WO2012070487A1 - Secondary battery type fuel cell system - Google Patents

Secondary battery type fuel cell system Download PDF

Info

Publication number
WO2012070487A1
WO2012070487A1 PCT/JP2011/076658 JP2011076658W WO2012070487A1 WO 2012070487 A1 WO2012070487 A1 WO 2012070487A1 JP 2011076658 W JP2011076658 W JP 2011076658W WO 2012070487 A1 WO2012070487 A1 WO 2012070487A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
secondary battery
reaction
generator
Prior art date
Application number
PCT/JP2011/076658
Other languages
French (fr)
Japanese (ja)
Inventor
寛子 大森
雅之 上山
勝一 浦谷
誉之 岡野
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012070487A1 publication Critical patent/WO2012070487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
  • Fuel cells take out electric power when water is generated from hydrogen and oxygen, and in principle, the efficiency of electric power energy that can be taken out is high, which not only saves energy, but also produces only water during power generation. Therefore, it is an environmentally friendly power generation method and is expected as a trump card for solving global energy and environmental problems.
  • Such fuel cells typically oxidize a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), and the like with an anode (anode).
  • One cell structure is formed by sandwiching the electrode electrode (cathode) from both sides and sandwiching the outside with a pair of separators.
  • a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode
  • an oxidant gas for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode.
  • a fuel gas and an oxidant gas are respectively supplied to the fuel electrode and the oxidant electrode through these flow paths.
  • a fuel cell system to which a hydrogen generation mechanism disclosed in Patent Document 1 is attached can be cited.
  • the fuel cell system disclosed in Patent Document 1 has a problem that power generation cannot be performed if all the hydrogen generating materials in the hydrogen generation mechanism have reacted.
  • both the hydrogen generation mechanism and the fuel cell utilize chemical reactions. Since the chemical reaction depends on temperature, energy for heating the hydrogen generation mechanism and the fuel cell is supplied from the outside to the fuel cell system as needed to bring the hydrogen generation mechanism and the fuel cell to a desired temperature. . If the energy supplied from the outside to the fuel cell system is large, the efficiency of the fuel cell system is reduced as a result.
  • Patent Document 1 discloses that the heat generated by the hydrogen generation mechanism is supplied to the fuel cell, but the heat transfer direction is only one direction from the hydrogen generation mechanism to the fuel cell.
  • Patent Document 2 discloses that the exhaust heat of a fuel cell is converted into electric power using a thermoelectric conversion material, but a technique for suppressing a decrease in the efficiency of the fuel cell system caused by supplying energy from the outside. is not.
  • an object of the present invention is to provide a secondary battery type fuel cell system capable of reducing energy supplied from the outside.
  • a secondary battery type fuel cell system generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and the fuel generation At least one fuel cell device that generates electricity using fuel supplied from the device is provided, and at least one of the fuel generator and at least one of the fuel cell devices are thermally connectable.
  • a secondary battery type fuel cell system includes a renewable fuel generator and a fuel cell device that generates power using fuel supplied from the fuel generator, and can be charged and discharged repeatedly. is there.
  • the renewable fuel generator examples include a fuel generator that generates hydrogen-containing fuel by a chemical reaction and can be regenerated by the reverse reaction of the chemical reaction.
  • a fuel generator that generates hydrogen-containing fuel by chemical reaction and can be regenerated by reverse reaction of the chemical reaction for example, the base material (main component) is iron, and hydrogen is generated by oxidation reaction with water.
  • the hydrogen generator that can be generated and regenerated by a reduction reaction with hydrogen are given.
  • a hydrogen generator whose base material (main component) is iron can generate hydrogen by an oxidation reaction represented by the following formula (1).
  • the enthalpy change ⁇ H 1, which is the energy necessary to produce 1 mol of Fe 3 O 4 by the oxidation reaction shown in the following formula (1), is a negative value (for example, ⁇ 115 [kJ / mol] under the condition of 500 ° C.) Therefore, the oxidation reaction shown in the following formula (1) is an exothermic reaction. 3Fe + 4H 2 O ⁇ Fe 3 O 4 + 4H 2 ⁇ H 1 ⁇ 0 (1)
  • the hydrogen generator whose base material (main component) is iron can be regenerated by the reduction reaction shown in the following formula (2).
  • the enthalpy change ⁇ H 2, which is the energy required to reduce 1 mol of Fe 3 O 4 by the reduction reaction shown in the following formula (2), is a positive value (for example, 115 [kJ / mol] at 500 ° C.) Therefore, the reduction reaction shown in the following formula (2) is an endothermic reaction. Therefore, it is necessary to supply energy to the hydrogen generator from the outside during regeneration, and this energy supply becomes a factor that reduces the efficiency of the secondary battery type fuel cell system.
  • an MEA Membrane Electrode Assembly
  • a solid oxide fuel cell having an electrode assembly structure can be used.
  • the solid oxide fuel cell, the power generation operation in the fuel electrode 3 of the following formula (3) reaction takes place in. H 2 + O 2 ⁇ ⁇ H 2 O + 2e ⁇ (3)
  • the oxygen ions generated by the reaction of the above formula (4) reach the fuel electrode 3 through the solid electrolyte 1.
  • the solid oxide fuel cell performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode 3 side.
  • the reaction in the solid oxide fuel cell during the power generation operation is as shown in the following equation (5).
  • the enthalpy change ⁇ H 5, which is the energy necessary to produce 1 mol of H 2 O by the reaction shown in the following formula (5), is a negative value (for example, ⁇ 246 [kJ / mol] under the condition of 500 ° C.) Therefore, the reaction shown in the following formula (5) is an exothermic reaction. Further, since current flows through the solid electrolyte 1, Joule heat is also generated in the solid electrolyte 1. Therefore, the solid oxide fuel cell generates heat during the power generation operation. H 2 + 1 / 2O 2 ⁇ H 2 O ⁇ H 5 ⁇ 0 (5)
  • the reaction in the solid oxide fuel cell during the electrolysis operation is as shown in the following equation (6).
  • the enthalpy change ⁇ H 5, which is the energy required to electrolyze 1 mol of H 2 O by the reaction shown in the following formula (6), is a positive value (for example, 246 [kJ / mol] under the condition of 500 ° C.) Therefore, the reaction shown in the following formula (6) is an endothermic reaction.
  • Joule heat is generated in the solid electrolyte 1.
  • the solid oxide fuel cell generates heat if the Joule heat in the solid electrolyte 1 is large during the electrolysis operation, and absorbs heat if the Joule heat in the solid electrolyte 1 is small. For this reason, if the Joule heat in the solid electrolyte 1 is small during the electrolysis operation, it is necessary to supply energy to the solid oxide fuel cell from the outside, and this energy supply reduces the efficiency of the secondary battery type fuel cell system. Become. H 2 O ⁇ H 2 + 1 / 2O 2 ⁇ H 6 ⁇ 0 (6)
  • FIG. 2 is a diagram showing a schematic configuration of a secondary battery type fuel cell system.
  • the secondary battery type fuel cell system shown in FIG. 2 generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and an oxidant containing oxygen and the fuel generator 5.
  • the fuel cell device 6 generates power by reaction with the fuel containing hydrogen supplied from the fuel, and the circulation path 7 for circulating gas between the fuel generator 5 and the fuel cell device 6. Further, in order to individually control the reaction conditions of the fuel generator 5 and the reaction conditions of the fuel cell device 6, the fuel generator 5, the fuel cell device 6, and the secondary battery type fuel cell system shown in FIG.
  • the circulation path 7 includes a heater for adjusting the temperature, a pump for circulating the gas in the circulation path 7, a sensor for detecting leakage of fuel gas containing hydrogen, and a gas flow rate to the fuel generator as necessary.
  • a flow controller to be controlled is provided.
  • FIG. 1 shows a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.
  • FIG. 2 illustrates the configuration of a basic system in which one fuel generator 5 and one fuel cell device 6 are provided, but the secondary battery type fuel cell system according to an embodiment of the present invention is illustrated in FIG. It is the structure provided with two or more sets of basic systems shown.
  • the secondary battery type fuel cell system according to the embodiment of the present invention for example, an arrangement in which one of the fuel generator 5 and the fuel cell device 6 is radially surrounded by a plurality of remaining devices is used. It is done.
  • the fuel cell device 6 is a solid oxide fuel cell
  • the gas (hydrogen gas, water vapor gas) consumed or generated on the fuel electrode 3 side is the fuel electrode 3 side of the fuel cell device 6.
  • the fuel generator 5 are circulated.
  • FIG. 3 shows a first example of a secondary battery type fuel cell system according to an embodiment of the present invention.
  • the same parts as those in FIG. 3 are identical to FIG. 3, the same parts as those in FIG. 3, the same parts as those in FIG. 3, the same parts as those in FIG.
  • the container 8 has a partition wall, and one of the two partitions separated by the partition wall.
  • the fuel generator 5 is housed in the other, and the fuel cell device 6 is housed in the other.
  • the fuel generator 5 and the fuel cell device 6 are thermally connected by the partition wall of the container 8.
  • thermally connected means the atmosphere around the secondary battery type fuel cell system (usually air, and the thermal conductivity near room temperature is about 0.026 W / (m ⁇ K). Is a state in which heat conduction better than that of the medium is realized.
  • the material of the partition wall of the container 8 is a metal, metal oxide, alloy (for example, SUS (about 15 W / (m ⁇ K)), glass (about about 0.1 W / (m ⁇ K)) or higher. 1 W / (m ⁇ K)), Inconel (about 15 W / (m ⁇ K)) and the like are preferable.
  • SUS about 15 W / (m ⁇ K)
  • glass about about 0.1 W / (m ⁇ K)
  • Inconel about 15 W / (m ⁇ K)
  • a heater H1 for heating the fuel generator 5 is provided in the vicinity of the fuel generator 5, and a heater H2 for heating the fuel cell apparatus 6 is provided in the vicinity of the fuel cell device 6.
  • the driving of the heaters H1 and H2 is controlled by the control circuit CNT1.
  • the control circuit CNT1 turns on the heater H1 until the temperature at which the reaction of the above-described formula (1) is started at the start of power generation. After the reaction of the equation is started, the drive of the heater H1 is controlled in order to keep the temperature of the fuel generator 5 at a predetermined temperature.
  • the control circuit CNT1 turns on the heater H2 until the temperature at which the reaction of the above-described formula (5) is started at the start of power generation. After the reaction of formula 5) is started, the drive of the heater H2 is controlled in order to keep the temperature of the fuel cell device 6 at a predetermined temperature.
  • the control circuit CNT1 turns on the heater H1 until the temperature at which the reaction of the above-described formula (2) is started at the start of charging, and the above-described (2) After the reaction of the equation is started, the drive of the heater H1 is controlled in order to keep the temperature of the fuel generator 5 at a predetermined temperature.
  • the control circuit CNT1 turns on the heater H2 until the temperature at which the reaction of the above-described formula (6) is started at the start of charging. After the reaction of formula 6) is started, the drive of the heater H2 is controlled in order to keep the temperature of the fuel cell device 6 at a predetermined temperature. Since solid oxide fuel cells generate heat if the Joule heat in the solid electrolyte 1 is large during the electrolysis operation, the control circuit CNT1 turns off the heater H2 after each reaction of the above equation (6) is started. Sometimes continue.
  • FIG. 4 shows a second example of the secondary battery type fuel cell system according to one embodiment of the present invention.
  • the same parts as those in FIG. 4 are identical to FIG. 4, the same parts as those in FIG. 4, the same parts as those in FIG. 4, the same parts as those in FIG. 4, the same parts as those in FIG.
  • the fuel generator 5 and the heater H1 are accommodated in the container 9, and the fuel cell device 6 and the heater H2 are accommodated. Is accommodated in the container 10, and the contact member 11 is provided between the container 9 and the container 10. With such a structure, the fuel generator 5 and the fuel cell device 6 are thermally connected by the containers 9 and 10 and the contact member 11.
  • the materials of the containers 9 and 10 and the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m ⁇ K)) having a thermal conductivity of 0.1 W / (m ⁇ K) or more.
  • ⁇ Third embodiment> 5A and 5B show a third example of the secondary battery type fuel cell system according to one embodiment of the present invention.
  • 5A and 5B the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the fuel generator 5 and the heater H1 are accommodated in the container 9, and the fuel cell device 6 is provided.
  • the heater H2 is accommodated in the container 10.
  • the fuel generator 5 and the fuel cell device 6 can be thermally connected by the containers 9 and 10 and the contact member 11.
  • the materials of the containers 9 and 10 and the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m ⁇ K)) having a thermal conductivity of 0.1 W / (m ⁇ K) or more.
  • a contact member driving mechanism 12 is also provided.
  • the contact member drive mechanism 12 includes a state in which the contact member 11 is inserted between the container 9 and the container 10 to thermally connect the fuel generator 5 and the fuel cell device 6, and the container 9 and the container 10 The contact member 11 is extracted from the space, and the contact member 11 is driven so that the fuel generator 5 and the fuel cell device 6 can be switched to a state where they are not thermally connected.
  • FIGS. 6A to 6C A fourth example of a secondary battery type fuel cell system according to an embodiment of the present invention is shown in FIGS. 6A to 6C. 6A to 6C, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the fuel generator 5 and the heater H1 are accommodated in a container 9, and the fuel cell device 6
  • the heater H2 is accommodated in the container 10.
  • the materials of the containers 9 and 10 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m ⁇ K)), glass (about about 0.1 W / (m ⁇ K)) or higher. 1 W / (m ⁇ K)), Inconel (about 15 W / (m ⁇ K)) and the like are preferable.
  • the fuel generator 5 housed in the container 9 and the fuel cell device 6 housed in the container 10 it is preferable to select a combination in which one of them generates heat when the other generates heat.
  • the driving of the heaters H1 and H2 is controlled by the control circuit CNT1.
  • the control operation of the control circuit CNT1 is the same as in the first embodiment.
  • Each of the containers 9 and 10 is connected to a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like.
  • a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like.
  • the bimetal described above is a shape changing member having a structure in which two types of conductive materials having different linear expansion coefficients are joined.
  • a stainless steel material having a linear expansion coefficient of 17 ⁇ 10 ⁇ 6 / ° C. and a titanium alloy having a linear expansion coefficient of 9 ⁇ 10 ⁇ 6 / ° C. can be joined.
  • a bimetal having a structure in which two types of conductive materials having different linear expansion coefficients are joined is curved in a convex shape toward the metal material having a large linear expansion coefficient.
  • FIGS. 7A to 7C show a fifth example of the secondary battery type fuel cell system according to the embodiment of the present invention. 7A to 7C, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the fuel generator 5 and the heater H1 are insulated containers (for example, containers having a vacuum insulation structure). ) 14, the fuel cell device 6 and the heater H ⁇ b> 2 are accommodated in a heat insulating container (for example, a container having a vacuum heat insulating structure) 15, and the contact member 11 is provided between the heat insulating container 14 and the heat insulating container 15.
  • a heat insulating container for example, a container having a vacuum heat insulating structure
  • the material of the inner and outer walls of the heat insulating containers 14 and 15 and the material of the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W) having a thermal conductivity of 0.1 W / (m ⁇ K) or more. / (M ⁇ K)), glass (about 1 W / (m ⁇ K)), inconel (about 15 W / (m ⁇ K)), etc.) are preferable.
  • SUS about 15 W
  • M ⁇ K metal oxides
  • glass about 1 W / (m ⁇ K)
  • inconel about 15 W / (m ⁇ K)
  • the driving of the heaters H1 and H2 is controlled by the control circuit CNT1.
  • the control operation of the control circuit CNT1 is the same as in the first embodiment.
  • Each of the heat insulating containers 14 and 15 is provided with a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like.
  • a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like.
  • the inside and outside of the heat insulating container 14 are thermally connected by deformation of the shape changing member 13 provided in the heat insulating container 14.
  • FIG. 7B When the temperature of the fuel cell device 6 becomes equal to or higher than a predetermined temperature, the inside and outside of the heat insulating container 15 are thermally connected by deformation of the shape changing member 13 provided in the heat insulating container 15. (See FIG. 7C).
  • the heat insulating structure of the heat insulating container normally allows heat to remain in the heat insulating container, and the heat in the heat insulating container can be transferred to the outside of the heat insulating container only when necessary. Furthermore, when the temperature outside the heat insulation container becomes equal to or higher than a predetermined temperature, the heat insulation containers 14 and 15 are thermally connected to the inside and outside of the heat insulation container by deformation of the shape changing member 13 (see FIGS. 7B and 7C). ). Thereby, heat can be more efficiently transferred.
  • heat transfer between the heat insulating container 14 and the heat insulating container 15 is performed via the contact member 11, but instead of the contact member 11, other heat transfer members (for example, A shape-changing member whose shape changes depending on the temperature, such as a bimetal or a shape memory alloy), and the outer walls of the heat insulating containers 14 and 15 may be in physical contact with each other.
  • the outer wall of the container 15 may be integrally formed.
  • Example of heat transfer in the present invention >> Examples of heat transfer in the present invention will be described with reference to FIGS. 8 to 13, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the reaction heat (heat generation) generated in the fuel generating device 5 generating fuel is supplied to the fuel cell device 6 during power generation of the secondary battery type fuel cell system according to the present invention, and the fuel cell. Used for heating the device 6. Thereby, the operating power of the heater H2 can be saved.
  • the reaction heat (heat generation) generated in the fuel cell device 6 performing the power generation operation and the fuel cell device performing the power generation operation during power generation of the secondary battery type fuel cell system according to the present invention Joule heat generated in the solid electrolyte 6 is supplied to the unreacted fuel generator 5 and used to heat the unreacted fuel generator 5. Thereby, the operating power of the heater H1 provided in the vicinity of the unreacted fuel generator 5 can be saved.
  • a certain fuel generator 5 when a certain fuel generator 5 is generating fuel, for example, a secondary battery type fuel cell system using regenerative power generated during braking in EV or power supplied from an external power source.
  • the reaction heat (heat generation) generated in a certain fuel generator 5 is converted into the reaction heat (endotherm) required for the electrolysis reaction in the fuel cell device 6 that performs electrolysis of water (steam).
  • the hydrogen generated in the fuel cell device 6 that performs the electrolysis of the fuel (hydrogen) generated in one fuel generator 5 and the water (steam) is used for the reduction reaction in another fuel generator 5. .
  • the operating power of the heater H2 provided in the vicinity of the fuel cell device 6 that performs electrolysis of water (steam) can be saved.
  • the secondary battery type fuel cell system includes a plurality of sets of fuel generators 5 and fuel cell apparatuses 6 (two sets are shown in FIGS. 11 and 12). Yes)
  • FIG. 11 and FIG. 12 The difference between FIG. 11 and FIG. 12 is that in FIG. 11, the fuel generators 5 and the fuel cell devices 6 are arranged in a mosaic pattern, whereas in FIG. 12, the fuel generators 5 and the fuel cell devices 6 are striped. It is the point which is arranged in.
  • gas is circulated between the fuel generator 5 that generates fuel (hydrogen) and the fuel cell device 6 that performs the power generation operation, and is regenerated by a reduction reaction.
  • the fuel generator 5 that generates fuel (hydrogen) and water (steam) ) Is thermally connected, and the fuel generator 5 regenerated by the reduction reaction and the fuel cell device 6 performing the power generation operation are thermally connected.
  • reaction heat (heat generation) generated in the fuel generator 5 generating fuel (hydrogen) is a reaction necessary for an electrolysis reaction in the fuel cell device 6 that performs electrolysis of water (steam).
  • Reaction heat (heat generation) used for heat (heat absorption) and generated in the fuel cell device 6 performing the power generation operation is necessary for the reduction reaction in the fuel generation device 5 regenerated by the reduction reaction (heat absorption) ).
  • the operating power of H2 can be saved.
  • the fuel cell device 6 performing the power generation operation and the fuel cell device 6 performing the electrolysis of water (steam) are disposed adjacent to each other rather than diagonally.
  • the fuel cell device 6 performing the power generation operation and the fuel cell device 6 performing the electrolysis of water (steam) are configured to be thermally connectable and are generated in the fuel cell device 6 performing the power generation operation.
  • a part of the reaction heat (heat generation) may be used for the reaction heat (endotherm) necessary for the electrolysis reaction in the fuel cell device 6 performing the electrolysis of water (steam).
  • the fuel generator 5 generating fuel (hydrogen) and the fuel generator 5 regenerated by the reduction reaction are arranged adjacent to each other rather than diagonally.
  • the fuel generator 5 generating the fuel (hydrogen) and the fuel generator 5 regenerated by the reduction reaction are configured to be thermally connectable, and the fuel generator 5 generating the fuel (hydrogen)
  • a part of the generated reaction heat (heat generation) may be used for reaction heat (endotherm) necessary for the reduction reaction in the fuel generator 5 regenerated by the reduction reaction.
  • the electrolysis reaction (reaction shown in the above formula (6)) in the fuel cell device 6 that electrolyzes water (steam) is an endothermic reaction. Further, since current flows through the solid electrolyte of the fuel cell device 6 during electrolysis of water (water vapor), Joule heat is generated in the solid electrolyte.
  • the fuel cell device 6 performs electrolysis of water (steam)
  • the Joule heat generated in the solid electrolyte of the fuel cell device 6 is larger than the endothermic amount in the electrolysis reaction of the fuel cell device 6,
  • the fuel cell device 6 generates heat, and if the Joule heat generated in the solid electrolyte of the fuel cell device 6 is smaller than the endothermic amount in the electrolysis reaction of the fuel cell device 6, the fuel cell device 6 absorbs heat.
  • Joule heat generated in the solid electrolyte of the fuel cell device 6 is an endothermic amount in the electrolysis reaction of the fuel cell device 6. It can be applied when larger than.
  • the fuel generating device and the fuel cell device can be thermally connected, heat transfer between the fuel generating device and the fuel cell device as in each of the above examples. Is possible. Thereby, the energy supplied as drive power of the heater from the outside to the secondary battery type fuel cell system according to the present invention can be reduced.

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

This secondary battery type fuel cell system is provided with at least one each of a fuel generating device (5) that generates fuel that includes hydrogen by a chemical reaction and can regenerate by a reverse chemical reaction of this chemical reaction and a fuel cell device (6) that carries out power generation using the fuel supplied by the fuel generating device (5). At least one fuel generating device (5) and at least one fuel cell device (6) can be connected thermally. For example, a container (8) is divided into two compartments by a dividing wall. One of the compartments accommodates a fuel generating device (5), and the other compartment accommodates a fuel cell device (6). The fuel generating device (5) and the fuel cell device (6) are thermally connected via the dividing wall.

Description

2次電池型燃料電池システムSecondary battery type fuel cell system
 本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。 The present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.
 近年、携帯電話、携帯型情報端末、ノート型パーソナルコンピュータ、携帯型オーディオ、携帯型ビジュアル機器等の携帯用電子機器の多機能化、高性能化が進展するに伴い、その駆動用電池の大容量化に対する要求が高まってきている。従来、このような携帯用電子機器の駆動用電池としては、リチウム電池やニッカド電池が用いられているが、その容量は、限界に近づいており飛躍的な増大は望めない。そこで、リチウム電池やニッカド電池に代わりエネルギー密度が高く大容量化が可能な燃料電池の開発が盛んに行われている。 In recent years, as multi-functional and high-performance portable electronic devices such as mobile phones, portable information terminals, notebook personal computers, portable audio devices, and portable visual devices have advanced, the capacity of the drive batteries has increased. There is an increasing demand for conversion. Conventionally, lithium batteries and nickel-cadmium batteries have been used as driving batteries for such portable electronic devices, but their capacities are approaching their limits and cannot be expected to increase dramatically. Therefore, fuel cells having high energy density and high capacity are being actively developed in place of lithium batteries and nickel-cadmium batteries.
 燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。 Fuel cells take out electric power when water is generated from hydrogen and oxygen, and in principle, the efficiency of electric power energy that can be taken out is high, which not only saves energy, but also produces only water during power generation. Therefore, it is an environmentally friendly power generation method and is expected as a trump card for solving global energy and environmental problems.
 このような燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込み、その外側を一対のセパレータで挟持して形成されたものを1つのセル構成としている。そして、このような構成のセルには、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給される。 Such fuel cells typically oxidize a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), and the like with an anode (anode). One cell structure is formed by sandwiching the electrode electrode (cathode) from both sides and sandwiching the outside with a pair of separators. In the cell having such a configuration, a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode, and an oxidant gas flow for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode. A fuel gas and an oxidant gas are respectively supplied to the fuel electrode and the oxidant electrode through these flow paths.
 ところが、外部から燃料が供給される燃料電池装置では、燃料(例えば水素)を供給するためのインフラ整備が必要である。また、燃料として比較的入手が容易なメタノールを用いる場合においてもその流通には年月を要するといった問題がある。 However, in the fuel cell device to which fuel is supplied from the outside, infrastructure for supplying fuel (for example, hydrogen) is required. Even when methanol, which is relatively easy to obtain, is used as a fuel, there is a problem that it takes years to circulate.
特開2009―99491号公報(要約、請求項2)JP 2009-99491 A (summary, claim 2) 特開2007―42437号公報JP 2007-42437 A
 上記の問題点を解決することができる燃料電池システムとして、例えば、特許文献1に開示されている水素生成機構を附属する燃料電池システムを挙げることができる。しかしながら、特許文献1に開示されている燃料電池システムは、水素生成機構内の水素発生材料が全て反応してしまうと発電できなくなるという問題がある。 As a fuel cell system capable of solving the above problems, for example, a fuel cell system to which a hydrogen generation mechanism disclosed in Patent Document 1 is attached can be cited. However, the fuel cell system disclosed in Patent Document 1 has a problem that power generation cannot be performed if all the hydrogen generating materials in the hydrogen generation mechanism have reacted.
 また、特許文献1に開示されている燃料電池システムでは、水素生成機構、燃料電池ともに化学反応を利用している。化学反応は温度に依存するため、水素生成機構、燃料電池を所望の温度にするために、必要に応じて水素生成機構や燃料電池を加熱するためのエネルギーが外部から燃料電池システムに供給される。外部から燃料電池システムに供給されるエネルギーが大きければ、結果的に燃料電池システムの効率が低下することになる。 Also, in the fuel cell system disclosed in Patent Document 1, both the hydrogen generation mechanism and the fuel cell utilize chemical reactions. Since the chemical reaction depends on temperature, energy for heating the hydrogen generation mechanism and the fuel cell is supplied from the outside to the fuel cell system as needed to bring the hydrogen generation mechanism and the fuel cell to a desired temperature. . If the energy supplied from the outside to the fuel cell system is large, the efficiency of the fuel cell system is reduced as a result.
 なお、特許文献1には、水素生成機構で発生した熱を燃料電池に供給することも開示されているが、熱の移動方向が水素生成機構から燃料電池への一方向のみである。 Note that Patent Document 1 discloses that the heat generated by the hydrogen generation mechanism is supplied to the fuel cell, but the heat transfer direction is only one direction from the hydrogen generation mechanism to the fuel cell.
 また、特許文献2には、熱電変換材料を用いて燃料電池の排熱を電力に変換することが開示されているが、外部からエネルギーを供給することによって生じる燃料電池システムの効率低下を抑える技術ではない。 Patent Document 2 discloses that the exhaust heat of a fuel cell is converted into electric power using a thermoelectric conversion material, but a technique for suppressing a decrease in the efficiency of the fuel cell system caused by supplying energy from the outside. is not.
 本発明は、上記の状況に鑑み、外部から供給するエネルギーを低減することができる2次電池型燃料電池システムを提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell system capable of reducing energy supplied from the outside.
 上記目的を達成するために本発明に係る2次電池型燃料電池システムにおいては、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置と、前記燃料発生装置から供給される燃料に用いて発電を行う燃料電池装置とをそれぞれ少なくとも1つ備え、前記燃料発生装置の少なくとも1つと前記燃料電池装置の少なくとも1つが熱的に接続可能である構成とする。 In order to achieve the above object, a secondary battery type fuel cell system according to the present invention generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and the fuel generation At least one fuel cell device that generates electricity using fuel supplied from the device is provided, and at least one of the fuel generator and at least one of the fuel cell devices are thermally connectable.
 本発明によると、燃料発生装置と燃料電池装置との熱の伝達を可能とし、外部から供給するエネルギーを低減することができる2次電池型燃料電池システムを実現することができる。 According to the present invention, it is possible to realize a secondary battery type fuel cell system capable of transferring heat between the fuel generator and the fuel cell device and reducing the energy supplied from the outside.
固体酸化物型燃料電池の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a solid oxide fuel cell. 2次電池型燃料電池システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a secondary battery type fuel cell system. 本発明の一実施形態に係る2次電池型燃料電池システムの第1実施例を示す図である。It is a figure which shows the 1st Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第2実施例を示す図である。It is a figure which shows the 2nd Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第3実施例を示す図である。It is a figure which shows the 3rd Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第3実施例を示す図である。It is a figure which shows the 3rd Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第4実施例を示す図である。It is a figure which shows the 4th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第4実施例を示す図である。It is a figure which shows the 4th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第4実施例を示す図である。It is a figure which shows the 4th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第5実施例を示す図である。It is a figure which shows the 5th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第5実施例を示す図である。It is a figure which shows the 5th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2次電池型燃料電池システムの第5実施例を示す図である。It is a figure which shows the 5th Example of the secondary battery type fuel cell system which concerns on one Embodiment of this invention. 本発明における熱の移動例を示す概念図である。It is a conceptual diagram which shows the example of the heat | fever transfer in this invention. 本発明における熱の移動例を示す概念図である。It is a conceptual diagram which shows the example of a heat | fever transfer in this invention. 本発明における熱の移動例を示す概念図である。It is a conceptual diagram which shows the example of a heat | fever transfer in this invention. 本発明における熱の移動例及び燃料発生装置と燃料電池装置との配置例を示す概念図である。It is a conceptual diagram which shows the example of heat transfer in this invention, and the example of arrangement | positioning of a fuel generator and a fuel cell apparatus. 本発明における熱の移動例及び燃料発生装置と燃料電池装置との配置例を示す概念図である。It is a conceptual diagram which shows the example of heat transfer in this invention, and the example of arrangement | positioning of a fuel generator and a fuel cell apparatus. 本発明における熱の移動例を示す概念図である。It is a conceptual diagram which shows the example of the heat | fever transfer in this invention.
 本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described later.
<<2次電池型燃料電池システムの構成>>
 2次電池型燃料電池システムは、再生可能な燃料発生装置と、その燃料発生装置から供給される燃料を用いて発電を行う燃料電池装置とを備え、充放電を繰り返して行うことができるシステムである。
<< Configuration of Secondary Battery Type Fuel Cell System >>
A secondary battery type fuel cell system includes a renewable fuel generator and a fuel cell device that generates power using fuel supplied from the fuel generator, and can be charged and discharged repeatedly. is there.
 再生可能な燃料発生装置としては、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置が挙げられる。そして、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置としては、例えば基材料(主成分)が鉄であって、水との酸化反応により水素を発生し水素との還元反応により再生可能な水素発生装置が挙げられる。 Examples of the renewable fuel generator include a fuel generator that generates hydrogen-containing fuel by a chemical reaction and can be regenerated by the reverse reaction of the chemical reaction. As a fuel generator that generates hydrogen-containing fuel by chemical reaction and can be regenerated by reverse reaction of the chemical reaction, for example, the base material (main component) is iron, and hydrogen is generated by oxidation reaction with water. Examples of the hydrogen generator that can be generated and regenerated by a reduction reaction with hydrogen are given.
 基材料(主成分)が鉄である水素発生装置は、下記の(1)式に示す酸化反応により、水素を発生することができる。下記の(1)式に示す酸化反応により1molのFeを生成するのに必要なエネルギーであるエンタルピ変化ΔHが負の値(例えば500℃の条件下では-115[kJ/mol])であるため、下記の(1)式に示す酸化反応は発熱反応である。
  3Fe+4HO→Fe+4H  ΔH<0 …(1)
A hydrogen generator whose base material (main component) is iron can generate hydrogen by an oxidation reaction represented by the following formula (1). The enthalpy change ΔH 1, which is the energy necessary to produce 1 mol of Fe 3 O 4 by the oxidation reaction shown in the following formula (1), is a negative value (for example, −115 [kJ / mol] under the condition of 500 ° C.) Therefore, the oxidation reaction shown in the following formula (1) is an exothermic reaction.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 ΔH 1 <0 (1)
 また、基材料(主成分)が鉄である水素発生装置は、下記の(2)式に示す還元反応により、再生することができる。下記の(2)式に示す還元反応により1molのFeを還元するのに必要なエネルギーであるエンタルピ変化ΔHが正の値(例えば500℃の条件下では115[kJ/mol])であるため、下記の(2)式に示す還元反応は吸熱反応である。したがって、再生時には外部から水素発生装置にエネルギーを供給する必要があり、このエネルギー供給が2次電池型燃料電池システムの効率を低下させる要因になってしまう。
  Fe+4H→3Fe+4HO  ΔH>0 …(2)
Moreover, the hydrogen generator whose base material (main component) is iron can be regenerated by the reduction reaction shown in the following formula (2). The enthalpy change ΔH 2, which is the energy required to reduce 1 mol of Fe 3 O 4 by the reduction reaction shown in the following formula (2), is a positive value (for example, 115 [kJ / mol] at 500 ° C.) Therefore, the reduction reaction shown in the following formula (2) is an endothermic reaction. Therefore, it is necessary to supply energy to the hydrogen generator from the outside during regeneration, and this energy supply becomes a factor that reduces the efficiency of the secondary battery type fuel cell system.
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O ΔH 2 > 0 (2)
 なお、基材料(主成分)が鉄である水素発生装置でなくとも、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置であれば、燃料発生時と再生時とで発熱と吸熱とが切り替わる。 In addition, even if it is not a hydrogen generator whose base material (main component) is iron, if it is a fuel generator that generates hydrogen-containing fuel by a chemical reaction and can be regenerated by the reverse reaction of the chemical reaction, Heat generation and endotherm are switched at the time of regeneration.
 燃料電池装置としては、例えば、図1に示す通り、O2-を透過する固体電解質1を挟み、両側にそれぞれ酸化剤極2と燃料極3が形成されているMEA(Membrane Electrode Assembly;膜・電極接合体)構造をなす固体酸化物燃料電池を用いることができる。固体酸化物燃料電池では、発電動作時に、燃料極3において下記の(3)式の反応が起こる。
 H+O2-→HO+2e …(3)
As a fuel cell device, for example, as shown in FIG. 1, an MEA (Membrane Electrode Assembly) having a solid electrolyte 1 permeable to O 2− and an oxidant electrode 2 and a fuel electrode 3 formed on both sides, respectively. A solid oxide fuel cell having an electrode assembly structure can be used. The solid oxide fuel cell, the power generation operation in the fuel electrode 3 of the following formula (3) reaction takes place in.
H 2 + O 2− → H 2 O + 2e (3)
 上記の(3)式の反応によって生成された電子は、外部負荷4を通って、酸化剤極2に到達し、酸化剤極2において下記の(4)式の反応が起こる。
 1/2O+2e→O2- …(4)
The electrons generated by the reaction of the above formula (3) reach the oxidant electrode 2 through the external load 4, and the reaction of the following formula (4) occurs at the oxidant electrode 2.
1 / 2O 2 + 2e → O 2− (4)
 そして、上記の(4)式の反応によって生成された酸素イオンは、固体電解質1を通って、燃料極3に到達する。上記の一連の反応を繰り返すことにより、固体酸化物燃料電池が発電動作を行うことになる。また、上記の(3)式から分かるように、発電動作時には、燃料極3側においてHが消費されHOが生成されることになる。 The oxygen ions generated by the reaction of the above formula (4) reach the fuel electrode 3 through the solid electrolyte 1. By repeating the above series of reactions, the solid oxide fuel cell performs a power generation operation. Further, as can be seen from the above equation (3), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode 3 side.
 上記の(3)式及び(4)式より、発電動作時における固体酸化物燃料電池での反応は下記の(5)式の通りになる。下記の(5)式に示す反応により1molのHOを生成するのに必要なエネルギーであるエンタルピ変化ΔHが負の値(例えば500℃の条件下では-246[kJ/mol])であるため、下記の(5)式に示す反応は発熱反応である。また、固体電解質1に電流が流れるため、固体電解質1においてジュール熱も発生する。したがって、固体酸化物燃料電池は発電動作時に発熱する。
  H+1/2O→HO  ΔH<0 …(5)
From the above equations (3) and (4), the reaction in the solid oxide fuel cell during the power generation operation is as shown in the following equation (5). The enthalpy change ΔH 5, which is the energy necessary to produce 1 mol of H 2 O by the reaction shown in the following formula (5), is a negative value (for example, −246 [kJ / mol] under the condition of 500 ° C.) Therefore, the reaction shown in the following formula (5) is an exothermic reaction. Further, since current flows through the solid electrolyte 1, Joule heat is also generated in the solid electrolyte 1. Therefore, the solid oxide fuel cell generates heat during the power generation operation.
H 2 + 1 / 2O 2 → H 2 O ΔH 5 <0 (5)
 一方、固体酸化物燃料電池では、電気分解器として作動する場合、上記の(3)式及び(4)式の逆反応が起こり、燃料極3側においてHOが消費されHが生成される。 On the other hand, in a solid oxide fuel cell, when operated as an electrolyzer, the reverse reaction of the above equations (3) and (4) occurs, and H 2 O is consumed and H 2 is generated on the fuel electrode 3 side. The
 上記の(3)式及び(4)式の逆反応より、電気分解動作時における固体酸化物燃料電池での反応は下記の(6)式の通りになる。下記の(6)式に示す反応により1molのHOを電気分解するのに必要なエネルギーであるエンタルピ変化ΔHが正の値(例えば500℃の条件下では246[kJ/mol])であるため、下記の(6)式に示す反応は吸熱反応である。また、固体電解質1に電流が流れるため、固体電解質1においてジュール熱が発生する。したがって、固体酸化物燃料電池は電気分解動作時に固体電解質1でのジュール熱が大きければ発熱し固体電解質1でのジュール熱が小さければ吸熱する。このため、電気分解動作時には固体電解質1でのジュール熱が小さければ外部から固体酸化物燃料電池にエネルギーを供給する必要があり、このエネルギー供給が2次電池型燃料電池システムの効率を低下させる要因になってしまう。
  HO→H+1/2O  ΔH<0 …(6)
From the reverse reactions of the above equations (3) and (4), the reaction in the solid oxide fuel cell during the electrolysis operation is as shown in the following equation (6). The enthalpy change ΔH 5, which is the energy required to electrolyze 1 mol of H 2 O by the reaction shown in the following formula (6), is a positive value (for example, 246 [kJ / mol] under the condition of 500 ° C.) Therefore, the reaction shown in the following formula (6) is an endothermic reaction. In addition, since current flows through the solid electrolyte 1, Joule heat is generated in the solid electrolyte 1. Therefore, the solid oxide fuel cell generates heat if the Joule heat in the solid electrolyte 1 is large during the electrolysis operation, and absorbs heat if the Joule heat in the solid electrolyte 1 is small. For this reason, if the Joule heat in the solid electrolyte 1 is small during the electrolysis operation, it is necessary to supply energy to the solid oxide fuel cell from the outside, and this energy supply reduces the efficiency of the secondary battery type fuel cell system. Become.
H 2 O → H 2 + 1 / 2O 2 ΔH 6 <0 (6)
 図2は、2次電池型燃料電池システムの概略構成を示す図である。図2に示す2次電池型燃料電池システムは、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置5と、酸素を含む酸化剤と燃料発生装置5から供給される水素を含む燃料との反応により発電を行う燃料電池装置6と、燃料発生装置5と燃料電池装置6との間でガスを循環させる循環経路7とを備えている。さらに、燃料発生装置5の反応条件と燃料電池装置6の反応条件とを個別に制御可能にするために、図2に示す2次電池型燃料電池システムの燃料発生装置5、燃料電池装置6、及び循環経路7には必要に応じて、温度を調節するヒーター、循環経路7内のガスを循環させるためのポンプ、水素を含む燃料ガスの漏洩を検知するセンサー、燃料発生装置へのガス流量を制御する流量制御器等を設けるようにする。 FIG. 2 is a diagram showing a schematic configuration of a secondary battery type fuel cell system. The secondary battery type fuel cell system shown in FIG. 2 generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, and an oxidant containing oxygen and the fuel generator 5. The fuel cell device 6 generates power by reaction with the fuel containing hydrogen supplied from the fuel, and the circulation path 7 for circulating gas between the fuel generator 5 and the fuel cell device 6. Further, in order to individually control the reaction conditions of the fuel generator 5 and the reaction conditions of the fuel cell device 6, the fuel generator 5, the fuel cell device 6, and the secondary battery type fuel cell system shown in FIG. In addition, the circulation path 7 includes a heater for adjusting the temperature, a pump for circulating the gas in the circulation path 7, a sensor for detecting leakage of fuel gas containing hydrogen, and a gas flow rate to the fuel generator as necessary. A flow controller to be controlled is provided.
 なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。 Although FIG. 1 shows a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.
 図2では、燃料発生装置5と燃料電池装置6をそれぞれ1つずつ設けた基本システムの構成を図示しているが、本発明の一実施形態に係る2次電池型燃料電池システムは、図2に示す基本システムを複数組備える構成である。本発明の一実施形態に係る2次電池型燃料電池システムでは、例えば、燃料発生装置5及び燃料電池装置6の中の或る一つの装置を残りの複数の装置が放射状に囲む配置などが用いられる。 FIG. 2 illustrates the configuration of a basic system in which one fuel generator 5 and one fuel cell device 6 are provided, but the secondary battery type fuel cell system according to an embodiment of the present invention is illustrated in FIG. It is the structure provided with two or more sets of basic systems shown. In the secondary battery type fuel cell system according to the embodiment of the present invention, for example, an arrangement in which one of the fuel generator 5 and the fuel cell device 6 is radially surrounded by a plurality of remaining devices is used. It is done.
 本実施形態では、燃料電池装置6を固体酸化物燃料電池としているので、燃料極3側で消費されたり生成されたりするガス(水素ガス、水蒸気ガス)が、燃料電池装置6の燃料極3側と燃料発生装置5との間を循環することになる。 In this embodiment, since the fuel cell device 6 is a solid oxide fuel cell, the gas (hydrogen gas, water vapor gas) consumed or generated on the fuel electrode 3 side is the fuel electrode 3 side of the fuel cell device 6. And the fuel generator 5 are circulated.
 また、本実施形態では、燃料発生装置5に鉄の微粒子圧縮体を収容しているので、上述した(1)式に示す酸化反応により、水素を発生することができる。 Further, in the present embodiment, since the iron fine particle compact is accommodated in the fuel generator 5, hydrogen can be generated by the oxidation reaction shown in the above formula (1).
 上述した(1)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上述した(2)式に示す還元反応(上述した(1)式に示す酸化反応の逆反応)により、燃料発生装置5を再生することができ、システムを充電することができる。 When the oxidation reaction of iron shown in the above formula (1) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but the reduction reaction shown in the above formula (2) (the above-mentioned (1 The fuel generation device 5 can be regenerated and the system can be charged by the reverse reaction of the oxidation reaction shown in the formula.
<第1実施例>
 本発明の一実施形態に係る2次電池型燃料電池システムの第1実施例を図3に示す。なお、図3において図2と同一の部分には同一の符号を付す。
<First embodiment>
FIG. 3 shows a first example of a secondary battery type fuel cell system according to an embodiment of the present invention. In FIG. 3, the same parts as those in FIG.
 本発明の一実施形態に係る2次電池型燃料電池システムの第1実施例では、図3に示すように、容器8が隔壁を有しており、当該隔壁によって区切られた2つの区画の一方に燃料発生装置5を収容し、他方に燃料電池装置6を収容している。このような構造により、燃料発生装置5と燃料電池装置6とは容器8の隔壁によって熱的に接続されている。ここで、「熱的に接続されている」とは、2次電池型燃料電池システム周囲の雰囲気(通常は空気であり、室温付近での熱伝導率は約0.026W/(m・K)である)を媒体とした熱伝導よりも良好な熱伝導が実現されている状態をいう。なお、容器8の隔壁の材質としては、熱伝導率0.1W/(m・K)以上の金属、金属酸化物、合金(例えば、SUS(約15W/(m・K))、ガラス(約1W/(m・K))、インコネル(約15W/(m・K))等)が好適である。同一の容器8に収容する燃料発生装置5及び燃料電池装置6は、一方が発熱するときに他方が吸熱する組み合わせを選択するとよい。 In the first example of the secondary battery type fuel cell system according to one embodiment of the present invention, as shown in FIG. 3, the container 8 has a partition wall, and one of the two partitions separated by the partition wall. The fuel generator 5 is housed in the other, and the fuel cell device 6 is housed in the other. With such a structure, the fuel generator 5 and the fuel cell device 6 are thermally connected by the partition wall of the container 8. Here, “thermally connected” means the atmosphere around the secondary battery type fuel cell system (usually air, and the thermal conductivity near room temperature is about 0.026 W / (m · K). Is a state in which heat conduction better than that of the medium is realized. The material of the partition wall of the container 8 is a metal, metal oxide, alloy (for example, SUS (about 15 W / (m · K)), glass (about about 0.1 W / (m · K)) or higher. 1 W / (m · K)), Inconel (about 15 W / (m · K)) and the like are preferable. For the fuel generator 5 and the fuel cell device 6 accommodated in the same container 8, it is preferable to select a combination in which one of them generates heat when the other generates heat.
 また、燃料発生装置5の近傍には燃料発生装置5を加熱するヒーターH1が設けられ、燃料電池装置6の近傍には燃料電池装置6を加熱するヒーターH2が設けられる。ヒーターH1及びH2の駆動は制御回路CNT1によって制御される。 Further, a heater H1 for heating the fuel generator 5 is provided in the vicinity of the fuel generator 5, and a heater H2 for heating the fuel cell apparatus 6 is provided in the vicinity of the fuel cell device 6. The driving of the heaters H1 and H2 is controlled by the control circuit CNT1.
 制御回路CNT1は、発電に用いる燃料発生装置5を加熱するヒーターH1に関して、発電開始時に、上述した(1)式の反応が開始される温度になるまでヒーターH1をオンし、上述した(1)式の反応が開始された後は燃料発生装置5の温度を所定の温度に保つためにヒーターH1の駆動を制御する。また、制御回路CNT1は、発電に用いる燃料電池装置6を加熱するヒーターH2に関して、発電開始時に、上述した(5)式の反応が開始される温度になるまでヒーターH2をオンし、上述した(5)式の反応が開始された後は燃料電池装置6の温度を所定の温度に保つためにヒーターH2の駆動を制御する。なお、上述した(1)式及び(5)式の各反応は発熱反応であるため、上述した(1)式及び(5)式の各反応が開始された後は制御回路CNT1がヒーターH1及びH2をオフにし続けることもある。 Regarding the heater H1 for heating the fuel generator 5 used for power generation, the control circuit CNT1 turns on the heater H1 until the temperature at which the reaction of the above-described formula (1) is started at the start of power generation. After the reaction of the equation is started, the drive of the heater H1 is controlled in order to keep the temperature of the fuel generator 5 at a predetermined temperature. In addition, regarding the heater H2 for heating the fuel cell device 6 used for power generation, the control circuit CNT1 turns on the heater H2 until the temperature at which the reaction of the above-described formula (5) is started at the start of power generation. After the reaction of formula 5) is started, the drive of the heater H2 is controlled in order to keep the temperature of the fuel cell device 6 at a predetermined temperature. In addition, since each reaction of the above-mentioned formulas (1) and (5) is an exothermic reaction, after each reaction of the above-described formulas (1) and (5) is started, the control circuit CNT1 is connected to the heater H1 and Sometimes H2 is kept off.
 制御回路CNT1は、充電に用いる燃料発生装置5を加熱するヒーターH1に関して、充電開始時に、上述した(2)式の反応が開始される温度になるまでヒーターH1をオンし、上述した(2)式の反応が開始された後は燃料発生装置5の温度を所定の温度に保つためにヒーターH1の駆動を制御する。また、制御回路CNT1は、充電に用いる燃料電池装置6を加熱するヒーターH2に関して、充電開始時に、上述した(6)式の反応が開始される温度になるまでヒーターH2をオンし、上述した(6)式の反応が開始された後は燃料電池装置6の温度を所定の温度に保つためにヒーターH2の駆動を制御する。なお、固体酸化物燃料電池は電気分解動作時に固体電解質1でのジュール熱が大きければ発熱するため、上述した(6)式の各反応が開始された後は制御回路CNT1がヒーターH2をオフにし続けることもある。 Regarding the heater H1 for heating the fuel generator 5 used for charging, the control circuit CNT1 turns on the heater H1 until the temperature at which the reaction of the above-described formula (2) is started at the start of charging, and the above-described (2) After the reaction of the equation is started, the drive of the heater H1 is controlled in order to keep the temperature of the fuel generator 5 at a predetermined temperature. In addition, regarding the heater H2 for heating the fuel cell device 6 used for charging, the control circuit CNT1 turns on the heater H2 until the temperature at which the reaction of the above-described formula (6) is started at the start of charging. After the reaction of formula 6) is started, the drive of the heater H2 is controlled in order to keep the temperature of the fuel cell device 6 at a predetermined temperature. Since solid oxide fuel cells generate heat if the Joule heat in the solid electrolyte 1 is large during the electrolysis operation, the control circuit CNT1 turns off the heater H2 after each reaction of the above equation (6) is started. Sometimes continue.
<第2実施例>
 本発明の一実施形態に係る2次電池型燃料電池システムの第2実施例を図4に示す。なお、図4において図2と同一の部分には同一の符号を付す。
<Second embodiment>
FIG. 4 shows a second example of the secondary battery type fuel cell system according to one embodiment of the present invention. In FIG. 4, the same parts as those in FIG.
 本発明の一実施形態に係る2次電池型燃料電池システムの第2実施例では、図4に示すように、燃料発生装置5及びヒーターH1が容器9に収容され、燃料電池装置6及びヒーターH2が容器10に収容され、容器9と容器10との間に接触部材11が設けられている。このような構造により、燃料発生装置5と燃料電池装置6とは容器9及び10並びに接触部材11によって熱的に接続されている。なお、容器9及び10並びに接触部材11の材質としては、熱伝導率0.1W/(m・K)以上の金属、金属酸化物、合金(例えば、SUS(約15W/(m・K))、ガラス(約1W/(m・K))、インコネル(約15W/(m・K))等)が好適である。容器9に収容する燃料発生装置5及び容器10に収容する燃料電池装置6は、一方が発熱するときに他方が吸熱する組み合わせを選択するとよい。ヒーターH1及びH2の駆動は制御回路CNT1によって制御される。制御回路CNT1の制御動作は、第1実施例と同様である。 In the second example of the secondary battery type fuel cell system according to one embodiment of the present invention, as shown in FIG. 4, the fuel generator 5 and the heater H1 are accommodated in the container 9, and the fuel cell device 6 and the heater H2 are accommodated. Is accommodated in the container 10, and the contact member 11 is provided between the container 9 and the container 10. With such a structure, the fuel generator 5 and the fuel cell device 6 are thermally connected by the containers 9 and 10 and the contact member 11. The materials of the containers 9 and 10 and the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m · K)) having a thermal conductivity of 0.1 W / (m · K) or more. , Glass (about 1 W / (m · K)), inconel (about 15 W / (m · K)), etc.) are preferable. As for the fuel generator 5 housed in the container 9 and the fuel cell device 6 housed in the container 10, it is preferable to select a combination in which one of them generates heat when the other generates heat. The driving of the heaters H1 and H2 is controlled by the control circuit CNT1. The control operation of the control circuit CNT1 is the same as in the first embodiment.
<第3実施例>
 本発明の一実施形態に係る2次電池型燃料電池システムの第3実施例を図5A及び図5Bに示す。なお、図5A及び図5Bにおいて図2と同一の部分には同一の符号を付す。
<Third embodiment>
5A and 5B show a third example of the secondary battery type fuel cell system according to one embodiment of the present invention. 5A and 5B, the same parts as those in FIG. 2 are denoted by the same reference numerals.
 本発明の一実施形態に係る2次電池型燃料電池システムの第3実施例では、図5A及び図5Bに示すように、燃料発生装置5及びヒーターH1が容器9に収容され、燃料電池装置6及びヒーターH2が容器10に収容されている。また、燃料発生装置5と燃料電池装置6とは容器9及び10並びに接触部材11によって熱的に接続可能である。なお、容器9及び10並びに接触部材11の材質としては、熱伝導率0.1W/(m・K)以上の金属、金属酸化物、合金(例えば、SUS(約15W/(m・K))、ガラス(約1W/(m・K))、インコネル(約15W/(m・K))等)が好適である。容器9に収容する燃料発生装置5及び容器10に収容する燃料電池装置6は、一方が発熱するときに他方が吸熱する組み合わせを選択するとよい。ヒーターH1及びH2の駆動は制御回路CNT1によって制御される。制御回路CNT1の制御動作は、第1実施例と同様である。 In the third example of the secondary battery type fuel cell system according to the embodiment of the present invention, as shown in FIGS. 5A and 5B, the fuel generator 5 and the heater H1 are accommodated in the container 9, and the fuel cell device 6 is provided. The heater H2 is accommodated in the container 10. Further, the fuel generator 5 and the fuel cell device 6 can be thermally connected by the containers 9 and 10 and the contact member 11. The materials of the containers 9 and 10 and the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m · K)) having a thermal conductivity of 0.1 W / (m · K) or more. , Glass (about 1 W / (m · K)), inconel (about 15 W / (m · K)), etc.) are preferable. As for the fuel generator 5 housed in the container 9 and the fuel cell device 6 housed in the container 10, it is preferable to select a combination in which one of them generates heat when the other generates heat. The driving of the heaters H1 and H2 is controlled by the control circuit CNT1. The control operation of the control circuit CNT1 is the same as in the first embodiment.
 本発明の一実施形態に係る2次電池型燃料電池システムの第3実施例では、接触部材駆動機構12も設けられている。接触部材駆動機構12は、容器9と容器10との間に接触部材11を挿入して、燃料発生装置5と燃料電池装置6とを熱的に接続させる状態と、容器9と容器10との間から接触部材11を抜き出して、燃料発生装置5と燃料電池装置6とを熱的に接続させない状態との切り替えが可能なように、接触部材11を駆動する。 In the third example of the secondary battery type fuel cell system according to one embodiment of the present invention, a contact member driving mechanism 12 is also provided. The contact member drive mechanism 12 includes a state in which the contact member 11 is inserted between the container 9 and the container 10 to thermally connect the fuel generator 5 and the fuel cell device 6, and the container 9 and the container 10 The contact member 11 is extracted from the space, and the contact member 11 is driven so that the fuel generator 5 and the fuel cell device 6 can be switched to a state where they are not thermally connected.
 本実施例では、例えば発熱反応が著しい燃料発生装置5から優先的に吸熱反応を促進したい燃料電池装置6に熱を伝えたい場合或いは発熱反応が著しい燃料電池装置6から優先的に吸熱反応を促進したい燃料発生装置5に熱を伝えたい場合、その2つの異種装置のみを熱的に接続することが可能であるので、その2つの異種装置間で効率良く熱の伝達を行うことができる。なお、接触部材11の形状や駆動の形態を図5A及び図5Bに示す形態から変形することで、隣接する異種装置同士の熱的接続のみならず、任意の2つの異種装置同士の熱的接続も可能である。 In this embodiment, for example, when it is desired to transfer heat to the fuel cell device 6 that preferentially promotes the endothermic reaction from the fuel generating device 5 that exhibits a significant exothermic reaction, or to the endothermic reaction that preferentially promotes from the fuel cell device 6 that exhibits a significant exothermic reaction. When it is desired to transfer heat to the fuel generator 5 that is desired, only the two different devices can be thermally connected, so that heat can be efficiently transferred between the two different devices. In addition, by changing the shape and driving form of the contact member 11 from the form shown in FIGS. 5A and 5B, not only the thermal connection between adjacent heterogeneous devices but also the thermal connection between any two different heterogeneous devices. Is also possible.
<第4実施例>
 本発明の一実施形態に係る2次電池型燃料電池システムの第4実施例を図6A~図6Cに示す。なお、図6A~図6Cにおいて図2と同一の部分には同一の符号を付す。
<Fourth embodiment>
A fourth example of a secondary battery type fuel cell system according to an embodiment of the present invention is shown in FIGS. 6A to 6C. 6A to 6C, the same parts as those in FIG. 2 are denoted by the same reference numerals.
 本発明の一実施形態に係る2次電池型燃料電池システムの第4実施例では、図6A~図6Cに示すように、燃料発生装置5及びヒーターH1が容器9に収容され、燃料電池装置6及びヒーターH2が容器10に収容されている。なお、容器9及び10の材質としては、熱伝導率0.1W/(m・K)以上の金属、金属酸化物、合金(例えば、SUS(約15W/(m・K))、ガラス(約1W/(m・K))、インコネル(約15W/(m・K))等)が好適である。容器9に収容する燃料発生装置5及び容器10に収容する燃料電池装置6は、一方が発熱するときに他方が吸熱する組み合わせを選択するとよい。ヒーターH1及びH2の駆動は制御回路CNT1によって制御される。制御回路CNT1の制御動作は、第1実施例と同様である。 In the fourth example of the secondary battery type fuel cell system according to one embodiment of the present invention, as shown in FIGS. 6A to 6C, the fuel generator 5 and the heater H1 are accommodated in a container 9, and the fuel cell device 6 The heater H2 is accommodated in the container 10. The materials of the containers 9 and 10 are metals, metal oxides, alloys (for example, SUS (about 15 W / (m · K)), glass (about about 0.1 W / (m · K)) or higher. 1 W / (m · K)), Inconel (about 15 W / (m · K)) and the like are preferable. As for the fuel generator 5 housed in the container 9 and the fuel cell device 6 housed in the container 10, it is preferable to select a combination in which one of them generates heat when the other generates heat. The driving of the heaters H1 and H2 is controlled by the control circuit CNT1. The control operation of the control circuit CNT1 is the same as in the first embodiment.
 容器9及び10にはそれぞれ、バイメタルや形状記憶合金等の温度によって形状が変化する形状変化部材13が接続されている。このような構成によると、例えば燃料電池装置6の温度が所定温度以上になった際に、容器10に接続されている形状変化部材13の変形によって、燃料電池装置6と燃料発生装置5とを熱的に接続することが可能であり(図6B参照)、また、燃料発生装置5の温度が所定温度以上になった際に、容器9に接続されている形状変化部材13の変形によって、燃料発生装置5と燃料電池装置6とを熱的に接続することが可能である(図6C参照)。このように、発熱反応が著しい装置とそれに隣接する装置とを自動的に熱的に接続することができ、上述した第3実施例のような駆動機構が不要となるため、2つの異種装置間での熱の伝達を簡単に行うことができる。 Each of the containers 9 and 10 is connected to a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like. According to such a configuration, for example, when the temperature of the fuel cell device 6 becomes equal to or higher than a predetermined temperature, the fuel cell device 6 and the fuel generator 5 are connected by deformation of the shape changing member 13 connected to the container 10. It is possible to make a thermal connection (see FIG. 6B), and when the temperature of the fuel generator 5 reaches a predetermined temperature or higher, the deformation of the shape changing member 13 connected to the container 9 causes the fuel. It is possible to thermally connect the generator 5 and the fuel cell device 6 (see FIG. 6C). In this way, a device having a remarkable exothermic reaction and a device adjacent thereto can be automatically thermally connected, and the drive mechanism as in the third embodiment described above is not necessary, so that there is no need for two different devices. Heat transfer at can be easily performed.
 上述したバイメタルとは、線膨張係数の異なる2種類の導電性材料が接合された構造を有している形状変化部材である。例えば、線膨張係数が17×10―6/℃であるステンレス材料と、線膨張係数が9×10―6/℃であるチタン合金とが接合された構造とすることができる。線膨張係数の異なる2種類の導電性材料が接合された構造を有するバイメタルは、加熱されると、線膨張係数の大きい金属材料側に凸状に湾曲する。 The bimetal described above is a shape changing member having a structure in which two types of conductive materials having different linear expansion coefficients are joined. For example, a stainless steel material having a linear expansion coefficient of 17 × 10 −6 / ° C. and a titanium alloy having a linear expansion coefficient of 9 × 10 −6 / ° C. can be joined. When heated, a bimetal having a structure in which two types of conductive materials having different linear expansion coefficients are joined is curved in a convex shape toward the metal material having a large linear expansion coefficient.
 ここで、金属材料の線膨張係数の参考値を小さい順に示す。上述した設計条件を満たすように、下記に列挙された金属あるいはその他の金属から線膨張係数の異なる2種を選択すればよい。
 Cr:6.5×10―6/℃,Ti:8.9×10―6/℃,Pt:9.0×10―6/℃,SUS430:10.4×10―6/℃,Co:12.5×10―6/℃,Ni:13.3×10―6/℃,Au:14.1×10―6/℃,SUS310:15.8×10―6/℃,Mo:16.0×10―6/℃,SUS316:16.0×10―6/℃,SUS301:16.9×10―6/℃,Cu:17.0×10―6/℃,SUS304:17.3×10―6/℃,Ag:19.1×10―6/℃,Mn:23.0×10―6/℃,Pb:29.0×10―6/℃
Here, reference values of the linear expansion coefficient of the metal material are shown in ascending order. In order to satisfy the design condition described above, two types having different linear expansion coefficients may be selected from the metals listed below or other metals.
Cr: 6.5 × 10 -6 /℃,Ti:8.9×10 -6 /℃,Pt:9.0×10 -6 /℃,SUS430:10.4×10 -6 / ℃, Co: 12.5 × 10 -6 /℃,Ni:13.3×10 -6 /℃,Au:14.1×10 -6 /℃,SUS310:15.8×10 -6 / ℃, Mo: 16. 0 × 10 -6 /℃,SUS316:16.0×10 -6 /℃,SUS301:16.9×10 -6 /℃,Cu:17.0×10 -6 /℃,SUS304:17.3× 10 -6 /℃,Ag:19.1×10 -6 /℃,Mn:23.0×10 -6 /℃,Pb:29.0×10 -6 / ℃
<第5実施例>
 本発明の一実施形態に係る2次電池型燃料電池システムの第5実施例を図7A~図7Cに示す。なお、図7A~図7Cにおいて図2と同一の部分には同一の符号を付す。
<Fifth embodiment>
FIGS. 7A to 7C show a fifth example of the secondary battery type fuel cell system according to the embodiment of the present invention. 7A to 7C, the same parts as those in FIG. 2 are denoted by the same reference numerals.
 本発明の一実施形態に係る2次電池型燃料電池システムの第5実施例では、図7A~図7Cに示すように、燃料発生装置5及びヒーターH1が断熱容器(例えば真空断熱構造を有する容器)14に収容され、燃料電池装置6及びヒーターH2が断熱容器(例えば真空断熱構造を有する容器)15に収容され、断熱容器14と断熱容器15との間に接触部材11が設けられている。なお、断熱容器14及び15の内壁及び外壁の材質、接触部材11の材質としては、熱伝導率0.1W/(m・K)以上の金属、金属酸化物、合金(例えば、SUS(約15W/(m・K))、ガラス(約1W/(m・K))、インコネル(約15W/(m・K))等)が好適である。断熱容器14に収容する燃料発生装置5及び断熱容器15に収容する燃料電池装置6は、一方が発熱するときに他方が吸熱する組み合わせを選択するとよい。ヒーターH1及びH2の駆動は制御回路CNT1によって制御される。制御回路CNT1の制御動作は、第1実施例と同様である。 In the fifth example of the secondary battery type fuel cell system according to one embodiment of the present invention, as shown in FIGS. 7A to 7C, the fuel generator 5 and the heater H1 are insulated containers (for example, containers having a vacuum insulation structure). ) 14, the fuel cell device 6 and the heater H <b> 2 are accommodated in a heat insulating container (for example, a container having a vacuum heat insulating structure) 15, and the contact member 11 is provided between the heat insulating container 14 and the heat insulating container 15. The material of the inner and outer walls of the heat insulating containers 14 and 15 and the material of the contact member 11 are metals, metal oxides, alloys (for example, SUS (about 15 W) having a thermal conductivity of 0.1 W / (m · K) or more. / (M · K)), glass (about 1 W / (m · K)), inconel (about 15 W / (m · K)), etc.) are preferable. As for the fuel generator 5 accommodated in the heat insulation container 14 and the fuel cell device 6 accommodated in the heat insulation container 15, it is preferable to select a combination in which the other absorbs heat when one generates heat. The driving of the heaters H1 and H2 is controlled by the control circuit CNT1. The control operation of the control circuit CNT1 is the same as in the first embodiment.
 断熱容器14及び15にはそれぞれ、バイメタルや形状記憶合金等の温度によって形状が変化する形状変化部材13が設けられている。このような構成によると、燃料発生装置5の温度が所定温度以上になった際に、断熱容器14に設けられている形状変化部材13の変形によって、断熱容器14の内外が熱的に接続され(図7B参照)、燃料電池装置6の温度が所定温度以上になった際に、断熱容器15に設けられている形状変化部材13の変形によって、断熱容器15の内外が熱的に接続される(図7C参照)。すなわち、通常は断熱容器の断熱構造によって、熱を断熱容器内にとどめておき、必要なときだけ断熱容器内の熱を断熱容器の外に伝えることができる。さらに、断熱容器14及び15は、断熱容器外部の温度が所定温度以上になった際に、形状変化部材13の変形によって、断熱容器の内外が熱的に接続される(図7B及び図7C参照)。これにより、より一層効率良く熱の伝達を行うことができる。 Each of the heat insulating containers 14 and 15 is provided with a shape changing member 13 whose shape changes depending on the temperature of a bimetal, a shape memory alloy or the like. According to such a configuration, when the temperature of the fuel generator 5 becomes equal to or higher than a predetermined temperature, the inside and outside of the heat insulating container 14 are thermally connected by deformation of the shape changing member 13 provided in the heat insulating container 14. (Refer to FIG. 7B) When the temperature of the fuel cell device 6 becomes equal to or higher than a predetermined temperature, the inside and outside of the heat insulating container 15 are thermally connected by deformation of the shape changing member 13 provided in the heat insulating container 15. (See FIG. 7C). In other words, the heat insulating structure of the heat insulating container normally allows heat to remain in the heat insulating container, and the heat in the heat insulating container can be transferred to the outside of the heat insulating container only when necessary. Furthermore, when the temperature outside the heat insulation container becomes equal to or higher than a predetermined temperature, the heat insulation containers 14 and 15 are thermally connected to the inside and outside of the heat insulation container by deformation of the shape changing member 13 (see FIGS. 7B and 7C). ). Thereby, heat can be more efficiently transferred.
 図7A~図7Cに示す形態では、断熱容器14と断熱容器15との間の熱の伝達は、接触部材11を介して行われるが、接触部材11の代わりに他の熱伝達用部材(例えば、バイメタルや形状記憶合金等の温度によって形状が変化する形状変化部材等)を設けても良く、断熱容器14及び15の外壁同士を物理的に接触させても良く、断熱容器14の外壁と断熱容器15の外壁とを一体的に成形しても良い。 In the form shown in FIGS. 7A to 7C, heat transfer between the heat insulating container 14 and the heat insulating container 15 is performed via the contact member 11, but instead of the contact member 11, other heat transfer members (for example, A shape-changing member whose shape changes depending on the temperature, such as a bimetal or a shape memory alloy), and the outer walls of the heat insulating containers 14 and 15 may be in physical contact with each other. The outer wall of the container 15 may be integrally formed.
<<本発明における熱の移動例>>
 本発明における熱の移動例について図8~図13を参照して説明する。なお、図8~図13において図2と同一の部分には同一の符号を付す。
<< Example of heat transfer in the present invention >>
Examples of heat transfer in the present invention will be described with reference to FIGS. 8 to 13, the same parts as those in FIG. 2 are denoted by the same reference numerals.
 図8に示す例では、本発明に係る2次電池型燃料電池システムの発電時に、燃料を発生している燃料発生装置5で生じる反応熱(発熱)を燃料電池装置6に供給し、燃料電池装置6の加熱に用いている。これにより、ヒーターH2の動作電力を節約することができる。 In the example shown in FIG. 8, the reaction heat (heat generation) generated in the fuel generating device 5 generating fuel is supplied to the fuel cell device 6 during power generation of the secondary battery type fuel cell system according to the present invention, and the fuel cell. Used for heating the device 6. Thereby, the operating power of the heater H2 can be saved.
 図9に示す例では、本発明に係る2次電池型燃料電池システムの発電時に、発電動作を行っている燃料電池装置6で発生する反応熱(発熱)及び発電動作を行っている燃料電池装置6の固体電解質で生じるジュール熱を、未反応の燃料発生装置5に供給し、未反応の燃料発生装置5の加熱に用いている。これにより、未反応の燃料発生装置5の近傍に設けられているヒーターH1の動作電力を節約することができる。 In the example shown in FIG. 9, the reaction heat (heat generation) generated in the fuel cell device 6 performing the power generation operation and the fuel cell device performing the power generation operation during power generation of the secondary battery type fuel cell system according to the present invention. Joule heat generated in the solid electrolyte 6 is supplied to the unreacted fuel generator 5 and used to heat the unreacted fuel generator 5. Thereby, the operating power of the heater H1 provided in the vicinity of the unreacted fuel generator 5 can be saved.
 図10に示す例では、或る燃料発生装置5が燃料を発生しているとき、例えばEVでのブレーキ時に発生する回生電力や外部電源から供給される電力を用いて2次電池型燃料電池システムの充電を行う際に、或る燃料発生装置5で発生する反応熱(発熱)を、水(水蒸気)の電気分解を行っている燃料電池装置6での電気分解反応に必要な反応熱(吸熱)に用いている。なお、或る燃料発生装置5で発生する燃料(水素)及び水(水蒸気)の電気分解を行っている燃料電池装置6で発生する水素は、別の燃料発生装置5での還元反応に用いられる。これにより、水(水蒸気)の電気分解を行っている燃料電池装置6の近傍に設けられているヒーターH2の動作電力を節約することができる。 In the example shown in FIG. 10, when a certain fuel generator 5 is generating fuel, for example, a secondary battery type fuel cell system using regenerative power generated during braking in EV or power supplied from an external power source. When the battery is charged, the reaction heat (heat generation) generated in a certain fuel generator 5 is converted into the reaction heat (endotherm) required for the electrolysis reaction in the fuel cell device 6 that performs electrolysis of water (steam). ). Note that the hydrogen generated in the fuel cell device 6 that performs the electrolysis of the fuel (hydrogen) generated in one fuel generator 5 and the water (steam) is used for the reduction reaction in another fuel generator 5. . Thereby, the operating power of the heater H2 provided in the vicinity of the fuel cell device 6 that performs electrolysis of water (steam) can be saved.
 図11及び図12に示す例では、本発明に係る2次電池型燃料電池システムが燃料発生装置5及び燃料電池装置6を複数組(図11及び図12においては2組の場合を図示している)備えている。図11と図12との違いは、図11では燃料発生装置5及び燃料電池装置6をモザイク状に配置しているのに対して、図12では燃料発生装置5及び燃料電池装置6をストライプ状に配置している点である。 In the example shown in FIGS. 11 and 12, the secondary battery type fuel cell system according to the present invention includes a plurality of sets of fuel generators 5 and fuel cell apparatuses 6 (two sets are shown in FIGS. 11 and 12). Yes) The difference between FIG. 11 and FIG. 12 is that in FIG. 11, the fuel generators 5 and the fuel cell devices 6 are arranged in a mosaic pattern, whereas in FIG. 12, the fuel generators 5 and the fuel cell devices 6 are striped. It is the point which is arranged in.
 図11及び図12に示す例では、燃料(水素)を発生している燃料発生装置5と発電動作を行っている燃料電池装置6との間でガスを循環し、還元反応によって再生されている燃料発生装置5と水(水蒸気)の電気分解を行っている燃料電池装置6との間でガスを循環している状態において、燃料(水素)を発生している燃料発生装置5と水(水蒸気)の電気分解を行っている燃料電池装置6とが熱的に接続され、還元反応によって再生されている燃料発生装置5と発電動作を行っている燃料電池装置6とが熱的に接続される。この場合、燃料(水素)を発生している燃料発生装置5で発生する反応熱(発熱)が、水(水蒸気)の電気分解を行っている燃料電池装置6での電気分解反応に必要な反応熱(吸熱)に用いられ、発電動作を行っている燃料電池装置6で発生する反応熱(発熱)が、還元反応によって再生されている燃料発生装置5での還元反応に必要な反応熱(吸熱)に用いられる。これにより、還元反応によって再生されている燃料発生装置5の近傍に設けられているヒーターH1の動作電力及び水(水蒸気)の電気分解を行っている燃料電池装置6の近傍に設けられているヒーターH2の動作電力を節約することができる。 In the example shown in FIGS. 11 and 12, gas is circulated between the fuel generator 5 that generates fuel (hydrogen) and the fuel cell device 6 that performs the power generation operation, and is regenerated by a reduction reaction. In a state where gas is circulated between the fuel generator 5 and the fuel cell device 6 that performs electrolysis of water (steam), the fuel generator 5 that generates fuel (hydrogen) and water (steam) ) Is thermally connected, and the fuel generator 5 regenerated by the reduction reaction and the fuel cell device 6 performing the power generation operation are thermally connected. . In this case, reaction heat (heat generation) generated in the fuel generator 5 generating fuel (hydrogen) is a reaction necessary for an electrolysis reaction in the fuel cell device 6 that performs electrolysis of water (steam). Reaction heat (heat generation) used for heat (heat absorption) and generated in the fuel cell device 6 performing the power generation operation is necessary for the reduction reaction in the fuel generation device 5 regenerated by the reduction reaction (heat absorption) ). Thus, the heater provided in the vicinity of the fuel cell device 6 that performs electrolysis of the operating power of the heater H1 provided in the vicinity of the fuel generator 5 regenerated by the reduction reaction and water (steam). The operating power of H2 can be saved.
 なお、図12に示す例では、発電動作を行っている燃料電池装置6と水(水蒸気)の電気分解を行っている燃料電池装置6とが対角線上では無く隣接して配置されているので、発電動作を行っている燃料電池装置6と水(水蒸気)の電気分解を行っている燃料電池装置6とが熱的に接続可能な構成とし、発電動作を行っている燃料電池装置6で発生する反応熱(発熱)の一部が、水(水蒸気)の電気分解を行っている燃料電池装置6での電気分解反応に必要な反応熱(吸熱)に用いられるようにしてもよい。 In the example shown in FIG. 12, the fuel cell device 6 performing the power generation operation and the fuel cell device 6 performing the electrolysis of water (steam) are disposed adjacent to each other rather than diagonally. The fuel cell device 6 performing the power generation operation and the fuel cell device 6 performing the electrolysis of water (steam) are configured to be thermally connectable and are generated in the fuel cell device 6 performing the power generation operation. A part of the reaction heat (heat generation) may be used for the reaction heat (endotherm) necessary for the electrolysis reaction in the fuel cell device 6 performing the electrolysis of water (steam).
 同様に、図12に示す例では、燃料(水素)を発生している燃料発生装置5と還元反応によって再生されている燃料発生装置5とが対角線上では無く隣接して配置されているので、燃料(水素)を発生している燃料発生装置5と還元反応によって再生されている燃料発生装置5とが熱的に接続可能な構成とし、燃料(水素)を発生している燃料発生装置5で発生する反応熱(発熱)の一部が、還元反応によって再生されている燃料発生装置5での還元反応に必要な反応熱(吸熱)に用いられるようにしてもよい。 Similarly, in the example shown in FIG. 12, the fuel generator 5 generating fuel (hydrogen) and the fuel generator 5 regenerated by the reduction reaction are arranged adjacent to each other rather than diagonally. The fuel generator 5 generating the fuel (hydrogen) and the fuel generator 5 regenerated by the reduction reaction are configured to be thermally connectable, and the fuel generator 5 generating the fuel (hydrogen) A part of the generated reaction heat (heat generation) may be used for reaction heat (endotherm) necessary for the reduction reaction in the fuel generator 5 regenerated by the reduction reaction.
 最後に、図13に示す例について説明する。水(水蒸気)の電気分解を行っている燃料電池装置6での電気分解反応(上述した(6)式に示す反応)は吸熱反応である。また、水(水蒸気)の電気分解時には燃料電池装置6の固体電解質に電流が流れるため、固体電解質においてジュール熱が発生する。したがって、燃料電池装置6が水(水蒸気)の電気分解を行うときに、燃料電池装置6の固体電解質で発生するジュール熱が、燃料電池装置6の電気分解反応での吸熱量よりも大きければ、燃料電池装置6は発熱し、燃料電池装置6の固体電解質で発生するジュール熱が、燃料電池装置6の電気分解反応での吸熱量よりも小さければ、燃料電池装置6は吸熱する。 Finally, the example shown in FIG. 13 will be described. The electrolysis reaction (reaction shown in the above formula (6)) in the fuel cell device 6 that electrolyzes water (steam) is an endothermic reaction. Further, since current flows through the solid electrolyte of the fuel cell device 6 during electrolysis of water (water vapor), Joule heat is generated in the solid electrolyte. Therefore, when the fuel cell device 6 performs electrolysis of water (steam), if the Joule heat generated in the solid electrolyte of the fuel cell device 6 is larger than the endothermic amount in the electrolysis reaction of the fuel cell device 6, The fuel cell device 6 generates heat, and if the Joule heat generated in the solid electrolyte of the fuel cell device 6 is smaller than the endothermic amount in the electrolysis reaction of the fuel cell device 6, the fuel cell device 6 absorbs heat.
 図13に示す例は、燃料電池装置6が水(水蒸気)の電気分解を行うときに、燃料電池装置6の固体電解質で発生するジュール熱が、燃料電池装置6の電気分解反応での吸熱量よりも大きい場合に適用することができる。 In the example shown in FIG. 13, when the fuel cell device 6 performs electrolysis of water (water vapor), Joule heat generated in the solid electrolyte of the fuel cell device 6 is an endothermic amount in the electrolysis reaction of the fuel cell device 6. It can be applied when larger than.
 図13に示す例では、本発明に係る2次電池型燃料電池システムの充電時に、水(水蒸気)の電気分解を行っている燃料電池装置6の固体電解質で生じるジュール熱を、燃料発生装置5での還元反応に必要な反応熱(吸熱)に用いている。 In the example shown in FIG. 13, when the secondary battery type fuel cell system according to the present invention is charged, Joule heat generated in the solid electrolyte of the fuel cell device 6 that performs electrolysis of water (water vapor) is used as the fuel generator 5. This is used for the heat of reaction (endotherm) required for the reduction reaction at.
 本発明に係る2次電池型燃料電池システムでは、燃料発生装置と燃料電池装置とが熱的に接続可能であるため、上記の各例のように燃料発生装置と燃料電池装置との熱の伝達が可能となる。これにより、外部から本発明に係る2次電池型燃料電池システムにヒーターの駆動電力として供給されるエネルギーを低減することができる。 In the secondary battery type fuel cell system according to the present invention, since the fuel generating device and the fuel cell device can be thermally connected, heat transfer between the fuel generating device and the fuel cell device as in each of the above examples. Is possible. Thereby, the energy supplied as drive power of the heater from the outside to the secondary battery type fuel cell system according to the present invention can be reduced.
   1 固体電解質
   2 酸化剤極
   3 燃料極
   4 外部負荷
   5 燃料発生装置
   6 燃料電池装置
   7 循環経路
   8~10 容器
   11 接触部材
   12 接触部材駆動機構
   13 形状変化部材
   14、15 断熱部材
   CNT1 制御回路
   H1、H2 ヒーター
DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Oxidizer electrode 3 Fuel electrode 4 External load 5 Fuel generator 6 Fuel cell apparatus 7 Circulation path 8-10 Container 11 Contact member 12 Contact member drive mechanism 13 Shape change member 14, 15 Heat insulation member CNT1 Control circuit H1, H2 heater

Claims (5)

  1.  化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生装置と、
     前記燃料発生装置から供給される燃料に用いて発電を行う燃料電池装置とをそれぞれ少なくとも1つ備え、
     前記燃料発生装置の少なくとも1つと前記燃料電池装置の少なくとも1つが熱的に接続可能であることを特徴とする2次電池型燃料電池システム。
    A fuel generator that generates hydrogen-containing fuel by a chemical reaction, and can be regenerated by a reverse reaction of the chemical reaction;
    And at least one fuel cell device that generates electricity using the fuel supplied from the fuel generator,
    A secondary battery type fuel cell system, wherein at least one of the fuel generators and at least one of the fuel cell devices are thermally connectable.
  2.  前記燃料発生装置の少なくとも1つと前記燃料電池装置の少なくとも1つが熱的に接続されている状態と熱的に接続されていない状態とを切り替えるための切替手段を備えることを特徴とする請求項1に記載の2次電池型燃料電池システム。 2. A switching means for switching between a state where at least one of the fuel generators and at least one of the fuel cell devices are thermally connected and a state where they are not thermally connected. The secondary battery type fuel cell system described in 1.
  3.  前記切替手段が、温度によって形状が変化する形状変化部材を有することを特徴とする請求項2に記載の2次電池型燃料電池システム。 The secondary battery type fuel cell system according to claim 2, wherein the switching means has a shape changing member whose shape changes depending on temperature.
  4.  前記形状変化部材が、バイメタルまたは形状記憶合金であることを特徴とする請求項3に記載の2次電池型燃料電池システム。 The secondary battery type fuel cell system according to claim 3, wherein the shape changing member is a bimetal or a shape memory alloy.
  5.  前記燃料発生装置が水素を発生する水素発生装置であり、
     前記燃料電池装置が固体酸化物燃料電池であり、
     前記燃料発生装置と前記燃料電池装置との間でガスを循環させる循環経路を備えることを特徴とする請求項1~4のいずれか1項に記載の2次電池型燃料電池システム。
    The fuel generator is a hydrogen generator for generating hydrogen;
    The fuel cell device is a solid oxide fuel cell;
    The secondary battery type fuel cell system according to any one of claims 1 to 4, further comprising a circulation path for circulating gas between the fuel generator and the fuel cell device.
PCT/JP2011/076658 2010-11-24 2011-11-18 Secondary battery type fuel cell system WO2012070487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-260977 2010-11-24
JP2010260977 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070487A1 true WO2012070487A1 (en) 2012-05-31

Family

ID=46145830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076658 WO2012070487A1 (en) 2010-11-24 2011-11-18 Secondary battery type fuel cell system

Country Status (1)

Country Link
WO (1) WO2012070487A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007062A (en) * 2012-06-25 2014-01-16 Konica Minolta Inc Secondary battery type fuel cell system and power feeding system provided therewith
WO2014192795A1 (en) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 Secondary-cell-type fuel cell system
JP2014229438A (en) * 2013-05-21 2014-12-08 株式会社デンソー Fuel cell device
JPWO2013146396A1 (en) * 2012-03-28 2015-12-10 コニカミノルタ株式会社 Secondary battery type fuel cell system
JP2016189287A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Power generation system serving as hydrogen generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064567A (en) * 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd Fuel cell hydrogen supply system and portable electrical machinery and apparatus
JP2004149394A (en) * 2002-11-01 2004-05-27 Uchiya Thermostat Kk Hydrogen producing apparatus
JP2007080587A (en) * 2005-09-12 2007-03-29 Canon Inc Fuel cell and electric apparatus
JP2007087701A (en) * 2005-09-21 2007-04-05 Nec Corp Electronic apparatus and starting method of fuel cell
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2009176479A (en) * 2008-01-22 2009-08-06 Casio Comput Co Ltd Fuel cell system, its control device and operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064567A (en) * 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd Fuel cell hydrogen supply system and portable electrical machinery and apparatus
JP2004149394A (en) * 2002-11-01 2004-05-27 Uchiya Thermostat Kk Hydrogen producing apparatus
JP2007080587A (en) * 2005-09-12 2007-03-29 Canon Inc Fuel cell and electric apparatus
JP2007087701A (en) * 2005-09-21 2007-04-05 Nec Corp Electronic apparatus and starting method of fuel cell
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2009176479A (en) * 2008-01-22 2009-08-06 Casio Comput Co Ltd Fuel cell system, its control device and operation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146396A1 (en) * 2012-03-28 2015-12-10 コニカミノルタ株式会社 Secondary battery type fuel cell system
JP2014007062A (en) * 2012-06-25 2014-01-16 Konica Minolta Inc Secondary battery type fuel cell system and power feeding system provided therewith
JP2014229438A (en) * 2013-05-21 2014-12-08 株式会社デンソー Fuel cell device
WO2014192795A1 (en) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 Secondary-cell-type fuel cell system
JP5679097B1 (en) * 2013-05-29 2015-03-04 コニカミノルタ株式会社 Secondary battery type fuel cell system
JP2016189287A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Power generation system serving as hydrogen generator

Similar Documents

Publication Publication Date Title
JP5640884B2 (en) Secondary battery type fuel cell system
US8911895B2 (en) All solid state rechargeable oxide-ion battery (ROB) system
JP4821937B2 (en) Fuel cell device
JPWO2009028169A1 (en) Fuel cell
WO2012070487A1 (en) Secondary battery type fuel cell system
JP4956946B2 (en) Fuel cell
EP3282513B1 (en) Multi-stack fuel cell systems and heat exchanger assemblies
JP5617592B2 (en) Secondary battery type fuel cell system
JP2009193808A (en) Solid oxide fuel cell
JP5505583B1 (en) Secondary battery type fuel cell system
JP5741710B2 (en) Fuel cell system
JP2012084366A (en) Fuel cell device and secondary fuel cell system
JP2007005134A (en) Steam generator and fuel cell
JP4544055B2 (en) Fuel cell
JP2013025933A (en) Secondary battery type fuel battery
JP2012082102A (en) Fuel generation device, and secondary battery type fuel cell system including the same
JP5896015B2 (en) Secondary battery type fuel cell system
JP2012079558A (en) Secondary-battery type fuel cell system
JP5494799B2 (en) Fuel cell device
JP5679097B1 (en) Secondary battery type fuel cell system
JP2012119127A (en) Rechargeable fuel cell system
JP5772681B2 (en) Fuel cell system
JP4849201B2 (en) Solid oxide fuel cell
JP2011165371A (en) Fuel cell
JP6121852B2 (en) Electrochemical apparatus and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP