JP5168431B2 - Secondary battery type solid oxide fuel cell system - Google Patents

Secondary battery type solid oxide fuel cell system Download PDF

Info

Publication number
JP5168431B2
JP5168431B2 JP2012529998A JP2012529998A JP5168431B2 JP 5168431 B2 JP5168431 B2 JP 5168431B2 JP 2012529998 A JP2012529998 A JP 2012529998A JP 2012529998 A JP2012529998 A JP 2012529998A JP 5168431 B2 JP5168431 B2 JP 5168431B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
secondary battery
battery type
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012529998A
Other languages
Japanese (ja)
Other versions
JPWO2012098945A1 (en
Inventor
勝一 浦谷
雅之 上山
寛子 大森
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012529998A priority Critical patent/JP5168431B2/en
Application granted granted Critical
Publication of JP5168431B2 publication Critical patent/JP5168431B2/en
Publication of JPWO2012098945A1 publication Critical patent/JPWO2012098945A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。本明細書では、固体酸化物燃料電池を備える2次電池型燃料電池システムを2次電池型固体酸化物燃料電池システムと称することがある。
The present invention relates to a secondary battery type fuel cell system capable of performing not only power generation operation but also charging operation. In the present specification, a secondary battery type fuel cell system including a solid oxide fuel cell may be referred to as a secondary battery type solid oxide fuel cell system.

燃料電池は、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   Fuel cells are not only energy-saving because of the high efficiency of the power energy that can be extracted in principle, but they are also a power generation system that excels in the environment, and are expected as a trump card for solving global energy and environmental problems.

このような燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を燃料極(アノード)と酸化剤極(カソード)とで両側から挟持して形成されたものを1つのセル構成としている。そして、このような構成のセルには、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給される。   Such fuel cells typically oxidize a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), and the like with an anode (anode). One cell structure is formed by being sandwiched from both sides by the agent electrode (cathode). In the cell having such a configuration, a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode, and an oxidant gas flow for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode. A fuel gas and an oxidant gas are respectively supplied to the fuel electrode and the oxidant electrode through these flow paths.

ところが、外部から燃料が供給される燃料電池装置では、燃料(例えば水素)を供給するためのインフラ整備が必要である。   However, in a fuel cell device to which fuel is supplied from the outside, infrastructure for supplying fuel (for example, hydrogen) is required.

そこで、このような問題に対応するため、特許文献1に開示されている燃料電池システムでは、水素の供給源として水素吸蔵合金が設けられ、この水素吸蔵合金から発生した水素を燃料電池本体に供給する構成となっている。また、水素吸蔵合金に対して水素を外部より補給するための水素補給管が配置され、この水素補給管を介して、外部より水素吸蔵合金に対して水素を補給することが開示されている。   Therefore, in order to cope with such a problem, in the fuel cell system disclosed in Patent Document 1, a hydrogen storage alloy is provided as a hydrogen supply source, and hydrogen generated from the hydrogen storage alloy is supplied to the fuel cell main body. It is the composition to do. Further, it is disclosed that a hydrogen supply pipe for replenishing hydrogen from the outside to the hydrogen storage alloy is arranged, and hydrogen is replenished from the outside to the hydrogen storage alloy via the hydrogen supply pipe.

特開2000−12056号公報JP 2000-12056 A

しかしながら、特許文献1に開示されている燃料電池システムの構成は、水素を一旦水素吸蔵合金に吸蔵して利用するだけの構成であって、やはり外部から水素を供給することを前提としているため、外部で水素を生成して供給するインフラ整備が必要であることには変わりがない。   However, the configuration of the fuel cell system disclosed in Patent Document 1 is a configuration in which hydrogen is temporarily stored in a hydrogen storage alloy and is used on the premise that hydrogen is supplied from the outside. There is no change in the need for infrastructure development that generates and supplies hydrogen externally.

本発明は、上記の状況に鑑み、水素を外部から供給しなくても充電することが可能であり、安定した電池性能を維持することができる2次電池型燃料電池システムを提供することを目的とする。   An object of the present invention is to provide a secondary battery type fuel cell system that can be charged without supplying hydrogen from the outside and can maintain stable battery performance in view of the above situation. And

上記目的を達成するために本発明に係る2次電池型固体酸化物燃料電池システムは、発電機能及び水の電気分解機能を有する発電・電気分解部と水素を発生する水素発生部とを備えた2次電池型固体酸化物燃料電池システムであって、前記2次電池型固体酸化物燃料電池システムの発電時に、前記発電・電気分解部は、前記水素発生部から供給される水素を燃料にして発電を行なうことによって水蒸気を発生し、前記水素発生部は前記水蒸気との酸化反応により前記水素を発生し、前記2次電池型固体酸化物燃料電池システムの充電時に、前記発電・電気分解部は、酸化された前記水素発生部から供給される水蒸気を電気分解することによって水素を発生し、酸化された前記水素発生部は前記水素との還元反応により前記水蒸気を発生し、前記水素及び前記水蒸気を含むガスが存在する領域に、水を補給する水補給部を備える構成とする。
To achieve the above object, a secondary battery type solid oxide fuel cell system according to the present invention includes a power generation / electrolysis unit having a power generation function and an electrolysis function of water, and a hydrogen generation unit for generating hydrogen. A secondary battery type solid oxide fuel cell system, wherein when the secondary battery type solid oxide fuel cell system generates electric power, the power generation / electrolysis section uses hydrogen supplied from the hydrogen generation section as fuel. Steam is generated by performing power generation, and the hydrogen generation unit generates the hydrogen by an oxidation reaction with the steam, and during the charging of the secondary battery type solid oxide fuel cell system, the power generation / electrolysis unit Hydrogen is generated by electrolyzing the water vapor supplied from the oxidized hydrogen generation unit, and the oxidized hydrogen generation unit generates the water vapor by a reduction reaction with the hydrogen. In a region where there is a gas containing hydrogen and the water vapor, and configured to include a water supply unit for supplying water.

本発明に係る2次電池型固体酸化物燃料電池システムによると、水素を外部から供給しなくても充電することが可能であり、安定した電池性能を維持することができる。
The secondary battery type solid oxide fuel cell system according to the present invention can be charged without supplying hydrogen from the outside, and can maintain stable battery performance.

本発明の一実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a fuel cell system concerning one embodiment of the present invention. システムの発電動作時における固体酸化物燃料電池と外部負荷との接続関係を示す模式図である。It is a schematic diagram which shows the connection relationship of the solid oxide fuel cell and external load at the time of the electric power generation operation | movement of a system. システムの充電動作時における固体酸化物燃料電池と外部電源との接続関係を示す模式図である。It is a schematic diagram which shows the connection relationship of the solid oxide fuel cell and external power supply at the time of charge operation of a system. 混合ガスの圧力のタイムチャートである。It is a time chart of the pressure of mixed gas. 本発明の一実施形態に係る燃料電池システムの変形例を示す模式図である。It is a schematic diagram which shows the modification of the fuel cell system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る燃料電池システムの他の変形例を示す模式図である。It is a schematic diagram which shows the other modification of the fuel cell system which concerns on one Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described later.

本発明の一実施形態に係る2次電池型燃料電池システムの全体構成を図1に示す。図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生装置1と、酸素を含む酸化剤と水素発生装置1から供給される水素との反応により発電を行う燃料電池装置2とを備えている。そして、水素発生装置1と燃料電池装置2とは同一の容器3に収容されている。   FIG. 1 shows an overall configuration of a secondary battery type fuel cell system according to an embodiment of the present invention. The secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1 includes a hydrogen generator 1 that generates hydrogen by an oxidation reaction with water and can be regenerated by a reduction reaction with hydrogen, and oxygen. And a fuel cell device 2 that generates power by a reaction between the oxidant and hydrogen supplied from the hydrogen generator 1. The hydrogen generator 1 and the fuel cell device 2 are accommodated in the same container 3.

また、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムの燃料発生装置1及び燃料電池装置2には必要に応じて、温度を調節するヒーター等を設けてもよい。   Moreover, you may provide the heater etc. which adjust temperature as needed in the fuel generator 1 and the fuel cell apparatus 2 of the secondary battery type fuel cell system which concern on one Embodiment of this invention shown in FIG.

水素発生装置1としては、例えば、基材料(主成分)が鉄である微粒子圧縮体からなる水素発生装置を用いることができる。また、図1では、燃料電池装置2の一例として、O2−を透過する固体電解質4を挟み、両側にそれぞれ酸化剤極5と燃料極6が形成されているMEA(Membrane Electrode Assembly;膜・電極接合体)構造をなす固体酸化物燃料電池を図示している。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。As the hydrogen generator 1, for example, a hydrogen generator made of a compressed fine particle whose base material (main component) is iron can be used. In FIG. 1, as an example of the fuel cell device 2, an MEA (Membrane Electrode Assembly), in which a solid electrolyte 4 that transmits O 2− is sandwiched and an oxidizer electrode 5 and a fuel electrode 6 are formed on both sides, respectively. 1 illustrates a solid oxide fuel cell having an (electrode assembly) structure. Although FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.

システムの発電時に固体酸化物燃料電池は図2に示すように外部負荷100に接続される。固体酸化物燃料電池では、システムの発電時に、燃料極6において下記の(1)式の反応が起こる。
+O2−→HO+2e …(1)
When the system generates electricity, the solid oxide fuel cell is connected to an external load 100 as shown in FIG. In the solid oxide fuel cell, the following reaction (1) occurs at the fuel electrode 6 when the system generates power.
H 2 + O 2− → H 2 O + 2e (1)

上記の(1)式の反応によって生成された電子は、外部負荷100を通って、酸化剤極5に到達し、酸化剤極5において下記の(2)式の反応が起こる。
1/2O+2e→O2− …(2)
Electrons generated by the reaction of the above formula (1) pass through the external load 100 and reach the oxidant electrode 5, and the reaction of the following formula (2) occurs at the oxidant electrode 5.
1 / 2O 2 + 2e → O 2− (2)

そして、上記の(2)式の反応によって生成された酸素イオンは、固体電解質4を通って、燃料極6に到達する。上記の一連の反応を繰り返すことにより、固体酸化物燃料電池が発電動作を行うことになる。また、上記の(1)式から分かるように、発電動作時には、燃料極6側においてH(水素)が消費されHO(水)が生成されることになる。Then, oxygen ions generated by the reaction of the above formula (2) pass through the solid electrolyte 4 and reach the fuel electrode 6. By repeating the above series of reactions, the solid oxide fuel cell performs a power generation operation. As can be seen from the above equation (1), during the power generation operation, H 2 (hydrogen) is consumed on the fuel electrode 6 side and H 2 O (water) is generated.

上記の(1)式及び(2)式より、発電動作時における固体酸化物燃料電池での反応は下記の(3)式の通りになる。
+1/2O→HO …(3)
From the above formulas (1) and (2), the reaction in the solid oxide fuel cell during the power generation operation is as shown in the following formula (3).
H 2 + 1 / 2O 2 → H 2 O (3)

一方、基材料(主成分)が鉄である水素発生装置は、下記の(4)式に示す酸化反応により、システムの発電時に燃料電池装置の燃料極6側で生成されたHOを消費してHを生成することができる。
3Fe+4HO→Fe+4H …(4)
On the other hand, the hydrogen generator whose base material (main component) is iron consumes H 2 O generated on the fuel electrode 6 side of the fuel cell device during power generation of the system by the oxidation reaction shown in the following equation (4). Thus, H 2 can be generated.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (4)

上記の(4)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄の残量が減っていくが、上記の(4)式の逆反応(還元反応)により、水素発生装置を再生、すなわち酸化鉄の鉄への還元を行うことができ、システムを充電することができる。   When the oxidation reaction of iron shown in the above equation (4) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but by the reverse reaction (reduction reaction) of the above equation (4) The hydrogen generator can be regenerated, that is, iron oxide can be reduced to iron, and the system can be charged.

システムの充電時に固体酸化物燃料電池は図3に示すように外部電源200に接続される。固体酸化物燃料電池装置では、システムの充電時に、上記の(3)式の逆反応である下記の(5)式に示す電気分解反応が起こり、燃料極6側においてHOが消費されHが生成され、基材料(主成分)が鉄である水素発生装置では、上記の(4)式に示す酸化反応の逆反応である下記(6)式に示す還元反応が起こり、燃料電池装置の燃料極6側で生成されたHが消費されHOが生成される。
O→H+1/2O …(5)
Fe+4H→3Fe+4HO …(6)
When the system is charged, the solid oxide fuel cell is connected to an external power source 200 as shown in FIG. In the solid oxide fuel cell device, when the system is charged, an electrolysis reaction shown in the following formula (5), which is a reverse reaction of the above formula (3), occurs, and H 2 O is consumed on the fuel electrode 6 side. In the hydrogen generator in which 2 is produced and the base material (main component) is iron, the reduction reaction shown in the following formula (6), which is the reverse reaction of the oxidation reaction shown in the formula (4), occurs, and the fuel cell device H 2 generated on the fuel electrode 6 side is consumed and H 2 O is generated.
H 2 O → H 2 + 1 / 2O 2 (5)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (6)

図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水補給部をさらに備えている。当該水補給部は、水素発生装置1と燃料電池装置2との間を循環する水素及び水(水蒸気)を含む混合ガスの圧力を検出する圧力センサ7と、補給用の水を貯蔵している貯蔵部8と、貯蔵部8と上記混合ガスが存在する空間との連通/非連通を切り替えるための開閉バルブ9と、貯蔵部8を加熱するヒーター10と、圧力センサ7の検出値に基づいて開閉バルブ9及びヒーター10を制御する制御部11と有している。   The secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1 further includes a water supply unit. The water replenishment section stores a pressure sensor 7 for detecting the pressure of a mixed gas containing hydrogen and water (steam) circulating between the hydrogen generator 1 and the fuel cell device 2, and water for replenishment. Based on the detection value of the storage unit 8, the opening / closing valve 9 for switching the communication between the storage unit 8 and the space where the mixed gas exists, the heater 10 that heats the storage unit 8, and the pressure sensor 7. It has the control part 11 which controls the on-off valve 9 and the heater 10.

制御部11は、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスの圧力が下限値P1になった時点で、開閉バルブ9を開くとともに、ヒーター10による貯蔵部8の加熱を開始する。したがって、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスの圧力が下限値P1になった時点が水補給開始タイミングt1となる(図4参照)。水補給開始タイミングt1の後、制御部11は、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスの圧力が所定値P2(>下限値P1)になった時点で、開閉バルブ9を閉じるとともに、ヒーター10による貯蔵部8の加熱を停止する。なお、所定値P2としては、発電及び充電を良好に行うことができる値が設定される。したがって、水補給開始タイミングt1の後、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスの圧力が所定値P2になった時点が水補給停止タイミングt2となる(図4参照)。   When the pressure of the mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 reaches the lower limit value P1, the control unit 11 opens the open / close valve 9 and stores it by the heater 10. Heating of part 8 is started. Therefore, the time when the pressure of the mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 reaches the lower limit P1 is the water supply start timing t1 (see FIG. 4). After the water supply start timing t1, the control unit 11 causes the pressure of the mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 to reach a predetermined value P2 (> lower limit value P1). At the time, the opening / closing valve 9 is closed and the heating of the storage unit 8 by the heater 10 is stopped. In addition, as the predetermined value P2, a value that allows good power generation and charging is set. Therefore, after the water supply start timing t1, the time when the pressure of the mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 reaches the predetermined value P2 is the water supply stop timing t2. (See FIG. 4).

本実施形態のように、水補給期間、すなわち水補給開始タイミングt1から水補給停止タイミングt2までの期間に、ヒーター10によって貯蔵部8を加熱することで、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスが存在する空間への水(水蒸気)の補給が促進され、上記水補給期間を短くすることができる。   As in the present embodiment, the heater 8 is used to heat the storage unit 8 during the water supply period, that is, the period from the water supply start timing t1 to the water supply stop timing t2, so that the hydrogen generator 1 and the fuel cell device 2 The supply of water (water vapor) to the space where the mixed gas containing hydrogen and water circulating between them is promoted, and the water supply period can be shortened.

上述した制御部11の制御動作により、上記混合ガスの漏れがあっても、上記混合ガスの漏れを補うように、水(水蒸気)が補給されるので、安定した電池性能を維持することができる。なお、制御部11は、システムの発電時、システムの充電時のいずれにおいても、圧力センサ7の検出値に基づいて開閉バルブ9及びヒーター10を制御するようにしてもよく、上記混合ガスが減少したときの水の補給がより効果的であるシステムの充電時にのみ、圧力センサ7の検出値に基づいて開閉バルブ9及びヒーター10を制御するようにしてもよい。   By the control operation of the control unit 11 described above, even if the mixed gas leaks, water (water vapor) is replenished so as to compensate for the mixed gas leakage, so that stable battery performance can be maintained. . Note that the control unit 11 may control the open / close valve 9 and the heater 10 based on the detection value of the pressure sensor 7 both when the system generates power and when the system is charged, and the mixed gas decreases. The open / close valve 9 and the heater 10 may be controlled based on the detection value of the pressure sensor 7 only when charging the system where water supply is more effective.

なお、図1に示す2次電池型燃料電池システムや後述する図5に示す2次電池型燃料電池システムにおいて、水素発生装置1と燃料電池装置2の燃料極6との間の空間を無くし、水素発生装置1と燃料電池装置2の燃料極6とが接するようにしてもよい。この場合、水素発生装置1での微粒子圧縮体中の空隙が、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスが存在する空間になる。   In the secondary battery type fuel cell system shown in FIG. 1 and the secondary battery type fuel cell system shown in FIG. 5 described later, the space between the hydrogen generator 1 and the fuel electrode 6 of the fuel cell device 2 is eliminated. The hydrogen generator 1 and the fuel electrode 6 of the fuel cell device 2 may be in contact with each other. In this case, the void in the fine particle compact in the hydrogen generator 1 becomes a space where a mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 exists.

次に、本発明の一実施形態に係る2次電池型燃料電池システムの変形例を図5に示す。なお、図5において図1と同一の部分には同一符号を付し詳細な説明を省略する。図5に示す2次電池型燃料電池システムでは、水補給部が、圧力センサ7と、貯蔵部8と、開閉バルブ9と、ヒーター10と、制御部11と、燃料電池装置2の出力電圧を検出する電圧検出回路12とによって構成されており、制御部11が、主として、圧力センサ7の検出値に基づいて開閉バルブ9及びヒーター10を制御するのではなく、電圧検出回路12の検出値に基づいて開閉バルブ9及びヒーター10を制御する。   Next, a modification of the secondary battery type fuel cell system according to one embodiment of the present invention is shown in FIG. 5 that are the same as those in FIG. 1 are given the same reference numerals, and detailed descriptions thereof are omitted. In the secondary battery type fuel cell system shown in FIG. 5, the water replenishment unit includes the pressure sensor 7, the storage unit 8, the opening / closing valve 9, the heater 10, the control unit 11, and the output voltage of the fuel cell device 2. The control unit 11 does not mainly control the open / close valve 9 and the heater 10 based on the detection value of the pressure sensor 7, but uses the detection value of the voltage detection circuit 12. Based on this, the opening / closing valve 9 and the heater 10 are controlled.

制御部11は、システムの初期時における所定の条件(例えば、水素発生装置1及び燃料電池装置2を所定の温度に設定する)での燃料電池装置2の開放電圧を内蔵メモリ(不図示)に記憶し、その後、一定の周期で所定の条件での燃料電池装置2の開放電圧を確認する。制御部11は、一定の周期で確認される開放電圧が初期の開放電圧より所定値以上低い場合に、開閉バルブ9を開くとともに、ヒーター10による貯蔵部8の加熱を開始し、その後、一定期間経過後に、開閉バルブ9を閉じるとともに、ヒーター10による貯蔵部8の加熱を停止する。一定の周期で確認される開放電圧の初期の開放電圧からの低下量は、水素発生装置1の劣化度に依存している。水素発生装置1の劣化が激しいほど、一定の周期で確認される開放電圧の初期の開放電圧からの低下量は大きくなる。   The control unit 11 stores the open voltage of the fuel cell device 2 in a built-in memory (not shown) under a predetermined condition at the initial stage of the system (for example, setting the hydrogen generator 1 and the fuel cell device 2 to a predetermined temperature). After that, the open circuit voltage of the fuel cell device 2 under a predetermined condition is confirmed at a constant cycle. The control unit 11 opens the opening / closing valve 9 and starts heating the storage unit 8 by the heater 10 when the open circuit voltage confirmed at a certain period is lower than the initial open circuit voltage by a predetermined value or more. After the elapse of time, the opening / closing valve 9 is closed and heating of the storage unit 8 by the heater 10 is stopped. The amount of decrease from the initial open circuit voltage that is confirmed at a certain period depends on the degree of deterioration of the hydrogen generator 1. The more the hydrogen generator 1 is more deteriorated, the larger the amount of decrease in the open circuit voltage that is confirmed at a certain period from the initial open circuit voltage.

ただし、際限なく水(水蒸気)の補給を行い続けると、水素発生装置1と燃料電池装置2との間を循環する水素及び水を含む混合ガスの圧力が大きくなり過ぎ、容器3の外部を加圧しない限り上記混合ガスの圧力に容器3が耐えられなくなる可能性がある。このため、制御部11は、圧力センサ7の検出値に基づいて、上記混合ガスの圧力が閾値以上である期間では、たとえ一定の周期で確認される開放電圧が初期の開放電圧より所定値以上低くても、水(水蒸気)の補給を行わないようにすることが望ましい。   However, if water (water vapor) is continuously supplied without limit, the pressure of the mixed gas containing hydrogen and water circulating between the hydrogen generator 1 and the fuel cell device 2 becomes too large, and the outside of the container 3 is added. There is a possibility that the container 3 cannot withstand the pressure of the mixed gas unless it is pressurized. Therefore, based on the detection value of the pressure sensor 7, the control unit 11 determines that the open circuit voltage that is confirmed at a certain period is a predetermined value or more than the initial open circuit voltage during the period in which the pressure of the mixed gas is equal to or higher than the threshold value. Even if it is low, it is desirable not to supply water (water vapor).

上述した制御部11の制御動作により、シンタリング等により水素発生装置1の劣化が激しくなっても、その劣化を補うように、水(水蒸気)が補給されるので、安定した電池性能を維持することができる。なお、制御部11は、システムの発電時、システムの充電時のいずれにおいても、電圧検出回路12の検出値に基づいて開閉バルブ9及びヒーター10を制御するようにしてもよく、水素発生装置1の劣化が激しいときの水の補給がより効果的であるシステムの充電時にのみ、電圧検出回路12の検出値に基づいて開閉バルブ9及びヒーター10を制御するようにしてもよい。   By the control operation of the control unit 11 described above, even if the hydrogen generation device 1 is severely deteriorated due to sintering or the like, water (water vapor) is replenished so as to compensate for the deterioration, so that stable battery performance is maintained. be able to. Note that the control unit 11 may control the open / close valve 9 and the heater 10 based on the detection value of the voltage detection circuit 12 both when the system generates power and when the system is charged. The open / close valve 9 and the heater 10 may be controlled based on the detection value of the voltage detection circuit 12 only during charging of the system where water supply when the deterioration of the water is severe is more effective.

また、図1に示す2次電池型燃料電池システムでの制御部11の制御動作と、図5に示す2次電池型燃料電池システムでの制御部11の制御動作とを組み合わせて実施することもできる。すなわち、制御部11が、圧力センサ7の検出値に基づく開閉バルブ9及びヒーター10の制御、電圧検出回路12の検出値に基づく開閉バルブ9及びヒーター10の制御の両方を行うようにしてもよい。   Further, the control operation of the control unit 11 in the secondary battery type fuel cell system shown in FIG. 1 and the control operation of the control unit 11 in the secondary battery type fuel cell system shown in FIG. it can. That is, the control unit 11 may perform both the control of the opening / closing valve 9 and the heater 10 based on the detection value of the pressure sensor 7 and the control of the opening / closing valve 9 and the heater 10 based on the detection value of the voltage detection circuit 12. .

次に、本発明の一実施形態に係る2次電池型燃料電池システムの他の変形例を図6に示す。なお、図6において図1と同一の部分には同一符号を付し詳細な説明を省略する。図6に示す2次電池型燃料電池システムでは、水素発生装置1と燃料電池装置2とが別々の容器に収容されている。すなわち、水素発生装置1は容器13に収容され、燃料電池装置2は容器14に収容される。また、図6に示す2次電池型燃料電池システムでは、燃料発生装置1と燃料電池装置2との間でガスを循環させる循環経路15が設けられている。循環経路15には必要に応じて、循環経路15内のガスを循環させるためのポンプを設けてもよい。   Next, another modified example of the secondary battery type fuel cell system according to the embodiment of the present invention is shown in FIG. In FIG. 6, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In the secondary battery type fuel cell system shown in FIG. 6, the hydrogen generator 1 and the fuel cell device 2 are accommodated in separate containers. That is, the hydrogen generator 1 is accommodated in the container 13 and the fuel cell device 2 is accommodated in the container 14. Further, in the secondary battery type fuel cell system shown in FIG. 6, a circulation path 15 for circulating gas between the fuel generator 1 and the fuel cell device 2 is provided. The circulation path 15 may be provided with a pump for circulating the gas in the circulation path 15 as necessary.

また、図6に示す2次電池型燃料電池システムに対しても、図1に示す2次電池型燃料電池システム(混合ガスの圧力に基づく水補給)から図5に示す2次電池型燃料電池システム(水素発生装置の劣化度に基づく水補給)への変形と同様の変形を行うことができる。さらに、図6に示す2次電池型燃料電池システムでの制御部11の制御動作(混合ガスの圧力に基づく水補給)と、図6に示す2次電池型燃料電池システムに対して上記変更を行うことで得られる2次電池型燃料電池システムでの制御部11の制御動作(水素発生装置の劣化度に基づく水補給)とを組み合わせて実施することもできる。   Further, for the secondary battery type fuel cell system shown in FIG. 6, the secondary battery type fuel cell shown in FIG. 5 from the secondary battery type fuel cell system shown in FIG. 1 (water replenishment based on the pressure of the mixed gas). A modification similar to the modification to the system (water supply based on the degree of deterioration of the hydrogen generator) can be performed. Further, the control unit 11 in the secondary battery type fuel cell system shown in FIG. 6 performs the control operation (water replenishment based on the pressure of the mixed gas) and the above changes to the secondary battery type fuel cell system shown in FIG. It can also be implemented in combination with the control operation of the control unit 11 (water supply based on the degree of deterioration of the hydrogen generator) in the secondary battery type fuel cell system obtained by performing.

上述した実施形態及びその変形例では、1つの燃料電池装置2が発電も水の電気分解も行う発電・電気分解部として機能しているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)とを別個に設けた構成の発電・電気分解部を用いるようにしてもよい。   In the above-described embodiment and its modifications, one fuel cell device 2 functions as a power generation / electrolysis unit that performs both power generation and water electrolysis, but a fuel cell (for example, a solid oxide fuel cell dedicated to power generation). Alternatively, a power generation / electrolysis unit having a structure in which a water electrolyzer (for example, a solid oxide fuel cell dedicated to water electrolysis) is separately provided may be used.

1 水素発生装置
2 燃料電池装置
3 容器
4 固体電解質
5 酸化剤極
6 燃料極
7 圧力センサ
8 貯蔵部
9 開閉バルブ
10 ヒーター
11 制御部
12 電圧検出回路
13、14 容器
15 循環経路
100 外部負荷
200 外部電源
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Fuel cell apparatus 3 Container 4 Solid electrolyte 5 Oxidant electrode 6 Fuel electrode 7 Pressure sensor 8 Storage part 9 Opening and closing valve 10 Heater 11 Control part 12 Voltage detection circuit 13, 14 Container 15 Circulation path 100 External load 200 External Power supply

Claims (6)

発電機能及び水の電気分解機能を有する発電・電気分解部とA power generation / electrolysis unit having a power generation function and an electrolysis function of water
水素を発生する水素発生部とを備えた2次電池型固体酸化物燃料電池システムであって、A secondary battery type solid oxide fuel cell system comprising a hydrogen generator for generating hydrogen,
前記2次電池型固体酸化物燃料電池システムの発電時に、During power generation of the secondary battery type solid oxide fuel cell system,
前記発電・電気分解部は、前記水素発生部から供給される水素を燃料にして発電を行なうことによって水蒸気を発生し、前記水素発生部は前記水蒸気との酸化反応により前記水素を発生し、The power generation / electrolysis unit generates steam by performing power generation using hydrogen supplied from the hydrogen generation unit as a fuel, the hydrogen generation unit generates the hydrogen by an oxidation reaction with the steam,
前記2次電池型固体酸化物燃料電池システムの充電時に、When charging the secondary battery type solid oxide fuel cell system,
前記発電・電気分解部は、酸化された前記水素発生部から供給される水蒸気を電気分解することによって水素を発生し、酸化された前記水素発生部は前記水素との還元反応により前記水蒸気を発生し、The power generation / electrolysis unit generates hydrogen by electrolyzing water vapor supplied from the oxidized hydrogen generation unit, and the oxidized hydrogen generation unit generates the water vapor by a reduction reaction with the hydrogen. And
前記水素及び前記水蒸気を含むガスが存在する領域に、水を補給する水補給部を備えることを特徴とする2次電池型固体酸化物燃料電池システム。A secondary battery type solid oxide fuel cell system comprising a water replenishment unit for replenishing water in a region where the gas containing hydrogen and water vapor exists.
前記発電・電気分解部と前記水素発生部は、容器内に所定の間隔をおいて配置され、The power generation / electrolysis unit and the hydrogen generation unit are arranged at predetermined intervals in a container,
前記領域は前記前記発電・電気分解部と前記水素発生部との間の空間であることを特徴とする請求項1に記載の2次電池型固体酸化物燃料電池システム。The secondary battery type solid oxide fuel cell system according to claim 1, wherein the region is a space between the power generation / electrolysis unit and the hydrogen generation unit.
前記発電・電気分解部と前記水素発生部は、容器内に接触して配置され、The power generation / electrolysis unit and the hydrogen generation unit are arranged in contact with each other in a container,
前記水素発生部は微粒子圧縮体を含み、The hydrogen generation part includes a fine particle compact,
前記領域は、前記微粒子圧縮体の空隙であることを特徴とする請求項1に記載の2次電池型固体酸化物燃料電池システム。2. The secondary battery type solid oxide fuel cell system according to claim 1, wherein the region is a void of the fine particle compact.
前記水素発生部と前記発電・電気分解部は夫々第1の容器と第2の容器の内部に配置され、The hydrogen generation unit and the power generation / electrolysis unit are disposed inside the first container and the second container, respectively.
前記第1の容器と前記第2の容器を連結する連結手段を有し、Connecting means for connecting the first container and the second container;
前記領域は、前記連結手段の内部の空間を含むことを特徴とする請求項1に記載の2次電池型固体酸化物燃料電池システム。The secondary battery type solid oxide fuel cell system according to claim 1, wherein the region includes a space inside the connecting means.
前記水補給部が、前記領域に存在する前記ガスの圧力に基づいて、水の補給を制御することを特徴とする請求項1から4のいずれか一項に記載の2次電池型固体酸化物燃料電池システム。5. The secondary battery type solid oxide according to claim 1, wherein the water replenishing unit controls replenishment of water based on the pressure of the gas existing in the region. Fuel cell system. 前記水補給部が、前記水素発生部の劣化度に基づいて、水の補給を制御することを特徴とする請求項1から5のいずれか一項に記載の2次電池型固体酸化物燃料電池システム。6. The secondary battery type solid oxide fuel cell according to claim 1, wherein the water replenishing unit controls replenishment of water based on a degree of deterioration of the hydrogen generating unit. system.
JP2012529998A 2011-01-20 2012-01-10 Secondary battery type solid oxide fuel cell system Expired - Fee Related JP5168431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529998A JP5168431B2 (en) 2011-01-20 2012-01-10 Secondary battery type solid oxide fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011009978 2011-01-20
JP2011009978 2011-01-20
PCT/JP2012/050227 WO2012098945A1 (en) 2011-01-20 2012-01-10 Secondary battery-type fuel cell system
JP2012529998A JP5168431B2 (en) 2011-01-20 2012-01-10 Secondary battery type solid oxide fuel cell system

Publications (2)

Publication Number Publication Date
JP5168431B2 true JP5168431B2 (en) 2013-03-21
JPWO2012098945A1 JPWO2012098945A1 (en) 2014-06-09

Family

ID=46515576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529998A Expired - Fee Related JP5168431B2 (en) 2011-01-20 2012-01-10 Secondary battery type solid oxide fuel cell system

Country Status (2)

Country Link
JP (1) JP5168431B2 (en)
WO (1) WO2012098945A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205077A1 (en) 2012-03-12 2013-09-12 Siemens Aktiengesellschaft Electric energy storage device e.g. small rechargeable oxide battery (ROB) used for stationary domestic applications, has reservoir for storing steam-hydrogen with which channels are in direct communication
JP5977432B2 (en) * 2012-03-29 2016-08-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrical energy storage
JP2014049183A (en) * 2012-08-29 2014-03-17 Konica Minolta Inc Method of manufacturing solid oxide fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541236A (en) * 1991-08-07 1993-02-19 Mitsubishi Heavy Ind Ltd Electric power storage
JP2004149394A (en) * 2002-11-01 2004-05-27 Uchiya Thermostat Kk Hydrogen producing apparatus
JP2009099491A (en) * 2007-10-19 2009-05-07 Sharp Corp Fuel cell system and electronic equipment
JP2010003456A (en) * 2008-06-18 2010-01-07 Aquafairy Kk Fuel cell
JP2010176939A (en) * 2009-01-28 2010-08-12 Toshiba Corp Power storage system, and operation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077969A1 (en) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 Reaction container and fuel cell system equipped with same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541236A (en) * 1991-08-07 1993-02-19 Mitsubishi Heavy Ind Ltd Electric power storage
JP2004149394A (en) * 2002-11-01 2004-05-27 Uchiya Thermostat Kk Hydrogen producing apparatus
JP2009099491A (en) * 2007-10-19 2009-05-07 Sharp Corp Fuel cell system and electronic equipment
JP2010003456A (en) * 2008-06-18 2010-01-07 Aquafairy Kk Fuel cell
JP2010176939A (en) * 2009-01-28 2010-08-12 Toshiba Corp Power storage system, and operation method thereof

Also Published As

Publication number Publication date
WO2012098945A1 (en) 2012-07-26
JPWO2012098945A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
JP5640884B2 (en) Secondary battery type fuel cell system
JP5511481B2 (en) Power supply system and power supply operation method
JP5168431B2 (en) Secondary battery type solid oxide fuel cell system
JP5617592B2 (en) Secondary battery type fuel cell system
JP2007141744A (en) Fuel cell system
JP3583914B2 (en) Auxiliary power supply for fuel cell
JP5896015B2 (en) Secondary battery type fuel cell system
JP5474659B2 (en) Hybrid power supply system and hybrid power supply operation method
JP5776842B2 (en) Secondary battery type fuel cell system
JP5679097B1 (en) Secondary battery type fuel cell system
JP2014216062A (en) Secondary battery type fuel cell system and power supply system including the same
JP5895736B2 (en) Secondary battery type fuel cell system and power supply system including the same
JP6378508B2 (en) Fuel cell system
JP5435178B2 (en) Secondary battery type fuel cell system
JP2014207115A (en) Secondary battery type fuel battery system
JP5772681B2 (en) Fuel cell system
JP2012082102A (en) Fuel generation device, and secondary battery type fuel cell system including the same
JP5516726B2 (en) Fuel cell device
JP2014229504A (en) Secondary battery type fuel cell system
JP2012252877A (en) Rechargeable fuel cell system
JP2014110076A (en) Method for introducing gas into fuel cell system
WO2014188904A1 (en) Power supply system
JP2005203281A (en) Method for raising temperature of fuel cell
JP2017152314A (en) Fuel cell, fuel cell hybrid power generation system, and method for stopping fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees