしくは吸収される。なお、ΔH<0の場合は余ったエネルギーが放出され、ΔH>0の場合は外部からエネルギーを取り込むことを意味し、通常これらのエネルギーは熱エネルギーとしてやり取りされるため、ΔH<0であれば発熱反応、ΔH>0であれば吸熱反応となる。   When a certain chemical reaction occurs, the energy of the difference ΔH in chemical energy (enthalpy) before and after the reaction is released or absorbed. When ΔH <0, excess energy is released, and when ΔH> 0, it means that energy is taken in from the outside. Usually, these energies are exchanged as thermal energy, so if ΔH <0. If exothermic reaction, ΔH> 0, endothermic reaction.

一方、エンタルピ変化ΔHはギブスの自由エネルギー変化ΔGとエントロピ変化ΔSと絶対温度Tとを用いて、下記の(1)式のように表すことができる。
ΔH=ΔG+TΔS …(1)
On the other hand, the enthalpy change ΔH can be expressed by the following equation (1) using the Gibbs free energy change ΔG, the entropy change ΔS, and the absolute temperature T.
ΔH = ΔG + TΔS (1)

ΔG<0の場合は、ΔGの絶対値分のエネルギーを電気エネルギー等の仕事として取り出すことができる。これに対して、TΔSは仕事として取り出すことができないエネルギーであり、TΔS<0の場合は発熱し、TΔS>0の場合は吸熱して、熱エネルギーのやり取りが起こる。   When ΔG <0, the energy corresponding to the absolute value of ΔG can be extracted as work such as electric energy. On the other hand, TΔS is energy that cannot be taken out as work. When TΔS <0, heat is generated, and when TΔS> 0, heat is absorbed, and heat energy is exchanged.

燃料電池装置と、基材料(主成分)が鉄である水素発生装置とを備える2次電池型燃料電池システムでは、燃料電池装置として、例えば、図1に示す通り、O2−を透過する固体電解質101を挟み、両側にそれぞれ酸化剤極102と燃料極103が形成されているMEA(Membrane Electrode Assembly;膜・電極接合体)構造をなす固体酸化物燃料電池を用いることができる。固体酸化物燃料電池では、発電動作時に、燃料極103において下記の(2)式の反応が起こる。
+O2−→HO+2e …(2)
A fuel cell device, a secondary battery type fuel cell system including base material (main component) is a hydrogen generating apparatus is iron, as a fuel cell system, for example, as shown in FIG. 1, solid passing through the O 2- A solid oxide fuel cell having a MEA (Membrane Electrode Assembly) structure in which an electrolyte 101 is sandwiched and an oxidant electrode 102 and a fuel electrode 103 are formed on both sides can be used. In the solid oxide fuel cell, the following reaction (2) occurs in the fuel electrode 103 during the power generation operation.
H 2 + O 2− → H 2 O + 2e (2)

上記の(2)式の反応によって生成された電子は、外部負荷104を通って、酸化剤極102に到達し、酸化剤極102において下記の(3)式の反応が起こる。
1/2O+2e→O2− …(3)
The electrons generated by the reaction of the above formula (2) reach the oxidant electrode 102 through the external load 104, and the reaction of the following formula (3) occurs at the oxidant electrode 102.
1 / 2O 2 + 2e → O 2− (3)

そして、上記の(3)式の反応によって生成された酸素イオンは、固体電解質101を通って、燃料極103に到達する。上記の一連の反応を繰り返すことにより、固体酸化物燃料電池が発電動作を行うことになる。また、上記の(2)式から分かるように、発電動作時には、燃料極103側においてHが消費されHOが生成されることになる。 Then, oxygen ions generated by the reaction of the above formula (3) reach the fuel electrode 103 through the solid electrolyte 101. By repeating the above series of reactions, the solid oxide fuel cell performs a power generation operation. Further, as can be seen from the above equation (2), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode 103 side.

上記の(2)式及び(3)式より、発電動作時における固体酸化物燃料電池での反応は下記の(4)式の通りになる。下記の(4)式において、例えば600℃ではΔG=−199.7kJ/mol、TΔS=−47.2kJ/molである。したがって、600℃での固体酸化物燃料電池自体の理論発電効率(ΔG/(ΔG+TΔS))は0.81となる。
+1/2O→HO …(4)
From the above equations (2) and (3), the reaction in the solid oxide fuel cell during the power generation operation is as shown in the following equation (4). In the following formula (4), for example, ΔG = −199.7 kJ / mol and TΔS = −47.2 kJ / mol at 600 ° C. Therefore, the theoretical power generation efficiency (ΔG / (ΔG + TΔS)) of the solid oxide fuel cell itself at 600 ° C. is 0.81.
H 2 + 1 / 2O 2 → H 2 O (4)

一方、基材料(主成分)が鉄である水素発生装置は、下記の(5)式に示す酸化反応により、発電動作時に燃料電池装置の燃料極103側で生成されたHOを消費してHを生成することができる。下記の(5)式に示す酸化反応でのエンタルピ変化ΔHは負であり、下記の(5)式に示す酸化反応が起こったときの放出エネルギーΔhFeは、例えば600℃では水素1molあたり25.6kJである。
3Fe+4HO→Fe+4H …(5)
On the other hand, the hydrogen generator whose base material (main component) is iron consumes H 2 O generated on the fuel electrode 103 side of the fuel cell device during the power generation operation by the oxidation reaction shown in the following equation (5). H 2 can be generated. The enthalpy change ΔH in the oxidation reaction shown in the following formula (5) is negative, and the release energy Δh Fe when the oxidation reaction shown in the following formula (5) occurs is, for example, 25. 6 kJ.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (5)

また、システムの充電動作時には、外部電源105から電力が供給される燃料電池装置では、上記の(4)式の逆反応である下記の(6)式に示す電気分解反応が起こり、燃料極103側においてHOが消費されHが生成され、基材料(主成分)が鉄である水素発生装置では、上記の(5)式に示す酸化反応の逆反応である下記(7)式に示す還元反応が起こり、燃料電池装置の燃料極103側で生成されたHが消費されHOが生成される。下記の(6)式において、例えば600℃ではΔG=199.7kJ/mol、TΔS=47.2kJ/molである。また、下記の(7)式に示す還元反応が起こったときの吸収エネルギーΔhFeは、例えば600℃では水素1molあたり25.6kJである。
O→H+1/2O …(6)
Fe+4H→3Fe+4HO …(7)
Further, during the charging operation of the system, in the fuel cell device to which electric power is supplied from the external power source 105, the electrolysis reaction shown in the following formula (6), which is the reverse reaction of the formula (4), occurs, and the fuel electrode 103 In the hydrogen generator in which H 2 O is consumed and H 2 is generated on the side and the base material (main component) is iron, the following equation (7), which is the reverse reaction of the oxidation reaction shown in the above equation (5) The reduction reaction shown occurs, and H 2 produced on the fuel electrode 103 side of the fuel cell device is consumed and H 2 O is produced. In the following formula (6), for example, ΔG = 199.7 kJ / mol and TΔS = 47.2 kJ / mol at 600 ° C. Further, the absorption energy Δh Fe when the reduction reaction shown in the following formula (7) occurs is, for example, 25.6 kJ per mol of hydrogen at 600 ° C.
H 2 O → H 2 + 1 / 2O 2 (6)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (7)

上記の通り、システムの発電動作時には燃料電池装置、水素発生装置の双方で発熱反応が起こり、システムの充電動作時には燃料電池装置、水素発生装置の双方で吸熱反応が起こる。   As described above, an exothermic reaction occurs in both the fuel cell device and the hydrogen generator during the power generation operation of the system, and an endothermic reaction occurs in both the fuel cell device and the hydrogen generator during the charging operation of the system.

ここで、システムの発電動作時は過昇温による部材の劣化や損傷を防止するために、燃料電池装置及び水素発生装置で発生した熱エネルギーを放熱する必要がある。これは元々燃料電池装置及び水素発生装置がそれぞれ持っていた化学エネルギーを無駄に熱エネルギーとして外部に放出していることになるので、システムの発電効率が低下する。   Here, during the power generation operation of the system, it is necessary to dissipate heat energy generated in the fuel cell device and the hydrogen generator in order to prevent deterioration and damage of the members due to excessive temperature rise. This means that the chemical energy originally possessed by the fuel cell device and the hydrogen generation device is unnecessarily discharged to the outside as heat energy, so that the power generation efficiency of the system is lowered.

また、システムの充電動作時は、吸熱反応によって燃料電池装置、水素発生装置の双方で温度が低下するため、反応可能な温度を維持するためには外部からエネルギーを投入して加熱し続ける必要がある。   In addition, during the charging operation of the system, the temperature decreases in both the fuel cell device and the hydrogen generator due to the endothermic reaction. Therefore, in order to maintain a reactionable temperature, it is necessary to input energy from the outside and continue heating. is there.

尚、特許文献1〜5に開示されている燃料電池は、高温化の抑制、温度安定化、コジェネレーションにおける蓄熱量増大を目的としており、再生可能な燃料発生装置を備えていないため、充電動作時における吸熱反応に対応するものではない。また、特許文献6に開示されている組電池もまた、再生可能な燃料発生装置を備えておらず、充電動作時における吸熱反応に対応するものではない。   The fuel cells disclosed in Patent Documents 1 to 5 are intended to suppress the increase in temperature, stabilize the temperature, and increase the amount of heat storage in cogeneration, and are not equipped with a regenerative fuel generator, so the charging operation It does not correspond to endothermic reaction in time. The assembled battery disclosed in Patent Document 6 also does not include a renewable fuel generator, and does not correspond to an endothermic reaction during a charging operation.

本発明は、上記の状況に鑑み、省エネルギーでシステムのトータル効率の向上を図ることができる2次電池型燃料電池システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell system that can save energy and improve the total efficiency of the system.

上記目的を達成するために本発明に係る2次電池型燃料電池システムは、化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生材と、前記燃料発生材から供給される燃料を用いて発電を行う燃料電池部とを備える2次電池型燃料電池システムであって、システムの発電時に発生する熱量を潜熱を利用して蓄熱し、蓄熱した熱量をシステムの充電時に放出する潜熱蓄熱材を備える構成(第1の構成)とする。   In order to achieve the above object, a secondary battery type fuel cell system according to the present invention generates a fuel by a chemical reaction and is regenerated by a reverse reaction of the chemical reaction, and is supplied from the fuel generating material. A secondary battery type fuel cell system including a fuel cell unit that generates electricity using fuel, storing the amount of heat generated during power generation of the system using latent heat, and releasing the stored amount of heat when charging the system The configuration (first configuration) includes the latent heat storage material.

このような構成によると、発電時に発生する熱を潜熱蓄熱材で蓄えて充電時に再利用しているので、省エネルギーでシステムのトータル効率を向上させることができる。   According to such a configuration, since the heat generated during power generation is stored in the latent heat storage material and reused during charging, the total efficiency of the system can be improved with energy saving.

また、上記第1の構成の2次電池型燃料電池システムにおいて、前記燃料発生材及び前記燃料電池部の少なくとも一つを収納する断熱容器を少なくとも一つ備える構成(第2の構成)とすることが好ましい。   Further, in the secondary battery type fuel cell system having the first configuration described above, a configuration (second configuration) including at least one heat insulating container for storing at least one of the fuel generating material and the fuel cell unit is provided. Is preferred.

このような構成によると、燃料発生材や燃料電池部から外部への放熱によって潜熱蓄熱材で蓄えられる熱量が減少することを抑えることができる。   According to such a configuration, it is possible to suppress a decrease in the amount of heat stored in the latent heat storage material due to heat radiation from the fuel generating material or the fuel cell unit to the outside.

また、上記第2の構成の2次電池型燃料電池システムにおいて、前記燃料発生材と前記燃料電池部とが別々の断熱容器に収容され、前記燃料発生材が収容される断熱容器及び前記燃料電池部が収容される断熱容器それぞれに前記潜熱蓄熱材が収納されている構成(第3の構成)とすることが好ましい。   Further, in the secondary battery type fuel cell system of the second configuration, the fuel generating material and the fuel cell portion are accommodated in separate heat insulating containers, and the heat insulating container and the fuel cell in which the fuel generating material is accommodated. It is preferable to adopt a configuration (third configuration) in which the latent heat storage material is stored in each heat insulating container in which the portion is stored.

このような構成によると、燃料発生部材と燃料電池部とをそれぞれ最適な温度で管理することが可能となるので、システムのトータル効率をより一層向上させることができる。   According to such a configuration, the fuel generating member and the fuel cell unit can be managed at optimum temperatures, respectively, so that the total efficiency of the system can be further improved.

また、上記第3の構成の2次電池型燃料電池システムにおいて、前記燃料発生材が収容される断熱容器内の前記潜熱蓄熱材の融点は、前記燃料電池部が収容される断熱容器内の前記潜熱蓄熱材の融点よりも低い構成とすることが好ましい。   Further, in the secondary battery type fuel cell system of the third configuration, the melting point of the latent heat storage material in the heat insulating container in which the fuel generating material is accommodated is the melting point in the heat insulating container in which the fuel cell unit is accommodated. It is preferable that the temperature be lower than the melting point of the latent heat storage material.

このような構成によると、燃料発生部材を収容する断熱容器の内外温度差が小さくなるので、燃料発生部材を収容する断熱容器の断熱性能も上げやすくなる。   According to such a configuration, the temperature difference between the inside and outside of the heat insulating container that accommodates the fuel generating member is reduced, so that the heat insulating performance of the heat insulating container that accommodates the fuel generating member is easily improved.

本発明に係る2次電池型燃料電池システムによると、発電時に発生する熱を潜熱蓄熱材で蓄えて充電時に再利用しているので、省エネルギーでシステムのトータル効率を向上させることができる。   According to the secondary battery type fuel cell system of the present invention, the heat generated during power generation is stored in the latent heat storage material and reused during charging. Therefore, the total efficiency of the system can be improved with energy saving.

固体酸化物型燃料電池の概略構成例を示す模式図である。It is a schematic diagram which shows the example of schematic structure of a solid oxide fuel cell. 本発明の第1実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a secondary battery type fuel cell system according to a first embodiment of the present invention. 熱の収支を示す図である。It is a figure which shows the balance of heat. 本発明の第1実施形態に係る2次電池型燃料電池システムの動作例を示す図である。It is a figure which shows the operation example of the secondary battery type fuel cell system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。It is a figure which shows the whole structure of the secondary battery type fuel cell system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。It is a figure which shows the whole structure of the secondary battery type fuel cell system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。It is a figure which shows the whole structure of the secondary battery type fuel cell system which concerns on 4th Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later.

<第1実施形態>
本発明の第1実施形態に係る2次電池型燃料電池システムの全体構成を図2に示す。本発明の第1実施形態に係る2次電池型燃料電池システムは、燃料電池部1を備えている。燃料電池部1は、電解質膜2の両面に燃料極3と酸化剤極である空気極4を接合したMEA構造である。なお、図2では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。また、本発明の第1実施形態に係る2次電池型燃料電池システムは燃料電池部収容容器5を備えており、燃料電池部1は燃料電池部収容容器5に収容されている。
<First Embodiment>
FIG. 2 shows the overall configuration of the secondary battery type fuel cell system according to the first embodiment of the present invention. The secondary battery type fuel cell system according to the first embodiment of the present invention includes a fuel cell unit 1. The fuel cell unit 1 has an MEA structure in which a fuel electrode 3 and an air electrode 4 that is an oxidant electrode are joined to both surfaces of an electrolyte membrane 2. 2 shows a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked. In addition, the secondary battery type fuel cell system according to the first embodiment of the present invention includes a fuel cell unit accommodating container 5, and the fuel cell unit 1 is accommodated in the fuel cell unit accommodating container 5.

電解質膜2の材料としては、例えば、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用いることができ、また例えば、ナフィオン(デュポン社の商標)、カチオン導電性ポリマー、アニオン導電性ポリマー等の固体高分子電解質を用いることができるが、これらに限定されることなく、水素イオンを通すものや酸素イオンを通すもの、また、水酸化物イオンを通すもの等、燃料電池の電解質としての特性を満たすものであればよい。なお、本実施形態においては、電解質膜2として、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用い、発電時に燃料極3側に水を発生させるようにしている。この場合、発電時に燃料極3側に発生した水を用いた化学反応によって水素発生部材6(後述)から水素を発生させることができる。   As the material of the electrolyte membrane 2, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) can be used. For example, Nafion (trademark of DuPont), cationic conductive polymer, anionic conductive polymer Solid polymer electrolytes such as, but not limited to, those that pass hydrogen ions, those that pass oxygen ions, and those that pass hydroxide ions can be used as fuel cell electrolytes. Any material satisfying the characteristics may be used. In the present embodiment, an electrolyte that passes oxygen ions or hydroxide ions, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used as the electrolyte membrane 2, and water is supplied to the fuel electrode 3 side during power generation. Is generated. In this case, hydrogen can be generated from the hydrogen generating member 6 (described later) by a chemical reaction using water generated on the fuel electrode 3 side during power generation.

電解質膜2は、固体酸化物電解質の場合であれば、電気化学蒸着法(CVD−EVD法;Chemical Vapor Deposition -Electrochemical Vapor Deposition)等を用いて形成することができ、固体高分子電解質の場合であれば、塗布法等を用いて形成することができる。   In the case of a solid oxide electrolyte, the electrolyte membrane 2 can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like, and in the case of a solid polymer electrolyte. If there is, it can be formed using a coating method or the like.

燃料極3、空気極4はそれぞれ、例えば、電解質膜2に接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極3の拡散電極の材料としては、例えばカーボンペーパ、Ni−Fe系サーメットやNi−YSZ系サーメット等を用いることができる。また、空気極4の拡散電極の材料としては、例えばカーボンペーパ、La−Mn−O系化合物やLa−Co−Ce系化合物等を用いることができる。   Each of the fuel electrode 3 and the air electrode 4 can be composed of, for example, a catalyst layer in contact with the electrolyte membrane 2 and a diffusion electrode laminated on the catalyst layer. As the catalyst layer, for example, platinum black or a platinum alloy supported on carbon black can be used. Moreover, as a material of the diffusion electrode of the fuel electrode 3, for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet or the like can be used. Moreover, as a material of the diffusion electrode of the air electrode 4, for example, carbon paper, a La—Mn—O compound, a La—Co—Ce compound, or the like can be used.

燃料極3、空気極4はそれぞれ、例えば蒸着法等を用いて形成することができる。   Each of the fuel electrode 3 and the air electrode 4 can be formed using, for example, vapor deposition.

本発明の第1実施形態に係る2次電池型燃料電池システムは、化学反応により還元性物質(燃料)を発生し、前記化学反応の逆反応により再生可能な燃料発生部材6を備えている。燃料発生部材6としては、例えば、酸化によって水素を発生するもの(例えばFeやMg合金等)を用いることができるが、本実施形態においては、酸化により水素を発生するFeを用いる。また、本発明の第1実施形態に係る2次電池型燃料電池システムは燃料発生部材収容容器7を備えており、燃料発生部材6は燃料発生部材収容容器7に収容されている。   The secondary battery type fuel cell system according to the first embodiment of the present invention includes a fuel generating member 6 that generates a reducing substance (fuel) by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. As the fuel generating member 6, for example, a member that generates hydrogen by oxidation (for example, Fe or Mg alloy) can be used, but in this embodiment, Fe that generates hydrogen by oxidation is used. Further, the secondary battery type fuel cell system according to the first embodiment of the present invention includes a fuel generating member accommodating container 7, and the fuel generating member 6 is accommodated in the fuel generating member accommodating container 7.

燃料発生部材6においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材6の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生剤の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。 In the fuel generating member 6, it is desirable to increase the surface area per unit volume in order to increase the reactivity. As a measure for increasing the surface area per unit volume of the fuel generating member 6, for example, the main component of the fuel generating agent may be made into fine particles and the fine particles may be molded. Examples of the fine particles include a method of crushing particles by crushing using a ball mill or the like. Further, the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.

燃料電池部収容容器5の燃料極3側と燃料発生部材収容容器7とはガス循環路8でつながっており、ガスを循環させるためのブロワ9がガス循環路8上に設けられている。また、燃料電池部収容容器5の空気極4側には、外部から熱交換器10を経由して空気が導入、排気される経路11がつながっており、空気を導入、排気させるためのブロワ12が経路11上に設けられている。熱交換器10は、燃料電池部収容容器5から外部に流出する空気から熱を奪い、その熱を外部から燃料電池部収容容器5に流入する空気に与え、熱の外部流出を抑える。   The fuel electrode 3 side of the fuel cell unit container 5 and the fuel generating member container 7 are connected by a gas circulation path 8, and a blower 9 for circulating gas is provided on the gas circulation path 8. Further, a path 11 through which air is introduced and exhausted from the outside via the heat exchanger 10 is connected to the air electrode 4 side of the fuel cell unit container 5, and a blower 12 for introducing and exhausting air. Is provided on the path 11. The heat exchanger 10 takes heat from the air that flows out from the fuel cell unit container 5 to the outside, and gives the heat to the air that flows into the fuel cell unit container 5 from the outside to suppress the outflow of heat.

また、本発明の第1実施形態に係る2次電池型燃料電池システムは、潜熱を利用して蓄熱を行う潜熱蓄熱材13を備えている。潜熱蓄熱材13は潜熱蓄熱材収容容器14に収容されている。潜熱蓄熱材13としては、例えば本システムの動作温度範囲で、充発電可能な温度よりも高い温度(例えば600℃前後)に融点を持つ金属合金等を用いることができる。潜熱蓄熱材13は、融点以下では固相であり、加熱され融点に達すると熱量を吸収して液相に相転移する。潜熱蓄熱材13は、すべてが液相になるまで、この融解潜熱で大きな熱量を蓄熱でき、この間温度は融点に保たれる。具体的な合金としては、アルミニウム合金、亜鉛合金、マグネシウム合金等が400〜700℃の範囲に融点を持ち、融解潜熱も大きいので好適である。   Moreover, the secondary battery type fuel cell system according to the first embodiment of the present invention includes a latent heat storage material 13 that stores heat using latent heat. The latent heat storage material 13 is accommodated in a latent heat storage material container 14. As the latent heat storage material 13, for example, a metal alloy having a melting point at a temperature (for example, around 600 ° C.) higher than a temperature capable of charging and generating in the operating temperature range of the present system can be used. The latent heat storage material 13 is in a solid phase below the melting point, and when heated reaches the melting point, it absorbs the amount of heat and transitions to the liquid phase. The latent heat storage material 13 can store a large amount of heat with the latent heat of fusion until all of the latent heat storage material 13 is in a liquid phase, and the temperature is maintained at the melting point during this time. As a specific alloy, an aluminum alloy, a zinc alloy, a magnesium alloy or the like is preferable because it has a melting point in the range of 400 to 700 ° C. and has a large latent heat of fusion.

さらに、本発明の第1実施形態に係る2次電池型燃料電池システムは、燃料電池部1及び燃料発生部材6を外部電力で加熱するヒータ15と、燃料電池部1及び燃料発生部材6の温度を検出する温度センサ16と、温度制御部(例えば熱電対)17と、断熱容器(例えば真空断熱構造を有する容器)18とを備えている。   Furthermore, the secondary battery type fuel cell system according to the first embodiment of the present invention includes a heater 15 for heating the fuel cell unit 1 and the fuel generating member 6 with external power, and the temperatures of the fuel cell unit 1 and the fuel generating member 6. Is provided with a temperature sensor 16, a temperature controller (for example, a thermocouple) 17, and a heat insulating container (for example, a container having a vacuum heat insulating structure) 18.

温度制御部17は、温度センサ16の出力信号に基づいて、ヒータ15の通電を制御し、断熱容器18の内部温度が上限温度を超えないようにしている。尚、上限温度は各容器の耐熱温度等を考慮して設定するとよい。また、温度制御部17は、例えばマイクロコンピュータで構成され、温度センサ16が熱電対である場合であれば、温度制御部17は熱電対からの電圧値をデジタル信号に変換するA/D変換器を含む。   The temperature control unit 17 controls energization of the heater 15 based on the output signal of the temperature sensor 16 so that the internal temperature of the heat insulating container 18 does not exceed the upper limit temperature. The upper limit temperature may be set in consideration of the heat resistant temperature of each container. In addition, the temperature control unit 17 is configured by, for example, a microcomputer, and if the temperature sensor 16 is a thermocouple, the temperature control unit 17 converts the voltage value from the thermocouple into a digital signal. including.

断熱容器18は、経路11の一部、ブロワ12、温度制御部17、及び断熱容器18以外の本システムの構成部品を収容している。   The heat insulation container 18 accommodates a part of the path 11, the blower 12, the temperature control unit 17, and the components of the present system other than the heat insulation container 18.

システムの発電動作時には、燃料電池部1での反応によるTΔSの絶対値と、燃料発生部材6の放出エネルギーΔhFeと、燃料電池部1での反応によるΔGの一部(損失)との和が発熱量になる。燃料電池部1での反応によるΔGは、理論上は全て電力に変換することができるが、実際上はΔGも全てが電力に変換できるわけではなく、燃料電池部1での反応によるΔGの一部は、電解質膜2の抵抗や、燃料極3、空気極4の反応抵抗等による損失であり、熱となる。 During the power generation operation of the system, the sum of the absolute value of TΔS due to the reaction in the fuel cell unit 1, the released energy Δh Fe of the fuel generating member 6, and a part (loss) of ΔG due to the reaction in the fuel cell unit 1 is It becomes calorific value. Although ΔG due to the reaction in the fuel cell unit 1 can theoretically be converted into electric power, in practice, not all ΔG can be converted into electric power. The part is a loss due to the resistance of the electrolyte membrane 2, the reaction resistance of the fuel electrode 3 and the air electrode 4, etc., and becomes heat.

一方、システムの発電動作時には、経路11を用いて外部から空気を取り入れ、酸素を消費して排ガスを排出するので、熱交換器10を介しても排ガス(空気)に含まれる一部の熱が外部に漏れる。また、断熱容器18による断熱も完全ではあり得ないので、ここからの放熱もある。   On the other hand, during the power generation operation of the system, air is taken in from the outside using the path 11, consumes oxygen, and exhausts the exhaust gas, so that some heat contained in the exhaust gas (air) is also passed through the heat exchanger 10. Leak outside. Moreover, since the heat insulation by the heat insulation container 18 cannot be perfect, there is also heat radiation from here.

したがって、システムの発電動作時に潜熱蓄熱材13に蓄えられる熱量(蓄熱量)は、燃料電池部1での反応によるTΔSの絶対値と、燃料発生部材6の放出エネルギーΔhFeと、燃料電池部1での反応によるΔGの一部(損失)との和から、空気からの放熱と、断熱容器18からの放熱との和を差し引いた量になる。 Therefore, the amount of heat (heat storage amount) stored in the latent heat storage material 13 during the power generation operation of the system is the absolute value of TΔS due to the reaction in the fuel cell unit 1, the released energy Δh Fe of the fuel generation member 6, and the fuel cell unit 1 This is an amount obtained by subtracting the sum of the heat radiation from the air and the heat radiation from the heat insulating container 18 from the sum of a part (loss) of ΔG due to the reaction in FIG.

また、システムの充電動作時には、燃料電池部1での反応によるTΔSと、燃料発生部材6の吸収エネルギーΔhFeとの和が吸熱量になる。また、燃料電池部1での電気分解反応によるΔGの一部は、電解質膜2の抵抗や、燃料極3、空気極4の反応抵抗等による損失であり、熱となる。 Further, during the charging operation of the system, the sum of the TΔS due to the reaction in the fuel cell unit 1 and the absorbed energy Δh Fe of the fuel generating member 6 becomes the heat absorption amount. Further, a part of ΔG due to the electrolysis reaction in the fuel cell unit 1 is a loss due to the resistance of the electrolyte membrane 2, the reaction resistance of the fuel electrode 3 and the air electrode 4, etc., and becomes heat.

一方、システムの充電動作時には、経路11を用いて酸素を排出するので、熱交換器10を介しても排ガス(酸素を含む空気)に含まれる一部の熱が外部に漏れる。また、断熱容器18による断熱も完全ではあり得ないので、ここからの放熱もある。   On the other hand, during the charging operation of the system, oxygen is discharged using the path 11, so that part of the heat contained in the exhaust gas (air containing oxygen) also leaks outside through the heat exchanger 10. Moreover, since the heat insulation by the heat insulation container 18 cannot be perfect, there is also heat radiation from here.

したがって、システムの充電動作時に燃料電池部1及びでの反応によるTΔSと、燃料発生部材6の吸収エネルギーΔhFeとの和である吸熱量、及び、空気からの放熱と断熱容器18からの放熱との和である放熱量は、潜熱蓄熱材13から放出される熱量(供給熱量)と、燃料電池部1での反応によるΔGの一部(損失)とによって賄われる。 Therefore, the amount of heat absorbed which is the sum of the TΔS due to the reaction in the fuel cell unit 1 and the absorbed energy Δh Fe of the fuel generating member 6 during the charging operation of the system, and the heat dissipation from the air and the heat dissipation from the heat insulating container 18 The amount of heat released, which is the sum of the above, is covered by the amount of heat released from the latent heat storage material 13 (the amount of heat supplied) and a part (loss) of ΔG due to the reaction in the fuel cell unit 1.

燃料電池部1での損失は、材料、構造、電流密度等に関連し、外部への熱の放熱量は、熱交換器10や断熱容器18の性能、使用条件の設定等に関連した設計要件である。この設計要件と燃料発生材6の容量とを考慮し、断熱容器18内の温度が想定した使用条件下で上限温度を超えることがないように、潜熱蓄熱材13の量を設定することが望ましい。   The loss in the fuel cell unit 1 is related to the material, structure, current density, etc., and the amount of heat released to the outside is the design requirement related to the performance of the heat exchanger 10 and the heat insulating container 18 and the setting of use conditions. It is. Considering this design requirement and the capacity of the fuel generating material 6, it is desirable to set the amount of the latent heat storage material 13 so that the temperature in the heat insulating container 18 does not exceed the upper limit temperature under the assumed use conditions. .

次に、本発明の第1実施形態に係る2次電池型燃料電池システムの動作例について図4を参照して説明する。図4の上段は断熱容器18内の温度変化を時間軸で示したものであり、図4の下段はそのときの潜熱蓄熱材13の液相、固相の割合を示すものである。   Next, an operation example of the secondary battery type fuel cell system according to the first embodiment of the present invention will be described with reference to FIG. The upper part of FIG. 4 shows the temperature change in the heat insulating container 18 on the time axis, and the lower part of FIG. 4 shows the liquid phase and solid phase ratio of the latent heat storage material 13 at that time.

時点t1では、長時間停止状態が続き、本システムが常温の状態になっている。このとき潜熱蓄熱材13も常温であり全て固相である。発電するためにヒータ15で加熱し、発電可能な温度(発電下限温度)になるとヒータ15による加熱を停止し発電を開始する(時点t2)。発電時の発熱によって断熱容器18内の温度が上昇し、潜熱蓄熱材13の融点に達すると、潜熱蓄熱材13の一部が融解し始める(時点t3)。その後発電を停止すると、断熱容器18からの放熱により熱量を徐々に失うが、潜熱蓄熱材13の液相の割合が徐々に減っていくだけで、断熱容器18内の温度は潜熱蓄熱材13の融点に維持される(時点t4〜時点t5)。つまり、潜熱蓄熱材13が冷えて全て固相になるほど長時間停止していなければ、断熱容器18内の温度は潜熱蓄熱材13の融点に維持され、充電動作、放電動作とも直ちに起動することができる。   At the time t1, the stop state continues for a long time, and the system is in a normal temperature state. At this time, the latent heat storage material 13 is also at room temperature and is in a solid phase. Heating is performed by the heater 15 to generate power, and when the temperature reaches a temperature where power generation is possible (power generation lower limit temperature), heating by the heater 15 is stopped and power generation is started (time t2). When the temperature in the heat insulating container 18 rises due to heat generation during power generation and reaches the melting point of the latent heat storage material 13, a part of the latent heat storage material 13 starts to melt (time point t3). Thereafter, when the power generation is stopped, the amount of heat is gradually lost due to heat radiation from the heat insulating container 18, but the temperature in the heat insulating container 18 is the melting point of the latent heat storage material 13 only by gradually decreasing the liquid phase ratio of the latent heat storage material 13. (Time t4 to time t5). In other words, if the latent heat storage material 13 is not stopped for a long time so that the latent heat storage material 13 cools down and becomes a solid phase, the temperature in the heat insulating container 18 is maintained at the melting point of the latent heat storage material 13 and both the charging operation and the discharging operation can be started immediately. it can.

ここで、時点t5において充電を始めると吸熱により、潜熱蓄熱材13における液相の割合がさらに減っていくが、液相が残る間はやはり断熱容器18内の温度は潜熱蓄熱材13の融点に維持されるので、ヒータ15による加熱の必要がない(時点t5〜時点t6)。発電が始まると再度潜熱蓄熱材13における液相の割合が増加していき(時点t6〜時点t7)、潜熱蓄熱材13が全て液相になり(時点t7)、それ以後もさらに発電が続くと、断熱容器18内の温度は潜熱蓄熱材13の融点を超えて上昇する。   Here, when charging is started at time t5, the ratio of the liquid phase in the latent heat storage material 13 is further reduced due to heat absorption, but the temperature in the heat insulating container 18 remains at the melting point of the latent heat storage material 13 while the liquid phase remains. Therefore, heating by the heater 15 is not necessary (time t5 to time t6). When power generation starts, the ratio of the liquid phase in the latent heat storage material 13 increases again (time t6 to time t7), all of the latent heat storage material 13 becomes liquid phase (time t7), and further power generation continues thereafter. The temperature in the heat insulation container 18 rises above the melting point of the latent heat storage material 13.

燃料発生部材6の容量は有限であり、断熱容器18内の温度が想定した使用条件下で上限温度を超えることがないように、潜熱蓄熱材13の量を設定されている場合、断熱容器18内の温度が上限温度に達する前に確実に燃料供給が止まり、発電は停止する(時点t8)。尚、このように潜熱蓄熱材13の量を設定されていない場合には、例えば、断熱容器18内の温度が上限温度に達する前に発電動作を強制的に停止させればよい。   The capacity of the fuel generating member 6 is finite, and when the amount of the latent heat storage material 13 is set so that the temperature in the heat insulating container 18 does not exceed the upper limit temperature under the assumed use conditions, the heat insulating container 18 The fuel supply is surely stopped before the temperature reaches the upper limit temperature, and the power generation is stopped (time t8). When the amount of the latent heat storage material 13 is not set as described above, for example, the power generation operation may be forcibly stopped before the temperature in the heat insulating container 18 reaches the upper limit temperature.

その後再度充電を開始し、潜熱蓄熱材13が全て固相になると、断熱容器18内の温度が低下し始める(時点t9)。そして、充電可能な下限温度になると、充電を継続するためにヒータ15による加熱が必要になる(時点t10〜時点t11)。尚、断熱容器18の断熱性能が高ければ、ヒータ15で加熱しなければならなくなる頻度を低くすることができる。   Thereafter, charging is started again, and when all of the latent heat storage material 13 is in a solid phase, the temperature in the heat insulating container 18 starts to decrease (time point t9). And if it becomes the minimum temperature which can be charged, in order to continue charge, the heating by the heater 15 will be needed (time t10-time t11). In addition, if the heat insulation performance of the heat insulation container 18 is high, the frequency which must be heated with the heater 15 can be made low.

上記の説明から明らかなように、本発明の第1実施形態に係る2次電池型燃料電池システムは、発電動作時に発生する熱を潜熱蓄熱材13で蓄えて充電動作時に再利用しているので、省エネルギーでシステムのトータル効率を極めて高くすることができる。   As is clear from the above description, the secondary battery type fuel cell system according to the first embodiment of the present invention stores the heat generated during the power generation operation in the latent heat storage material 13 and reuses it during the charging operation. The total efficiency of the system can be made extremely high with energy saving.

<第2実施形態>
本発明の第2実施形態に係る2次電池型燃料電池システムの全体構成を図5に示す。尚、図5において図1と同一又は機能的に同一の部分には同一の符号を付し、詳細な説明を省略する。
Second Embodiment
FIG. 5 shows an overall configuration of a secondary battery type fuel cell system according to the second embodiment of the present invention. 5 that are the same as or functionally the same as those in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted.

本発明の第2実施形態に係る2次電池型燃料電池システムでは、燃料電池部1並びに燃料電池部1用の潜熱蓄熱材13、潜熱蓄熱材収容容器14、及びヒータ15が断熱容器19に収納され、燃料発生部材6並びに燃料発生部材6用の潜熱蓄熱材13、潜熱蓄熱材収容容器14、及びヒータ15が断熱容器20に収納されている。そして、温度制御部17が、断熱容器19内の温度と、断熱容器20内の温度とを別々に制御する。   In the secondary battery type fuel cell system according to the second embodiment of the present invention, the fuel cell unit 1, the latent heat storage material 13 for the fuel cell unit 1, the latent heat storage material storage container 14, and the heater 15 are stored in the heat insulation container 19. The fuel generation member 6, the latent heat storage material 13 for the fuel generation member 6, the latent heat storage material storage container 14, and the heater 15 are stored in the heat insulation container 20. And the temperature control part 17 controls the temperature in the heat insulation container 19 and the temperature in the heat insulation container 20 separately.

この構成により、燃料電池部1と燃料発生部材6とをそれぞれ最適な温度で管理することが可能となるので、システムのトータル効率をより一層高くすることができる。例えば燃料電池部1においては、現在得られている性能では充放電とも400℃程度の温度にする必要があるが、燃料発生部材6においては、発電可能な下限温度は100℃程度であり、充電可能な下限温度は200℃程度であるので、起動時の加熱も比較的低温で良い。したがって、燃料発生部材6用の潜熱蓄熱材13の融点を低くすることが好ましい。燃料発生部材6用の潜熱蓄熱材13の融点を低くすることにより、燃料発生部材6用の断熱容器20の内外温度差が小さくなるので、断熱容器20の断熱性能も上げやすくなる。燃料発生部材6用の潜熱蓄熱材13の具体例としては、ビスマス、錫、鉛を含む合金等が100℃以下から230℃程度の範囲に融点を持ち、融解潜熱も大きいので好適である。例えば、錫(融点232℃)、錫−鉛はんだ(融点184℃〜230℃)、ウッドメタル(Bi−Pb−Sn−Cd)(融点70℃)、ローズ合金(Bi−Pb−Sn)(融点100℃)等を挙げることができる。   With this configuration, the fuel cell unit 1 and the fuel generating member 6 can be managed at optimum temperatures, respectively, so that the total efficiency of the system can be further increased. For example, in the fuel cell unit 1, it is necessary to set the temperature to about 400 ° C. for both the charge and discharge in the currently obtained performance. Since the possible lower limit temperature is about 200 ° C., the heating at the start-up may be relatively low. Therefore, it is preferable to lower the melting point of the latent heat storage material 13 for the fuel generating member 6. By lowering the melting point of the latent heat storage material 13 for the fuel generating member 6, the temperature difference between the inside and outside of the heat insulating container 20 for the fuel generating member 6 is reduced, so that the heat insulating performance of the heat insulating container 20 is easily improved. As a specific example of the latent heat storage material 13 for the fuel generating member 6, an alloy containing bismuth, tin, lead, or the like has a melting point in the range of about 100 ° C. or less to about 230 ° C., and the latent heat of fusion is large. For example, tin (melting point 232 ° C.), tin-lead solder (melting point 184 ° C. to 230 ° C.), wood metal (Bi—Pb—Sn—Cd) (melting point 70 ° C.), rose alloy (Bi—Pb—Sn) (melting point) 100 ° C.) and the like.

<第3実施形態>
本発明の第3実施形態に係る2次電池型燃料電池システムの全体構成を図6に示す。尚、図6において図5と同一又は機能的に同一の部分には同一の符号を付し、詳細な説明を省略する。
<Third Embodiment>
FIG. 6 shows an overall configuration of a secondary battery type fuel cell system according to the third embodiment of the present invention. 6 that are the same as or functionally identical to those in FIG. 5 are given the same reference numerals, and detailed descriptions thereof are omitted.

温度制御部17が、断熱容器19内の温度と、断熱容器20内の温度とを別々に制御することにより、断熱容器19から断熱容器20に流入するガスと断熱容器20から断熱容器19に流入するガスとの間に温度差が生じることになる。この温度差に起因する放熱損失を低減するために、本発明の第3実施形態に係る2次電池型燃料電池システムでは、本発明の第2実施形態に係る2次電池型燃料電池システムの構成に、断熱容器19から断熱容器20に流入するガスから熱を奪い、その熱を断熱容器19から断熱容器20に流入するガスに与える熱交換器10を追加している。   The temperature controller 17 controls the temperature in the heat insulation container 19 and the temperature in the heat insulation container 20 separately, whereby the gas flowing into the heat insulation container 20 from the heat insulation container 19 and the heat insulation container 20 flow into the heat insulation container 19. Therefore, a temperature difference is generated between the gas and the gas to be used. In order to reduce the heat dissipation loss due to this temperature difference, in the secondary battery type fuel cell system according to the third embodiment of the present invention, the configuration of the secondary battery type fuel cell system according to the second embodiment of the present invention. Further, a heat exchanger 10 is added which takes heat from the gas flowing into the heat insulating container 20 from the heat insulating container 19 and gives the heat to the gas flowing into the heat insulating container 20 from the heat insulating container 19.

<第4実施形態>
本発明の第4実施形態に係る2次電池型燃料電池システムの全体構成を図7に示す。尚、図7において図5と同一又は機能的に同一の部分には同一の符号を付し、詳細な説明を省略する。
<Fourth embodiment>
FIG. 7 shows an overall configuration of a secondary battery type fuel cell system according to the fourth embodiment of the present invention. 7 that are the same as or functionally identical to those in FIG. 5 are given the same reference numerals, and detailed descriptions thereof are omitted.

本発明の第4実施形態に係る2次電池型燃料電池システムは、本発明の第2実施形態に係る2次電池型燃料電池システムから断熱容器18を取り除いた構成である。断熱容器18を設けた方が、断熱容器19の内外温度差及び断熱容器20の内外温度差が小さくなるので、システムのトータル効率が向上するが、特に断熱容器19及び断熱容器20の断熱性能が良い場合にはその効果は小さいので、断熱容器18を設けることによるシステムのトータル効率の向上度合いと断熱容器18を設けることによるコストアップとを比較考量して本発明の第2実施形態、本発明の第4実施形態のいずれかを選択すると良い。   The secondary battery type fuel cell system according to the fourth embodiment of the present invention has a configuration in which the heat insulating container 18 is removed from the secondary battery type fuel cell system according to the second embodiment of the present invention. When the heat insulating container 18 is provided, the temperature difference between the inside and outside of the heat insulating container 19 and the temperature difference between the inside and outside of the heat insulating container 20 are reduced, so that the total efficiency of the system is improved. In particular, the heat insulating performance of the heat insulating container 19 and the heat insulating container 20 is improved. Since the effect is small when it is good, the second embodiment of the present invention and the present invention are compared by considering the degree of improvement in the total efficiency of the system by providing the heat insulating container 18 and the cost increase by providing the heat insulating container 18. One of the fourth embodiments may be selected.

<その他> <Others>

本発明の第1〜第4実施形態においては、電解質膜2として固体酸化物電解質を用いて、発電の際に燃料極3側で水を発生させるようにする。この構成によれば、燃料を燃料発生部材6から燃料電池部1に供給するためのガス循環路によって燃料発生部材6とつながって電極側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009−99491号公報に開示された燃料電池のように、電解質膜2として水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際空気極4側で水が発生されることになるため、この水を燃料発生部材6に伝搬する流路を設ければよい。   In the first to fourth embodiments of the present invention, a solid oxide electrolyte is used as the electrolyte membrane 2, and water is generated on the fuel electrode 3 side during power generation. According to this configuration, water is generated on the electrode side by being connected to the fuel generating member 6 through the gas circulation path for supplying fuel from the fuel generating member 6 to the fuel cell unit 1, thereby simplifying and miniaturizing the apparatus. It is advantageous. On the other hand, as a fuel cell disclosed in Japanese Patent Application Laid-Open No. 2009-99491, a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte membrane 2. However, in this case, since water is generated on the air electrode 4 side during power generation, a flow path for propagating this water to the fuel generating member 6 may be provided.

また、本発明の第2実施形態から本発明の第3実施形態への変形と同様の変形を本発明の第4実施形態に対して行ってもよい。   Moreover, you may perform the deformation | transformation similar to the deformation | transformation from 2nd Embodiment of this invention to 3rd Embodiment of this invention with respect to 4th Embodiment of this invention.

1 燃料電池部
2 電解質膜
3 燃料極
4 空気極
5 燃料電池部収容容器
6 燃料発生部材
7 燃料発生部材収容容器
8 ガス循環路
9 ブロワ
10 熱交換器
11 経路
12 ブロワ
13 潜熱蓄熱材
14 潜熱蓄熱材収容容器
15 ヒータ
16 温度センサ
17 温度制御部
18〜20 断熱容器
101 固体電解質
102 酸化剤極
103 燃料極
104 外部負荷
105 外部電源
DESCRIPTION OF SYMBOLS 1 Fuel cell part 2 Electrolyte membrane 3 Fuel electrode 4 Air electrode 5 Fuel cell part accommodating container 6 Fuel generating member 7 Fuel generating member accommodating container 8 Gas circulation path 9 Blower 10 Heat exchanger 11 Path | route 12 Blower 13 Latent heat storage material 14 Latent heat storage 14 Material container 15 Heater 16 Temperature sensor 17 Temperature controller 18-20 Thermal insulation container 101 Solid electrolyte 102 Oxidant electrode 103 Fuel electrode 104 External load 105 External power supply

Claims (2)

化学反応により燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生材と、
前記燃料発生材から供給される燃料を用いて発電を行う燃料電池部とを備える2次電池型燃料電池システムであって、
システムの発電時に前記燃料発生材の化学反応により発生する熱量を利用して蓄熱し、蓄熱した熱量をシステムの充電時に放出する第1の潜熱蓄熱材と、
前記燃料発生材を加熱するための第1のヒータと、
前記燃料発生材と前記第1のヒータを前記第1の潜熱蓄熱材とともに収容する第1の断熱容器と、
システムの発電時に前記燃料電池部で発生する熱量を利用して蓄熱し、蓄熱した熱量をシステムの充電時に放出する第2の潜熱蓄熱材と、
前記燃料電池部を加熱するための第2のヒータと、
前記燃料電池部と前記第2のヒータを前記第2の潜熱蓄熱材とともに収容する第2の断熱容器と、
前記燃料発生材と前記燃料電池部との間におけるガスの循環路を構成するガス循環路構成部材と、
を備え、
前記燃料発生材が収容される前記第1の断熱容器内の前記第1の潜熱蓄熱材の融点は、前記燃料電池部が収容される前記第2の断熱容器内の前記第2の潜熱蓄熱材の融点よりも低いものであり、
さらに、
前記第1と第2のヒータを制御することにより、前記第1の断熱容器内の温度と前記第2の断熱容器内の温度とをそれぞれ個別の温度に制御する温度制御部と、
前記ガスの循環路中において、前記燃料発生部材から前記燃料電池部に向かうガスと、前記燃料電池部から前記燃料発生部材に向かうガスとの間で、熱交換を行う熱交換器と、を備えた、
2次電池型燃料電池システム。
A fuel generating material that generates a fuel by a chemical reaction, and that can be regenerated by a reverse reaction of the chemical reaction;
A secondary battery type fuel cell system comprising a fuel cell unit that generates electric power using fuel supplied from the fuel generating material,
A first latent heat storage material that stores heat using the amount of heat generated by a chemical reaction of the fuel generating material during power generation of the system, and releases the stored heat amount during charging of the system;
A first heater for heating the fuel generating material;
A first heat insulating container that houses the fuel generating material and the first heater together with the first latent heat storage material;
A second latent heat storage material that stores heat using the amount of heat generated in the fuel cell unit during power generation of the system, and releases the stored amount of heat when charging the system;
A second heater for heating the fuel cell unit;
A second heat insulating container that houses the fuel cell unit and the second heater together with the second latent heat storage material;
A gas circulation path constituting member constituting a gas circulation path between the fuel generating material and the fuel cell unit;
With
The melting point of the first latent heat storage material in the first heat insulation container in which the fuel generating material is accommodated is the second latent heat storage material in the second heat insulation container in which the fuel cell unit is accommodated. Is lower than the melting point of
further,
By controlling the first and second heaters, a temperature control unit that controls the temperature in the first heat insulation container and the temperature in the second heat insulation container to individual temperatures, and
A heat exchanger that exchanges heat between the gas from the fuel generation member toward the fuel cell unit and the gas from the fuel cell unit toward the fuel generation member in the gas circulation path. The
Secondary battery type fuel cell system.
前記第1の断熱容器と前記第2の断熱容器を前記ガス循環路構成部材とともに収容する第3の断熱容器を備えた、請求項1に記載の2次電池型燃料電池システム。 The secondary battery type fuel cell system according to claim 1, further comprising a third heat insulating container that houses the first heat insulating container and the second heat insulating container together with the gas circulation path constituting member .
JP2011103674A 2011-05-06 2011-05-06 Secondary battery type fuel cell system Expired - Fee Related JP5640884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103674A JP5640884B2 (en) 2011-05-06 2011-05-06 Secondary battery type fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103674A JP5640884B2 (en) 2011-05-06 2011-05-06 Secondary battery type fuel cell system

Publications (2)

Publication Number Publication Date
JP2012234745A JP2012234745A (en) 2012-11-29
JP5640884B2 true JP5640884B2 (en) 2014-12-17

Family

ID=47434864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103674A Expired - Fee Related JP5640884B2 (en) 2011-05-06 2011-05-06 Secondary battery type fuel cell system

Country Status (1)

Country Link
JP (1) JP5640884B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205077A1 (en) 2012-03-12 2013-09-12 Siemens Aktiengesellschaft Electric energy storage device e.g. small rechargeable oxide battery (ROB) used for stationary domestic applications, has reservoir for storing steam-hydrogen with which channels are in direct communication
US20150064584A1 (en) * 2012-03-28 2015-03-05 Konica Minolta, Inc. Secondary Battery Fuel Cell System
CN104205462B (en) * 2012-03-29 2017-01-18 西门子公司 Electrical energy store
US20150255813A1 (en) * 2012-10-03 2015-09-10 Konica Minolta, Inc. Secondary Battery Type Fuel Cell System
JP2015052147A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical apparatus and operation method thereof
JP6121852B2 (en) * 2013-09-06 2017-04-26 株式会社東芝 Electrochemical apparatus and operation method thereof
JP6710646B2 (en) * 2017-01-18 2020-06-17 株式会社東芝 High temperature heat storage system and high temperature heat storage method
JP6874515B2 (en) * 2017-05-10 2021-05-19 株式会社豊田中央研究所 SOFC stacks, SOEC stacks, and reversible SOC stacks, as well as SOFC systems, SOC systems, and reversible SOC systems.
JP6972910B2 (en) * 2017-10-24 2021-11-24 日産自動車株式会社 Fuel cell system and fuel cell system control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454548Y2 (en) * 1986-04-05 1992-12-21
US5492777A (en) * 1995-01-25 1996-02-20 Westinghouse Electric Corporation Electrochemical energy conversion and storage system
JP2001304495A (en) * 2000-04-20 2001-10-31 Benkan Corp Hydrogen storing device
JP4008305B2 (en) * 2002-08-05 2007-11-14 東京瓦斯株式会社 Thermal self-supporting solid oxide fuel cell system
JP4121899B2 (en) * 2003-06-02 2008-07-23 本田技研工業株式会社 Hydrogen filling method and hydrogen filling apparatus for pressure hydrogen tank
JP2007305334A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Fuel cell system
JP5208567B2 (en) * 2008-04-23 2013-06-12 三桜工業株式会社 Hydrogen gas release / storage system
JP5498191B2 (en) * 2009-02-16 2014-05-21 株式会社東芝 Hydrogen power storage system and hydrogen power storage method

Also Published As

Publication number Publication date
JP2012234745A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5640884B2 (en) Secondary battery type fuel cell system
JP6000346B2 (en) Method and apparatus for minimizing the need for safety gas
JP5511481B2 (en) Power supply system and power supply operation method
WO2012070487A1 (en) Secondary battery type fuel cell system
US9515354B2 (en) Energy store and method of charging or discharging an energy store
JP5617592B2 (en) Secondary battery type fuel cell system
WO2021131513A1 (en) Fuel cell system and method for operating same
JP5741710B2 (en) Fuel cell system
JP5786666B2 (en) Power system
JP5168431B2 (en) Secondary battery type solid oxide fuel cell system
JP4979952B2 (en) Fuel cell power generator, control program, and control method
JP4544055B2 (en) Fuel cell
JP2012084366A (en) Fuel cell device and secondary fuel cell system
JP2004355860A (en) Combined power generation system, power generation plant, heat insulation method of secondary battery
JP5896015B2 (en) Secondary battery type fuel cell system
JP2007250216A (en) Fuel cell system and method of operating same
JP2012082102A (en) Fuel generation device, and secondary battery type fuel cell system including the same
JP5790530B2 (en) Secondary battery type fuel cell system
JP5895736B2 (en) Secondary battery type fuel cell system and power supply system including the same
JP2014216062A (en) Secondary battery type fuel cell system and power supply system including the same
JP5516726B2 (en) Fuel cell device
JP2012119127A (en) Rechargeable fuel cell system
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP5776842B2 (en) Secondary battery type fuel cell system
JP2007328971A (en) Fuel cell device, and electronic equipment equipped with fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees