JP2010176939A - Power storage system, and operation method thereof - Google Patents

Power storage system, and operation method thereof Download PDF

Info

Publication number
JP2010176939A
JP2010176939A JP2009016327A JP2009016327A JP2010176939A JP 2010176939 A JP2010176939 A JP 2010176939A JP 2009016327 A JP2009016327 A JP 2009016327A JP 2009016327 A JP2009016327 A JP 2009016327A JP 2010176939 A JP2010176939 A JP 2010176939A
Authority
JP
Japan
Prior art keywords
power generation
electrolysis
heat
power
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009016327A
Other languages
Japanese (ja)
Inventor
Yasuo Takagi
康夫 高木
Tsuneji Kameda
常治 亀田
Shigeo Kasai
重夫 笠井
Kentaro Matsunaga
健太郎 松永
Masato Yoshino
正人 吉野
Yoshiyasu Ito
義康 伊藤
Akiko Suyama
章子 須山
Kazuya Yamada
和矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009016327A priority Critical patent/JP2010176939A/en
Publication of JP2010176939A publication Critical patent/JP2010176939A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage system capable of more efficiently utilizing thermal energy between terms of a power generation and electrolyzation, and also improving storage efficiency of electric power, and to provide an operation method thereof with little fear of breakage of a solid oxide electrolyte due to switching between the electrolyzation and the power generation. <P>SOLUTION: The power storage system is equipped with an electrolyzation-cum-power generation cell 2 provided with the solid oxide electrolyte 15 and used both as a steam electrolyzation cell and a power generation cell, a gas supplying means 3 which supplies fuel gas and air, respectively, to the electrolyzation-cum-power generation cell 2, a steam supplying means supplying steam to the electrolyzation-cum-power generation cell 2, a first and a second reheating heat exchangers which perform heat exchange between exhausted gas discharged from the electrolyzation-cum-power generation cell 2 and the fuel gas and the air supplied to the electrolyzation-cum-power generation cell 2, respectively, and a temperature control system 11 which controls inner temperature of the electrolyzation-cum-power generation cell 2 to a predetermined temperature by circulating a heating medium in the cell. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体酸化物電解質を有して水蒸気電解セルと発電セルとを兼用する電解兼発電手段を備えた電力貯蔵システム及びその運用方法に関する。   The present invention relates to a power storage system including an electrolytic and power generation unit that includes a solid oxide electrolyte and serves as both a steam electrolysis cell and a power generation cell, and an operation method thereof.

昼間と夜間の電力消費の差が著しい場合や電力系統に風の状況により発電能力が変化する風力発電所が多数設けられている場合には、発電設備の有効利用のために夜間電力等の余剰電力を貯蔵し、電力需要がピークとなる昼間等に放電してピーク負荷に対応することが必要となっている。そして余剰電力を貯蔵する電力貯蔵装置の代表的なものとして、大型発電設備としては応答性のよい揚水発電所がある。揚水発電所は、夜間の余剰電力で水をダムにポンプアップし、昼間にダムにポンプアップした水で発電してピーク負荷に対応する。   If there is a significant difference in power consumption between daytime and nighttime, or if there are many wind power plants that have different power generation capacity depending on the wind conditions in the power system, surplus nighttime power, etc., is used for effective use of the power generation facilities. It is necessary to store electric power and discharge it during the daytime when electric power demand peaks to cope with peak load. As a representative example of a power storage device that stores surplus power, a large-scale power generation facility includes a pumped-storage power plant with good responsiveness. The pumped-storage power plant pumps up water to the dam with surplus electricity at night and generates electricity with the water pumped up to the dam during the day to cope with peak loads.

また、比較的大規模なものとして、水素を用いた電力貯蔵装置がある(例えば、特許文献1、特許文献2参照)。これは、固体酸化物燃料電池が酸素と水素を加えて発電することもできるが、逆反応として、水蒸気を加えて電圧をかけ電解して酸素と水素を得ることができることに基づいており、余剰電力で水蒸気を電解し水素を製造して電力の貯蔵を行ない、電力が必要な時に、製造した水素を利用して発電するものである。   Further, as a relatively large-scale device, there is an electric power storage device using hydrogen (for example, see Patent Document 1 and Patent Document 2). This is based on the fact that a solid oxide fuel cell can generate power by adding oxygen and hydrogen, but as an inverse reaction, it can be electrolyzed by applying voltage by adding water vapor to obtain oxygen and hydrogen. Electric power is used to electrolyze water vapor to produce hydrogen to store the electric power, and when electric power is needed, the produced hydrogen is used to generate electricity.

特許文献1のものは、固体酸化物電解質を有し水蒸気電解セルと燃料電池とを兼用する電解兼発電手段と、電解兼発電手段で発生する水素及び酸素の貯蔵手段と、電解兼発電手段の排熱を吸収する熱交換手段と、熱交換手段で得た熱を用いる暖房用熱水供給手段及び冷房用冷水供給手段を備え、主に発電時に発生した熱を冷暖房に使うシステムとなっている。また、特許文献2のものは、固体酸化物燃料電池に供給される酸素及び水素/水蒸気の流路が、発電時と電解時で同じとなっている。   Patent Document 1 discloses an electrolysis / power generation unit that includes a solid oxide electrolyte and serves as both a water vapor electrolysis cell and a fuel cell, a storage unit for hydrogen and oxygen generated by the electrolysis / power generation unit, and an electrolysis / power generation unit. It has a heat exchange means that absorbs exhaust heat, a hot water supply means for heating that uses heat obtained by the heat exchange means, and a cooling water supply means for cooling, and is a system that mainly uses the heat generated during power generation for cooling and heating. . Also, in Patent Document 2, the oxygen and hydrogen / water vapor flow paths supplied to the solid oxide fuel cell are the same during power generation and during electrolysis.

他に、水蒸気電解及び固体燃料電池の可逆運転可能な固体電解質セルを発電プラントに併設した電力貯蔵システムで、余剰電力により水素を製造して電力貯蔵を行う際に水蒸気電解に必要な熱の一部に発電プラント側の主蒸気を用い、発電時には固体電解質セルからの余剰熱で発電プラント側の主蒸気の過熱に用い、熱エネルギを有効利用するようにしたものがある(例えば、特許文献3参照)。さらに、固体電解質を用いた蓄発電装置で、水素と酸素とを発熱反応させ、発生した熱エネルギで加熱した水を電気分解に供される水として発電を行う反応セルに供給することで、水の電気分解効率を上げるようにしたものがある(例えば、特許文献4参照)。   In addition, in a power storage system equipped with a solid electrolyte cell capable of reversible operation of steam electrolysis and solid fuel cells in a power generation plant, one of the heat necessary for steam electrolysis is produced when hydrogen is produced by surplus power and stored. The main steam on the power plant side is used for the part, and at the time of power generation, the surplus heat from the solid electrolyte cell is used to superheat the main steam on the power plant side to effectively use the heat energy (for example, Patent Document 3). reference). Further, in a power storage device using a solid electrolyte, hydrogen and oxygen are subjected to an exothermic reaction, and water heated by the generated thermal energy is supplied to a reaction cell that generates electricity as water to be electrolyzed, There is one in which the electrolysis efficiency is increased (for example, see Patent Document 4).

しかし、発電時に発生した熱の有効利用と、電解時に必要とされる熱の有効取得についてはより有効なものが求められ、発電時の発生熱を利用する場合については、供給と利用の調和を図り、熱を有効に利用することが求められている。また、固体酸化物燃料電池は、メタンを燃料とした燃料電池に比較して電力の貯蔵効率が低いため、これを向上させることが課題であり、さらに、固体酸化物電解質はセラミックスであることから、電解と発電の切り替えにより急激な温度変化が発生した場合には、固体酸化物電解質が破損する虞がある。   However, effective use of heat generated during power generation and effective acquisition of heat required during electrolysis are required, and when using heat generated during power generation, supply and use must be harmonized. There is a demand for effective use of heat. In addition, since solid oxide fuel cells have lower power storage efficiency than fuel cells using methane as a fuel, it is a problem to improve them, and the solid oxide electrolyte is a ceramic. If a sudden temperature change occurs due to switching between electrolysis and power generation, the solid oxide electrolyte may be damaged.

特許第3253985号公報Japanese Patent No. 3253985 特許第3105668号公報Japanese Patent No. 3105668 特開2001−160404号公報JP 2001-160404 A 特開2001−332271号公報JP 2001-332271 A

上記のような状況に鑑みて本発明はなされたもので、その目的とするところは、発電時と電解時との間で熱をより有効に利用できるようにすると共に、電力の貯蔵効率を向上させることができ、電解と発電の切り替えによる固体酸化物電解質の破損の虞が少ない電力貯蔵システム及びその運用方法を提供することにある。   The present invention has been made in view of the above situation, and the object of the present invention is to enable more effective use of heat between power generation and electrolysis and to improve power storage efficiency. Another object of the present invention is to provide a power storage system that can reduce the risk of damage to a solid oxide electrolyte due to switching between electrolysis and power generation, and an operation method thereof.

この発明は上記目的を達成するもので、電力貯蔵システムは、固体酸化物電解質を有して水蒸気電解セルと発電セルとを兼用する電解兼発電手段と、前記電解兼発電手段に水素と水蒸気からなる燃料ガス及び空気をそれぞれ供給するガス供給手段と、前記電解兼発電手段に水蒸気を供給する水蒸気供給手段と、前記電解兼発電手段より排出される排ガスと前記電解兼発電手段に供給される前記燃料ガス及び前記空気とそれぞれ熱交換を行う熱交換手段を備える電力貯蔵システムであって、前記電解兼発電手段の内部温度を、該電解兼発電手段の内部に熱媒体を流通させて所定温度に制御する温度制御系を備えていることを特徴とするものである。   The present invention achieves the above object, and an electric power storage system includes an electrolysis / power generation means having a solid oxide electrolyte and serving as both a steam electrolysis cell and a power generation cell, and hydrogen and water vapor in the electrolysis / power generation means. Gas supply means for supplying fuel gas and air respectively, water vapor supply means for supplying water vapor to the electrolysis / power generation means, exhaust gas discharged from the electrolysis / power generation means, and the electrolysis / power generation means A power storage system comprising heat exchange means for exchanging heat with fuel gas and air, respectively, wherein the internal temperature of the electrolysis / power generation means is set to a predetermined temperature by circulating a heat medium inside the electrolysis / power generation means. A temperature control system for controlling is provided.

また、電力貯蔵システムの運用方法は、固体酸化物電解質を有して水蒸気電解セルと発電セルとを兼用する電解兼発電手段と、前記電解兼発電手段に水素と水蒸気からなる燃料ガス及び空気をそれぞれ供給するガス供給手段と、前記電解兼発電手段に水蒸気を供給する水蒸気供給手段と、前記電解兼発電手段より排出される排ガスと前記電解兼発電手段に供給される前記燃料ガス及び前記空気とそれぞれ熱交換を行う熱交換手段と、前記電解兼発電手段の内部温度を所定温度に制御する温度制御系を備える電力貯蔵システムの運用方法であって、前記電解兼発電手段を電解セルとして運転する電解モード運転時は、前記電解兼発電手段の前記固体酸化物電解質の温度を、発電セルとして運転する発電モード運転時よりも低温度にして運用することを特徴とする方法である。   Also, the operation method of the power storage system includes an electrolysis / power generation unit having a solid oxide electrolyte and serving as both a steam electrolysis cell and a power generation cell, and a fuel gas and air composed of hydrogen and water vapor in the electrolysis / power generation unit. Gas supply means for supplying water, steam supply means for supplying water vapor to the electrolysis / power generation means, exhaust gas discharged from the electrolysis / power generation means, the fuel gas and air supplied to the electrolysis / power generation means, A method of operating a power storage system comprising a heat exchanging means for performing heat exchange and a temperature control system for controlling the internal temperature of the electrolysis / power generation means to a predetermined temperature, wherein the electrolysis / power generation means is operated as an electrolysis cell. During the electrolysis mode operation, the temperature of the solid oxide electrolyte of the electrolysis and power generation means is operated at a lower temperature than during the power generation mode operation that operates as a power generation cell. A method characterized by and.

本発明によれば、発電時と電解時との間で熱をより有効に利用することができ、また電力の貯蔵効率が向上したものとなり、電解と発電の切り替えによって電解兼発電手段の固体酸化物電解質が破損してしまう虞が少ない等の効果を有する。   According to the present invention, heat can be used more effectively between power generation and electrolysis, and power storage efficiency can be improved. By switching between electrolysis and power generation, solid oxidation of the electrolysis and power generation means can be achieved. This has the effect of reducing the possibility of damage to the physical electrolyte.

本発明の第1の実施形態に係る電力貯蔵システムを示す構成図である。It is a lineblock diagram showing the electric power storage system concerning a 1st embodiment of the present invention. 本発明の第1の実施形態における電解発電兼用装置の要部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the principal part of the electrolytic power generation combined apparatus in the 1st Embodiment of this invention. 本発明の第2の実施形態における温度制御系の概略構成を示す図である。It is a figure which shows schematic structure of the temperature control system in the 2nd Embodiment of this invention. 本発明の第3の実施形態における温度制御系の概略構成を示す図である。It is a figure which shows schematic structure of the temperature control system in the 3rd Embodiment of this invention. 本発明の第3の実施形態における温度制御系の変形形態の概略構成を示す図である。It is a figure which shows schematic structure of the deformation | transformation form of the temperature control system in the 3rd Embodiment of this invention. 本発明の第4の実施形態における温度制御系の概略構成を示す図である。It is a figure which shows schematic structure of the temperature control system in the 4th Embodiment of this invention.

以下本発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず第1の実施形態を図1及び図2により説明する。図1は電力貯蔵システムを示す構成図であり、図2は電解発電兼用装置の要部の概略構成を示す斜視図である。   First, a first embodiment will be described with reference to FIGS. FIG. 1 is a configuration diagram showing an electric power storage system, and FIG. 2 is a perspective view showing a schematic configuration of a main part of the apparatus for combined use with electrolytic power generation.

図1及び図2において、電力貯蔵システム1は、水蒸気電解セルと発電セルとを兼用する電解兼発電手段である固体酸化物電解質を有してなる電解兼発電セル2を備えて構成されており、電解兼発電セル2は、供給された水素と水蒸気の燃料ガスと空気によって固体酸化物電解質燃料電池として発電し電力の供給を行い、また余剰電力と水蒸気が供給されることで水蒸気電解により水素と酸素を発生し、これらを貯蔵することで電力貯蔵を行う。   1 and 2, the power storage system 1 is configured to include an electrolysis / power generation cell 2 having a solid oxide electrolyte that is an electrolysis / power generation means that serves both as a steam electrolysis cell and a power generation cell. The electrolysis / power generation cell 2 generates electric power as a solid oxide electrolyte fuel cell using the supplied hydrogen, water vapor fuel gas and air, and supplies electric power. Further, surplus electric power and water vapor are supplied, so that hydrogen is generated by water vapor electrolysis. And oxygen is generated and electricity is stored by storing these.

電力貯蔵システム1には、電解兼発電セル2に水素、水蒸気の燃料ガス及び空気をそれぞれ供給するガス供給手段3として水素貯蔵タンク4、そして電解兼発電セル2の水素極側に熱交換手段の第1再生熱交換器5、凝縮器6が設けられており、酸素極側に空気供給源7と熱交換手段の第2再生熱交換器8が設けられている。さらに電力貯蔵システム1には、発電をする際に電解兼発電セル2に発生する熱を蓄熱し、電力貯蔵を行う際に水供給源9からの水を加熱する蓄熱手段の蓄熱器10が設けられている。なお、酸素極側には、図示しないが、水蒸気電解の際には酸素を貯蔵する酸素貯蔵タンクが設けられており、発電の際に、必要に応じ酸素を電解兼発電セル2に供給し得るようになっている。   The power storage system 1 includes a hydrogen storage tank 4 as gas supply means 3 for supplying hydrogen and water vapor fuel gas and air to the electrolysis / power generation cell 2, and heat exchange means on the hydrogen electrode side of the electrolysis / power generation cell 2. A first regenerative heat exchanger 5 and a condenser 6 are provided, and an air supply source 7 and a second regenerative heat exchanger 8 as a heat exchanging means are provided on the oxygen electrode side. Furthermore, the power storage system 1 is provided with a regenerator 10 as a heat storage means for storing heat generated in the electrolysis / power generation cell 2 when generating power and heating water from the water supply source 9 when storing power. It has been. Although not shown, an oxygen storage tank for storing oxygen is provided on the oxygen electrode side during steam electrolysis, and oxygen can be supplied to the electrolysis / power generation cell 2 as necessary during power generation. It is like that.

また、水供給源9からの水を加熱する蓄熱器10と電解兼発電セル2との間には、電解兼発電セル2の内部を所定温度にするため温度制御系11が形成されている。温度制御系11は、例えば封入されているガス状熱媒体であるN2、CO2、He等の熱媒体が電解兼発電セル2の内部を貫流し、さらに蓄熱器10を貫流する媒体流路12を備える媒体流通ループ13を形成するようにして構成されている。そして媒体流路12には、循環用ファン14が挿入されており、この循環用ファン14により熱媒体が媒体流路12を流通し、媒体流通ループ13を循環するようになっている。   Further, a temperature control system 11 is formed between the regenerator 10 for heating water from the water supply source 9 and the electrolysis / power generation cell 2 in order to bring the inside of the electrolysis / power generation cell 2 to a predetermined temperature. The temperature control system 11 includes a medium flow path 12 through which a heat medium such as N 2, CO 2, and He that is a sealed gaseous heat medium flows through the inside of the electrolysis / power generation cell 2 and further flows through the regenerator 10. The medium circulation loop 13 provided is formed. A circulation fan 14 is inserted into the medium flow path 12, and the heat medium circulates through the medium flow path 12 by the circulation fan 14 and circulates through the medium circulation loop 13.

また、電力貯蔵システム1の主部を構成する電解兼発電セル2は、例えば安定化ジルコニア等のセラミックスでなる固体酸化物電解質15の両面に、例えば白金等による多孔質電極16,17が配置され、さらに多孔質電極16,17の他面側に、導電性を有するエンドプレート18,19、または同じく導電性を有するセパレータ板20が配置されたものを単位セルとし、この単位セルを例えば複数積層することによって構成されている。そして、電解兼発電セル2における電流Aは単位セルの積層方向に流れるようになっている。   Moreover, the electrolysis / power generation cell 2 constituting the main part of the power storage system 1 has porous electrodes 16 and 17 made of, for example, platinum on both surfaces of a solid oxide electrolyte 15 made of ceramics such as stabilized zirconia. Further, a unit cell in which end plates 18 and 19 having conductivity or a separator plate 20 having conductivity are arranged on the other surface side of the porous electrodes 16 and 17 is used as a unit cell. It is configured by The current A in the electrolysis / power generation cell 2 flows in the stacking direction of the unit cells.

さらに、エンドプレート18,19とセパレータ板20には、燃料ガスと空気が直交する方向に流通するよう燃料ガス流路21、空気流路22が削設されていると共に、媒体流通ループ13の媒体流路12を形成する同方向に貫通する複数の流路管23がワンスルーの形態をなすように設けられている。なお、1本の流路管23をセパレータ板18,19,20に蛇行するように配置し、全体をカバーするようにしてもよい。この場合、流路管23の端部は、入口と出口の2ヶ所だけとなる。   Further, the end plates 18 and 19 and the separator plate 20 are provided with a fuel gas passage 21 and an air passage 22 so that fuel gas and air circulate in a direction orthogonal to each other. A plurality of flow channel pipes 23 that penetrate in the same direction to form the flow channel 12 are provided so as to form a one-through configuration. Note that one flow path pipe 23 may be arranged so as to meander around the separator plates 18, 19, and 20 to cover the whole. In this case, there are only two ends of the flow channel pipe 23, namely, an inlet and an outlet.

そして、上記のように構成された電力貯蔵システム1では、電解兼発電セル2を発電セルとして発電を行う発電モード時には、図1に実線矢印で示すように、燃料ガスである水素と水蒸気の混合ガスが、電解兼発電セル2の水素極側に水素貯蔵タンク4、凝縮器6から第1再熱交換器5を介して供給される。また、図1に1点鎖線矢印で示すように、空気が酸素極側に空気供給源7から第2再熱交換器8を介して供給される。なお、24,25は燃料ガス、空気の流量を制御するよう供給路に挿入されたブロアである。   In the power storage system 1 configured as described above, in the power generation mode in which power generation is performed using the electrolysis / power generation cell 2 as a power generation cell, as shown by the solid line arrow in FIG. Gas is supplied from the hydrogen storage tank 4 and the condenser 6 to the hydrogen electrode side of the electrolysis / power generation cell 2 via the first reheat exchanger 5. Further, as indicated by a one-dot chain line arrow in FIG. 1, air is supplied from the air supply source 7 to the oxygen electrode side via the second reheat exchanger 8. Reference numerals 24 and 25 are blowers inserted into the supply path so as to control the flow rates of fuel gas and air.

電解兼発電セル2に供給された燃料ガスは燃料ガス流路21を流通し、空気は空気流路22を流通して発電を行う。発電は発熱反応であるために高温となっている発電後の燃料ガスと空気の各排ガスは、それぞれ第1再熱交換器5、第2再熱交換器8を流通し、水素極側、酸素極側に供給される燃料ガス、空気と熱交換を行う。これにより、燃料ガス、空気は加熱された状態で電解兼発電セル2に供給され、排ガスの持つ熱が有効利用される。また、発電後の燃料ガスの排ガスは、水素と水蒸気の混合ガスとなっており、第1再熱交換器5を流通した後、凝縮器6に流入し、凝縮器6で凝縮、気水分離が行われて水と水素が排出される。分離された水素は、再び電解兼発電セル2に燃料ガスとして供給される。   The fuel gas supplied to the electrolysis / power generation cell 2 flows through the fuel gas passage 21 and the air flows through the air passage 22 to generate power. Since the power generation is an exothermic reaction, the exhaust gas of the fuel gas and air after the power generation, which is at a high temperature, flows through the first reheat exchanger 5 and the second reheat exchanger 8, respectively, Exchanges heat with fuel gas and air supplied to the pole side. Thereby, fuel gas and air are supplied to the electrolysis / power generation cell 2 in a heated state, and the heat of the exhaust gas is effectively used. The exhaust gas of the fuel gas after power generation is a mixed gas of hydrogen and water vapor. After flowing through the first reheat exchanger 5, it flows into the condenser 6, condenses in the condenser 6, and is separated into water and steam. And water and hydrogen are discharged. The separated hydrogen is supplied again as fuel gas to the electrolysis / power generation cell 2.

一方、発電により生じた電解兼発電セル2の熱は、温度制御系11を構成する媒体流通ループ13の媒体流路12を循環用ファン14により流れる熱媒体を加熱することによって、電解兼発電セル2の外部に取り出され、蓄熱器10を加熱する。また、循環用ファン14の回転を制御することで熱媒体の流量が制御でき、外部への熱の排出量が調節できるようになっている。このように温度制御系11により電解兼発電セル2の内部の熱は除去され、セル内温度を適正値にし、維持することができ、固体酸化物電解質15等の過熱を回避することができる。なお、蓄熱器10の蓄熱温度を所定温度、例えば約800℃としている場合に、媒体流通ループ13を使っての昇温だけでは不足する時には、図示しない加熱用のガス燃焼手段を設けるようにしてもよい。   On the other hand, the heat of the electrolysis / power generation cell 2 generated by the power generation heats the heat medium flowing through the medium flow path 12 of the medium circulation loop 13 constituting the temperature control system 11 by the circulation fan 14, thereby causing the electrolysis / power generation cell. 2 is taken out to heat the regenerator 10. Further, by controlling the rotation of the circulation fan 14, the flow rate of the heat medium can be controlled, and the amount of heat discharged to the outside can be adjusted. In this way, the temperature control system 11 removes the heat inside the electrolysis / power generation cell 2, the cell temperature can be maintained at an appropriate value, and overheating of the solid oxide electrolyte 15 and the like can be avoided. When the heat storage temperature of the heat accumulator 10 is set to a predetermined temperature, for example, about 800 ° C., a heating gas combustion means (not shown) is provided when only the temperature rise using the medium circulation loop 13 is insufficient. Also good.

また、電解兼発電セル2を水蒸気電解セルとして水蒸気電解を行う電解モード時には、図1に破線矢印で示すように、電解兼発電セル2の水素極側に水供給源9から水が、蓄熱器10、第1再熱交換器5を介して供給される。また、図1に1点鎖線矢印で示すように、空気が酸素極側に空気供給源7から第2再熱交換器8を介して供給される。なお、水供給源9から供給される水は、ブロア26により流量が制御できるようになっている。   Further, in the electrolysis mode in which steam electrolysis is performed using the electrolysis / power generation cell 2 as a steam electrolysis cell, water is supplied from the water supply source 9 to the hydrogen electrode side of the electrolysis / power generation cell 2 as shown by a broken line arrow in FIG. 10, supplied via the first reheat exchanger 5. Further, as indicated by a one-dot chain line arrow in FIG. 1, air is supplied from the air supply source 7 to the oxygen electrode side via the second reheat exchanger 8. The flow rate of water supplied from the water supply source 9 can be controlled by the blower 26.

電解兼発電セル2に供給される水は、蓄熱器10、第1再熱交換器5を流通する間に加熱され、水蒸気となって水素極側に供給される。水素極側に供給される水蒸気量は、第1再熱交換器5と電解兼発電セル2の水素極側との間に挿入されている調節弁27で適正値に調節できるようになっている。そして、電解兼発電セル2に供給された水蒸気は燃料ガス流路21を流通し、空気は空気流路22を流通し、外部からの余剰電力が電解兼発電セル2に供給され、電流を流すことにより水蒸気電解が行なわれ、水素と酸素が発生する。   The water supplied to the electrolysis / power generation cell 2 is heated while flowing through the heat accumulator 10 and the first reheat exchanger 5, and is supplied to the hydrogen electrode side as water vapor. The amount of water vapor supplied to the hydrogen electrode side can be adjusted to an appropriate value by a control valve 27 inserted between the first reheat exchanger 5 and the hydrogen electrode side of the electrolysis / power generation cell 2. . Then, the water vapor supplied to the electrolysis / power generation cell 2 flows through the fuel gas flow path 21, the air flows through the air flow path 22, and surplus power from the outside is supplied to the electrolysis / power generation cell 2 to flow current. As a result, steam electrolysis is performed, and hydrogen and oxygen are generated.

この水蒸気電解により発生した水素は、電解兼発電セル2の水素極側から排出され、第1再熱交換器5を流れて凝縮器6に流入し、凝縮器6で凝縮、気水分離が行われて水と水素が排出される。分離された水素は、水素貯蔵タンク4にポンプ等で圧縮するようにして貯蔵される。水蒸気電解で発生した酸素は、電解兼発電セル2の酸素極側から排出され、第2再熱交換器8を流れて、不図示の酸素貯蔵タンク等に貯蔵される。   The hydrogen generated by the steam electrolysis is discharged from the hydrogen electrode side of the electrolysis / power generation cell 2, flows through the first reheat exchanger 5, flows into the condenser 6, condenses in the condenser 6, and is separated from the water. Water and hydrogen are discharged. The separated hydrogen is stored in the hydrogen storage tank 4 so as to be compressed by a pump or the like. Oxygen generated by steam electrolysis is discharged from the oxygen electrode side of the electrolysis / power generation cell 2, flows through the second reheat exchanger 8, and is stored in an oxygen storage tank (not shown) or the like.

このように外部からの余剰電力によって水蒸気を電気分解し、水素と酸素を発生させ、それぞれ貯蔵等することで、余剰電力の貯蔵、すなわち蓄電がなされる。なお、水素は貯蔵して発電の際に燃料ガスとして用いるが、酸素のついては電解兼発電セル2の酸素極側に空気を供給して発電している場合は発電に用いなくてもよく、酸素貯蔵タンクを設けなくてもよい。   In this way, the surplus power is stored, that is, stored, by electrolyzing water vapor with surplus power from the outside, generating hydrogen and oxygen, and storing them respectively. Hydrogen is stored and used as a fuel gas for power generation. However, oxygen may not be used for power generation when air is supplied to the oxygen electrode side of the electrolysis / power generation cell 2 to generate power. There is no need to provide a storage tank.

また、蓄電を行う水蒸気電解は吸熱反応であるため、電解兼発電セル2の外部より熱の供給が必要となる。このため、反応に必要となる熱は、蓄熱器10に蓄えられた熱を媒体流通ループ13の媒体流路12に熱媒体を、流量を調節しながら流すようにして電解兼発電セル2内に送り込まれ、内部温度が所要とする温度に保たれ吸熱反応が維持される。   Further, since steam electrolysis for storing electricity is an endothermic reaction, it is necessary to supply heat from the outside of the electrolysis / power generation cell 2. For this reason, the heat required for the reaction is such that the heat stored in the regenerator 10 flows into the medium flow path 12 of the medium circulation loop 13 while flowing the heat medium while adjusting the flow rate, and enters the electrolysis / power generation cell 2. Then, the internal temperature is maintained at the required temperature, and the endothermic reaction is maintained.

このとき、媒体流通ループ13の熱媒体の流量を調節し、電解兼発電セル2の固体酸化物電解質15を発電モード時における温度より低い温度にて運用する。これにより、蓄電と発電におけるエネルギーロスを小さなものとすることができる。また電解兼発電セル2の水素極側と第1再熱交換器5の間に挿入された調節弁27により流入する水蒸気の量を調節し、電解モード時における水蒸気濃度を発電モード時の水蒸気濃度より高くして運用することで、蓄電と発電におけるエネルギーロスを小さなものとすることができる。   At this time, the flow rate of the heat medium in the medium circulation loop 13 is adjusted, and the solid oxide electrolyte 15 of the electrolysis / power generation cell 2 is operated at a temperature lower than the temperature in the power generation mode. Thereby, the energy loss in electrical storage and electric power generation can be made small. Further, the amount of water vapor flowing in is adjusted by a control valve 27 inserted between the hydrogen electrode side of the electrolysis / power generation cell 2 and the first reheat exchanger 5, and the water vapor concentration in the electrolysis mode is changed to the water vapor concentration in the power generation mode. By operating at a higher level, energy loss in power storage and power generation can be reduced.

以上の通り、本実施形態によれば、発電モード時に電解兼発電セル2で発生する熱は、媒体流通ループ13により外部に送出され、固体酸化物電解質15等を所定の適正温度とすることができると共に、送出された熱は蓄熱器10に蓄えられ、蓄電を行う電解モード時には水蒸気電解の吸熱反応に必要な熱が、蓄熱器10から媒体流通ループ13によって電解兼発電セル2内に送り込まれ、水蒸気電解が維持され、また水蒸気の生成にも供され、発電モード時と電解モード時の調和を図るようにして熱を有効に利用することができる。また、蓄電と発電を行う際のエネルギーロスも小さくすることができることから電力貯蔵の効率を向上させることができる。さらに、固体酸化物電解質15を所定の適正温度とし、発電モードと電解モードの切り替えに伴う急激な温度変化が防止でき、破損する虞を低減することができる。   As described above, according to the present embodiment, the heat generated in the electrolysis / power generation cell 2 in the power generation mode is sent to the outside by the medium circulation loop 13 so that the solid oxide electrolyte 15 and the like have a predetermined appropriate temperature. In addition, the transmitted heat is stored in the regenerator 10, and heat necessary for the endothermic reaction of water vapor electrolysis is sent from the regenerator 10 into the electrolysis / power generation cell 2 through the medium circulation loop 13 in the electrolysis mode in which electricity is stored. Steam electrolysis is maintained and also used for the generation of water vapor, so that heat can be used effectively so as to achieve harmony between the power generation mode and the electrolysis mode. In addition, since energy loss during power storage and power generation can be reduced, the efficiency of power storage can be improved. Furthermore, the solid oxide electrolyte 15 is set to a predetermined appropriate temperature, and a rapid temperature change associated with switching between the power generation mode and the electrolysis mode can be prevented, and the possibility of breakage can be reduced.

次に第2の実施形態を図3により説明する。図3は温度制御系の概略構成を示す図である。なお、本実施形態は、第1の実施形態と温度制御系が異なるのみであるので、第1の実施形態と同一部分には同一符号を付して説明を省略し、第1の実施形態と異なる本実施形態の構成について説明する。   Next, a second embodiment will be described with reference to FIG. FIG. 3 is a diagram showing a schematic configuration of the temperature control system. Note that this embodiment is different from the first embodiment only in the temperature control system, and therefore, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. A different configuration of the present embodiment will be described.

図3において、温度制御系の構成のみが第1の実施形態の構成と異なる本実施形態の電力貯蔵システムは、その電解兼発電セル2が、燃料ガスと空気を供給し発電セルとして動作させることで発電し電力の供給を行い、また余剰電力と水蒸気を供給し水蒸気電解セルとして動作させ発生した水素を貯蔵することで余剰電力の貯蔵を行う。そして、この電力貯蔵システムには、電解兼発電セル2の内部温度が所定温度となるようにするための温度制御系30が設けられている。   In FIG. 3, the power storage system of the present embodiment, which is different from the configuration of the first embodiment only in the temperature control system, has its electrolysis / power generation cell 2 operating as a power generation cell by supplying fuel gas and air. The surplus power is stored by supplying the surplus power and water vapor and supplying the surplus power and water vapor to operate as a water vapor electrolysis cell and storing the generated hydrogen. The power storage system is provided with a temperature control system 30 for causing the internal temperature of the electrolysis / power generation cell 2 to be a predetermined temperature.

温度制御系30は、電解兼発電セル2外に設けられ、発電する際の発生熱を蓄熱すると共に電力貯蔵を行う際に供給された水を加熱し水蒸気を発生させる蓄熱手段である蓄熱器10と電解兼発電セル2の間に媒体流通ループ31を形成するようにして構成されている。媒体流通ループ31は、封入された熱媒体が電解兼発電セル2の内部を貫流し、蓄熱器10を貫流するようにして媒体流通ループ31を循環する媒体流路12を備えている。   The temperature control system 30 is provided outside the electrolysis / power generation cell 2, and stores the heat generated during power generation and heats the water supplied when the power is stored to generate water vapor to generate the water vapor 10. The medium distribution loop 31 is formed between the electrolysis and power generation cell 2. The medium circulation loop 31 includes a medium flow path 12 that circulates through the medium circulation loop 31 so that the enclosed heat medium flows through the inside of the electrolysis / power generation cell 2 and flows through the heat accumulator 10.

また、蓄熱器10は、位置移動手段である昇降装置32の載置部33の上に設置されている。載置部33は、例えば図示しない油圧リフト等の昇降駆動機構により、図3に両矢印Yで示すように垂直方向に昇降可能となっている。そして、蓄熱器10は、載置部33を上昇させて上位置点に位置させることで、電解兼発電セル2の設置位置よりも上方となるに位置し、また載置部33を下降させて下位置点に位置させることで、電解兼発電セル2の設置位置よりも下方となるに位置するようになっている。   The heat accumulator 10 is installed on the mounting portion 33 of the lifting device 32 that is a position moving means. The mounting portion 33 can be moved up and down in the vertical direction as indicated by a double arrow Y in FIG. And the heat accumulator 10 is located above the installation position of the electrolysis / power generation cell 2 by raising the placement part 33 to be positioned at the upper position point, and lowering the placement part 33. By being positioned at the lower position point, it is positioned lower than the installation position of the electrolysis / power generation cell 2.

このため、発電モード時に、昇降装置32の載置部33を上昇させ上位置点に位置させることで、蓄熱器10は電解兼発電セル2よりも上方に位置することになる。これにより、発電を行っている電解兼発電セル2の内部温度は高温度となり、媒体流通ループ31を循環するように封入されている熱媒体も加熱され、低温度である蓄熱器10との間で自然対流が起こり、高温度となっている熱媒体は媒体流路12を上昇するように流れ、より低温度である蓄熱器10に熱を運搬する。これにより蓄熱器10の温度が上昇して、発電に伴う電解兼発電セル2の熱が蓄熱器10に蓄えられる。   For this reason, in the power generation mode, the heat accumulator 10 is positioned above the electrolysis / power generation cell 2 by raising the mounting portion 33 of the lifting device 32 and positioning it at the upper position point. As a result, the internal temperature of the electrolysis / power generation cell 2 performing power generation becomes a high temperature, the heat medium sealed so as to circulate through the medium circulation loop 31 is also heated, and the heat storage device 10 is at a low temperature. Then, natural convection occurs, and the heat medium having a high temperature flows so as to rise in the medium flow path 12 and conveys heat to the heat accumulator 10 having a lower temperature. Thereby, the temperature of the regenerator 10 rises, and the heat of the electrolysis / power generation cell 2 accompanying power generation is stored in the regenerator 10.

一方、電解モード時に、昇降装置32の載置部33を下降させ下位置点に位置させることで、蓄熱器10は電解兼発電セル2よりも下方に位置することになる。これにより、水蒸気電解を行っている電解兼発電セル2の内部温度は低温度となり、媒体流通ループ31に封入されている熱媒体は、電解兼発電セル2内で低温度となり、逆に蓄熱器10で加熱されて高温度となり、自然対流を起こして媒体流路12を循環するように流れ、より低温度である電解兼発電セル2に蓄熱器10の熱を運搬する。この熱運搬で電解兼発電セル2の温度が上昇し、さらに継続して熱運搬がなされることで、吸熱反応である水蒸気電解が進行し、水素が生成されて余剰電力の蓄電が行なわれる。   On the other hand, in the electrolysis mode, the heat accumulator 10 is positioned below the electrolysis / power generation cell 2 by lowering the placement portion 33 of the elevating device 32 and positioning it at the lower position point. Thereby, the internal temperature of the electrolysis / power generation cell 2 performing steam electrolysis becomes a low temperature, and the heat medium enclosed in the medium circulation loop 31 becomes a low temperature in the electrolysis / power generation cell 2, and conversely, the heat accumulator. 10 is heated to a high temperature and flows so as to circulate through the medium flow path 12 by causing natural convection, and transports the heat of the regenerator 10 to the electrolysis / power generation cell 2 having a lower temperature. With this heat transport, the temperature of the electrolysis / power generation cell 2 rises, and further heat transport continues, so that steam electrolysis, which is an endothermic reaction, proceeds, hydrogen is generated, and excess power is stored.

そして、上記のように構成することで、電力貯蔵システムの発電モード時、電解モード時における動作は、温度制御系30の動作が異なるだけで、第1の実施形態と同様に行なわれる。そのため、第1の実施形態と同様の効果が得られると共に、温度制御系30における熱媒体の循環に、高温度で使用できる循環用ファンを必要とせず、コスト上昇を避けることができ、メンテナンス等が容易となる。   By configuring as described above, the operation of the power storage system in the power generation mode and the electrolysis mode is performed in the same manner as in the first embodiment, except that the operation of the temperature control system 30 is different. Therefore, the same effects as those of the first embodiment can be obtained, the circulation of the heat medium in the temperature control system 30 does not require a circulation fan that can be used at a high temperature, an increase in cost can be avoided, maintenance, etc. Becomes easy.

なお、媒体流通ループ31の媒体流路12に、熱媒体の自然対流に基づく循環を補助する、例えば水冷式駆動部で駆動する循環補助用ファンを設けるようにしてもよい。   Note that a circulation assisting fan that assists circulation based on natural convection of the heat medium, for example, driven by a water-cooled driving unit, may be provided in the medium flow path 12 of the medium circulation loop 31.

次に第3の実施形態を図4及び図5により説明する。図4は温度制御系の概略構成を示す図であり、図5は変形形態における温度制御系の概略構成を示す図である。なお、本実施形態は、上記の各実施形態と温度制御系が異なるのみであるので、各実施形態と同一部分には同一符号を付して説明を省略し、各実施形態と異なる本実施形態の構成について説明する。   Next, a third embodiment will be described with reference to FIGS. FIG. 4 is a diagram showing a schematic configuration of the temperature control system, and FIG. 5 is a diagram showing a schematic configuration of the temperature control system in a modified embodiment. Note that this embodiment is different from each of the above embodiments only in the temperature control system. Therefore, the same parts as those of the embodiments are denoted by the same reference numerals, and the description thereof is omitted. The configuration of will be described.

図4において、温度制御系の構成のみが第1の実施形態の構成と異なる本実施形態の電力貯蔵システムは、その電解兼発電セル2が、燃料ガスと空気を供給し発電セルとして動作させることで発電し電力の供給を行い、また余剰電力と水蒸気を供給し水蒸気電解セルとして動作させ発生した水素を貯蔵することで余剰電力の貯蔵を行う。そして、この電力貯蔵システムには、電解兼発電セル2の内部温度が適正な所定温度となるようにするための温度制御系35が設けられている。   In FIG. 4, the power storage system of the present embodiment, which differs from the configuration of the first embodiment only in the temperature control system, is such that the electrolysis / power generation cell 2 supplies fuel gas and air and operates as a power generation cell. The surplus power is stored by supplying the surplus power and water vapor and supplying the surplus power and water vapor to operate as a water vapor electrolysis cell and storing the generated hydrogen. The power storage system is provided with a temperature control system 35 for ensuring that the internal temperature of the electrolysis / power generation cell 2 is an appropriate predetermined temperature.

温度制御系35は、電解兼発電セル2と電解兼発電セル2外の蓄熱手段である蓄熱器10、冷却手段である放熱器36との間に媒体流通ループ37を形成するようにして構成されている。媒体流通ループ37は、封入された熱媒体が電解兼発電セル2の内部を貫流し、蓄熱器10と放熱器36に分流し、それぞれを貫流して循環する媒体流路38を備えたものとなっている。   The temperature control system 35 is configured such that a medium circulation loop 37 is formed between the electrolysis / power generation cell 2 and the heat storage 10 that is heat storage means outside the electrolysis / power generation cell 2 and the radiator 36 that is cooling means. ing. The medium circulation loop 37 includes a medium flow path 38 in which the enclosed heat medium flows through the inside of the electrolysis / power generation cell 2 and is divided into the heat accumulator 10 and the heat radiator 36, and flows through each of them and circulates. It has become.

このため、放熱器36側に分流した熱媒体は、挿入されている流量制御バルブ39で所定流量に流量調整がなされるようにして媒体分流路38aを流れ、放熱器36を貫流する間に冷却された後に電解兼発電セル2に戻る。一方、蓄熱器10側に分流した熱媒体は、媒体分流路38bを流れ、蓄熱器10で蓄熱を行う、あるいは加熱されるようにして貫流した後に電解兼発電セル2に戻る。媒体分流路38aに流量制御バルブ39を挿入し、流量調整を行うことにより蓄熱器10と放熱器36を流通する熱媒体の流量比が変えられ、電解兼発電セル2に戻る熱媒体の温度を所望の温度とすることができ、電解兼発電セル2の内部温度を適正な所定温度にし、この温度を維持することができる。   For this reason, the heat medium divided into the radiator 36 flows through the medium dividing flow path 38 a so that the flow rate is adjusted to a predetermined flow rate by the inserted flow control valve 39, and is cooled while flowing through the heat radiator 36. After that, it returns to the electrolysis / power generation cell 2. On the other hand, the heat medium branched to the regenerator 10 side flows through the medium distribution flow path 38b, stores heat in the heat accumulator 10, or flows through while being heated, and then returns to the electrolysis / power generation cell 2. The flow rate control valve 39 is inserted into the medium branch flow path 38a and the flow rate is adjusted to change the flow rate ratio of the heat medium flowing through the regenerator 10 and the radiator 36, and the temperature of the heat medium returning to the electrolysis / power generation cell 2 is changed. It can be set to a desired temperature, and the internal temperature of the electrolysis / power generation cell 2 can be set to an appropriate predetermined temperature, and this temperature can be maintained.

すなわち、発電モード時には、例えば、電解兼発電セル2から約800℃で流出し蓄熱器10での蓄熱を行った後の高温度の熱媒体と、放熱器36で大気により約700℃に冷却され所定流量に調整された低温度の熱媒体とが得られ、これら高温度の熱媒体と低温度の熱媒体とが混合することによって、電解兼発電セル2に戻り流入する熱媒体を所望の温度のものとすることができる。また電解モード時には、電解兼発電セル2が必要な温度となるよう高温度の熱媒体を搬送するように流量調整する。なお、熱媒体は図示しない上記実施形態に示された循環用ファンや昇降装置等により、媒体流通ループ37を循環するようになっている。   That is, in the power generation mode, for example, it is cooled to about 700 ° C. by the high-temperature heat medium after flowing out from the electrolysis / power generation cell 2 at about 800 ° C. and storing heat in the heat accumulator 10 and the radiator 36 by the atmosphere. A low-temperature heat medium adjusted to a predetermined flow rate is obtained, and the high-temperature heat medium and the low-temperature heat medium are mixed, whereby the heat medium flowing back to the electrolysis / power generation cell 2 flows into a desired temperature. Can be. In the electrolysis mode, the flow rate is adjusted so as to convey a high-temperature heat medium so that the electrolysis / power generation cell 2 has a necessary temperature. The heat medium is circulated through the medium circulation loop 37 by a circulation fan, a lifting device, or the like shown in the above-described embodiment (not shown).

そして、上記のよう構成の温度制御系35を有する本実施形態の電力貯蔵システムは、蓄熱器10と放熱器36を流通する熱媒体の流量比を変えることで電解兼発電セル2の内部温度を適正な所定温度を維持しながら、発電モード時には、電力供給を行いながら、発電により高温度となっている電解兼発電セル2内部で熱媒体が加熱され、蓄熱器10に蓄熱を行う。また電解モード時には、熱媒体が蓄熱器10に蓄えられていた熱で加熱され、電解兼発電セル2に熱を搬送し、電解兼発電セル2内部を適正な所定温度とすることで吸熱反応の水蒸気電解が進行し、水素が生成されて余剰電力の蓄電が行なわれる。なお、上記実施形態と同様に、水蒸気電解に用いる水蒸気は、蓄熱器10の熱で水を加熱して得るようにしている。   And the electric power storage system of this embodiment which has the temperature control system 35 of the above structure changes the internal temperature of the electrolysis / power generation cell 2 by changing the flow rate ratio of the heat medium flowing through the regenerator 10 and the radiator 36. While maintaining an appropriate predetermined temperature, in the power generation mode, while supplying power, the heat medium is heated inside the electrolysis / power generation cell 2 that is at a high temperature by power generation, and the heat accumulator 10 is stored. In the electrolysis mode, the heat medium is heated by the heat stored in the regenerator 10, transports the heat to the electrolysis / power generation cell 2, and sets the inside of the electrolysis / power generation cell 2 to an appropriate predetermined temperature, thereby performing an endothermic reaction. Steam electrolysis proceeds, hydrogen is generated, and surplus power is stored. As in the above embodiment, the steam used for steam electrolysis is obtained by heating water with the heat of the heat accumulator 10.

以上のように構成することで、電力貯蔵システムの発電モード時、電解モード時における動作は、温度制御系35の動作が異なるだけで、第1の実施形態と同様に行なわれる。そのため、第1の実施形態と同様の効果が得られると共に、温度制御系35により、電解兼発電セル2の内部温度をより適正な所定温度とすることができ、これを維持することができることから、急激な温度変化が固体酸化物電解質膜に加わらず、破損の虞を少なくでき、電解兼発電セル2に故障等が発生する虞を少なくすることができる。   With the configuration described above, the operation of the power storage system in the power generation mode and the electrolysis mode is performed in the same manner as in the first embodiment, except that the operation of the temperature control system 35 is different. Therefore, the same effect as that of the first embodiment can be obtained, and the temperature control system 35 can set the internal temperature of the electrolysis / power generation cell 2 to a more appropriate predetermined temperature and can maintain this. In addition, since the rapid temperature change is not applied to the solid oxide electrolyte membrane, the possibility of breakage can be reduced, and the possibility of failure or the like in the electrolysis / power generation cell 2 can be reduced.

なお、上記実施形態においては、流量制御バルブ39を設けて熱媒体の流量調整を行って蓄熱器10と放熱器36を流通する熱媒体の流量比を変え、これにより電解兼発電セル2の内部温度を適正温度にするようにしたが、図5に示す変形形態のように構成して熱媒体の流量比を変えるようにしてもよい。   In the above embodiment, the flow rate control valve 39 is provided to adjust the flow rate of the heat medium to change the flow rate ratio of the heat medium flowing through the heat accumulator 10 and the radiator 36, and thereby the inside of the electrolysis / power generation cell 2. Although the temperature is set to an appropriate temperature, it may be configured as a modification shown in FIG. 5 to change the flow rate ratio of the heat medium.

すなわち、図5において、温度制御系40は、電解兼発電セル2と蓄熱器10、放熱器36との間に媒体流通ループ41を形成するようにして構成されている。媒体流通ループ41は、熱媒体が電解兼発電セル2の内部を貫流し、蓄熱器10と放熱器36を貫流して循環する媒体流路42を備えている。また媒体流路42は、電解兼発電セル2から流出した熱媒体が分流部43で分流し、媒体分流路42a,42bをそれぞれ流通して蓄熱器10と放熱器36に流れるようになっている。   That is, in FIG. 5, the temperature control system 40 is configured to form a medium circulation loop 41 between the electrolysis / power generation cell 2, the heat accumulator 10, and the radiator 36. The medium circulation loop 41 includes a medium flow path 42 through which the heat medium flows through the inside of the electrolysis / power generation cell 2 and circulates through the heat accumulator 10 and the radiator 36. Further, in the medium flow path 42, the heat medium flowing out from the electrolysis / power generation cell 2 is diverted by the flow dividing section 43, flows through the medium diversion flow paths 42a and 42b, and flows to the heat accumulator 10 and the radiator 36, respectively. .

さらに、媒体流路42の分流部43には、回動軸44を回動中心として両矢印Rで示すように回動する弁板45が設けられている。そして弁板45が回動することで、媒体流路42を流通する熱媒体の各媒体分流路42a,42bに分流する流量の調整が行え、流量を調整することで蓄熱器10と放熱器36を流通する熱媒体の流量比が変えられ、電解兼発電セル2に戻る熱媒体の温度を所望の温度とすることができ、電解兼発電セル2の内部温度を適正な所定温度にし、この温度が維持されるようにすることができる。   Furthermore, a valve plate 45 that rotates as indicated by a double-headed arrow R about the rotation shaft 44 is provided in the flow dividing portion 43 of the medium flow path 42. Then, the valve plate 45 is rotated to adjust the flow rate of the heat medium flowing through the medium flow channel 42 to the medium distribution channels 42a and 42b. By adjusting the flow rate, the regenerator 10 and the radiator 36 are adjusted. The flow rate ratio of the heat medium flowing through the electrolysis / power generation cell 2 can be changed, and the temperature of the heat medium returning to the electrolysis / power generation cell 2 can be set to a desired temperature, and the internal temperature of the electrolysis / power generation cell 2 is set to an appropriate predetermined temperature. Can be maintained.

その結果、本変形形態においても上記実施形態と同様の効果を得ることができる。   As a result, the same effects as those of the above embodiment can be obtained in this modified embodiment.

次に第4の実施形態を図6により説明する。図6は温度制御系の概略構成を示す図である。なお、本実施形態は、上記各実施形態と温度制御系が異なるのみであるので、各実施形態と同一部分には同一符号を付して説明を省略し、各実施形態と異なる本実施形態の構成について説明する。   Next, a fourth embodiment will be described with reference to FIG. FIG. 6 is a diagram showing a schematic configuration of the temperature control system. Since the present embodiment is different from the above embodiments only in the temperature control system, the same parts as those of the embodiments are denoted by the same reference numerals and the description thereof is omitted, and the present embodiment is different from the embodiments. The configuration will be described.

図6において、温度制御系の構成のみが第1の実施形態の構成と異なる本実施形態の電力貯蔵システムは、その電解兼発電セル2が、燃料ガスと空気を供給し発電セルとして動作させることで発電し電力の供給を行い、また余剰電力と水蒸気を供給し水蒸気電解セルとして動作させ発生した水素を貯蔵することで余剰電力の貯蔵を行う。そして、この電力貯蔵システムには、電解兼発電セル2の内部温度が適正な所定温度となるようにするための温度制御系47が設けられている。   In FIG. 6, the power storage system of the present embodiment, which is different only in the configuration of the temperature control system from the configuration of the first embodiment, has its electrolysis / power generation cell 2 operating as a power generation cell by supplying fuel gas and air. The surplus power is stored by supplying the surplus power and water vapor and supplying the surplus power and water vapor to operate as a water vapor electrolysis cell and storing the generated hydrogen. The electric power storage system is provided with a temperature control system 47 for ensuring that the internal temperature of the electrolysis / power generation cell 2 is an appropriate predetermined temperature.

温度制御系47は、電解兼発電セル2と電解兼発電セル2外の蓄熱手段である蓄熱器10、冷却手段である放熱器36との間に媒体流通ループ48を形成するようにして構成されている。媒体流通ループ48は、封入された熱媒体が電解兼発電セル2の内部を貫流し、蓄熱器10と放熱器36に分流し、それぞれを貫流して循環する媒体流路38を備えたものとなっている。   The temperature control system 47 is configured to form a medium circulation loop 48 between the electrolysis / power generation cell 2, the heat storage device 10 that is a heat storage unit outside the electrolysis / power generation cell 2, and the radiator 36 that is a cooling unit. ing. The medium circulation loop 48 includes a medium flow path 38 through which the encapsulated heat medium flows through the inside of the electrolysis / power generation cell 2 and is divided into the heat accumulator 10 and the radiator 36, and flows through each of them. It has become.

また媒体流路38は、熱媒体が放熱器36を貫流する媒体分流路38aと、蓄熱器10を貫流する媒体分流路38bとを備えて構成され、電解兼発電セル2と放熱器36、蓄熱器10との間の各媒体分流路38a,38bには流量制御バルブ49a,49bが挿入されている。各媒体分流路38a,38bに挿入された各流量制御バルブ49a,49bは、制御手段である制御部50による制御のもとに、それぞれの開度Opが調節されるようになっている。これにより、蓄熱器10と放熱器36を流通する熱媒体の流量比を変えることができ、また両流量制御バルブ49a,49bでの流量調整を行うことで熱媒体の総流量も変えることができ、電解兼発電セル2から流出する熱媒体の温度も変えられることになる。   The medium flow path 38 includes a medium distribution path 38a through which the heat medium flows through the radiator 36 and a medium distribution path 38b through which the heat storage apparatus 10 flows, and the electrolysis / power generation cell 2, the radiator 36, the heat storage, and the like. Flow rate control valves 49a and 49b are inserted in the respective medium distribution channels 38a and 38b between the container 10 and the container 10. Each flow rate control valve 49a, 49b inserted in each medium branch channel 38a, 38b is configured such that its opening degree Op is adjusted under the control of the control unit 50, which is a control means. As a result, the flow rate ratio of the heat medium flowing through the regenerator 10 and the radiator 36 can be changed, and the total flow rate of the heat medium can also be changed by adjusting the flow rate at both flow rate control valves 49a and 49b. The temperature of the heat medium flowing out from the electrolysis / power generation cell 2 can also be changed.

こうした各流量制御バルブ49a,49bの制御部50による制御については、発電モード時における電解兼発電セル2の発生熱密度が、接続されている負荷の電流密度Idにより異なり、概ね、負荷の電流密度Idと電解兼発電セル2の発生熱密度は、比例すると考えることができることに基づいている。これは、発生熱密度の変化を打ち消すように熱媒体の温度を調節すれば、電解兼発電セル2の内部温度、固体酸化物電解質膜の温度を許容範囲内の適正な温度とすることができることを示している。   Regarding the control by the control unit 50 of each of the flow control valves 49a and 49b, the generated heat density of the electrolysis / power generation cell 2 in the power generation mode differs depending on the current density Id of the connected load, and is generally the current density of the load. It is based on the fact that the generated heat density of Id and the electrolysis / power generation cell 2 can be considered to be proportional. If the temperature of the heat medium is adjusted so as to cancel the change in the generated heat density, the internal temperature of the electrolysis / power generation cell 2 and the temperature of the solid oxide electrolyte membrane can be set to appropriate temperatures within an allowable range. Is shown.

このため、制御部50での制御は、負荷の電流密度Idの変化、すなわち負荷変動に基づいたフィードフォワード制御と共に、図示しないが温度計を設けたり、あるいは熱媒体の温度を測定したりすることで固体酸化物電解質膜の温度を測定し、その変化に基づいてフィードバック制御を行うことにより、精度の高い制御が行えるようになっている。なお、図6中に示した各グラフは、横軸に電流密度Id、縦軸に各流量制御バルブ49a,49bの開度Opをとって示す制御グラフである。   For this reason, the control by the control unit 50 is to provide a thermometer (not shown) or measure the temperature of the heat medium together with the feedforward control based on the change in the load current density Id, that is, the load fluctuation. Thus, the temperature of the solid oxide electrolyte membrane is measured, and feedback control is performed based on the change, so that highly accurate control can be performed. Each graph shown in FIG. 6 is a control graph in which the horizontal axis indicates the current density Id and the vertical axis indicates the opening degree Op of each flow control valve 49a, 49b.

そして発電モード時には、放熱器36側に分流した熱媒体は、挿入されている流量制御バルブ49aで所定流量に流量調整がなされるようにして媒体分流路38aを流れ、放熱器36を貫流する間に冷却された後に電解兼発電セル2に戻る。一方、蓄熱器10側に分流した熱媒体も、挿入されている流量制御バルブ49bで所定流量に流量調整がなされるようにして媒体分流路38bを流れ、蓄熱器10での蓄熱を行うようにして貫流した後に電解兼発電セル2に戻る。また電解モード時には、放熱器36側の熱媒体の流量を流量制御バルブ49aで少なくなるよう調整することで、蓄熱器10側の熱媒体の流量が増加し、蓄熱器10に蓄熱された熱で加熱された熱媒体が電解兼発電セル2に運ばれるので、水蒸気電解に必要な温度を確保することができることになる。   In the power generation mode, the heat medium diverted toward the radiator 36 flows through the medium diverting flow path 38 a so that the flow rate is adjusted to a predetermined flow rate by the inserted flow rate control valve 49 a and flows through the heat dissipator 36. After being cooled, the electrolysis / power generation cell 2 is returned to. On the other hand, the heat medium divided to the regenerator 10 side also flows through the medium diversion channel 38b so that the flow rate is adjusted to a predetermined flow rate by the inserted flow control valve 49b, and heat storage in the regenerator 10 is performed. And then return to the electrolysis / power generation cell 2. Further, in the electrolysis mode, the flow rate of the heat medium on the heat accumulator 10 side is increased by adjusting the flow rate of the heat medium on the radiator 36 side to be reduced by the flow rate control valve 49 a, and the heat accumulated in the heat accumulator 10 is increased. Since the heated heat medium is carried to the electrolysis / power generation cell 2, a temperature necessary for steam electrolysis can be secured.

このように、上記構成の温度制御系47を有する本実施形態の電力貯蔵システムでは、各流量制御バルブ49a,49bで流量調整を行うことで蓄熱器10と放熱器36を流通する熱媒体の流量比が変えられ、電解兼発電セル2の内部温度を適正な所定温度を維持しながら、発電モード時には、電力供給を行いながら、発電により高温度となっている電解兼発電セル2内部で熱媒体が加熱され、蓄熱器10に蓄熱を行う。   As described above, in the power storage system of the present embodiment having the temperature control system 47 having the above-described configuration, the flow rate of the heat medium flowing through the regenerator 10 and the radiator 36 by adjusting the flow rate by the flow rate control valves 49a and 49b. The ratio is changed and the internal temperature of the electrolysis / power generation cell 2 is maintained at an appropriate predetermined temperature, and in the power generation mode, the power is supplied and the heat medium is heated inside the electrolysis / power generation cell 2 at a high temperature by power generation. Is heated to store heat in the heat accumulator 10.

また電解モード時には、水蒸気電解に用いる水蒸気を蓄熱器10の熱で水を加熱することで得、さらに熱媒体が蓄熱器10に蓄えられていた熱で加熱され電解兼発電セル2に熱供給を行い、電解兼発電セル2内部を適正な所定温度とすることで吸熱反応の水蒸気電解が進行し、水素が生成されて余剰電力の蓄電が行なわれる。そして、発電モード時、電解モード時のいずれの場合にも、電解兼発電セル2に戻る熱媒体の温度を所望の温度とすることができ、電解兼発電セル2の内部温度を適正な所定温度にし、維持することで、適正な温度に固体酸化物電解質膜も保つことができる。   In the electrolysis mode, water vapor used for water vapor electrolysis is obtained by heating water with the heat of the regenerator 10, and the heat medium is further heated by the heat stored in the regenerator 10 to supply heat to the electrolysis / power generation cell 2. When the inside of the electrolysis / power generation cell 2 is set to an appropriate predetermined temperature, steam electrolysis of the endothermic reaction proceeds, hydrogen is generated, and surplus power is stored. In both cases of the power generation mode and the electrolysis mode, the temperature of the heat medium that returns to the electrolysis / power generation cell 2 can be set to a desired temperature, and the internal temperature of the electrolysis / power generation cell 2 is set to an appropriate predetermined temperature. And maintaining the solid oxide electrolyte membrane at an appropriate temperature.

以上の通り、上記の構成とすることで、電力貯蔵システムの発電モード時、電解モード時における動作は、温度制御系47の動作が異なるだけで、第1の実施形態と同様に行なわれる。そのため、第1の実施形態と同様の効果が得られると共に、温度制御系47により、電解兼発電セル2の内部温度をより適正な所定温度とすることができ、これを維持することができることから、急激な温度変化が固体酸化物電解質膜に加わらず、破損の虞を少なくすることができ、電解兼発電セル2に故障等が発生する虞を少なくすることができる。   As described above, with the above configuration, the operation of the power storage system in the power generation mode and the electrolysis mode is performed in the same manner as in the first embodiment, except that the operation of the temperature control system 47 is different. Therefore, the same effect as that of the first embodiment can be obtained, and the temperature control system 47 can set the internal temperature of the electrolysis / power generation cell 2 to a more appropriate predetermined temperature, and can maintain this. In addition, since the rapid temperature change is not applied to the solid oxide electrolyte membrane, the possibility of breakage can be reduced, and the possibility of failure or the like in the electrolysis / power generation cell 2 can be reduced.

1…電力貯蔵システム
2…電解兼発電セル
3…ガス供給手段
4…水素貯蔵タンク
7…空気供給源
9…水供給源
10…蓄熱器
11…温度制御系
13…媒体流通ループ
15…固体酸化物電解質
DESCRIPTION OF SYMBOLS 1 ... Electric power storage system 2 ... Electrolysis and power generation cell 3 ... Gas supply means 4 ... Hydrogen storage tank 7 ... Air supply source 9 ... Water supply source 10 ... Heat storage 11 ... Temperature control system 13 ... Medium distribution loop 15 ... Solid oxide Electrolytes

Claims (8)

固体酸化物電解質を有して水蒸気電解セルと発電セルとを兼用する電解兼発電手段と、前記電解兼発電手段に水素と水蒸気からなる燃料ガス及び空気をそれぞれ供給するガス供給手段と、前記電解兼発電手段に水蒸気を供給する水蒸気供給手段と、前記電解兼発電手段より排出される排ガスと前記電解兼発電手段に供給される前記燃料ガス及び前記空気とそれぞれ熱交換を行う熱交換手段を備える電力貯蔵システムであって、
前記電解兼発電手段の内部温度を、該電解兼発電手段の内部に熱媒体を流通させて所定温度に制御する温度制御系を備えていることを特徴とする電力貯蔵システム。
An electrolysis / power generation means having a solid oxide electrolyte and serving as both a water vapor electrolysis cell and a power generation cell; a gas supply means for supplying fuel gas and air each comprising hydrogen and water vapor to the electrolysis / power generation means; and the electrolysis A steam supply means for supplying steam to the power generation means; and a heat exchange means for exchanging heat between the exhaust gas discharged from the electrolysis / power generation means and the fuel gas and air supplied to the electrolysis / power generation means. A power storage system,
A power storage system comprising a temperature control system for controlling the internal temperature of the electrolysis / power generation means to a predetermined temperature by circulating a heat medium in the electrolysis / power generation means.
前記温度制御系が、前記電解兼発電手段の外部に配置された蓄熱手段と、前記電解兼発電手段の内部と前記蓄熱手段の間に前記熱媒体を循環させる媒体流通ループを備えてなることを特徴とする請求項1記載の電力貯蔵システム。   The temperature control system comprises a heat storage means arranged outside the electrolysis / power generation means, and a medium circulation loop for circulating the heat medium between the inside of the electrolysis / power generation means and the heat storage means. The power storage system according to claim 1. 前記媒体流通ループが、前記熱媒体を循環させる循環用ファンを備えていることを特徴とする請求項2記載の電力貯蔵システム。   The power storage system according to claim 2, wherein the medium circulation loop includes a circulation fan that circulates the heat medium. 前記温度制御系が、前記電解兼発電手段を発電セルとして運転する発電モード運転時には、前記電解兼発電手段より上方の位置に前記蓄熱手段を位置させ、前記電解兼発電手段を電解セルとして運転する電解モード運転時には、前記電解兼発電手段より下方の位置に前記蓄熱手段を位置させる位置移動手段を備えていることを特徴とする請求項2記載の電力貯蔵システム。   During the power generation mode operation in which the temperature control system operates the electrolysis / power generation means as a power generation cell, the heat storage means is positioned above the electrolysis / power generation means, and the electrolysis / power generation means is operated as an electrolysis cell. The power storage system according to claim 2, further comprising a position moving means for positioning the heat storage means at a position below the electrolysis / power generation means during the electrolysis mode operation. 前記温度制御系が、前記電解兼発電手段に前記蓄熱手段と並列となるように接続され、前記媒体流通ループを流れる少なくとも一部の前記熱媒体の熱を放散して前記電解兼発電手段の内部温度を制御する冷却手段を備えてなることを特徴とする請求項2記載の電力貯蔵システム。   The temperature control system is connected to the electrolysis / power generation means in parallel with the heat storage means, and dissipates heat of at least a part of the heat medium flowing through the medium circulation loop to The power storage system according to claim 2, further comprising cooling means for controlling the temperature. 前記電解兼発電手段の電解及び発電時の負荷変動に対応した前記固体酸化物電解質の温度変化を検出し、前記固体酸化物電解質を許容範囲内の温度に制御する制御手段を備えていることを特徴とする請求項1乃至請求項3記載の電力貯蔵システム。   It comprises control means for detecting a temperature change of the solid oxide electrolyte corresponding to electrolysis of the electrolysis / power generation means and load fluctuation during power generation, and controlling the solid oxide electrolyte to a temperature within an allowable range. The power storage system according to claim 1, wherein the power storage system is a power storage system. 固体酸化物電解質を有して水蒸気電解セルと発電セルとを兼用する電解兼発電手段と、前記電解兼発電手段に水素と水蒸気からなる燃料ガス及び空気をそれぞれ供給するガス供給手段と、前記電解兼発電手段に水蒸気を供給する水蒸気供給手段と、前記電解兼発電手段より排出される排ガスと前記電解兼発電手段に供給される前記燃料ガス及び前記空気とそれぞれ熱交換を行う熱交換手段と、前記電解兼発電手段の内部温度を所定温度に制御する温度制御系を備える電力貯蔵システムの運用方法であって、
前記電解兼発電手段を電解セルとして運転する電解モード運転時は、前記電解兼発電手段の前記固体酸化物電解質の温度を、発電セルとして運転する発電モード運転時よりも低温度にして運用することを特徴とする電力貯蔵システムの運用方法。
An electrolysis / power generation means having a solid oxide electrolyte and serving as both a water vapor electrolysis cell and a power generation cell; a gas supply means for supplying fuel gas and air each comprising hydrogen and water vapor to the electrolysis / power generation means; and the electrolysis Steam supply means for supplying steam to the power generation means, heat exchange means for exchanging heat with the exhaust gas discharged from the electrolysis / power generation means, and the fuel gas and air supplied to the electrolysis / power generation means, A method of operating a power storage system comprising a temperature control system for controlling the internal temperature of the electrolysis and power generation means to a predetermined temperature,
During electrolysis mode operation in which the electrolysis / power generation means is operated as an electrolysis cell, the temperature of the solid oxide electrolyte of the electrolysis / power generation means is set to be lower than that during power generation mode operation as a power generation cell. A method for operating a power storage system characterized by the above.
電解モード運転時は、発電モード運転時よりも前記水蒸気供給手段への水供給量を多くして、前記電解兼発電手段の水素極側における水蒸気濃度を高濃度として運用することを特徴とする請求項7記載の電力貯蔵システムの運用方法。   The amount of water supplied to the water vapor supply means is increased during the electrolysis mode operation than in the power generation mode operation, and the water vapor concentration on the hydrogen electrode side of the electrolysis / power generation means is operated as a high concentration. Item 8. A method for operating the power storage system according to Item 7.
JP2009016327A 2009-01-28 2009-01-28 Power storage system, and operation method thereof Withdrawn JP2010176939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016327A JP2010176939A (en) 2009-01-28 2009-01-28 Power storage system, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016327A JP2010176939A (en) 2009-01-28 2009-01-28 Power storage system, and operation method thereof

Publications (1)

Publication Number Publication Date
JP2010176939A true JP2010176939A (en) 2010-08-12

Family

ID=42707687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016327A Withdrawn JP2010176939A (en) 2009-01-28 2009-01-28 Power storage system, and operation method thereof

Country Status (1)

Country Link
JP (1) JP2010176939A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129031A (en) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc Secondary battery type fuel cell system
WO2012098945A1 (en) * 2011-01-20 2012-07-26 コニカミノルタホールディングス株式会社 Secondary battery-type fuel cell system
JP2014095118A (en) * 2012-11-08 2014-05-22 Toshiba Corp Hydrogen electric power storage system and method
JP2014185833A (en) * 2013-03-25 2014-10-02 Toshiba Corp Heat storage device
KR20150029646A (en) * 2012-06-11 2015-03-18 에이치티세라믹스 에스.에이. Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
JP2016089205A (en) * 2014-10-31 2016-05-23 株式会社東芝 Hydrogen producing apparatus and hydrogen producing method
JP2016098387A (en) * 2014-11-19 2016-05-30 株式会社東芝 Hydrogen production apparatus, hydrogen production method, and electric power storage system
CN106086924A (en) * 2016-07-22 2016-11-09 全球能源互联网研究院 A kind of coupling CO2the hydrogen manufacturing energy storage method of recycling
RU2608053C1 (en) * 2015-10-06 2017-01-13 Общество с ограниченной ответственностью "Уральская производственная компания" Module of removal and distribution of heat energy of power plant on solid oxide fuel cells
US9991530B2 (en) 2012-06-11 2018-06-05 Htceramix S.A. Solid oxide fuel cell
JP2018517233A (en) * 2015-04-08 2018-06-28 サンファイアー ゲゼルシャフト ミット ベシュレンクテル ハフツングSunFire GmbH Thermal management method for high temperature steam electrolysis [SOEC], solid oxide fuel cell [SOFC] and / or reversible high temperature fuel cell [rSOC], and high temperature steam electrolysis [SOEC] apparatus, solid oxide fuel cell [SOFC] apparatus and Reversible high temperature fuel cell [rSOC] device
JP2018116834A (en) * 2017-01-18 2018-07-26 株式会社東芝 High-temperature heat storage system and high-temperature heat storage method
JP2018131647A (en) * 2017-02-14 2018-08-23 東京瓦斯株式会社 Electrolysis system, control device, and program
KR101925290B1 (en) 2017-09-15 2018-12-06 한국기계연구원 Reversible solid oxide electrolysis system using heat recovery
WO2019058579A1 (en) * 2017-09-20 2019-03-28 Kabushiki Kaisha Toshiba Fuel cell system and hydrogen producing system
JP2019106288A (en) * 2017-12-12 2019-06-27 株式会社東芝 Hydrogen power storage system and hydrogen power storage method
JP2019173082A (en) * 2018-03-28 2019-10-10 東邦瓦斯株式会社 Hydrogen production system
EP3725917A1 (en) * 2019-04-17 2020-10-21 SunFire GmbH Solid oxide cell (soc) operation method and solid oxide cell (soc) assembly
CN111864303A (en) * 2020-07-29 2020-10-30 三门峡速达交通节能科技股份有限公司 Power battery temperature regulating device and electric automobile comprising same
WO2020241210A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical cell
WO2020241115A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical device and hydrogen generation method
WO2020241211A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical cell and hydrogen generation method
KR20210007793A (en) * 2019-07-11 2021-01-20 한국조선해양 주식회사 Fuel cell system and marine structure having the same
CN113278993A (en) * 2021-07-23 2021-08-20 北京思伟特新能源科技有限公司 High-safety fuel cell electrolytic cell system and working method thereof
CN114561668A (en) * 2022-03-01 2022-05-31 国家电投集团氢能科技发展有限公司 Hydrogen production system with heat storage device and control method of hydrogen production system
WO2023276415A1 (en) * 2021-06-30 2023-01-05 三菱重工業株式会社 Hydrogen production system and hydrogen production method
WO2023007877A1 (en) * 2021-07-30 2023-02-02 三菱重工業株式会社 High-temperature steam electrolysis device, hydrogen production method, and hydrogen production system
JP2023032587A (en) * 2021-08-27 2023-03-09 三菱重工業株式会社 Hydrogen production system and hydrogen production method
WO2023053546A1 (en) * 2021-09-30 2023-04-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129031A (en) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc Secondary battery type fuel cell system
WO2012098945A1 (en) * 2011-01-20 2012-07-26 コニカミノルタホールディングス株式会社 Secondary battery-type fuel cell system
JP5168431B2 (en) * 2011-01-20 2013-03-21 コニカミノルタホールディングス株式会社 Secondary battery type solid oxide fuel cell system
US9512525B2 (en) 2012-06-11 2016-12-06 Htceramix S.A. Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
US9991530B2 (en) 2012-06-11 2018-06-05 Htceramix S.A. Solid oxide fuel cell
KR20150029646A (en) * 2012-06-11 2015-03-18 에이치티세라믹스 에스.에이. Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
JP2015520497A (en) * 2012-06-11 2015-07-16 アッシュテセラミックス ソシエテ アノニムHtceramix S.A. Solid oxide fuel cell or solid oxide electrolytic cell and method of operating these cells
KR102109057B1 (en) 2012-06-11 2020-05-12 솔리드파워 에스에이 Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
US9831514B2 (en) 2012-06-11 2017-11-28 Htceramix S.A. Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
JP2014095118A (en) * 2012-11-08 2014-05-22 Toshiba Corp Hydrogen electric power storage system and method
JP2014185833A (en) * 2013-03-25 2014-10-02 Toshiba Corp Heat storage device
JP2016089205A (en) * 2014-10-31 2016-05-23 株式会社東芝 Hydrogen producing apparatus and hydrogen producing method
US10227700B2 (en) 2014-10-31 2019-03-12 Kabushiki Kaisha Toshiba Hydrogen production system and method for producing hydrogen
JP2016098387A (en) * 2014-11-19 2016-05-30 株式会社東芝 Hydrogen production apparatus, hydrogen production method, and electric power storage system
JP2018517233A (en) * 2015-04-08 2018-06-28 サンファイアー ゲゼルシャフト ミット ベシュレンクテル ハフツングSunFire GmbH Thermal management method for high temperature steam electrolysis [SOEC], solid oxide fuel cell [SOFC] and / or reversible high temperature fuel cell [rSOC], and high temperature steam electrolysis [SOEC] apparatus, solid oxide fuel cell [SOFC] apparatus and Reversible high temperature fuel cell [rSOC] device
RU2608053C1 (en) * 2015-10-06 2017-01-13 Общество с ограниченной ответственностью "Уральская производственная компания" Module of removal and distribution of heat energy of power plant on solid oxide fuel cells
CN106086924A (en) * 2016-07-22 2016-11-09 全球能源互联网研究院 A kind of coupling CO2the hydrogen manufacturing energy storage method of recycling
JP2018116834A (en) * 2017-01-18 2018-07-26 株式会社東芝 High-temperature heat storage system and high-temperature heat storage method
JP2018131647A (en) * 2017-02-14 2018-08-23 東京瓦斯株式会社 Electrolysis system, control device, and program
KR101925290B1 (en) 2017-09-15 2018-12-06 한국기계연구원 Reversible solid oxide electrolysis system using heat recovery
WO2019058579A1 (en) * 2017-09-20 2019-03-28 Kabushiki Kaisha Toshiba Fuel cell system and hydrogen producing system
JP2019106288A (en) * 2017-12-12 2019-06-27 株式会社東芝 Hydrogen power storage system and hydrogen power storage method
JP2019173082A (en) * 2018-03-28 2019-10-10 東邦瓦斯株式会社 Hydrogen production system
EP3725917A1 (en) * 2019-04-17 2020-10-21 SunFire GmbH Solid oxide cell (soc) operation method and solid oxide cell (soc) assembly
WO2020241210A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical cell
WO2020241115A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical device and hydrogen generation method
WO2020241211A1 (en) 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Electrochemical cell and hydrogen generation method
KR20210007793A (en) * 2019-07-11 2021-01-20 한국조선해양 주식회사 Fuel cell system and marine structure having the same
KR102219136B1 (en) 2019-07-11 2021-02-23 한국조선해양 주식회사 Fuel cell system and marine structure having the same
CN111864303A (en) * 2020-07-29 2020-10-30 三门峡速达交通节能科技股份有限公司 Power battery temperature regulating device and electric automobile comprising same
JP2023006454A (en) * 2021-06-30 2023-01-18 三菱重工業株式会社 Hydrogen production system and hydrogen production method
WO2023276415A1 (en) * 2021-06-30 2023-01-05 三菱重工業株式会社 Hydrogen production system and hydrogen production method
JP7374150B2 (en) 2021-06-30 2023-11-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method
CN113278993B (en) * 2021-07-23 2021-09-17 北京思伟特新能源科技有限公司 High-safety fuel cell electrolytic cell system and working method thereof
CN113278993A (en) * 2021-07-23 2021-08-20 北京思伟特新能源科技有限公司 High-safety fuel cell electrolytic cell system and working method thereof
WO2023007877A1 (en) * 2021-07-30 2023-02-02 三菱重工業株式会社 High-temperature steam electrolysis device, hydrogen production method, and hydrogen production system
JP2023032587A (en) * 2021-08-27 2023-03-09 三菱重工業株式会社 Hydrogen production system and hydrogen production method
JP7374152B2 (en) 2021-08-27 2023-11-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method
WO2023053546A1 (en) * 2021-09-30 2023-04-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method
CN114561668A (en) * 2022-03-01 2022-05-31 国家电投集团氢能科技发展有限公司 Hydrogen production system with heat storage device and control method of hydrogen production system
CN114561668B (en) * 2022-03-01 2024-04-26 国家电投集团氢能科技发展有限公司 Hydrogen production system with heat storage device and control method of hydrogen production system

Similar Documents

Publication Publication Date Title
JP2010176939A (en) Power storage system, and operation method thereof
Rashidi et al. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors
KR101843380B1 (en) Cooling and heating device
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
KR100813245B1 (en) Electric generating system of fuel cell
KR101022010B1 (en) Fuel Cell System
JP5528451B2 (en) Fuel cell device
JP4883654B2 (en) Power generation system and control method thereof
JP5763481B2 (en) Fuel cell system
JP5763480B2 (en) Fuel cell system
CN1921204A (en) System for preventing freezing of fuel cell
JP2016525774A (en) Power generation system using exhaust heat from fuel cells
JP2019132477A (en) Cogeneration system and operation method of the same
JP5434283B2 (en) Fuel cell system
JP2009508308A (en) Passive recirculation of coolant in fuel cells.
JP2007052981A (en) Fuel cell power generation system and its operation method
JP5305689B2 (en) Fuel cell device
JP2019035479A (en) Hydrogen storage system, control program and energy supply system
JP5153177B2 (en) Fuel cell device
JP2013057435A (en) Heat supply system
KR101366488B1 (en) Water tank with excellent dispersion efficiency for water pressure and fuel cell system using the same
JP5219712B2 (en) Fuel cell device
JP5196808B2 (en) Fuel cell device
JP2002134143A (en) Fuel cell cogeneration system
JP2017199463A (en) Fuel cell system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110425

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403