JP2004077426A - Defect inspecting method for drive belt - Google Patents

Defect inspecting method for drive belt Download PDF

Info

Publication number
JP2004077426A
JP2004077426A JP2002241763A JP2002241763A JP2004077426A JP 2004077426 A JP2004077426 A JP 2004077426A JP 2002241763 A JP2002241763 A JP 2002241763A JP 2002241763 A JP2002241763 A JP 2002241763A JP 2004077426 A JP2004077426 A JP 2004077426A
Authority
JP
Japan
Prior art keywords
belt
face
defect
belt end
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241763A
Other languages
Japanese (ja)
Inventor
Kiyoshi Shimada
島田 清
Suechika Honda
本田 末親
Yasushi Kurita
栗田 保志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002241763A priority Critical patent/JP2004077426A/en
Publication of JP2004077426A publication Critical patent/JP2004077426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspecting method for a drive belt for speedily and accurately inspecting defects on a belt end face. <P>SOLUTION: In a first invention, the belt end face of the belt 1 for drive is irradiated with slit laser from a laser light source 2, regular reflection light in a belt peripheral direction and a belt end face direction is received by respective pieces of light receiving apparatus 4, 5, 6, and the defects on the belt end face are detected based on the received light waveforms. In a second invention, the belt body section of the drive belt made of a magnetic material is magnetized in the circumference direction, leak flux is measured at the belt end face upper section and the belt body section each, the signal of the weld line of the belt is masked by the measurement value of the belt body section and at the same time the defects on the belt end face are detected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、駆動用ベルトの製造工程においてベルト端面に発生する欠陥を、精度良く検出することができる駆動用ベルトの欠陥検査方法に関するものである。
【0002】
【従来の技術】
搬送や動力伝達のための駆動用ベルトは、各種の産業分野において広く用いられているが、特に高速、高張力条件下で使用される場合には、ベルト端面に欠陥があると稼動中に欠陥を起点としてベルト破断に至り、重大な事故につながる可能性がある。そこでスチールベルトのような金属製ベルトではベルト端面を研磨処理しているが、欠陥を完全になくすることは困難であり、また研磨によって新たな欠陥が付くこともある。
【0003】
そこで従来は、駆動用ベルトを走査しながらベルトの幅方向の両端面を拡大鏡により撮影し、モニターに表示させた拡大画像を見ながら、検査員による欠陥検査が行なわれていた。
【0004】
しかしこのようにモニターを見ながら検査員が欠陥を検査する方法では、欠陥の検出精度を上げるためにはベルトの走査速度を速くすることができない。従って検査時間が長くかかり、検査能率が上がらないという問題があった。また検査員により検査精度にばらつきが生ずるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、駆動用ベルトの破断につながるようなベルト端面の欠陥を高速で、かつ自動的に精度よく検査することができる駆動用ベルトの欠陥検査方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の発明の駆動用ベルトの欠陥検査方法は、駆動用ベルトのベルト端面にスリットレーザを照射し、ベルト周方向及びベルト端面方向の正反射光をそれぞれ受光し、それらの受光波形に基づいてベルト端面の欠陥を検出することを特徴とするものである。
【0007】
また同一の課題を解決するためになされた請求項2の発明の駆動用ベルトの欠陥検査方法は、磁性体からなる駆動用ベルトのベルト胴部を周方向に磁化させ、ベルト端面上部及びベルト胴部でそれぞれ漏洩磁束を計測し、ベルト胴部の計測値によりベルトの溶接線の信号をマスクしながらベルト端面の欠陥を検出することを特徴とするものである。なお、請求項2の発明はスチールベルトのような磁性体ベルトに適用されるものである。
【0008】
本発明の検査方法によれば、駆動用ベルトの製造工程において発生する欠陥を、光学的手段によりあるいは磁気的手段により、高速かつ自動的に精度よく検査することができるため検査員が不要となり、検査時間による製造ネックを解消して高い生産効率を達成することができる。
【0009】
なお、以下に示す実施形態では駆動用ベルトは無段変速機に組み込まれるスチールベルトであるが、本明細書において駆動用ベルトとは、印刷機、複写機、ロボット、OAプリンターなどの精密機器駆動用ベルト、半導体部品、電子・電気部品などの精密部品搬送用ベルト、乾燥炉や加熱炉などの高温部での搬送用ベルト、焼成部品などの高温部品の搬送用ベルト、食品、化学薬品、医薬品などの衛生品搬送用ベルト、精密検査搬送用ベルトなどの各種のベルトを包含するものである。
【0010】
【発明の実施の形態】
以下に本発明の実施形態を示す。
図1は請求項1の発明の実施形態を示す模式的な斜視図であり、1は検査対象物である駆動用ベルト、2はそのベルト端面にスリットレーザ3を照射するレーザ光源である。図2に示すように、スリットレーザ3の幅はベルト端面に発生する検査対象欠陥の幅と同等あるいはそれ以下とし、長さはベルト走査時に振動によってベルトが振れても外れることのないように、ベルト変動幅と同等としておくことが好ましい。ここでは、幅を5〜20μm、長さを100〜300μmとしている。このスリットレーザ3は、ベルト端面に入射角度θが30°以内となるように照射する。
【0011】
本発明では、このスリットレーザ3の正反射光をベルト周方向及びベルト端面方向に設置された3台の受光装置で受光する。図3、図4に示すように、ベルト周方向の正反射光は中央部正反射受光装置4により、またベルト端面方向の正反射光は右斜面正反射受光装置5と、左斜面正反射受光装置6とにより受光される。この例では駆動用ベルト1の断面がほぼ半円状であるので、中央部正反射受光装置4は図3に示すようにベルト厚み方向角度を0として配置される。また右斜面正反射受光装置5と左斜面正反射受光装置6とは、図3に示すようにスリットレーザ3が照射されるベルト端面の法線に対して、入射角度αと等しい角度を持たせて配置される。
【0012】
次に、ベルト端面の欠陥と各受光装置の受光波形との関係を説明する。図5はベルト端面の欠陥例を示すもので、欠陥Aはベルト端面中央部で形状が乱れたもの、欠陥Bはベルト端面左側斜面で形状が乱れたもの、欠陥Cはベルト端面右側斜面で形状が乱れたものである。
【0013】
図6は各受光装置の受光波形を示す図である。ベルト端面中央部で形状が乱れた欠陥Aでは、スリットレーザ3の正反射光が中央部正反射受光装置4に入射しなくなるため、その受光信号が低下する。ベルト端面左側斜面で形状が乱れた欠陥Bでは、スリットレーザ3の左側斜面での正反射光が左斜面正反射受光装置6に入射しなくなるため、その受光信号が低下する。同様に欠陥Cでは、右斜面正反射受光装置5の受光信号が低下する。このように3台の受光装置を配置することにより、ベルト端面の欠陥を自動検出することが可能となる。
【0014】
なおベルト端面形状が水平に近い場合には、中央部正反射受光装置4のみによってもある程度の欠陥検出が可能となる。逆にベルト端面形状がより複雑な場合には、断面形状の各部の法線に対応させてそれぞれ正反射受光装置を配置することにより、より確実に欠陥検出を行なわせることが可能となる。
【0015】
上記したように、請求項1記載の駆動用ベルトの欠陥検査方法によれば、駆動用ベルトの破断につながるようなベルト端面の欠陥を高速で、かつ自動的に精度よく検査することができる。
【0016】
図7は請求項2の発明の実施形態を示す模式的な断面図である。
請求項2の発明では、磁性体からなる駆動用ベルト1のベルト胴部を周方向に磁化させる。この実施形態では、中空ステンレスロール10の表面に駆動用ベルト1を巻きつけながら回転させ、中空ステンレスロール10の内部に収納した磁化器11により、ベルト胴部を周方向に磁化させる。
【0017】
図7に示すように、ベルト端面に欠陥があるとその欠陥から全周方向に漏洩磁束が発生するので、ベルト端面上部に配置した磁気センサー12で漏洩磁束を計測する。磁気センサー12としては電磁コイルを使用することができる。この方式によれば高速応答性を得ることができ、駆動用ベルト1を例えば毎分1200mで走行させても精度よく欠陥検出が可能である。なお、磁化を周方向としたのは、厚み方向に磁化すると端面境界で漏洩磁束が漏れてしまうためである。ただし検出対象欠陥が端面境界による漏洩磁束よりも十分に大きい場合には、この限りではない。
【0018】
しかし磁性体からなる駆動用ベルト1のほとんどは、平板をつなぎ合わせ電気溶接またはレーザー溶接をしたスチールベルトである。このため溶接線上では材質が変化するため漏洩磁束が発生し、欠陥と誤検出する可能性がある。そこで本発明では、図8に示すようにベルト胴部中心の上部にも磁気センサー13を配置して漏洩磁束により溶接線を検出し、この磁気センサー13によるベルト胴部の計測値によりベルトの溶接線の信号をマスクしながらベルト端面の欠陥を検出する。その具体例を図9に示した。
【0019】
このように磁気センサー13が溶接線を検出したときには、ベルト端面上部に配置した磁気センサー12で漏洩磁束を検出しても欠陥とみなさない誤検出対策を講ずることにより、磁性体からなる駆動用ベルト1の端面欠陥を高速かつ確実に検出することが可能となる。
【0020】
【発明の効果】
以上に説明したように、請求項1の駆動用ベルトの欠陥検査方法は、駆動用ベルトのベルト端面にスリットレーザを照射し、ベルト周方向及びベルト端面方向の正反射光をそれぞれ受光し、それらの受光波形に基づいてベルト端面の欠陥を検出することにより、ベルト端面の欠陥を光学的に高速かつ確実に自動検出することができる。
【0021】
また請求項2の駆動用ベルトの欠陥検査方法は、磁性体からなる駆動用ベルトのベルト胴部を周方向に磁化させ、ベルト端面上部及びベルト胴部でそれぞれ漏洩磁束を計測し、ベルト胴部の計測値によりベルトの溶接線の信号をマスクしながらベルト端面の欠陥を検出することにより、溶接線による誤検出を避けながら、磁性体からなる駆動用ベルトの端面の欠陥を高速かつ確実に自動検出することができる。
【0022】
従ってこれらの発明によれば、従来よりも検査時間を大幅に短縮して検査能率を上げることができ、検査員が不要となるうえ、検査員による検査精度のばらつきも防止することができるなどの多くの利点がある。
【図面の簡単な説明】
【図1】請求項1の発明の実施形態を示す模式的な斜視図である。
【図2】スリットレーザのサイズを示す平面図である。
【図3】受光装置の配置図である。
【図4】受光装置の配置図である。
【図5】ベルト端面の欠陥例を示す断面図である。
【図6】各受光装置の受光波形を示す図である。
【図7】請求項2の発明の実施形態を示す模式的な断面図である。
【図8】磁気センサーの配置図である。
【図9】漏洩磁気信号の波形図である。
【符号の説明】
1 駆動用ベルト
2 レーザ光源
3 スリットレーザ
4 中央部正反射受光装置
5 右斜面正反射受光装置
6 左斜面正反射受光装置
10 中空ステンレスロール
11 磁化器
12 ベルト端面上部に配置した磁気センサー
13 ベルト胴部中心の上部に配置した磁気センサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving belt defect inspection method capable of accurately detecting a defect generated on a belt end surface in a driving belt manufacturing process.
[0002]
[Prior art]
Drive belts for conveyance and power transmission are widely used in various industrial fields, but especially when used under high-speed, high-tension conditions, if there is a defect on the belt end surface, the belt will fail during operation. Starting from this point, the belt may break, leading to a serious accident. Therefore, in the case of a metal belt such as a steel belt, the belt end face is polished, but it is difficult to completely eliminate defects, and new defects may be caused by polishing.
[0003]
Therefore, conventionally, a defect inspection has been performed by an inspector while photographing both end faces in the width direction of the driving belt with a magnifying glass while scanning the driving belt and watching an enlarged image displayed on a monitor.
[0004]
However, in the method in which the inspector inspects the defect while watching the monitor, the scanning speed of the belt cannot be increased in order to increase the defect detection accuracy. Therefore, there is a problem that the inspection time is long and the inspection efficiency is not improved. In addition, there is a problem that the inspection accuracy varies depending on the inspector.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and provides a drive belt defect inspection method capable of automatically and accurately inspecting a belt end face defect that may lead to breakage of the drive belt at high speed. It was done to do so.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the driving belt defect inspection method according to the first aspect of the present invention irradiates a slit laser to a belt end surface of the driving belt and generates regular reflection light in a belt circumferential direction and a belt end surface direction. Each belt receives light and detects a defect on the belt end face based on the waveform of the received light.
[0007]
In order to solve the same problem, a defect inspection method for a driving belt according to the invention according to claim 2 is characterized in that the belt body of the driving belt made of a magnetic material is magnetized in the circumferential direction, and the upper part of the belt end surface and the belt body are magnetized. The measuring unit measures the leakage magnetic flux, and detects a defect on the end face of the belt while masking the signal of the welding line of the belt based on the measured value of the belt body. The invention of claim 2 is applied to a magnetic belt such as a steel belt.
[0008]
According to the inspection method of the present invention, defects generated in the manufacturing process of the drive belt can be inspected by optical means or magnetic means at high speed and automatically with high accuracy, so that no inspector is required, High production efficiency can be achieved by eliminating the production bottleneck due to the inspection time.
[0009]
In the embodiments described below, the driving belt is a steel belt incorporated in a continuously variable transmission, but in the present specification, the driving belt is a drive for precision equipment such as a printing machine, a copying machine, a robot, and an OA printer. Belts for transporting precision parts such as semiconductor parts, electronic and electrical parts, belts for transporting high-temperature parts such as drying furnaces and heating furnaces, and belts for transporting high-temperature parts such as fired parts, foods, chemicals, and pharmaceuticals And various belts such as a belt for transporting sanitary goods and a belt for transporting precision inspections.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic perspective view showing an embodiment of the first aspect of the present invention, wherein 1 is a driving belt as an inspection object, and 2 is a laser light source that irradiates a slit laser 3 to the belt end surface. As shown in FIG. 2, the width of the slit laser 3 is set to be equal to or less than the width of the defect to be inspected generated on the end face of the belt, and the length is set so that the belt does not come off even if the belt is shaken by vibration during belt scanning. It is preferable that the width be equal to the belt fluctuation width. Here, the width is 5 to 20 μm and the length is 100 to 300 μm. The slit laser 3 irradiates the belt end surface such that the incident angle θ is within 30 °.
[0011]
In the present invention, the regular reflection light of the slit laser 3 is received by three light receiving devices provided in the belt circumferential direction and the belt end surface direction. As shown in FIGS. 3 and 4, the regular reflection light in the circumferential direction of the belt is reflected by the central regular reflection light receiving device 4, and the regular reflection light in the belt end surface direction is reflected by the right slope regular reflection light receiving device 5 and the left slope regular reflection light receiving device. The light is received by the device 6. In this example, since the cross section of the driving belt 1 is substantially semicircular, the central regular reflection light receiving device 4 is arranged with the angle in the belt thickness direction set to 0 as shown in FIG. Further, the right slope regular reflection light receiving device 5 and the left slope regular reflection light receiving device 6 have an angle equal to the incident angle α with respect to the normal line of the belt end surface irradiated with the slit laser 3 as shown in FIG. Placed.
[0012]
Next, the relationship between the defect of the belt end surface and the light receiving waveform of each light receiving device will be described. FIG. 5 shows an example of a defect on the belt end surface. Defect A has a disordered shape at the center of the belt end face, defect B has a disordered shape on the left slope of the belt end face, and defect C has a shape disorder on the right slope of the belt end face. Is disturbed.
[0013]
FIG. 6 is a diagram showing a light receiving waveform of each light receiving device. In the case of the defect A whose shape is disturbed at the center of the belt end surface, the regular reflection light of the slit laser 3 does not enter the central regular reflection light receiving device 4, so that the light reception signal is reduced. In the defect B whose shape is distorted on the left side slope of the belt end surface, the regular reflection light on the left side slope of the slit laser 3 does not enter the left slope regular reflection light receiving device 6, and the light reception signal is reduced. Similarly, at the defect C, the light reception signal of the right slope regular reflection light receiving device 5 decreases. By arranging the three light receiving devices in this way, it is possible to automatically detect a defect on the belt end surface.
[0014]
When the belt end surface shape is nearly horizontal, a certain degree of defect detection is possible only by the central regular reflection light receiving device 4. Conversely, when the shape of the belt end surface is more complicated, it is possible to more reliably detect a defect by arranging the regular reflection light receiving device corresponding to the normal line of each section of the sectional shape.
[0015]
As described above, according to the driving belt defect inspection method of the present invention, it is possible to automatically and accurately inspect the belt end surface for defects that may cause the driving belt to break.
[0016]
FIG. 7 is a schematic sectional view showing an embodiment of the second aspect of the present invention.
According to the second aspect of the present invention, the belt body of the driving belt 1 made of a magnetic material is magnetized in the circumferential direction. In this embodiment, the drive belt 1 is rotated while being wound around the surface of the hollow stainless steel roll 10, and the belt body is magnetized in the circumferential direction by the magnetizer 11 housed inside the hollow stainless steel roll 10.
[0017]
As shown in FIG. 7, if there is a defect in the belt end surface, a leakage magnetic flux is generated in the entire circumferential direction from the defect, so the leakage magnetic flux is measured by the magnetic sensor 12 disposed above the belt end surface. An electromagnetic coil can be used as the magnetic sensor 12. According to this method, a high-speed response can be obtained, and even if the driving belt 1 is run at, for example, 1200 m per minute, defect detection can be performed with high accuracy. The reason why the magnetization is set to the circumferential direction is that when magnetized in the thickness direction, the leakage magnetic flux leaks at the boundary of the end face. However, this does not apply when the defect to be detected is sufficiently larger than the leakage magnetic flux due to the end face boundary.
[0018]
However, most of the drive belt 1 made of a magnetic material is a steel belt formed by joining flat plates and performing electric welding or laser welding. For this reason, since the material changes on the welding line, a leakage magnetic flux is generated, and there is a possibility that a defect is erroneously detected. Therefore, in the present invention, as shown in FIG. 8, a magnetic sensor 13 is also disposed above the center of the belt body to detect a welding line based on the leakage magnetic flux, and the belt sensor is welded based on the measured value of the belt body by the magnetic sensor 13. Detects defects on the belt end face while masking the line signal. A specific example is shown in FIG.
[0019]
As described above, when the magnetic sensor 13 detects the welding line, a countermeasure against erroneous detection is performed so that even if the magnetic flux is detected by the magnetic sensor 12 disposed above the end surface of the belt, it is not regarded as a defect. This makes it possible to quickly and reliably detect the one end face defect.
[0020]
【The invention's effect】
As described above, the method for inspecting defects of a driving belt according to claim 1 irradiates a slit laser to a belt end surface of the driving belt and receives specularly reflected light in a belt circumferential direction and a belt end surface direction, respectively. By detecting a defect on the belt end surface based on the received light waveform, the defect on the belt end surface can be optically detected at high speed and reliably automatically.
[0021]
According to a second aspect of the present invention, there is provided a driving belt defect inspection method, comprising: magnetizing a belt body of a driving belt made of a magnetic material in a circumferential direction; By detecting defects on the belt end face while masking the signal of the belt welding line based on the measured values, the defects on the end face of the drive belt made of a magnetic material can be automatically detected at high speed while avoiding erroneous detection due to the welding line. Can be detected.
[0022]
Therefore, according to these inventions, the inspection time can be greatly shortened compared with the conventional art, and the inspection efficiency can be improved, and an inspector is not required. Further, it is possible to prevent the inspection accuracy from being varied by the inspector. There are many advantages.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an embodiment of the present invention.
FIG. 2 is a plan view showing the size of a slit laser.
FIG. 3 is a layout diagram of a light receiving device.
FIG. 4 is a layout diagram of a light receiving device.
FIG. 5 is a cross-sectional view illustrating an example of a defect on a belt end surface.
FIG. 6 is a diagram showing a light receiving waveform of each light receiving device.
FIG. 7 is a schematic sectional view showing an embodiment of the invention of claim 2;
FIG. 8 is a layout diagram of a magnetic sensor.
FIG. 9 is a waveform diagram of a leakage magnetic signal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drive belt 2 Laser light source 3 Slit laser 4 Center regular reflection light receiving device 5 Right slope regular reflection light receiving device 6 Left slope regular reflection light receiving device 10 Hollow stainless steel roll 11 Magnetizer 12 Magnetic sensor 13 arranged above belt end surface 13 Belt trunk Magnetic sensor placed at the top of the center

Claims (2)

駆動用ベルトのベルト端面にスリットレーザを照射し、ベルト周方向及びベルト端面方向の正反射光をそれぞれ受光し、それらの受光波形に基づいてベルト端面の欠陥を検出することを特徴とする駆動用ベルトの欠陥検査方法。The drive belt is characterized by irradiating a slit laser to the belt end face of the drive belt, receiving regular reflection light in the belt circumferential direction and the belt end face direction, and detecting a defect on the belt end face based on the received light waveform. Belt defect inspection method. 磁性体からなる駆動用ベルトのベルト胴部を周方向に磁化させ、ベルト端面上部及びベルト胴部でそれぞれ漏洩磁束を計測し、ベルト胴部の計測値によりベルトの溶接線の信号をマスクしながらベルト端面の欠陥を検出することを特徴とする駆動用ベルトの欠陥検査方法。Magnetize the belt trunk of the drive belt made of magnetic material in the circumferential direction, measure the leakage magnetic flux at the upper part of the belt end surface and at the belt trunk, respectively, and mask the signal of the belt welding line with the measured value of the belt trunk. A defect inspection method for a driving belt, comprising detecting a defect on a belt end surface.
JP2002241763A 2002-08-22 2002-08-22 Defect inspecting method for drive belt Pending JP2004077426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241763A JP2004077426A (en) 2002-08-22 2002-08-22 Defect inspecting method for drive belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241763A JP2004077426A (en) 2002-08-22 2002-08-22 Defect inspecting method for drive belt

Publications (1)

Publication Number Publication Date
JP2004077426A true JP2004077426A (en) 2004-03-11

Family

ID=32024153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241763A Pending JP2004077426A (en) 2002-08-22 2002-08-22 Defect inspecting method for drive belt

Country Status (1)

Country Link
JP (1) JP2004077426A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187516A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Method and apparatus for detecting flaw of r-edge face of endless metal belt
JP2009251435A (en) * 2008-04-09 2009-10-29 Canon Inc Rotary body for heating, and image heating device having the rotary body for heating
JP2011013191A (en) * 2009-07-06 2011-01-20 Honda Motor Co Ltd Device and method for inspecting ring-like workpiece
DE102008057131B4 (en) * 2007-12-06 2013-05-29 Honda Motor Co., Ltd. Riemenprüfvorrichtung
JP2019035725A (en) * 2017-08-22 2019-03-07 第一実業ビスウィル株式会社 Visual inspection device
KR20230087778A (en) * 2021-12-10 2023-06-19 이정우 Portable Sling Belt Damage Diagnosis Apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187516A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Method and apparatus for detecting flaw of r-edge face of endless metal belt
JP4640181B2 (en) * 2006-01-12 2011-03-02 トヨタ自動車株式会社 Method and apparatus for detecting scratches on the R end face of an endless metal belt
DE102008057131B4 (en) * 2007-12-06 2013-05-29 Honda Motor Co., Ltd. Riemenprüfvorrichtung
JP2009251435A (en) * 2008-04-09 2009-10-29 Canon Inc Rotary body for heating, and image heating device having the rotary body for heating
JP2011013191A (en) * 2009-07-06 2011-01-20 Honda Motor Co Ltd Device and method for inspecting ring-like workpiece
JP2019035725A (en) * 2017-08-22 2019-03-07 第一実業ビスウィル株式会社 Visual inspection device
KR20230087778A (en) * 2021-12-10 2023-06-19 이정우 Portable Sling Belt Damage Diagnosis Apparatus
KR102621957B1 (en) 2021-12-10 2024-01-08 이정우 Portable Sling Belt Damage Diagnosis Apparatus

Similar Documents

Publication Publication Date Title
US20210380372A1 (en) Wire rope inspection device, wire rope inspection system, and wire rope inspection method
JP2007309690A (en) Flaw detection method and flaw detector
CN109060939A (en) Steel rail defect checking method for width based on leakage magnetic detection device
JP2004077426A (en) Defect inspecting method for drive belt
JP2006153856A (en) Device and method for inspecting scratch on external case for cell
JP2004077425A (en) Inspecting apparatus for drive transmission belt
JP3944068B2 (en) Inspection method for butt welds of steel sheets
WO2006046578A1 (en) Device and method for inspecting scratch on cell external case
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
KR100523686B1 (en) The Nondestructive Testing Apparatus for Wire Rope
KR101315391B1 (en) A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor
KR101789239B1 (en) Non-distructive inspection apparatus using induced electromotive force
JP2008292280A (en) Eddy current flaw detection method, insertion type probe and eddy current flaw detector using insertion type probe
KR102265354B1 (en) annular array eddy currentprobe non-destructive inspection device equipped with magnetic lenses
JP2007163263A (en) Eddy current flaw detection sensor
KR101936367B1 (en) A fatigue degree inspection apparatus and an inspection method thereof using an electromagnetic induction sensor
JPH01212352A (en) Method and apparatus for electromagnetic flaw detection
JP2003322640A (en) Surface scratch detecting apparatus for steel material
JP2007121050A (en) Flaw detector
CN210626394U (en) Nondestructive testing system for magneto-optical imaging of composite magnetic field
JP2000310619A (en) Eddy current flaw detector of steel sphere
JP5629899B2 (en) Magnetic flaw detection method and apparatus
JP2006084225A (en) Eddy current flaw detection method
JP2005283303A (en) Metal ring defect detector
JP2008032682A (en) Method and apparatus for inspecting rolling device component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Effective date: 20070213

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070302

A521 Written amendment

Effective date: 20070427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A131 Notification of reasons for refusal

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081003