JP5640298B2 - Magneto-optical flaw detection method and apparatus used therefor - Google Patents

Magneto-optical flaw detection method and apparatus used therefor Download PDF

Info

Publication number
JP5640298B2
JP5640298B2 JP2010191406A JP2010191406A JP5640298B2 JP 5640298 B2 JP5640298 B2 JP 5640298B2 JP 2010191406 A JP2010191406 A JP 2010191406A JP 2010191406 A JP2010191406 A JP 2010191406A JP 5640298 B2 JP5640298 B2 JP 5640298B2
Authority
JP
Japan
Prior art keywords
magneto
optical
inspection object
optical element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010191406A
Other languages
Japanese (ja)
Other versions
JP2012047645A (en
Inventor
勝博 岩崎
勝博 岩崎
清志 榛葉
清志 榛葉
剛一 小林
剛一 小林
浩光 梅澤
浩光 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2010191406A priority Critical patent/JP5640298B2/en
Publication of JP2012047645A publication Critical patent/JP2012047645A/en
Application granted granted Critical
Publication of JP5640298B2 publication Critical patent/JP5640298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気光学膜を用いて円筒状の被検査物の表面欠陥を検出する磁気光学探傷方法及びそれに用いる装置に関するものである。この技術は、例えば電池外装ケースの欠陥検査などに有用である。   The present invention relates to a magneto-optical flaw detection method for detecting a surface defect of a cylindrical inspection object using a magneto-optical film and an apparatus used therefor. This technique is useful, for example, for defect inspection of a battery outer case.

磁性材料からなる円筒状の電池外装ケース(電池缶)の表面欠陥を検出する従来の探傷方法としては、磁気センサを用いる方法あるいはコイルを用いる方法などがある。磁気センサを用いる探傷方法では、磁気センサを電池外装ケースに近接させ、励磁された電池外装ケース表面からの漏洩磁界を測定することにより欠陥を検出する(特許文献1参照)。コイルを用いる方法では、交流電流あるいはパルス電流を流したコイルを電池外装ケースに近接させ、電池外装ケースに存在する欠陥でのインピーダンス変化や電圧変化に基づいて欠陥を判別する(特許文献2参照)。   Conventional flaw detection methods for detecting surface defects of a cylindrical battery outer case (battery can) made of a magnetic material include a method using a magnetic sensor and a method using a coil. In the flaw detection method using a magnetic sensor, a defect is detected by bringing the magnetic sensor close to the battery outer case and measuring the leakage magnetic field from the surface of the excited battery outer case (see Patent Document 1). In the method using a coil, a coil through which an alternating current or a pulse current is passed is brought close to the battery outer case, and the defect is determined based on an impedance change or a voltage change due to a defect present in the battery outer case (see Patent Document 2). .

これらの探傷方法では、磁気センサやコイルを電池外装ケースの側面全体にわたって走査する必要がある。通常、電池外装ケースをその中心軸の回りで回転させ、磁気センサやコイルを回転軸と平行な方向に移動させる。そのため、電池外装ケースを回転保持する機構、及び磁気センサやコイルを電池外装ケースに近接した状態を保持しつつ回転軸と平行方向に移動させる機構などが必要となり、構造が複雑になる。その上、何よりも、磁気センサやコイルを電池外装ケースの側面全体にわたって走査するため、電池外装ケース1個当たりの検査に時間がかかる欠点がある。   In these flaw detection methods, it is necessary to scan the magnetic sensor and the coil over the entire side surface of the battery outer case. Usually, the battery outer case is rotated around its central axis, and the magnetic sensor and the coil are moved in a direction parallel to the rotation axis. Therefore, a mechanism for rotating and holding the battery outer case and a mechanism for moving the magnetic sensor and the coil in a direction parallel to the rotation axis while holding the state close to the battery outer case are required, and the structure becomes complicated. In addition, above all, since the magnetic sensor and the coil are scanned over the entire side surface of the battery outer case, there is a drawback that it takes time to inspect each battery outer case.

ところで、磁性材料の探傷技術として、磁気光学膜を用いる探傷方法が知られている。これは、磁性材料を励磁して材料表面の欠陥近傍に生じる漏洩磁界を磁気光学膜に磁気転写し、磁気光学効果を利用して欠陥を検出する方法である(例えば特許文献3参照)。   Incidentally, a flaw detection method using a magneto-optical film is known as a flaw detection technique for magnetic materials. This is a method of exciting a magnetic material and magnetically transferring a leakage magnetic field generated in the vicinity of a defect on the surface of the material to a magneto-optical film, and detecting the defect using the magneto-optical effect (see, for example, Patent Document 3).

一般的には、透明基板上に磁気光学膜を形成し、その上にスパッタあるいは蒸着により金属反射膜を形成した磁気光学素子を用いる。反射膜を被検査物の表面に対向するように配置し、透明基板側から光を照射し、透明基板及び磁気光学膜を通った光が反射膜で反射され、再び磁気光学膜及び透明基板を通って出射する光を検出する。このとき磁気光学膜には被検査物表面からの漏洩磁界が磁気転写されているので、漏洩磁界の有無で局所的にファラデー回転角が変化し、偏光子と検光子を組み合わせることで、漏洩磁界を2次元の光強度分布として検出できる。そのため、磁気センサやコイルを用いる探傷方法に比べて広いエリアの欠陥の有無を瞬時に観察できる利点があり、広い表面積を有する鋼帯や鋼板の探傷に利用されている。   In general, a magneto-optical element is used in which a magneto-optical film is formed on a transparent substrate and a metal reflective film is formed thereon by sputtering or vapor deposition. The reflective film is arranged so as to face the surface of the object to be inspected, light is irradiated from the transparent substrate side, the light passing through the transparent substrate and the magneto-optical film is reflected by the reflective film, and the magneto-optical film and the transparent substrate are again mounted. Light exiting through is detected. At this time, since the leakage magnetic field from the surface of the object to be inspected is magnetically transferred to the magneto-optical film, the Faraday rotation angle changes locally depending on the presence or absence of the leakage magnetic field. By combining the polarizer and the analyzer, the leakage magnetic field Can be detected as a two-dimensional light intensity distribution. Therefore, compared with the flaw detection method using a magnetic sensor or a coil, there is an advantage that the presence or absence of defects in a wide area can be observed instantaneously, which is used for flaw detection of steel strips and steel plates having a large surface area.

このような磁気光学探傷方法は、被検査物表面の漏洩磁界強度を検出するので、被検査物表面から磁気光学膜までの間隔が大きくなると感度が急激に低下する。そのため、欠陥検出感度を向上させるには、磁気光学膜を被検査物表面の極く近傍で一定の間隔(例えば数十〜百μm程度以下)を保つように配置して観察する必要がある。しかし、被検査物が平板状の場合と異なり電池外装ケースのような円筒状の場合には、その側面が湾曲しているために従来の装置構成では側面全体を検査することはできない。   In such a magneto-optical flaw detection method, the leakage magnetic field strength on the surface of the inspection object is detected. Therefore, when the distance from the surface of the inspection object to the magneto-optical film increases, the sensitivity rapidly decreases. Therefore, in order to improve the defect detection sensitivity, it is necessary to observe the magneto-optical film by arranging it so as to maintain a constant interval (for example, about several tens to one hundred μm or less) in the very vicinity of the surface of the inspection object. However, when the object to be inspected is cylindrical, such as a battery outer case, unlike the case of a flat plate, the entire side surface cannot be inspected with the conventional apparatus configuration because the side surface is curved.

勿論、被検査物表面の傷は、ある程度大きければ肉眼やカメラによっても検査できる。ところが、電池外装ケースはプレス加工で成形されるため、成形直後は表面に油類などが付着しており、洗浄して汚れをきれいに除去しなければカメラなどで検査することはできない。しかしながら製品管理などのため、成形直後に、洗浄することなく汚れたままであっても簡便に且つ迅速に欠陥を検出できる方法の開発が望まれている。   Of course, the surface of the object to be inspected can be inspected with the naked eye or a camera if it is large to some extent. However, since the battery outer case is molded by pressing, oils and the like are adhered to the surface immediately after molding, and it cannot be inspected with a camera or the like unless it is cleaned to remove dirt. However, for product management and the like, there is a demand for development of a method that can detect defects easily and quickly even if it remains dirty without being washed immediately after molding.

特開2006−153856号公報JP 2006-153856 A 特開2009−252644号公報JP 2009-252644 A 特許第2672912号公報Japanese Patent No. 2672912

本発明が解決しようとする課題は、円筒状の被検査物の表面欠陥を、磁気光学膜を用いて容易に且つ効率よく短時間で検出できるようにすることである。   The problem to be solved by the present invention is to make it possible to detect a surface defect of a cylindrical inspection object easily and efficiently in a short time using a magneto-optical film.

本発明は、被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界を、被検査物に近接配置した磁気光学膜に磁気転写し、磁気光学効果を利用して検出する探傷方法において、前記被検査物は円筒状をなし、磁気光学膜の上面に反射膜を設けた磁気光学素子の上部で前記円筒状の被検査物を横方向に転動させることで、前記被検査物の側面を全周にわたって順次前記磁気光学素子に接触させ、それによって前記被検査物側面の漏洩磁界を前記磁気光学膜に順次磁気転写しつつ、前記磁気光学素子の下方から偏光子を通した光を照射し、前記反射膜で反射した光を検光子を通して観察することにより、被検査物の全側面に存在する欠陥部を、前記被検査物の側面全体を展開した2次元の光強度分布として検出するようにしたことを特徴とする磁気光学探傷方法である。 The present invention provides a flaw detection method in which a magnetic field is applied to an inspection object, and a leakage magnetic field generated in a defect portion on the surface of the inspection object is magnetically transferred to a magneto-optical film disposed close to the inspection object and detected using the magneto-optical effect. in the method, the inspection object has a cylindrical shape, in Rukoto is rolled the cylindrical inspection object in the lateral direction at the top of the magneto-optical element having a reflective film on the upper surface of the magneto-optical film, the object to be The side surface of the inspection object is sequentially brought into contact with the magneto-optical element over the entire circumference, whereby the leakage magnetic field on the side surface of the inspection object is sequentially magnetically transferred to the magneto-optical film, and the polarizer is passed from below the magneto-optical element. Two-dimensional light intensity in which the entire side surface of the inspection object is developed by irradiating the reflected light and observing the light reflected by the reflection film through the analyzer, so that the defect portion existing on the entire side surface of the inspection object is developed. The feature is to detect as distribution That is a magneto-optical flaw detection method.

最も単純には、円筒状の被検査物が、磁気光学素子の上面を自重で接触しながら転動するように構成する。あるいは、磁気光学素子を保持部材の凹部に嵌め込んで前記磁気光学素子の上面が保持部材の上面よりも低くなるようにし、円筒状の被検査物が保持部材の上面を自重で接触しながら転動することで、前記被検査物を前記磁気光学素子に対して非接触状態とすることもできる。   Most simply, the cylindrical inspection object is configured to roll while contacting the upper surface of the magneto-optical element with its own weight. Alternatively, the magneto-optical element is fitted in the recess of the holding member so that the upper surface of the magneto-optical element is lower than the upper surface of the holding member, and the cylindrical inspection object rolls while contacting the upper surface of the holding member with its own weight. By moving, the inspection object can be brought into a non-contact state with respect to the magneto-optical element.

最も典型的には、円筒状の被検査物は電池外装ケースである。その底面外側に永久磁石を装着することで被検査物に磁界を印加することができる。   Most typically, the cylindrical inspection object is a battery outer case. By attaching a permanent magnet to the outside of the bottom surface, a magnetic field can be applied to the object to be inspected.

上記のような磁気光学探傷方法を実施する装置としては、磁気光学膜の上面に反射膜を設けた磁気光学素子と、該磁気光学素子の上方に位置し円筒状の被検査物を横方向に搬送する櫛形コンベアと、前記磁気光学素子の下方に位置する光学系とを具備し、前記櫛形コンベアは、円筒状の被検査物が1個ずつ入る溝を複数並設し各溝の深さが被検査物の直径よりも浅い構造であり、前記光学系は、光源からの光が偏光子を通して前記磁気光学素子を照射し、その反射光を検光子を通してCCDカメラで画像化する構成がある。   As an apparatus for performing the above-described magneto-optical flaw detection method, a magneto-optical element having a reflective film provided on the upper surface of the magneto-optical film, and a cylindrical inspection object positioned above the magneto-optical element are arranged in the horizontal direction. A comb conveyor for transporting and an optical system located below the magneto-optical element, wherein the comb conveyor is provided with a plurality of grooves each containing a cylindrical object to be inspected, and the depth of each groove is The optical system has a structure that is shallower than the diameter of an object to be inspected, and the optical system has a configuration in which light from a light source irradiates the magneto-optical element through a polarizer and the reflected light is imaged by a CCD camera through the analyzer.

本発明に係る探傷方法は、磁気光学膜の上面に反射膜を設けた構造の磁気光学素子の上方で円筒状の被検査物を横方向に転動させ、磁気光学素子の下方から観察するように構成しているため、被検査物と磁気光学膜との間隔を常に一定に保ちつつ被検査物が1回転する間に、被検査物側面の欠陥により生じている漏洩磁界を磁気光学膜に磁気転写でき、それによって側面全体を観察することができ、表面欠陥を容易に且つ効率よく短時間で検出できる。   In the flaw detection method according to the present invention, a cylindrical inspection object is rolled laterally above a magneto-optical element having a structure in which a reflective film is provided on the upper surface of the magneto-optical film, and observed from below the magneto-optical element. Therefore, the leakage magnetic field generated by the defect on the side surface of the inspection object is transferred to the magneto-optical film while the inspection object makes one rotation while keeping the distance between the inspection object and the magneto-optical film constant. Magnetic transfer can be performed, whereby the entire side surface can be observed, and surface defects can be detected easily and efficiently in a short time.

本発明では、円筒状の被検査物が、磁気光学素子の上面を接触しながら転動する場合でも、自重で接触しているだけなので、反射膜あるいはその上の保護膜が損傷する恐れは少ない。また、磁気光学素子を保持部材の凹部に嵌め込んで前記磁気光学素子の上面が保持部材の上面よりも低くなるようにすると、円筒状の被検査物が保持部材の上面に自重で接触しながら転動しても、前記被検査物は前記磁気光学素子に対して浮いて非接触の状態となるため、磁気光学素子の耐久性は向上し、長期間にわたる使用が可能となる。   In the present invention, even when the cylindrical inspection object rolls while contacting the upper surface of the magneto-optical element, it is only in contact with its own weight, so that the reflection film or the protective film thereon is less likely to be damaged. . Further, when the magneto-optical element is fitted into the recess of the holding member so that the upper surface of the magneto-optical element is lower than the upper surface of the holding member, the cylindrical object to be inspected is in contact with the upper surface of the holding member by its own weight. Even after rolling, the object to be inspected floats with respect to the magneto-optical element and is in a non-contact state, so that the durability of the magneto-optical element is improved and it can be used for a long time.

円筒状の被検査物が電池外装ケースの場合には、有底構造となるので、その底面外側に厚み方向に着磁した円板状の永久磁石を装着することで、該被検査物に磁界を印加することができる。このようにすると、各被検査物に個別に永久磁石を取り付けることになるので、転動しつつ横方向に搬送させても、その搬送の障害となることもない。また、永久磁石による磁界が磁気光学膜に直接作用する恐れも少ない。   When the cylindrical inspection object is a battery outer case, it has a bottomed structure. Therefore, by attaching a disc-shaped permanent magnet magnetized in the thickness direction on the outside of the bottom surface, a magnetic field is applied to the inspection object. Can be applied. If it does in this way, since a permanent magnet will be individually attached to each to-be-inspected object, even if it conveys it laterally while rolling, it will not become the obstacle of the conveyance. In addition, there is little possibility that a magnetic field generated by a permanent magnet directly acts on the magneto-optical film.

円筒状の被検査物を横方向に搬送するために、被検査物が1個ずつ入る溝を複数並設し各溝の深さが被検査物の直径よりも浅い構造の櫛形コンベアを用いると、被検査物を1個ずつ所定の間隔で磁気光学素子の上部を転動させて観察することができる。   In order to transport a cylindrical inspection object in a horizontal direction, when a comb conveyor having a structure in which a plurality of grooves each containing an inspection object are arranged in parallel and the depth of each groove is shallower than the diameter of the inspection object is used. The inspection object can be observed by rolling the upper part of the magneto-optical element one by one at a predetermined interval.

本発明に係る磁気光学探傷方法の説明図。Explanatory drawing of the magneto-optical flaw detection method which concerns on this invention. その要部の正面図。The front view of the principal part. 本発明で用いる被検査物の搬送方法の一例を示す説明図。Explanatory drawing which shows an example of the conveying method of the to-be-inspected object used by this invention. 磁気光学素子の保持構造と、被検査物と磁気光学素子との位置関係の例を示す拡大図。The enlarged view which shows the example of the positional relationship of a to-be-inspected object and a magneto-optical element, the holding structure of a magneto-optical element.

本発明は、被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界を、被検査物に近接配置した磁気光学膜に磁気転写し、磁気光学効果を利用して検出する磁気光学探傷方法である。本発明で検査の対象とするのは、図1に示すように、円筒状の被検査物10であり、典型的には電池外装ケースである。電池外装ケースは電池缶とも呼ばれ、鉄系の磁性材料(例えばニッケルメッキなどの表面処理を施した薄板鋼板)からなり、有底円筒状をなしている。一端が開口し、他端(底部)は閉塞して平坦面となっており、通常、プレス絞り加工で成形される。そのため、加工の際に各種の欠陥が発生する可能性がある。   The present invention applies a magnetic field to an object to be inspected, magnetically transfers a leakage magnetic field generated in a defect portion on the surface of the object to a magneto-optical film disposed close to the object to be inspected, and detects the magnetic field using the magneto-optical effect. This is an optical flaw detection method. The object to be inspected in the present invention is a cylindrical inspection object 10 as shown in FIG. 1, typically a battery outer case. The battery outer case is also called a battery can and is made of an iron-based magnetic material (for example, a thin steel plate subjected to surface treatment such as nickel plating) and has a bottomed cylindrical shape. One end is open and the other end (bottom) is closed to form a flat surface, which is usually formed by press drawing. Therefore, various defects may occur during processing.

本発明では、この円筒状の被検査物10を、磁気光学素子12の上部で横方向(矢印Aで示す)に転動(回転方向を矢印Bで示す)させて検査する。被検査物10には、その底面外側に、厚み方向に着磁された円板状の永久磁石14を装着することで、磁界が印加される。もし、被検査物10の表面に欠陥が存在すれば、その欠陥の近傍に漏洩磁界の変化が生じる。なお、永久磁石14は直接、各被検査物10に取り付けられているので、磁気光学素子12に永久磁石14による磁界が直接印加される恐れは少ない。   In the present invention, this cylindrical inspection object 10 is inspected by rolling (indicated by arrow B) in the lateral direction (indicated by arrow A) above the magneto-optical element 12. A magnetic field is applied to the object to be inspected 10 by attaching a disk-shaped permanent magnet 14 magnetized in the thickness direction to the outside of the bottom surface. If there is a defect on the surface of the inspection object 10, a change in the leakage magnetic field occurs in the vicinity of the defect. Since the permanent magnets 14 are directly attached to the inspected objects 10, there is little possibility that a magnetic field from the permanent magnets 14 is directly applied to the magneto-optical element 12.

本発明で用いる磁気光学素子12は、磁気光学膜20の上面に反射膜22を設けた構造である。例えば、図2に示すように、透明単結晶基板24上に液相エピタキシャル法などにより鉄ガーネットのような磁気光学膜20を育成し、金属などからなる反射膜22をスパッタあるいは蒸着で形成する。反射膜の上面に更に保護膜を設けてもよい。ここで磁気光学素子12は四角形状であって、その一方の辺(矢印Aと直交する方向の辺)が被検査物10の長さよりやや長く、他方の辺(矢印Aと同じ方向の辺)が被検査物10の全周よりもやや長い寸法とする。被検査物10は、磁気光学素子12の上で、反射膜22に接触しつつ横方向に転がる。それによって、被検査物10は、それが1回転する間、全側面が磁気光学素子12に接触することになり、欠陥により生じる漏洩磁界が2次元平面の磁気光学膜20に磁気転写される。   The magneto-optical element 12 used in the present invention has a structure in which a reflective film 22 is provided on the upper surface of the magneto-optical film 20. For example, as shown in FIG. 2, a magneto-optical film 20 such as iron garnet is grown on a transparent single crystal substrate 24 by a liquid phase epitaxial method or the like, and a reflective film 22 made of metal or the like is formed by sputtering or vapor deposition. A protective film may be further provided on the upper surface of the reflective film. Here, the magneto-optical element 12 has a quadrangular shape, and one side thereof (side in the direction orthogonal to the arrow A) is slightly longer than the length of the inspection object 10 and the other side (side in the same direction as the arrow A). Is slightly longer than the entire circumference of the inspection object 10. The inspection object 10 rolls in the lateral direction on the magneto-optical element 12 while being in contact with the reflective film 22. As a result, the entire surface of the object to be inspected 10 contacts the magneto-optical element 12 during one rotation, and the leakage magnetic field generated by the defect is magnetically transferred to the two-dimensional planar magneto-optical film 20.

光源30からの出射光を、偏光子32を通して直線偏光にし、ビームスプリッタ34で光路を曲げて、磁気光学素子12を下方から照射する。反射膜22で反射した光は、ビームスプリッタ34を透過し、検光子36を通ってCCDカメラ38で観察される。ビームスプリッタに代えてハーフミラーを用いてもよい。このようにして、光源30からの出射光が磁気光学素子12全体を照射し、CCDカメラ38は磁気光学素子12全体を撮影する。   The light emitted from the light source 30 is converted into linearly polarized light through the polarizer 32, the optical path is bent by the beam splitter 34, and the magneto-optical element 12 is irradiated from below. The light reflected by the reflection film 22 passes through the beam splitter 34, passes through the analyzer 36, and is observed by the CCD camera 38. A half mirror may be used instead of the beam splitter. In this way, the light emitted from the light source 30 irradiates the entire magneto-optical element 12, and the CCD camera 38 images the entire magneto-optical element 12.

ここで、磁気光学膜20内の磁化方向は、自然状態で面内方向を向いている。この場合に、直線偏光を磁気光学膜20に照射すると、反射膜22による反射光の偏波面は回転しない。従って、偏光子32と検光子36の透過軸が直交していれば、反射光は検光子36を透過できずCCDカメラ38で撮影した画像は暗くなる(黒色)。もし、磁気光学膜20内の磁化方向が膜面に対して垂直方向を向くと、直線偏光を磁気光学膜20に照射したとき、反射膜22による反射光の偏波面は回転する。従って、偏光子32と検光子36の透過軸が直交していれば、反射光は検光子36を透過しCCDカメラ38で撮影した画像は明るくなる(白色)。   Here, the magnetization direction in the magneto-optical film 20 is in the in-plane direction in a natural state. In this case, when the magneto-optical film 20 is irradiated with linearly polarized light, the polarization plane of the reflected light by the reflective film 22 does not rotate. Therefore, if the transmission axes of the polarizer 32 and the analyzer 36 are orthogonal to each other, the reflected light cannot pass through the analyzer 36 and the image taken by the CCD camera 38 becomes dark (black). If the magnetization direction in the magneto-optical film 20 is perpendicular to the film surface, the polarization plane of the reflected light by the reflection film 22 rotates when the linearly polarized light is applied to the magneto-optical film 20. Therefore, if the transmission axes of the polarizer 32 and the analyzer 36 are orthogonal to each other, the reflected light passes through the analyzer 36 and the image taken by the CCD camera 38 becomes bright (white).

被検査物10が磁気光学素子12の上部で横方向に転動することにより、被検査物10の側面を全周にわたって展開した状態で漏洩磁界が磁気光学膜20に磁気転写される。つまり、被検査物10の側面に欠陥があると漏洩磁界の変化が発生し、被検査物10が転がって欠陥が真下に位置したときに漏洩磁界によって磁気光学膜20の磁化方向が変えられる。欠陥の有無により磁気光学膜20の磁化方向が局所的に異なるので、その箇所では検光子36透過する光の強度に差が生じ、CCDカメラ38で撮影した画像は白く光って見える。例えば、中心軸と平行でない線状傷の場合、被検査物の回転に伴って(言い換えれば時間経過と共に)白い点が斜めに走るような動画が得られる。従って、CCDカメラ38で撮影した画像における明暗の形や程度(2次元の光強度分布)から、欠陥の形状や大きさを判断できる。このようにして、被検査物10が1回転する間に、側面に存在する線状傷やU字傷、あるいは皺、クラックなどの欠陥を2次元画像として検出することができる。   As the inspection object 10 rolls laterally above the magneto-optical element 12, the leakage magnetic field is magnetically transferred to the magneto-optical film 20 with the side surface of the inspection object 10 spread over the entire circumference. That is, if there is a defect on the side surface of the inspection object 10, the leakage magnetic field changes, and when the inspection object 10 rolls and the defect is positioned directly below, the magnetization direction of the magneto-optical film 20 is changed by the leakage magnetic field. Since the magnetization direction of the magneto-optical film 20 is locally different depending on the presence or absence of defects, there is a difference in the intensity of light transmitted through the analyzer 36 at that location, and the image taken by the CCD camera 38 appears to shine white. For example, in the case of a linear scratch that is not parallel to the central axis, a moving image is obtained in which white dots run obliquely with the rotation of the inspection object (in other words, with time). Therefore, the shape and size of the defect can be determined from the shape and degree of light and darkness (two-dimensional light intensity distribution) in the image photographed by the CCD camera 38. In this way, while the inspection object 10 makes one rotation, it is possible to detect a linear scratch or U-shaped scratch on the side surface, or a defect such as a wrinkle or a crack as a two-dimensional image.

このように、電池外装ケースのような円筒状の被検査物10は、磁気光学素子12上に載置されるので、横方向に転がすことにより、1回転する間に側面全体が順次磁気光学素子12に接触する。従って、被検査物10と磁気光学素子12との間隔を常に一定に且つ極めて小さい状態を維持することができる。被検査物10を磁気光学素子12に接触させている場合、反射膜22あるいはそれを覆う保護膜の劣化が懸念されるが、自重で接触しているのみで膜面垂直方向に過大な負荷がかかることはなく、また滑らすのではなく転がすために、磁気光学素子12が劣化する恐れは殆ど無い。更に、被検査物が偏心している場合でも、常に接触した状態を保つので検査することが可能となる。   As described above, the cylindrical inspection object 10 such as the battery outer case is placed on the magneto-optical element 12, so that the entire side surface is sequentially magnetized during one rotation by rolling in the lateral direction. 12 is contacted. Accordingly, it is possible to keep the distance between the object to be inspected 10 and the magneto-optical element 12 constantly constant and extremely small. When the object to be inspected 10 is in contact with the magneto-optical element 12, there is a concern about the deterioration of the reflective film 22 or the protective film covering it, but an excessive load is applied in the direction perpendicular to the film surface only by contact with its own weight. The magneto-optical element 12 is hardly deteriorated because it does not slide and rolls instead of sliding. Furthermore, even when the object to be inspected is eccentric, it can be inspected because it is always kept in contact.

図3は、円筒状の被検査物の搬送方法の一例を示している。ここでは被検査物10は、磁気光学素子12の上方に位置する櫛形コンベア40によって横方向に搬送される。櫛形コンベア40は、円筒状の被検査物10が1個ずつ入る溝42が複数並設され、各溝42の深さが被検査物10の直径よりも浅く、溝42の幅は被検査物10の直径よりも大きい構造である。各溝42に被検査物10を納め、櫛型コンベア40を横方向に移動させる。それによって、被検査物10は溝42内で転がりながら磁気光学素子12上を移動し、下方に位置する光学系で観察される。   FIG. 3 shows an example of a method for conveying a cylindrical inspection object. Here, the inspection object 10 is conveyed in the lateral direction by a comb conveyor 40 positioned above the magneto-optical element 12. The comb-shaped conveyor 40 includes a plurality of grooves 42 in which one cylindrical inspection object 10 is inserted, and the depth of each groove 42 is shallower than the diameter of the inspection object 10. The width of the groove 42 is the inspection object. The structure is larger than 10 diameters. The inspection object 10 is placed in each groove 42, and the comb conveyor 40 is moved in the lateral direction. Accordingly, the inspection object 10 moves on the magneto-optical element 12 while rolling in the groove 42 and is observed by the optical system positioned below.

被検査物10は、磁気光学素子12に直接接触していてもよいが、磁気光学素子12に対して常に極く僅かな一定の隙間が形成されるようにすると、磁気光学素子12の磨耗を防止できる。そのためには、図4に示すように、磁気光学素子12を保持部材50の窪み52に、該磁気光学素子12の上面が保持部材50の上面よりも僅かに低くなるように落とし込んで取り付ければよい。保持部材50は、下側から光が照射できるように中央部に開口を有する枠形状とする。これによって被検査物10が保持部材50上、即ち枠部の上面を転動するように構成され、被検査物10と磁気光学素子12との間隔sを一定に保つことができる。例えば、前記間隔sを20μm程度に設定すれば、被検査物表面からの漏洩磁界強度を殆ど減衰させることなく高感度で検出でき、しかも磁気光学素子の最上層の反射膜(あるいは保護膜)の損傷を防ぐこともできる。   The object to be inspected 10 may be in direct contact with the magneto-optical element 12, but if a very slight constant gap is always formed with respect to the magneto-optical element 12, the magneto-optical element 12 is worn away. Can be prevented. For this purpose, as shown in FIG. 4, the magneto-optical element 12 may be mounted in the recess 52 of the holding member 50 so that the upper surface of the magneto-optical element 12 is slightly lower than the upper surface of the holding member 50. . The holding member 50 has a frame shape having an opening at the center so that light can be irradiated from below. Accordingly, the inspection object 10 is configured to roll on the holding member 50, that is, the upper surface of the frame portion, and the interval s between the inspection object 10 and the magneto-optical element 12 can be kept constant. For example, if the interval s is set to about 20 μm, the leakage magnetic field intensity from the surface of the object to be inspected can be detected with high sensitivity, and the uppermost reflective film (or protective film) of the magneto-optical element can be detected. It can also prevent damage.

このように保持部材50によって磁気光学素子12を低い位置で保持するように構成すると、円筒状の被検査物の外径が軸方向で僅かに変わっているような場合(例えば、電池外装ケースでは電池素子を収容した後にかしめるために開口端近傍部が僅かに大径となっていることがある)でも、保持部材と磁気光学素子の高低差を利用して真っ直ぐに転がるように補正することができる。   When the magneto-optical element 12 is configured to be held at a low position by the holding member 50 as described above, the outer diameter of the cylindrical inspection object is slightly changed in the axial direction (for example, in a battery outer case) Even after the battery element is accommodated, the vicinity of the opening end may be slightly larger in diameter (even if the vicinity of the opening end may be slightly larger in diameter), the correction may be made to roll straight using the difference in height between the holding member and the magneto-optical element. Can do.

700μm厚のSGGG単結晶基板(透明基板)上に、液相エピタキシャル法により2μm厚のBi置換鉄ガーネット膜(磁気光学膜)を育成し、その上に200nm厚のPtスパッタ膜(反射膜)を形成して磁気光学素子とした。電池外装ケースの底面に永久磁石を装着し、磁気光学素子上に乗せ横方向に転動させた。光源には緑色のLEDを用い、偏光子を用いて直線偏光にして、磁気光学素子の下方から照射し、反射光を検光子を通してCCDカメラで受光し、画像を取得した。   A 2 μm thick Bi-substituted iron garnet film (magneto-optic film) is grown on a 700 μm thick SGGG single crystal substrate (transparent substrate) by liquid phase epitaxy, and a 200 nm thick Pt sputtered film (reflective film) is formed thereon. A magneto-optical element was formed. A permanent magnet was mounted on the bottom surface of the battery outer case, placed on the magneto-optical element, and rolled laterally. A green LED was used as the light source, the light was converted into linearly polarized light using a polarizer, irradiated from below the magneto-optical element, and the reflected light was received by the CCD camera through the analyzer to obtain an image.

このような装置構成で、電池外装ケースの表面を観察したところ、幅200μm程度の微小な線状傷であっても確実に検出することができた。   When the surface of the battery outer case was observed with such an apparatus configuration, even a minute linear scratch having a width of about 200 μm could be reliably detected.

10 被検査物
12 磁気光学素子
14 永久磁石
20 磁気光学膜
22 反射膜
30 光源
32 偏光子
34 ビームスプリッタ
36 検光子
38 CCDカメラ
DESCRIPTION OF SYMBOLS 10 Test object 12 Magneto-optical element 14 Permanent magnet 20 Magneto-optical film 22 Reflective film 30 Light source 32 Polarizer 34 Beam splitter 36 Analyzer 38 CCD camera

Claims (4)

被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界を、被検査物に近接配置した磁気光学膜に磁気転写し、磁気光学効果を利用して検出する探傷方法において、
前記被検査物は円筒状をなし、磁気光学膜の上面に反射膜を設けた磁気光学素子の上部で前記円筒状の被検査物を横方向に転動させることで、前記被検査物の側面を全周にわたって順次前記磁気光学素子に接触させ、それによって前記被検査物側面の漏洩磁界を前記磁気光学膜に順次磁気転写しつつ、前記磁気光学素子の下方から偏光子を通した光を照射し、前記反射膜で反射した光を検光子を通して観察することにより、被検査物の全側面に存在する欠陥部を、前記被検査物の側面全体を展開した2次元の光強度分布として検出するようにしたことを特徴とする磁気光学探傷方法。
In a flaw detection method in which a magnetic field is applied to an object to be inspected, and a leakage magnetic field generated in a defect portion on the surface thereof is magnetically transferred to a magneto-optical film disposed close to the object to be inspected, and detected using the magneto-optical effect.
The inspection object has a cylindrical shape, and the cylindrical inspection object is laterally rolled on the top of the magneto-optical element provided with a reflection film on the top surface of the magneto-optical film, thereby side surfaces of the inspection object. Is sequentially contacted with the magneto-optical element over the entire circumference, thereby sequentially transferring the leakage magnetic field on the side surface of the inspection object to the magneto-optical film, and irradiating light from below the magneto-optical element through a polarizer. Then, by observing the light reflected by the reflective film through the analyzer, the defect portion existing on all the side surfaces of the inspection object is detected as a two-dimensional light intensity distribution developed on the entire side surface of the inspection object. A magneto-optical flaw detection method characterized by the above.
円筒状の被検査物が、磁気光学素子の上面を自重で接触しながら転動する請求項1記載の磁気光学探傷方法。   The magneto-optical flaw detection method according to claim 1, wherein the cylindrical inspection object rolls while contacting the upper surface of the magneto-optical element with its own weight. 円筒状の被検査物が電池外装ケースであり、その底面外側に永久磁石を装着することで被検査物に磁界を印加する請求項1又は2記載の磁気光学探傷方法。 3. The magneto-optical flaw detection method according to claim 1, wherein the cylindrical inspection object is a battery outer case, and a magnetic field is applied to the inspection object by mounting a permanent magnet outside the bottom surface. 請求項の磁気光学探傷方法の実施に用いる装置であって、磁気光学膜の上面に反射膜を設けた磁気光学素子と、該磁気光学素子の上方に位置し円筒状の被検査物を横方向に搬送する櫛形コンベアと、前記磁気光学素子の下方に位置する光学系とを具備し、前記櫛形コンベアは、円筒状の被検査物が1個ずつ入る溝を複数並設し各溝の深さが被検査物の直径よりも浅い構造であり、前記光学系は、光源からの光が偏光子を通して前記磁気光学素子を照射し、その反射光を検光子を通してCCDカメラで画像化する構成をなしている磁気光学探傷装置。 An apparatus used for carrying out the magneto-optical flaw detection method according to claim 3 , wherein a magneto-optical element having a reflective film provided on an upper surface of the magneto-optical film, and a cylindrical inspection object positioned above the magneto-optical element are horizontally disposed. A comb conveyor that conveys in a direction and an optical system positioned below the magneto-optical element. The comb conveyor includes a plurality of grooves each containing a cylindrical object to be inspected. The optical system has a configuration in which light from a light source irradiates the magneto-optical element through a polarizer and the reflected light is imaged by a CCD camera through the analyzer. A magneto-optical flaw detector.
JP2010191406A 2010-08-27 2010-08-27 Magneto-optical flaw detection method and apparatus used therefor Expired - Fee Related JP5640298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191406A JP5640298B2 (en) 2010-08-27 2010-08-27 Magneto-optical flaw detection method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191406A JP5640298B2 (en) 2010-08-27 2010-08-27 Magneto-optical flaw detection method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2012047645A JP2012047645A (en) 2012-03-08
JP5640298B2 true JP5640298B2 (en) 2014-12-17

Family

ID=45902692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191406A Expired - Fee Related JP5640298B2 (en) 2010-08-27 2010-08-27 Magneto-optical flaw detection method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP5640298B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629899B2 (en) * 2010-12-08 2014-11-26 Fdk株式会社 Magnetic flaw detection method and apparatus
JP5987610B2 (en) * 2012-09-28 2016-09-07 Jfeスチール株式会社 Steel plate inspection apparatus, steel plate inspection method, and steel plate manufacturing method
CN110530888B (en) * 2019-08-22 2023-02-03 常熟理工学院 Optical detection method for battery pack
GB2613593A (en) * 2021-12-07 2023-06-14 Univ Newcastle Electrochemical device monitoring

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164057A3 (en) * 1984-06-08 1988-05-04 Mecapec S.A. Methods and devices for determining surface defects in a rod-shaped ferromagnetic object
JPH0820420B2 (en) * 1989-02-28 1996-03-04 住友金属工業株式会社 Magneto-optical flaw detection method and apparatus
JPH0740002B2 (en) * 1990-07-03 1995-05-01 東洋製罐株式会社 Inspection method for canned part
JPH06201654A (en) * 1992-12-26 1994-07-22 Sumitomo Metal Ind Ltd Method and apparatus for magneto-optical flaw detection
JPH06273349A (en) * 1993-03-23 1994-09-30 Sumitomo Metal Ind Ltd Flaw decision system
JP3728084B2 (en) * 1998-01-16 2005-12-21 エヌ・ティ・ティ・ファネット・システムズ株式会社 Columnar object appearance inspection apparatus and method
WO2006046578A1 (en) * 2004-10-28 2006-05-04 Toyo Kohan Co., Ltd. Device and method for inspecting scratch on cell external case
JP2006153856A (en) * 2004-10-28 2006-06-15 Toyo Kohan Co Ltd Device and method for inspecting scratch on external case for cell
JP5279017B2 (en) * 2008-12-02 2013-09-04 国立大学法人 東京大学 Imaging apparatus and imaging method

Also Published As

Publication number Publication date
JP2012047645A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US9778202B2 (en) Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample
CA2986537C (en) Method of inspecting a steel strip
JP5640298B2 (en) Magneto-optical flaw detection method and apparatus used therefor
KR101249619B1 (en) Method and apparatus for examining a semiconductor wafer
JP6074908B2 (en) Surface inspection apparatus and defect measurement method
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
FR2548784A1 (en) APPARATUS AND METHOD FOR FORMING IMAGES OF STRAINS OF FERROUS AND NON-FERROUS MATERIALS BY MEANS OF MAGNETO-OPTICAL VISUALIZATION
JP5441214B2 (en) Magneto-optical defect detection method
US8035373B2 (en) Device and method for inspecting scratches on cell external case
JP5629899B2 (en) Magnetic flaw detection method and apparatus
JP2010281772A (en) Defect inspection method mainly concerned with unevenness of sheet-like transparent body
JP2005003691A5 (en)
JPH09178666A (en) Surface inspection device
JP2020106295A (en) Sheet defect inspection device
JPH11183398A (en) Surface flaw inspecting device and method
JPH09178667A (en) Inspection apparatus for surface
JP2016020852A (en) Magnetic detection device
JP2004077426A (en) Defect inspecting method for drive belt
JP2671243B2 (en) Optical magnetic field distribution measuring device
JP2000180379A (en) Surface flaw inspecting apparatus
JP2860336B2 (en) Steel plate magnetic inspection equipment
JPH11183400A (en) Surface flaw inspecting device and method
JP2013221743A (en) Scratch detection sensitivity adjustment method, magnetic particle inspection method, and magnetic particle inspection device in magnetic particle inspection
JP2001066262A (en) Surface scratch marking device, and metal belt with marking and its manufacturing method
JP2009052904A (en) Quality inspection method and device for micro surface defect in magnetic metal zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5640298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees