JP2012129031A - Secondary battery type fuel cell system - Google Patents

Secondary battery type fuel cell system Download PDF

Info

Publication number
JP2012129031A
JP2012129031A JP2010278656A JP2010278656A JP2012129031A JP 2012129031 A JP2012129031 A JP 2012129031A JP 2010278656 A JP2010278656 A JP 2010278656A JP 2010278656 A JP2010278656 A JP 2010278656A JP 2012129031 A JP2012129031 A JP 2012129031A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
hydrogen
secondary battery
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010278656A
Other languages
Japanese (ja)
Other versions
JP5617592B2 (en
Inventor
Katsuichi Uratani
勝一 浦谷
Masayuki Kamiyama
雅之 上山
Hiroko Omori
寛子 大森
Yoshiyuki Okano
誉之 岡野
Motohiro Nakanishi
基浩 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010278656A priority Critical patent/JP5617592B2/en
Publication of JP2012129031A publication Critical patent/JP2012129031A/en
Application granted granted Critical
Publication of JP5617592B2 publication Critical patent/JP5617592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery type fuel cell system in which decrease in charging efficiency can be limited at the time of charging.SOLUTION: The secondary battery type fuel cell system comprises a hydrogen generator 1 which generates hydrogen by oxidation reaction to water and can be regenerated by reduction reaction to hydrogen, and an SOFC 5 having a power generation function and an electrolysis function for performing electrolysis of water. A gas containing hydrogen and steam is circulated between the hydrogen generator 1 and the SOFC 5 in the secondary battery type fuel cell system. The secondary battery type fuel cell system is further provided with a temperature controller (a heater 6, a temperature sensor 7, a controller 9) which controls the temperature of the SOFC 5 when the secondary battery type fuel cell system is charged.

Description

本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池システムに関する。   The present invention relates to a secondary battery type fuel cell system capable of performing not only a power generation operation but also a charging operation.

近年、携帯電話、携帯型情報端末、ノート型パーソナルコンピュータ、携帯型オーディオ、携帯型ビジュアル機器等の携帯用電子機器の多機能化、高性能化が進展するに伴い、その駆動用電池の大容量化に対する要求が高まってきている。従来、このような携帯用電子機器の駆動用電池としては、リチウム電池やニッカド電池が用いられているが、その容量は、限界に近づいており飛躍的な増大は望めない。そこで、リチウム電池やニッカド電池に代わりエネルギー密度が高く大容量化が可能な燃料電池の開発が盛んに行われている。   In recent years, as multi-functional and high-performance portable electronic devices such as mobile phones, portable information terminals, notebook personal computers, portable audio devices, and portable visual devices have advanced, the capacity of the drive batteries has increased. There is an increasing demand for conversion. Conventionally, lithium batteries and nickel-cadmium batteries have been used as driving batteries for such portable electronic devices, but their capacities are approaching their limits and cannot be expected to increase dramatically. Therefore, fuel cells having high energy density and high capacity are being actively developed in place of lithium batteries and nickel-cadmium batteries.

燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   Fuel cells take out electric power when water is generated from hydrogen and oxygen, and in principle, the efficiency of electric power energy that can be taken out is high, which not only saves energy, but also produces only water during power generation. Therefore, it is an environmentally friendly power generation method and is expected as a trump card for solving global energy and environmental problems.

このような燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込み、その外側を一対のセパレータで挟持して形成されたものを1つのセル構成としている。そして、このような構成のセルには、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給される。   Such fuel cells typically oxidize a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), and the like with an anode (anode). One cell structure is formed by sandwiching the electrode electrode (cathode) from both sides and sandwiching the outside with a pair of separators. In the cell having such a configuration, a fuel gas flow path for supplying a fuel gas (for example, hydrogen gas) to the fuel electrode, and an oxidant gas flow for supplying an oxidant gas (for example, oxygen or air) to the oxidant electrode. A fuel gas and an oxidant gas are respectively supplied to the fuel electrode and the oxidant electrode through these flow paths.

ところが、外部から燃料が供給される燃料電池装置では、燃料(例えば水素)を供給するためのインフラ整備が必要である。また、燃料として比較的入手が容易なメタノールを用いる場合においてもその流通には年月を要するといった問題がある。   However, in a fuel cell device to which fuel is supplied from the outside, infrastructure for supplying fuel (for example, hydrogen) is required. Even when methanol, which is relatively easy to obtain, is used as a fuel, there is a problem that it takes years to circulate.

特開2007−51328号公報(要約)JP 2007-51328 A (summary)

このような問題に対応するためのシステムとして、水との酸化反応により水素を発生し水素との還元反応により再生可能な水素発生部と、前記水素発生部から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部との間で、水素及び水蒸気を含むガスを循環させる構成の2次電池型燃料電池システムが考えられる。   As a system for dealing with such problems, a hydrogen generation unit that generates hydrogen by an oxidation reaction with water and can be regenerated by a reduction reaction with hydrogen, and power generation using hydrogen supplied from the hydrogen generation unit as fuel A gas containing hydrogen and water vapor is circulated between the power generation function for performing the electrolysis and the power generation / electrolysis section having the electrolysis function for electrolyzing water for generating hydrogen to be supplied to the hydrogen generation unit. A secondary battery type fuel cell system is conceivable.

このような構成の2次電池型燃料電池システムは、発電時に前記発電・電気分解部が水素を消費して水蒸気を発生させ、充電時に前記発電・電気分解部が水蒸気を消費して水素を発生させる。したがって、発電時に前記発電・電気分解部に供給される水素が少ないと、発電効率が低下し、充電時に前記発電・電気分解部に供給される水蒸気が少ないと、充電効率が低下する。   In such a secondary battery type fuel cell system, the power generation / electrolysis unit consumes hydrogen to generate water vapor during power generation, and the power generation / electrolysis unit consumes water vapor to generate hydrogen during charging. Let Therefore, if the amount of hydrogen supplied to the power generation / electrolysis unit during power generation is small, the power generation efficiency decreases. If the amount of water vapor supplied to the power generation / electrolysis unit during charging is small, the charging efficiency decreases.

前記水素発生部から前記発電・電気分解部に供給されるガスは水素ガスと水蒸気ガスとの混合ガスであるが、当該混合ガスにおいては水蒸気ガスの占める割合が小さい。このため、上記構成の2次電池型燃料電池システムでは、充電時に前記発電・電気分解部に供給される水蒸気が少ない状態になり充電効率が低下する傾向にある。   The gas supplied from the hydrogen generation unit to the power generation / electrolysis unit is a mixed gas of hydrogen gas and water vapor gas, but the proportion of the water vapor gas is small in the mixed gas. For this reason, in the secondary battery type fuel cell system configured as described above, the amount of water vapor supplied to the power generation / electrolysis unit during charging tends to be small, and the charging efficiency tends to decrease.

なお、特許文献1には、固体酸化物型燃料電池と高温水蒸気電解装置(固体酸化物型燃料電池と同様の構造)とを備える水素製造装置が開示されているが、高温水蒸気電解装置のカソード室に供給される水蒸気が少ない状態になった場合の対策は考慮されていない。   Patent Document 1 discloses a hydrogen production apparatus including a solid oxide fuel cell and a high-temperature steam electrolyzer (a structure similar to that of a solid oxide fuel cell). No countermeasure is taken into account when the amount of water vapor supplied to the chamber is low.

本発明は、上記の状況に鑑み、充電時に充電効率の低下を抑えることができる2次電池型燃料電池システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell system that can suppress a decrease in charging efficiency during charging.

上記目的を達成するために本発明に係る2次電池型燃料電池システムは、水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生部と、前記水素発生部から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記水素発生部と前記発電・電気分解部との間で水素及び水蒸気を含むガスを循環させる2次電池型燃料電池システムであって、前記2次電池型燃料電池システムの充電時に、前記発電・電気分解部の電気分解を行う部分の温度を制御する温度制御部を備える構成とする。   In order to achieve the above object, a secondary battery type fuel cell system according to the present invention includes a hydrogen generation unit that generates hydrogen by an oxidation reaction with water and can be regenerated by a reduction reaction with hydrogen. A power generation / electrolysis unit having a power generation function for generating electricity using hydrogen supplied as fuel and an electrolysis function for electrolyzing water for generating hydrogen to be supplied to the hydrogen generation unit, the hydrogen generation A secondary battery type fuel cell system in which a gas containing hydrogen and water vapor is circulated between a power generation unit and the power generation / electrolysis unit, wherein the power generation / electrolysis unit is charged when the secondary battery type fuel cell system is charged The temperature control unit that controls the temperature of the portion that performs the electrolysis is provided.

このような構成によると、システムの充電時に発電・電気分解部の電気分解を行う部分の温度を上げることで、システムの充電時に電気分解反応で消費される水蒸気ガスを発電・電気分解部の電気分解を行う部分にスムーズに供給することが可能となるので、発電・電気分解部の電気分解効率ひいてはシステムの充電効率が低下することを抑えることが可能となる。   According to such a configuration, by raising the temperature of the part that performs electrolysis of the power generation / electrolysis unit when the system is charged, the steam gas consumed in the electrolysis reaction during charging of the system is converted into the electricity of the power generation / electrolysis unit. Since it is possible to supply smoothly to the portion to be disassembled, it is possible to suppress a decrease in the electrolysis efficiency of the power generation / electrolysis portion and hence the charging efficiency of the system.

また、システムの充電時には発電・電気分解部で消費される水蒸気ガスが少ない状態になり、システムの発電時には発電・電気分解部で消費される水素ガスが潤沢な状態になることを考慮すると、前記温度制御部が、前記2次電池型燃料電池システムの発電時に、前記発電・電気分解部の発電を行う部分の温度を制御し、前記2次電池型燃料電池システムの発電時における温度制御の設定温度を、前記2次電池型燃料電池システムの充電時における温度制御の設定温度よりも低くすることが望ましい。   In addition, considering that the water vapor gas consumed in the power generation / electrolysis unit is small when the system is charged and the hydrogen gas consumed in the power generation / electrolysis unit is rich when the system is generating power, A temperature control unit controls the temperature of the power generation / electrolysis unit that generates power during power generation of the secondary battery type fuel cell system, and sets temperature control during power generation of the secondary battery type fuel cell system It is desirable that the temperature be lower than a set temperature for temperature control during charging of the secondary battery type fuel cell system.

また、前記温度制御部が、前記2次電池型燃料電池システムの充電時における温度制御の設定温度を、前記発電・電気分解部の電気分解効率が最良になるような値にすることが望ましい。   In addition, it is preferable that the temperature control unit sets a temperature control setting temperature at the time of charging the secondary battery type fuel cell system to a value that provides the best electrolysis efficiency of the power generation / electrolysis unit.

また、前記温度制御部が、前記2次電池型燃料電池システムの発電時における温度制御の設定温度を、前記発電・電気分解部の発電効率が最良になるような値にすることが望ましい。   In addition, it is preferable that the temperature control unit sets a temperature control setting temperature at the time of power generation of the secondary battery type fuel cell system to a value that provides the best power generation efficiency of the power generation / electrolysis unit.

本発明によると、充電時に充電効率の低下を抑えることができる2次電池型燃料電池システムを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the secondary battery type fuel cell system which can suppress the fall of charging efficiency at the time of charge is realizable.

本発明の一実施形態に係る燃料電池システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a fuel cell system concerning one embodiment of the present invention. 固体酸化物型燃料電池(SOFC)の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a solid oxide fuel cell (SOFC). 水素発生器内の水蒸気分圧比について説明する図である。It is a figure explaining the water vapor partial pressure ratio in a hydrogen generator. 図1を簡略化して本発明の一実施形態に係る2次電池型燃料電池システムの充電動作及び発電動作を説明する図である。FIG. 2 is a diagram for explaining a charging operation and a power generation operation of a secondary battery type fuel cell system according to an embodiment of the present invention by simplifying FIG. 1. 充電時における固体酸化物型燃料電池の電流−電圧特性を示す図である。It is a figure which shows the electric current-voltage characteristic of the solid oxide fuel cell at the time of charge. 充電時における固体酸化物型燃料電池の拡散損失及び電気分解効率を示す図である。It is a figure which shows the diffusion loss and electrolysis efficiency of a solid oxide fuel cell at the time of charge. 発電時における固体酸化物型燃料電池の電流−電圧特性を示す図である。It is a figure which shows the electric current-voltage characteristic of the solid oxide fuel cell at the time of electric power generation. 発電時における固体酸化物型燃料電池の拡散損失及び発電効率を示す図である。It is a figure which shows the diffusion loss and power generation efficiency of a solid oxide fuel cell at the time of electric power generation.

本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described later.

<2次電池型燃料電池システムの構成>
図1は、本発明の一実施形態に係る2次電池型燃料電池システムの全体構成を示す図である。図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、鉄の微粒子圧縮体が収容された水素発生器1を備えている。さらに、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水素発生器1を加熱するヒーター2と、水素発生器1の温度を検出する温度センサ3と、水素発生器1の鉄残量を検出する残量センサ4とを備えている。残量センサ4は、例えば、鉄と酸化鉄の重量差を利用して、水素発生器1の重量変化から水素発生器1の鉄残量を検出するものを用いることができる。
<Configuration of secondary battery type fuel cell system>
FIG. 1 is a diagram showing an overall configuration of a secondary battery type fuel cell system according to an embodiment of the present invention. A secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 includes a hydrogen generator 1 in which an iron fine particle compact is accommodated. Furthermore, the secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 includes a heater 2 that heats the hydrogen generator 1, a temperature sensor 3 that detects the temperature of the hydrogen generator 1, and hydrogen generation. And a remaining amount sensor 4 for detecting the remaining iron amount of the container 1. As the remaining amount sensor 4, for example, a sensor that detects the remaining amount of iron in the hydrogen generator 1 from the change in the weight of the hydrogen generator 1 using the weight difference between iron and iron oxide can be used.

図1に示す本発明の一実施形態に係る2次電池型燃料電池システムは、水素を燃料として発電し水を発生する燃料電池の一つである固体酸化物型燃料電池(SOFC)5と、SOFC5を加熱するヒーター6と、SOFC5の温度を検出する温度センサ7も備えている。水素発生器1は、ガスを循環できるガス循環経路によってSOFC5に接続されている。   A secondary battery type fuel cell system according to an embodiment of the present invention shown in FIG. 1 includes a solid oxide fuel cell (SOFC) 5 that is one of fuel cells that generate water using hydrogen as fuel and generate water; A heater 6 for heating the SOFC 5 and a temperature sensor 7 for detecting the temperature of the SOFC 5 are also provided. The hydrogen generator 1 is connected to the SOFC 5 by a gas circulation path through which gas can be circulated.

上記循環経路には循環器8が設けられている。循環器8は、ブロア又はポンプであって、上記循環経路内のガスを強制循環させる。   A circulator 8 is provided in the circulation path. The circulator 8 is a blower or a pump and forcibly circulates the gas in the circulation path.

コントローラ9は、システム全体の制御を行うものであり、温度センサ3から出力される温度情報及び残量センサ4から出力される残量情報を元に、ヒーター2、循環器8を個別に制御し、水素発生器1の反応条件を設定し、SOFC5に水素を供給してSOFC5に発電動作を行わせ、負荷であるモータ10を駆動させる。   The controller 9 controls the entire system, and individually controls the heater 2 and the circulator 8 based on the temperature information output from the temperature sensor 3 and the remaining amount information output from the remaining amount sensor 4. Then, the reaction conditions of the hydrogen generator 1 are set, hydrogen is supplied to the SOFC 5 to cause the SOFC 5 to perform a power generation operation, and the motor 10 as a load is driven.

また、コントローラ9は、モータ10の回生電力が発生した場合や外部電源入力端子11に外部電源(不図示)からの電力が供給された場合に、SOFC5を電気分解器として作動させ、水素発生器1の再生を行ってシステムの充電を行う。   Further, the controller 9 operates the SOFC 5 as an electrolyzer when a regenerative electric power of the motor 10 is generated or when electric power from an external power source (not shown) is supplied to the external power input terminal 11, and a hydrogen generator 1 is played to charge the system.

さらに、コントローラ9は、温度センサ7から出力される温度情報を元に、ヒーター6の制御も行っている。   Furthermore, the controller 9 also controls the heater 6 based on the temperature information output from the temperature sensor 7.

コントローラ9に接続されているリチウムイオン2次電池12は、起動時にヒーター2やヒーター6等を動作させるための電力を供給するものであって、SOFC5の発電又は外部電源入力端子11に外部電源(不図示)からの電力により再充電可能である。   The lithium ion secondary battery 12 connected to the controller 9 supplies power for operating the heater 2, the heater 6 and the like at the time of start-up. It can be recharged with electric power from (not shown).

<SOFCの構成及び動作>
SOFC5は、図2に示す通り、O2−を透過する固体電解質13を挟み、両側にそれぞれ酸化剤極14と燃料極15が形成されている3層構造をなしている。SOFC5では、発電動作時に、燃料極15において下記の(1)式の反応が起こる。
+O2−→HO+2e …(1)
<Configuration and operation of SOFC>
As shown in FIG. 2, the SOFC 5 has a three-layer structure in which a solid electrolyte 13 that transmits O 2− is sandwiched and an oxidant electrode 14 and a fuel electrode 15 are formed on both sides. In the SOFC 5, the following reaction (1) occurs in the fuel electrode 15 during the power generation operation.
H 2 + O 2− → H 2 O + 2e (1)

上記の(1)式の反応によって生成された電子は、負荷であるモータ10を通って、酸化剤極14に到達し、酸化剤極14において下記の(2)式の反応が起こる。
1/2O+2e→O2− …(2)
Electrons generated by the reaction of the above formula (1) pass through the motor 10 as a load and reach the oxidant electrode 14, and the reaction of the following formula (2) occurs at the oxidant electrode 14.
1 / 2O 2 + 2e → O 2− (2)

そして、上記の(2)式の反応によって生成された酸素イオンは、固体電解質13を通って、燃料極15に到達する。上記の一連の反応を繰り返すことにより、SOFC5が発電動作を行うことになる。また、上記の(1)式から分かるように、発電動作時には、燃料極15側においてHが消費されHOが生成されることになる。 The oxygen ions generated by the reaction of the above formula (2) reach the fuel electrode 15 through the solid electrolyte 13. By repeating the above series of reactions, the SOFC 5 performs a power generation operation. Further, as can be seen from the above equation (1), during the power generation operation, H 2 is consumed and H 2 O is generated on the fuel electrode 15 side.

一方、SOFC5では、電気分解器として作動する場合、上記の(1)式及び(2)式の逆反応が起こり、燃料極15側においてHOが消費されHが生成される。 On the other hand, when the SOFC 5 operates as an electrolyzer, the reverse reactions of the above formulas (1) and (2) occur, and H 2 O is consumed and H 2 is generated on the fuel electrode 15 side.

上記のように燃料極15側で消費されたり生成されたりするガス(水素ガス、水蒸気ガス)が、SOFC5の燃料極15側と水素発生器1との間を循環する。   As described above, the gas (hydrogen gas, water vapor gas) consumed or generated on the fuel electrode 15 side circulates between the fuel electrode 15 side of the SOFC 5 and the hydrogen generator 1.

<水素発生器での反応>
水素発生器1は、鉄の微粒子圧縮体を収容しているので、下記の(3)式に示す酸化反応により、水素を発生することができる。
3Fe+4HO→Fe+4H …(3)
<Reaction in hydrogen generator>
Since the hydrogen generator 1 contains an iron fine particle compact, hydrogen can be generated by an oxidation reaction represented by the following formula (3).
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (3)

上記の(3)式に示す鉄の酸化反応が進むと、鉄から酸化鉄への変化が進んで鉄残量が減っていくが、上記の(3)式の逆反応(還元反応)により、水素発生器1を再生することができ、システムを充電することができる。   When the oxidation reaction of iron shown in the above formula (3) proceeds, the change from iron to iron oxide proceeds and the remaining amount of iron decreases, but by the reverse reaction (reduction reaction) of the above formula (3), The hydrogen generator 1 can be regenerated and the system can be charged.

<水素発生器内の水蒸気分圧比>
図3は、水素発生器1内の水蒸気分圧比について説明する図である。水素発生器1内に鉄(Fe)と酸化鉄(Fe)が混在する状態で、水素発生器1内に水素ガスと水蒸気ガスの混合気体が存在するとき、鉄の酸化反応の反応速度と酸化鉄の還元反応の反応速度とが一致する平衡状態で安定する。図3に示す曲線はこの平衡状態を示している。したがって、平衡状態における水蒸気分圧比は、高温になるほど高くなる。例えば、300℃の温度条件下で水蒸気分圧比10%の混合ガスを水素発生器1に投入すると、平衡状態での水蒸気分圧比は4%(<10%)であるので、水蒸気を消費する鉄の酸化反応が優勢になり、最終的に水蒸気分圧比4%で安定し、見かけ上鉄の酸化反応が停止したようになる。これに対して、400℃の温度条件下で水蒸気分圧比4%の混合ガスを水素発生器1に投入すると、平衡状態での水蒸気分圧比は10%(>4%)であるので、水蒸気を生成する酸化鉄の還元反応が優勢になり、最終的に水蒸気分圧比10%で安定し、見かけ上酸化鉄の還元反応が停止したようになる。
<Water vapor partial pressure ratio in the hydrogen generator>
FIG. 3 is a diagram for explaining the steam partial pressure ratio in the hydrogen generator 1. When there is a mixed gas of hydrogen gas and water vapor gas in the hydrogen generator 1 in a state where iron (Fe) and iron oxide (Fe 3 O 4 ) are mixed in the hydrogen generator 1, the reaction of the oxidation reaction of iron It stabilizes in an equilibrium state where the rate and the rate of reduction of iron oxide coincide. The curve shown in FIG. 3 shows this equilibrium state. Therefore, the water vapor partial pressure ratio in the equilibrium state becomes higher as the temperature becomes higher. For example, when a mixed gas having a water vapor partial pressure ratio of 10% is introduced into the hydrogen generator 1 under a temperature condition of 300 ° C., the water vapor partial pressure ratio in an equilibrium state is 4% (<10%). The oxidation reaction becomes dominant and finally stabilizes at a water vapor partial pressure ratio of 4%, and the oxidation reaction of iron apparently stops. On the other hand, when a mixed gas having a water vapor partial pressure ratio of 4% is introduced into the hydrogen generator 1 under a temperature condition of 400 ° C., the water vapor partial pressure ratio in the equilibrium state is 10% (> 4%). The reduction reaction of the produced iron oxide becomes dominant and finally stabilizes at a water vapor partial pressure ratio of 10%, and the reduction reaction of iron oxide apparently stops.

<2次電池型燃料電池システムの動作>
次に、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムの動作について図4を参照して説明する。なお、図4は、図1を簡略化して本発明の一実施形態に係る2次電池型燃料電池システムの充電動作及び発電動作を説明する図である。
<Operation of the secondary battery type fuel cell system>
Next, the operation of the secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1 will be described with reference to FIG. FIG. 4 is a diagram for explaining the charging operation and the power generation operation of the secondary battery type fuel cell system according to the embodiment of the present invention by simplifying FIG. 1.

まず、充電動作について説明する。水素発生器1を再生してシステムの充電を行う場合、コントローラ9は、水素発生器1をヒーター2によって加熱(ここでは400℃)し、循環器8によってガスを循環させる。そして、SOFC5を電気分解器として作動させる。この場合、SOFC5では上記の(1)式の逆反応が起こり、SOFC5は循環経路内にある水蒸気ガスを消費し水素ガスを発生させる。ここで、水素発生器1で発生した水蒸気の分圧比が400℃での平衡水蒸気分圧比の10%よりも低ければ酸化鉄の還元反応が優勢になり、水素発生器1内で水素ガスが水蒸気ガスに置き換わり、水蒸気分圧比10%、水素分圧比90%の状態に戻ろうとする。この水蒸気ガスが、再びSOFC5で消費され水素ガスが発生するというサイクルで水素発生器1が再生されシステムの充電が継続される。   First, the charging operation will be described. When the system is charged by regenerating the hydrogen generator 1, the controller 9 heats the hydrogen generator 1 with the heater 2 (here, 400 ° C.) and circulates the gas with the circulator 8. Then, the SOFC 5 is operated as an electrolyzer. In this case, the reverse reaction of the above formula (1) occurs in SOFC5, and SOFC5 consumes the water vapor gas in the circulation path and generates hydrogen gas. Here, if the partial pressure ratio of water vapor generated in the hydrogen generator 1 is lower than 10% of the equilibrium water vapor partial pressure ratio at 400 ° C., the reduction reaction of iron oxide becomes dominant, and the hydrogen gas is converted into water vapor in the hydrogen generator 1. It replaces with gas and tries to return to a state where the partial pressure ratio of water vapor is 10% and the partial pressure ratio of hydrogen is 90%. The hydrogen generator 1 is regenerated in a cycle in which the water vapor gas is consumed again by the SOFC 5 and hydrogen gas is generated, and charging of the system is continued.

しかしながら、SOFC5を電気分解器として作動させる場合、図5に示すように、SOFC5に供給される水蒸気ガスが少ないほど、SOFC5において発生する損失(拡散損失)が大きくなり、SOFC5の電気分解効率が低下する。   However, when the SOFC 5 is operated as an electrolyzer, the loss (diffusion loss) generated in the SOFC 5 increases as the water vapor gas supplied to the SOFC 5 decreases, and the electrolysis efficiency of the SOFC 5 decreases. To do.

図5において、符号IVは水蒸気分圧比X%、水素分圧比(100−X)%の混合ガスがSOFC5に供給されSOFC5が所定の温度である場合のSOFC5(電気分解器)の電流−電圧特性を、符号IVは水蒸気分圧比Y%(ただし、Y>X)、水素分圧比(100−Y)%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度である場合のSOFC5(電気分解器)の電流−電圧特性を、符号IVはSOFC5が前記所定の温度である場合の理論値でのSOFC5(電気分解器)の電流−電圧特性をそれぞれ示している。また、水蒸気分圧比X%、水素分圧比(100−X)%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度でありSOFC5の電流の値がI1である場合のSOFC5(電気分解器)で発生する損失はΔV×I1となり、水蒸気分圧比Y%(ただし、Y>X)、水素分圧比(100−Y)%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度でありSOFC5の電流の値がI1である場合のSOFC5(電気分解器)で発生する損失はΔV×I1となる。 5, reference numeral IV P water vapor partial pressure ratio X%, current SOFC5 when SOFC5 hydrogen partial pressure ratio (100-X)% of the mixed gas is supplied to SOFC5 is a predetermined temperature (electrolyzer) - Voltage characteristics, reference numeral IV R is a water vapor partial pressure ratio Y% (however, Y> X), SOFC5 (electricity when SOFC5 hydrogen partial pressure ratio (100-Y)% of the mixed gas is supplied to SOFC5 is said predetermined temperature The symbol IV indicates the current-voltage characteristic of the SOFC 5 (electrolyzer) at the theoretical value when the SOFC 5 is at the predetermined temperature. Further, a SOFC 5 (electrolyzer) in which a mixed gas having a water vapor partial pressure ratio X% and a hydrogen partial pressure ratio (100-X)% is supplied to the SOFC 5 and the SOFC 5 is at the predetermined temperature and the current value of the SOFC 5 is I1. Loss is ΔV P × I1, and a mixed gas having a water vapor partial pressure ratio Y% (where Y> X) and a hydrogen partial pressure ratio (100−Y)% is supplied to the SOFC 5 so that the SOFC 5 is at the predetermined temperature and the SOFC 5 The loss generated in the SOFC 5 (electrolyzer) when the current value of I is I1 is ΔV R × I1.

ここで、SOFC5の外部からSOFC5に投入するエネルギΔE(以下、「投入エネルギΔE」と略す)を大きくし、投入エネルギΔEの一部が供給されるヒーター6の発熱量を増加させ、SOFC5の反応温度を上げることで、電気分解反応で消費される水蒸気ガスをSOFC5にスムーズに供給することができ、SOFC5において発生する損失(拡散損失)を小さくすることができる(図6参照)。その一方で、ヒーター6での消費電力もSOFC5の電気分解にとっては損失の一つとなるので、ヒーター6での消費電力を大きくし過ぎても、SOFC5の電気分解効率が低下する(下記関係式及び図6参照)。なお、図6はSOFC5に供給される混合ガスの水蒸気分圧比が所定値であり、SOFC5の電流が所定値である場合の投入エネルギ−拡散損失特性及び投入エネルギ−電気分解効率特性を示している。
SOFC5の電気分解効率
=水素の化学エネルギ/ΔE
=水素の化学エネルギ/(水素の化学エネルギ+拡散損失+ヒーター6での消費電力)
Here, the energy ΔE (hereinafter abbreviated as “input energy ΔE”) input to the SOFC 5 from the outside of the SOFC 5 is increased, the amount of heat generated by the heater 6 to which a part of the input energy ΔE is supplied is increased, and the reaction of the SOFC 5 By raising the temperature, the water vapor gas consumed in the electrolysis reaction can be smoothly supplied to the SOFC 5, and the loss (diffusion loss) generated in the SOFC 5 can be reduced (see FIG. 6). On the other hand, since the power consumption in the heater 6 is one of the losses for the electrolysis of the SOFC 5, even if the power consumption in the heater 6 is increased too much, the electrolysis efficiency of the SOFC 5 decreases (the following relational expression and (See FIG. 6). FIG. 6 shows the input energy-diffusion loss characteristic and the input energy-electrolysis efficiency characteristic when the water vapor partial pressure ratio of the mixed gas supplied to the SOFC 5 is a predetermined value and the current of the SOFC 5 is a predetermined value. .
Electrolysis efficiency of SOFC5 = Chemical energy of hydrogen / ΔE
= Chemical energy of hydrogen / (chemical energy of hydrogen + diffusion loss + power consumption in heater 6)

そこで、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムでは、システムの充電時に、コントローラ9の制御により、投入エネルギΔEをSOFC5の電気分解効率が最良になる値ΔEBESTにし、SOFC5の温度をSOFC5の電気分解効率が最良になるような値にしている。このように、システムの充電時にSOFC5の温度制御を行うことで、SOFC5の電気分解効率ひいてはシステムの充電効率が低下することを抑えることが可能となる。 Therefore, in the secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1, the input energy ΔE is set to a value ΔE BEST at which the electrolysis efficiency of the SOFC 5 is optimal under the control of the controller 9 when the system is charged. The temperature of the SOFC 5 is set to a value that provides the best electrolysis efficiency of the SOFC 5. As described above, by controlling the temperature of the SOFC 5 when the system is charged, it is possible to suppress a decrease in the electrolysis efficiency of the SOFC 5 and thus the charging efficiency of the system.

なお、システムの充電時における水素発生器1の温度設定を複数設ける場合には、SOFC5に供給される混合ガスの水蒸気分圧比が水素発生器1の温度によって異なるため、SOFC5の電気分解効率が最良になるSOFC5の温度も水素発生器1の温度によって異なる。したがって、システムの充電時における水素発生器1の温度設定を複数設ける場合には、例えば、システムの充電時にコントローラ9が水素発生器1の温度制御とSOFC5の温度制御とを関連付けて行うようにすればよい。   In addition, when the temperature setting of the hydrogen generator 1 at the time of charge of a system is provided, since the water vapor partial pressure ratio of the mixed gas supplied to the SOFC 5 varies depending on the temperature of the hydrogen generator 1, the electrolysis efficiency of the SOFC 5 is the best. The temperature of SOFC 5 to be different also depends on the temperature of the hydrogen generator 1. Therefore, when a plurality of temperature settings of the hydrogen generator 1 are provided at the time of charging the system, for example, the controller 9 performs the temperature control of the hydrogen generator 1 and the temperature control of the SOFC 5 in association with the charging of the system. That's fine.

次に、発電動作について説明する。水素発生器1に水素を発生させて発電を行う場合、コントローラ9は、水素発生器1をヒーター2によって加熱(ここでは400℃)し、循環器8によってガスを循環させる。そして、SOFC5と負荷(図1に示すモータ10)とを電気的に接続することでSOFC5に発電動作を行わせる。この場合、SOFC5では上記の(1)式の反応が起こり、SOFC5は循環経路内にある水素ガスを消費し水蒸気ガスを発生させる。ここで、水素発生器1で発生した水蒸気の分圧比が400℃での平衡水蒸気分圧比の10%よりも高ければ鉄の酸化反応が優勢になり、水素発生器1内で水蒸気ガスが水素ガスに置き換わり、水蒸気分圧比10%、水素分圧比90%の状態に戻ろうとする。この水素ガスが、再びSOFC5で消費され水蒸気ガスが発生するというサイクルでシステムの発電が継続される。   Next, the power generation operation will be described. When generating electricity by generating hydrogen in the hydrogen generator 1, the controller 9 heats the hydrogen generator 1 with the heater 2 (here, 400 ° C.) and circulates the gas with the circulator 8. Then, the SOFC 5 and the load (the motor 10 shown in FIG. 1) are electrically connected to cause the SOFC 5 to perform a power generation operation. In this case, the reaction of the above formula (1) occurs in SOFC5, and SOFC5 consumes hydrogen gas in the circulation path and generates water vapor gas. Here, if the partial pressure ratio of water vapor generated in the hydrogen generator 1 is higher than 10% of the equilibrium water vapor partial pressure ratio at 400 ° C., the oxidation reaction of iron becomes dominant, and the water vapor gas is hydrogen gas in the hydrogen generator 1. To replace the water vapor partial pressure ratio of 10% and the hydrogen partial pressure ratio of 90%. The power generation of the system is continued in a cycle in which this hydrogen gas is consumed again by the SOFC 5 and steam gas is generated.

しかしながら、SOFC5に発電動作を行わせる場合、図7に示すように、SOFC5に供給される水素ガスが少ないほど、SOFC5において発生する損失(拡散損失)が大きくなり、SOFC5の発電効率が低下する。   However, when the SOFC 5 is caused to perform a power generation operation, as the hydrogen gas supplied to the SOFC 5 decreases, the loss (diffusion loss) generated in the SOFC 5 increases and the power generation efficiency of the SOFC 5 decreases as shown in FIG.

図7において、符号IV’は水蒸気分圧比(100−X)%、水素分圧比X%の混合ガスがSOFC5に供給されSOFC5が所定の温度である場合のSOFC5の電流−電圧特性を、符号IV’は水蒸気分圧比(100−Y)%(ただし、Y>X)、水素分圧比Y%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度である場合のSOFC5の電流−電圧特性を、符号IV’はSOFC5が前記所定の温度である場合の理論値でのSOFC5の電流−電圧特性をそれぞれ示している。また、水蒸気分圧比(100−X)%、水素分圧比X%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度でありSOFC5の電流の値がI2である場合のSOFC5で発生する損失はΔV’×I2となり、水蒸気分圧比(100−Y)%(ただし、Y>X)、水素分圧比Y%の混合ガスがSOFC5に供給されSOFC5が前記所定の温度でありSOFC5の電流の値がI2である場合のSOFC5で発生する損失はΔV’×I2となる。 In FIG. 7, the symbol IV P ′ represents the current-voltage characteristics of the SOFC 5 when a mixed gas having a water vapor partial pressure ratio (100-X)% and a hydrogen partial pressure ratio X% is supplied to the SOFC 5 and the SOFC 5 is at a predetermined temperature. IV R ′ is a current-voltage characteristic of the SOFC 5 when a mixed gas having a water vapor partial pressure ratio (100−Y)% (Y> X) and a hydrogen partial pressure ratio Y% is supplied to the SOFC 5 and the SOFC 5 is at the predetermined temperature. Symbol IV ′ indicates the current-voltage characteristics of the SOFC 5 at theoretical values when the SOFC 5 is at the predetermined temperature. Further, when a mixed gas having a water vapor partial pressure ratio (100-X)% and a hydrogen partial pressure ratio X% is supplied to the SOFC 5 and the SOFC 5 is at the predetermined temperature and the current value of the SOFC 5 is I2, the loss generated in the SOFC 5 is ΔV P ′ × I 2, a mixed gas having a water vapor partial pressure ratio (100−Y)% (where Y> X) and a hydrogen partial pressure ratio Y% is supplied to the SOFC 5, and the SOFC 5 is the predetermined temperature and the current value of the SOFC 5 The loss generated in the SOFC 5 when I is I2 is ΔV R ′ × I2.

ここで、投入エネルギΔEを大きくし、投入エネルギΔEの一部が供給されるヒーター6の発熱量を増加させ、SOFC5の反応温度を上げることで、水蒸気生成反応で消費される水素ガスをSOFC5にスムーズに供給することができ、SOFC5において発生する損失(拡散損失)を小さくすることができる(図8参照)。その一方で、ヒーター6での消費電力もSOFC5の発電にとっては損失の一つとなるので、ヒーター6での消費電力を大きくし過ぎても、SOFC5の発電効率が低下する(下記関係式及び図8参照)。なお、図8はSOFC5に供給される混合ガスの水素分圧比が所定値であり、SOFC5の電流が所定値である場合の投入エネルギ−拡散損失特性及び投入エネルギ−発電効率特性を示している。
SOFC5の発電効率
=水蒸気の化学エネルギ/ΔE
=水蒸気の化学エネルギ/(水蒸気の化学エネルギ+拡散損失+ヒーター6での消費電力)
Here, by increasing the input energy ΔE, increasing the calorific value of the heater 6 to which a part of the input energy ΔE is supplied, and raising the reaction temperature of the SOFC 5, the hydrogen gas consumed in the steam generation reaction is supplied to the SOFC 5. It can be supplied smoothly and the loss (diffusion loss) generated in the SOFC 5 can be reduced (see FIG. 8). On the other hand, since the power consumption of the heater 6 is one of the losses for the power generation of the SOFC 5, even if the power consumption of the heater 6 is increased too much, the power generation efficiency of the SOFC 5 decreases (the following relational expression and FIG. 8). reference). FIG. 8 shows the input energy-diffusion loss characteristic and the input energy-power generation efficiency characteristic when the hydrogen partial pressure ratio of the mixed gas supplied to the SOFC 5 is a predetermined value and the current of the SOFC 5 is a predetermined value.
Power generation efficiency of SOFC5 = Chemical energy of water vapor / ΔE
= Chemical energy of water vapor / (Chemical energy of water vapor + Diffusion loss + Power consumption in heater 6)

そこで、図1に示す本発明の一実施形態に係る2次電池型燃料電池システムでは、システムの発電時に、コントローラ9の制御により、投入エネルギΔEをSOFC5の発電効率が最良になる値ΔEBEST’にし、SOFC5の温度をSOFC5の発電効率が最良になるような値にしている。このように、システムの発電時にSOFC5の温度制御を行うことで、SOFC5の発電効率ひいてはシステムの発電効率が低下することを抑えることが可能となる。 Therefore, in the secondary battery type fuel cell system according to one embodiment of the present invention shown in FIG. 1, the input energy ΔE is set to the value ΔE BEST ′ at which the power generation efficiency of the SOFC 5 becomes the best by the control of the controller 9 during power generation of the system. Thus, the temperature of the SOFC 5 is set to a value such that the power generation efficiency of the SOFC 5 is the best. As described above, by controlling the temperature of the SOFC 5 during power generation of the system, it is possible to suppress a decrease in the power generation efficiency of the SOFC 5 and thus the power generation efficiency of the system.

水素発生器1からSOFC5に供給される混合ガスにおいては水蒸気ガスの占める割合が小さいので、システムの充電時にはSOFC5で消費される水蒸気ガスが少ない状態になり、システムの発電時にはSOFC5で消費される水素ガスが潤沢な状態になる。したがって、上述したシステムの充電時及びシステムの発電時にそれぞれ行われるSOFC5の温度制御によって、システムの発電時におけるSOFC5の温度はシステムの充電時におけるSOFC5の温度よりも低く設定される。   In the mixed gas supplied from the hydrogen generator 1 to the SOFC 5, the proportion of the water vapor gas is small, so that the water vapor gas consumed by the SOFC 5 is small when the system is charged, and the hydrogen consumed by the SOFC 5 is generated during power generation of the system. The gas becomes rich. Therefore, the temperature of the SOFC 5 at the time of system power generation is set lower than the temperature of the SOFC 5 at the time of system charge by the temperature control of the SOFC 5 performed at the time of system charging and at the time of system power generation.

なお、システムの発電時における水素発生器1の温度設定を複数設ける場合には、SOFC5に供給される混合ガスの水素分圧比が水素発生器1の温度によって異なるため、SOFC5の発電効率が最良になるSOFC5の温度も水素発生器1の温度によって異なる。したがって、システムの発電時における水素発生器1の温度設定を複数設ける場合には、例えば、システムの発電時にコントローラ9が水素発生器1の温度制御とSOFC5の温度制御とを関連付けて行うようにすればよい。   In addition, when providing the temperature setting of the hydrogen generator 1 at the time of the power generation of a system, since the hydrogen partial pressure ratio of the mixed gas supplied to SOFC5 changes with the temperature of the hydrogen generator 1, the power generation efficiency of SOFC5 is the best. The temperature of the SOFC 5 to be changed also depends on the temperature of the hydrogen generator 1. Accordingly, when providing a plurality of temperature settings for the hydrogen generator 1 during power generation of the system, for example, the controller 9 may perform the temperature control of the hydrogen generator 1 and the temperature control of the SOFC 5 in association with the power generation of the system. That's fine.

<変形例>
上述した実施形態では、1つのSOFC5が発電も水の電気分解も行っているが、水素発生器1が、燃料電池(例えば発電専用のSOFC)と水の電気分解器(例えば水の電気分解専用のSOFC)それぞれにガス循環経路上並列に接続される構成にしてもよい。このような構成では、システムの充電時には、水の電気分解器を温度制御対象として上述した実施形態のSOFC5の温度制御と同様の制御を行い、システムの発電時には、燃料電池を温度制御対象として上述した実施形態のSOFC5の温度制御と同様の制御を行うとよい。
<Modification>
In the above-described embodiment, one SOFC 5 performs both power generation and water electrolysis. However, the hydrogen generator 1 includes a fuel cell (for example, SOFC dedicated to power generation) and a water electrolyzer (for example, water electrolysis only). The SOFC) may be connected in parallel on the gas circulation path. In such a configuration, at the time of charging the system, the same control as the temperature control of the SOFC 5 of the embodiment described above is performed with the water electrolyzer as the temperature control target, and at the time of power generation of the system, the fuel cell is set as the temperature control target. Control similar to the temperature control of the SOFC 5 of the embodiment may be performed.

1 水素発生器
2、6 ヒーター
3、7 温度センサ
4 残量センサ
5 固体酸化物型燃料電池(SOFC)
8 循環器
9 コントローラ
10 モータ
11 外部電源入力端子
12 リチウムイオン2次電池
13 固体電解質
14 酸化剤極
15 燃料極
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2, 6 Heater 3, 7 Temperature sensor 4 Remaining amount sensor 5 Solid oxide fuel cell (SOFC)
8 circulator 9 controller 10 motor 11 external power input terminal 12 lithium ion secondary battery 13 solid electrolyte 14 oxidizer electrode 15 fuel electrode

Claims (4)

水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生部と、
前記水素発生部から供給される水素を燃料にして発電を行う発電機能及び前記水素発生部に供給する水素を生成するための水の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、
前記水素発生部と前記発電・電気分解部との間で水素及び水蒸気を含むガスを循環させる2次電池型燃料電池システムであって、
前記2次電池型燃料電池システムの充電時に、前記発電・電気分解部の電気分解を行う部分の温度を制御する温度制御部を備えることを特徴とする2次電池型燃料電池システム。
A hydrogen generating part that generates hydrogen by an oxidation reaction with water and can be regenerated by a reduction reaction with hydrogen;
A power generation / electrolysis unit having a power generation function for generating power using hydrogen supplied from the hydrogen generation unit and an electrolysis function for electrolyzing water for generating hydrogen supplied to the hydrogen generation unit; Prepared,
A secondary battery type fuel cell system for circulating a gas containing hydrogen and water vapor between the hydrogen generation unit and the power generation / electrolysis unit,
A secondary battery type fuel cell system comprising: a temperature control unit that controls a temperature of a portion that performs electrolysis of the power generation / electrolysis unit during charging of the secondary battery type fuel cell system.
前記温度制御部が、
前記2次電池型燃料電池システムの発電時に、前記発電・電気分解部の発電を行う部分の温度を制御し、
前記2次電池型燃料電池システムの発電時における温度制御の設定温度を、前記2次電池型燃料電池システムの充電時における温度制御の設定温度よりも低くしていることを特徴とする請求項1に記載の2次電池型燃料電池システム。
The temperature controller is
During power generation of the secondary battery type fuel cell system, the temperature of the portion that generates power in the power generation / electrolysis unit is controlled,
2. The temperature control set temperature during power generation of the secondary battery type fuel cell system is lower than the temperature control set temperature during charging of the secondary battery type fuel cell system. The secondary battery type fuel cell system described in 1.
前記温度制御部が、
前記2次電池型燃料電池システムの充電時における温度制御の設定温度を、前記発電・電気分解部の電気分解効率が最良になるような値にしていることを特徴とする請求項1または請求項2に記載の2次電池型燃料電池システム。
The temperature controller is
The set temperature of temperature control at the time of charging of the secondary battery type fuel cell system is set to a value that provides the best electrolysis efficiency of the power generation / electrolysis unit. 2. A secondary battery type fuel cell system according to 2.
前記温度制御部が、
前記2次電池型燃料電池システムの充電時における温度制御の設定温度を、前記発電・電気分解部の電気分解効率が最良になるような値にし、
前記2次電池型燃料電池システムの発電時における温度制御の設定温度を、前記発電・電気分解部の発電効率が最良になるような値にしていることを特徴とする請求項2に記載の2次電池型燃料電池システム。
The temperature controller is
The set temperature of the temperature control at the time of charging the secondary battery type fuel cell system is set to a value such that the electrolysis efficiency of the power generation / electrolysis unit is optimal,
3. The temperature control set temperature during power generation of the secondary battery type fuel cell system is set to a value that provides the best power generation efficiency of the power generation / electrolysis unit. Secondary battery type fuel cell system.
JP2010278656A 2010-12-14 2010-12-14 Secondary battery type fuel cell system Expired - Fee Related JP5617592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278656A JP5617592B2 (en) 2010-12-14 2010-12-14 Secondary battery type fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278656A JP5617592B2 (en) 2010-12-14 2010-12-14 Secondary battery type fuel cell system

Publications (2)

Publication Number Publication Date
JP2012129031A true JP2012129031A (en) 2012-07-05
JP5617592B2 JP5617592B2 (en) 2014-11-05

Family

ID=46645849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278656A Expired - Fee Related JP5617592B2 (en) 2010-12-14 2010-12-14 Secondary battery type fuel cell system

Country Status (1)

Country Link
JP (1) JP5617592B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045895A1 (en) * 2012-09-18 2014-03-27 コニカミノルタ株式会社 Secondary battery type fuel cell system
WO2014054402A1 (en) * 2012-10-03 2014-04-10 コニカミノルタ株式会社 Secondary battery type fuel cell system
WO2014188904A1 (en) * 2013-05-23 2014-11-27 コニカミノルタ株式会社 Power supply system
WO2014192795A1 (en) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 Secondary-cell-type fuel cell system
JP2015510665A (en) * 2012-01-25 2015-04-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Stack for electrical energy storage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199155A (en) * 1996-01-22 1997-07-31 Sumitomo Metal Ind Ltd Fuel cell
JPH11501448A (en) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション Electrochemical energy conversion storage device
JP2003013269A (en) * 2001-07-03 2003-01-15 Norio Kihara System and method for supplying oxygen
JP2004281393A (en) * 2003-02-25 2004-10-07 Riken Corp Fuel cell power generation system
JP2005044533A (en) * 2003-07-22 2005-02-17 Daihatsu Motor Co Ltd Power generation control method of fuel cell system
JP2006236741A (en) * 2005-02-24 2006-09-07 Sanesu Denki Tsushin Kk Power generation system effectively utilizing natural energy
JP2006299322A (en) * 2005-04-19 2006-11-02 Kobelco Eco-Solutions Co Ltd Water electrolytic device, power plant and power generating system provided with hot water storage tank
JP2007031813A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Water electrolysis system, and method for operating the same
JP2010176939A (en) * 2009-01-28 2010-08-12 Toshiba Corp Power storage system, and operation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501448A (en) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション Electrochemical energy conversion storage device
JPH09199155A (en) * 1996-01-22 1997-07-31 Sumitomo Metal Ind Ltd Fuel cell
JP2003013269A (en) * 2001-07-03 2003-01-15 Norio Kihara System and method for supplying oxygen
JP2004281393A (en) * 2003-02-25 2004-10-07 Riken Corp Fuel cell power generation system
JP2005044533A (en) * 2003-07-22 2005-02-17 Daihatsu Motor Co Ltd Power generation control method of fuel cell system
JP2006236741A (en) * 2005-02-24 2006-09-07 Sanesu Denki Tsushin Kk Power generation system effectively utilizing natural energy
JP2006299322A (en) * 2005-04-19 2006-11-02 Kobelco Eco-Solutions Co Ltd Water electrolytic device, power plant and power generating system provided with hot water storage tank
JP2007031813A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Water electrolysis system, and method for operating the same
JP2010176939A (en) * 2009-01-28 2010-08-12 Toshiba Corp Power storage system, and operation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510665A (en) * 2012-01-25 2015-04-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Stack for electrical energy storage
US9768480B2 (en) 2012-01-25 2017-09-19 Siemens Aktiengesellschaft Stack for an electrical energy accumulator
WO2014045895A1 (en) * 2012-09-18 2014-03-27 コニカミノルタ株式会社 Secondary battery type fuel cell system
WO2014054402A1 (en) * 2012-10-03 2014-04-10 コニカミノルタ株式会社 Secondary battery type fuel cell system
JP5505583B1 (en) * 2012-10-03 2014-05-28 コニカミノルタ株式会社 Secondary battery type fuel cell system
WO2014188904A1 (en) * 2013-05-23 2014-11-27 コニカミノルタ株式会社 Power supply system
WO2014192795A1 (en) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 Secondary-cell-type fuel cell system
JP5679097B1 (en) * 2013-05-29 2015-03-04 コニカミノルタ株式会社 Secondary battery type fuel cell system

Also Published As

Publication number Publication date
JP5617592B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
KR101551085B1 (en) Controlling method of a fuel cell vehicle
JP5617928B2 (en) Secondary battery type fuel cell system
JP2007523443A (en) Fuel cells for hydrogen production, power generation, and co-production
TW200403883A (en) Fuel cell apparatus
US20050214607A1 (en) Polymer electrolyte fuel cell power generation system and stationary co-generation system using the same
JP5640884B2 (en) Secondary battery type fuel cell system
WO2011052283A1 (en) Fuel cell device
JP5617592B2 (en) Secondary battery type fuel cell system
CN111261904A (en) Portable SOFC power generation device and energy management method thereof
US9236627B1 (en) Solid oxide redox flow battery
JP2007059359A (en) Operation control method of solid oxide fuel cell system
WO2014057603A1 (en) Fuel battery system including fuel battery and lead storage battery, and method for charging same
JP2007141744A (en) Fuel cell system
JP5505583B1 (en) Secondary battery type fuel cell system
KR101223555B1 (en) Fuel cell system and driving method for the same
JP3583914B2 (en) Auxiliary power supply for fuel cell
JP5168431B2 (en) Secondary battery type solid oxide fuel cell system
KR101656993B1 (en) Real time load following type fuel cell system and method of controlling the same
JP2012079558A (en) Secondary-battery type fuel cell system
JP5895736B2 (en) Secondary battery type fuel cell system and power supply system including the same
JP5896015B2 (en) Secondary battery type fuel cell system
JP5679097B1 (en) Secondary battery type fuel cell system
JP5494799B2 (en) Fuel cell device
JP2009048841A (en) Initialization method and initialization device of fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees