JP5629899B2 - Magnetic flaw detection method and apparatus - Google Patents

Magnetic flaw detection method and apparatus Download PDF

Info

Publication number
JP5629899B2
JP5629899B2 JP2010273413A JP2010273413A JP5629899B2 JP 5629899 B2 JP5629899 B2 JP 5629899B2 JP 2010273413 A JP2010273413 A JP 2010273413A JP 2010273413 A JP2010273413 A JP 2010273413A JP 5629899 B2 JP5629899 B2 JP 5629899B2
Authority
JP
Japan
Prior art keywords
magnetic
inspection object
inspected
magneto
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010273413A
Other languages
Japanese (ja)
Other versions
JP2012122832A (en
Inventor
勝博 岩崎
勝博 岩崎
清志 榛葉
清志 榛葉
剛一 小林
剛一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2010273413A priority Critical patent/JP5629899B2/en
Publication of JP2012122832A publication Critical patent/JP2012122832A/en
Application granted granted Critical
Publication of JP5629899B2 publication Critical patent/JP5629899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁性材料からなる円筒状の被検査物の表面欠陥を漏洩磁界の乱れから検出する磁気探傷技術に関し、更に詳しく述べると、磁石によって被検査物を回転用ベルトへ引き付け、その状態で該回転用ベルトを動かすことにより被検査物をセンサ位置にて回転させ、該被検査物の外周面近傍に設けた磁気センサによって欠陥検査を行うようにした磁気探傷方法及び装置に関するものである。この技術は、例えば電池外装ケース(通称「電池缶」)の欠陥検査などに有用である。   The present invention relates to a magnetic flaw detection technique for detecting a surface defect of a cylindrical inspection object made of a magnetic material from disturbance of a leakage magnetic field. More specifically, the inspection object is attracted to a rotating belt by a magnet, and in this state The present invention relates to a magnetic flaw detection method and apparatus in which an inspection object is rotated at a sensor position by moving the rotating belt, and a defect inspection is performed by a magnetic sensor provided in the vicinity of the outer peripheral surface of the inspection object. This technique is useful, for example, for defect inspection of a battery outer case (commonly called “battery can”).

磁性材料からなる円筒状の電池外装ケースの表面欠陥を検出する従来の探傷方法としては、ホール素子などの磁気センサを用いる方法あるいはコイルを用いる方法などがある。磁気センサを用いる探傷方法では、磁気センサを電池外装ケースに近接させ、励磁された電池外装ケース表面からの漏洩磁界を測定することにより欠陥を検出する(特許文献1参照)。コイルを用いる方法では、交流電流あるいはパルス電流を流したコイルを電池外装ケースに近接させ、電池外装ケースに存在する欠陥でのインピーダンス変化や電圧変化に基づいて欠陥を判別する(特許文献2参照)。   Conventional flaw detection methods for detecting surface defects in a cylindrical battery outer case made of a magnetic material include a method using a magnetic sensor such as a Hall element or a method using a coil. In the flaw detection method using a magnetic sensor, a defect is detected by bringing the magnetic sensor close to the battery outer case and measuring the leakage magnetic field from the surface of the excited battery outer case (see Patent Document 1). In the method using a coil, a coil through which an alternating current or a pulse current is passed is brought close to the battery outer case, and the defect is determined based on an impedance change or a voltage change due to a defect present in the battery outer case (see Patent Document 2). .

これら従来の探傷方法においては、通常、電池外装ケースを、その中心軸の周りに回転させて、その側面(周面)の欠陥を検査する。例えば、特許文献1においては、電池外装ケースの開口部を保持治具により固定して回転させている。特許文献2では、電池外装ケースの底部(閉塞端部)を保持治具により真空吸着して回転させている。これらの回転機構では、いずれも電池外装ケースを保持するために、電池外装ケースの向きをあらかじめ揃えておく必要があり、そのための整列機構を別に設けておかなければならない。更に、電池外装ケースの底部を保持する場合には、側面全周を検査することはできても、保持治具が邪魔になるので、そのままでは電池外装ケースの底部を検査することはできない。   In these conventional flaw detection methods, the battery outer case is usually rotated around its central axis to inspect the side surface (circumferential surface) for defects. For example, in Patent Document 1, the opening of the battery outer case is fixed and rotated by a holding jig. In Patent Document 2, the bottom portion (closed end portion) of the battery outer case is vacuum-adsorbed and rotated by a holding jig. In any of these rotation mechanisms, in order to hold the battery outer case, the orientation of the battery outer case needs to be aligned in advance, and an alignment mechanism for that purpose must be provided separately. Furthermore, when holding the bottom of the battery outer case, the entire periphery of the side surface can be inspected, but the holding jig is in the way, so the bottom of the battery outer case cannot be inspected as it is.

勿論、被検査物表面の欠陥は、ある程度大きければ、肉眼やカメラによっても検査できる。ところが、電池外装ケースはプレス加工で成形されるため、成形直後は表面に油類などが付着しており、洗浄して汚れをきれいに除去しなければカメラなどで検査することはできない。しかしながら、製品管理などのため、成形直後に洗浄することなく汚れたままであっても簡便に且つ迅速に欠陥を検出できる方法の開発が望まれており、そのため磁気センサを用いる手法は有用とされている。   Of course, if the defect on the surface of the object to be inspected is large to some extent, it can be inspected with the naked eye or a camera. However, since the battery outer case is molded by pressing, oils and the like are adhered to the surface immediately after molding, and it cannot be inspected with a camera or the like unless it is cleaned to remove dirt. However, for product management, etc., it is desired to develop a method that can detect defects easily and quickly even if it remains dirty without being washed immediately after molding. Therefore, a method using a magnetic sensor is considered useful. Yes.

特開2006−153856号公報JP 2006-153856 A 特開2009−252644号公報JP 2009-252644 A

本発明が解決しようとする課題は、被検査物を治具などで掴んだり吸着することなく、円筒状の被検査物を、決まったセンサ位置にて、中心軸の周りで回転させ、全周面にわたって、また必要に応じて端部も同時に、欠陥検査が行えるようにすることである。本発明が解決しようとする他の課題は、前記被検査物を、間欠的にセンサ位置まで順次移送し、センサ位置で回転させることで欠陥検査が連続的に行えるようにすることである。   The problem to be solved by the present invention is to rotate a cylindrical inspection object around a central axis at a predetermined sensor position without grasping or adsorbing the inspection object with a jig or the like. It is to be able to carry out defect inspection over the surface and at the same time at the edges as required. Another problem to be solved by the present invention is to continuously perform defect inspection by sequentially transferring the inspection object to a sensor position intermittently and rotating the inspection object at the sensor position.

本発明は、磁性材料からなる被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界の乱れを、前記被検査物に近接配置した磁気センサを用いて検出する磁気探傷方法において、前記被検査物は円筒状であって、その外周面が回転用ベルトに接触しており、該回転用ベルトを介して前記被検査物に対向している磁石によって前記被検査物に磁界が印加されると共に前記磁石の磁力により被検査物が回転用ベルトに引き付けられ、前記磁石をセンサ位置に停滞させた状態で前記回転用ベルトを動かすことにより、円筒状の前記被検査物がセンサ位置に止まったままで前記回転用ベルトとの間の摩擦力を利用して前記被検査物を中心軸の周りに回転させ、前記磁気センサによって被検査物の周面を検査することを特徴とする磁気探傷方法である。磁気センサは、被検査物の外周面近傍のみならず、一方もしくは両方の端部近傍にも配置されていてよく、それによって被検査物の端面も同時に検査することができる。   The present invention relates to a magnetic flaw detection method in which a magnetic field is applied to an inspection object made of a magnetic material, and a disturbance of a leakage magnetic field generated in a defect portion on the surface is detected using a magnetic sensor disposed close to the inspection object. The inspection object has a cylindrical shape, and an outer peripheral surface thereof is in contact with a rotating belt, and a magnetic field is applied to the inspection object by a magnet facing the inspection object via the rotation belt. The test object is attracted to the rotating belt by the magnetic force of the magnet and applied to the rotating belt, and the rotating belt is moved in a state where the magnet is held at the sensor position, so that the cylindrical inspection object is moved to the sensor position. The magnet is rotated around the central axis using the frictional force between the belt and the belt for rotation, and the peripheral surface of the object is inspected by the magnetic sensor. By flaw detection method That. The magnetic sensor may be arranged not only in the vicinity of the outer peripheral surface of the object to be inspected but also in the vicinity of one or both ends, whereby the end surface of the object to be inspected can be inspected at the same time.

磁気センサとしては磁気光学素子が好ましい。この磁気光学素子を、被検査物の外周近傍に設置して、偏光子を通した光を磁気光学素子へ照射し、該磁気光学素子の表面で反射した光または磁気光学素子を透過後に反射した光を検光子を通して観察することにより、磁気光学効果を利用して前記被検査物表面の欠陥部に生じた漏洩磁界の乱れを1次元あるいは2次元の光強度分布として検出する。   As the magnetic sensor, a magneto-optical element is preferable. This magneto-optical element is installed in the vicinity of the outer periphery of the object to be inspected, light that has passed through the polarizer is irradiated onto the magneto-optical element, and the light reflected by the surface of the magneto-optical element or the magneto-optical element is reflected after transmission. By observing the light through the analyzer, the disturbance of the leakage magnetic field generated in the defect portion on the surface of the object to be inspected is detected as a one-dimensional or two-dimensional light intensity distribution using the magneto-optic effect.

ここで使用する磁気光学素子としては、磁気光学膜の片面に反射膜を設けた構造が好ましい。その場合、この磁気光学素子を、被検査物の外周近傍にて反射膜が被検査物側となるように設置して、偏光子を通した光を磁気光学膜側から照射し、反射膜で反射した光を検光子を通して観察するように構成する。磁気光学膜としてはBi置換鉄ガーネット膜が好ましく、膜面平行方向の飽和に要する磁界が膜面垂直方向に比べて小さい特性を呈するものがよい。   The magneto-optical element used here preferably has a structure in which a reflective film is provided on one side of the magneto-optical film. In this case, this magneto-optical element is installed in the vicinity of the outer periphery of the inspection object so that the reflection film is on the inspection object side, and the light passing through the polarizer is irradiated from the magneto-optical film side. The reflected light is configured to be observed through the analyzer. The magneto-optical film is preferably a Bi-substituted iron garnet film, and preferably exhibits a characteristic that the magnetic field required for saturation in the direction parallel to the film surface is smaller than that in the direction perpendicular to the film surface.

磁気センサとしてはホール素子やサーチコイル等も使用可能である。磁気探傷方法として、被検査物の表面に交流磁界を印加し、欠陥部で渦電流の乱れを生じさせて漏洩磁界の変化を検出する、いわゆる渦電流探傷法が知られているが、本発明方法はこれにも適用できる。   A Hall element, a search coil, or the like can be used as the magnetic sensor. As a magnetic flaw detection method, there is known a so-called eddy current flaw detection method in which an alternating magnetic field is applied to the surface of an object to be detected, and a change in a leakage magnetic field is detected by causing an eddy current disturbance at a defect portion. The method can also be applied to this.

前記被検査物は、例えば円筒状の電池外装ケースである。軸方向の外径が均一ではなく変化しているような場合には、回転用ベルトの断面形状を、その表面の幅方向で段差あるいは隙間を設けて被検査物の軸方向の外径変化を補正すればよい。なお、回転用ベルトは非磁性のものが好ましい。   The inspection object is, for example, a cylindrical battery outer case. If the outer diameter in the axial direction is not uniform and changes, the cross-sectional shape of the belt for rotation is changed by changing the outer diameter in the axial direction of the inspection object by providing a step or gap in the width direction of the surface. It may be corrected. The rotating belt is preferably nonmagnetic.

前記磁石は電磁石でもよいが、永久磁石の方が取り扱い易い。永久磁石をセンサ位置へと移動させることにより永久磁石の磁力を利用して被検査物をセンサ位置まで移送させ、永久磁石をセンサ位置から移動させることにより検査済みの被検査物をセンサ位置から移送することができる。   The magnet may be an electromagnet, but a permanent magnet is easier to handle. By moving the permanent magnet to the sensor position, the inspection object is transferred to the sensor position using the magnetic force of the permanent magnet, and the inspection object to be inspected is transferred from the sensor position by moving the permanent magnet from the sensor position. can do.

また本発明は、磁性材料からなる被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界の乱れを、前記被検査物に近接配置した磁気センサを用いて検出する磁気探傷装置において、円筒状の被検査物を、その中心軸が水平となる向きで外周面が接するように載置する回転用ベルトと、該回転用ベルトを動かすベルト駆動機構と、前記回転用ベルトを介して前記被検査物に対向する永久磁石と、該永久磁石がセンサ位置で一時的に停滞するように間欠駆動する磁石移動機構と、センサ位置にて前記被検査物の外周面近傍となるように設置した磁気センサとを備え、前記永久磁石により前記被検査物に磁界を印加すると共に、前記永久磁石を移動させることにより磁力を利用して前記被検査物を移送させ、センサ位置にて前記回転用ベルトを動かすことにより摩擦力を利用して前記被検査物を回転させて前記磁気センサで欠陥検査を行うようにしたことを特徴とする磁気探傷装置である。   The present invention also provides a magnetic flaw detection apparatus that applies a magnetic field to an inspection object made of a magnetic material and detects a disturbance of a leakage magnetic field generated at a defect portion on the surface using a magnetic sensor disposed close to the inspection object. A rotating belt for placing the cylindrical object to be inspected so that the outer peripheral surface is in contact with the central axis in a horizontal direction, a belt driving mechanism for moving the rotating belt, and the rotating belt. A permanent magnet that faces the object to be inspected, a magnet moving mechanism that intermittently drives the permanent magnet so as to temporarily stay at the sensor position, and a position near the outer peripheral surface of the object to be inspected at the sensor position. And a magnetic field applied to the object to be inspected by the permanent magnet, and the object to be inspected is transferred by using a magnetic force by moving the permanent magnet, and the rotation is performed at the sensor position. For bell A magnetic flaw detection apparatus characterized said using the frictional force to rotate the object to be inspected that to perform the defect inspection by the magnetic sensor by moving the it.

また、前記磁気センサ近傍に位置し検査中に磁気センサと被検査物との距離を一定に保持する抑えローラと、前記永久磁石の移動に同期して前記抑えローラを上下させる抑えローラ上下動機構を設けることも有効である。   A pressing roller positioned near the magnetic sensor and holding the distance between the magnetic sensor and the object to be inspected during inspection; and a pressing roller vertical movement mechanism for moving the pressing roller up and down in synchronization with the movement of the permanent magnet It is also effective to provide

本発明の磁気探傷方法は、円筒状の磁性材料からなる被検査物を、治具などで掴んだり吸着することなく、中心軸の周りで回転させることができるため、被検査物の外周面のみならず端部の検査も同時に行うことが可能となる。また、上記のように被検査物を掴んだり吸着する治具などがないため、原理的に、あらかじめ被検査物の向きを揃えておく機構は不要である。   In the magnetic flaw detection method of the present invention, the inspection object made of a cylindrical magnetic material can be rotated around the central axis without being gripped or attracted by a jig or the like, so that only the outer peripheral surface of the inspection object is In addition, the end portion can be inspected at the same time. In addition, since there is no jig for gripping or adsorbing the inspection object as described above, a mechanism for aligning the inspection object in advance is unnecessary in principle.

本発明において、磁気センサとして磁気光学膜を用いると、広範囲にわたる磁界分布を光学的に瞬時に検出できるので、中心軸に平行に磁気センサを移動させるための複雑な機構が不要となり、装置を簡素化できるし、高速に検査することができる。一般的に平板状の被検査物の検査を、磁気光学膜を用いて2次元で行うには大面積が必要となり高価であるが、本発明ではセンサ部分に必要な磁気光学膜の大きさは、それに比べて小さいため安価に製作できる。   In the present invention, when a magneto-optical film is used as a magnetic sensor, a magnetic field distribution over a wide range can be optically detected instantaneously, so that a complicated mechanism for moving the magnetic sensor in parallel to the central axis is not required, and the apparatus is simplified. And can be inspected at high speed. In general, in order to inspect a flat inspection object in two dimensions using a magneto-optical film, a large area is required and expensive. In the present invention, the size of the magneto-optical film required for the sensor portion is as follows. Because it is smaller than that, it can be manufactured inexpensively.

更に、永久磁石を、被検査物への磁界印加手段と、該被検査物を回転させるための補助的手段、及び移送させるための手段として共用しているため、装置全体が簡便な構成となる。   Further, since the permanent magnet is shared as a magnetic field applying means to the object to be inspected, an auxiliary means for rotating the object to be inspected, and a means for transferring, the entire apparatus has a simple configuration. .

本発明に係る磁気探傷方法の概念図。The conceptual diagram of the magnetic flaw detection method which concerns on this invention. 本発明に係る磁気探傷方法の他の構成例を示す説明図。Explanatory drawing which shows the other structural example of the magnetic flaw detection method which concerns on this invention. 本発明に係る磁気探傷装置の一実施例を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows one Example of the magnetic flaw detector which concerns on this invention. 本発明に係る磁気探傷装置の他の実施例の要部を示す説明図。Explanatory drawing which shows the principal part of the other Example of the magnetic flaw detector based on this invention.

本発明に係る磁気探傷方法の概略構成を図1に示す。ここで、Aは被検査物をセンサ位置にて回転させる状態を示しており、Bは被検査物をセンサ位置から移送している状態を示している。本発明は、磁性材料からなる円筒状の被検査物に、外部から磁界を印加し、その表面の欠陥部に生じた漏洩磁界の乱れを、前記被検査物に近接配置した磁気センサを用いて検出する。被検査物は、最も典型的には電池外装ケースである。   A schematic configuration of a magnetic flaw detection method according to the present invention is shown in FIG. Here, A shows a state where the inspection object is rotated at the sensor position, and B shows a state where the inspection object is being transferred from the sensor position. The present invention uses a magnetic sensor in which a magnetic field is externally applied to a cylindrical inspection object made of a magnetic material, and a disturbance of a leakage magnetic field generated in a defect portion on the surface of the inspection object is disposed in proximity to the inspection object. To detect. The inspection object is most typically a battery outer case.

図1に示すように、円筒状の被検査物10は、横向きの状態(中心軸が水平方向、図1では紙面に垂直な方向、を向いている状態)で回転用ベルト12の上に載置されており、該被検査物10の外周面が前記回転用ベルト12に接触している。該回転用ベルト12を介して前記被検査物10に対向するように、回転用ベルト12の下方に永久磁石14が位置する。このとき、永久磁石14は回転用ベルト12に接触している必要はない。永久磁石14は、典型的には直方体であり、被検査物10と平行になるように配置し、着磁方向は被検査物の長手方向に対して垂直あるいは、円周方向のどちらでもよい。   As shown in FIG. 1, the cylindrical inspection object 10 is placed on the rotation belt 12 in a sideways state (in which the center axis faces the horizontal direction, in FIG. 1, the direction perpendicular to the paper surface). The outer peripheral surface of the inspection object 10 is in contact with the rotating belt 12. A permanent magnet 14 is positioned below the rotating belt 12 so as to face the inspection object 10 with the rotating belt 12 interposed therebetween. At this time, the permanent magnet 14 does not need to be in contact with the rotating belt 12. The permanent magnet 14 is typically a rectangular parallelepiped, and is arranged so as to be parallel to the inspection object 10, and the magnetization direction may be either perpendicular to the longitudinal direction of the inspection object or in the circumferential direction.

センサ位置における被検査物10の上方には外周面に対して僅かな間隔をおいて磁気センサ16が設置されている。ここでは、磁気センサ16として磁気光学膜18の下面(被検査物との対向面)側に反射膜20を設けた磁気光学素子22を用いており、図示していないが、従来の磁気光学効果を観察する光学系と同様、偏光子を通して磁気センサの上方から光を照射し、反射した光を検光子を通してカメラなどで観察する。被検査物からの漏洩磁界の変化は磁気光学膜の磁化方向の乱れとなり、磁気光学効果により光の強度変化として検出されるため、被検査物の欠陥を検査することができる。   A magnetic sensor 16 is installed above the inspection object 10 at the sensor position with a slight gap with respect to the outer peripheral surface. Here, a magneto-optical element 22 having a reflective film 20 provided on the lower surface (opposite surface to be inspected) side of the magneto-optical film 18 is used as the magnetic sensor 16, and although not shown, the conventional magneto-optical effect is shown. As in the optical system for observing the light, light is irradiated from above the magnetic sensor through the polarizer, and the reflected light is observed with a camera or the like through the analyzer. A change in the leakage magnetic field from the inspection object becomes a disturbance in the magnetization direction of the magneto-optical film, and is detected as a change in light intensity by the magneto-optical effect, so that a defect of the inspection object can be inspected.

磁気光学膜を用いた磁気センサは、磁界分布を2次元の光強度分布として検出できるので、例えば長方形の磁気光学膜を被検査物に沿って配置すれば、被検査物の全周面を検査することができ、ホール素子などの磁気センサあるいはコイルなどの検出素子に比べて、被検査物の回転軸と平行方向に移動させる必要が無く、機構を簡素化できる利点がある。   Since a magnetic sensor using a magneto-optical film can detect a magnetic field distribution as a two-dimensional light intensity distribution, for example, if a rectangular magneto-optical film is arranged along an inspection object, the entire peripheral surface of the inspection object is inspected. Compared to a magnetic sensor such as a Hall element or a detection element such as a coil, there is no need to move in a direction parallel to the rotation axis of the object to be inspected, and there is an advantage that the mechanism can be simplified.

ここで使用する磁気光学膜としては、磁気光学効果の大きなBi置換鉄ガーネット膜がよく、一般に液相エピタキシャル(LPE)法により製作される。磁気特性は、膜面平行方向の飽和に要する磁界が膜面垂直方向に比べて小さい特性を呈するものがよい。LPE法により作製されたBi置換鉄ガーネット膜の磁気特性は、膜面垂直方向に磁化し易い垂直磁化膜と磁化し難い面内磁化膜に分けられる。垂直磁化膜は一般に磁化容易軸が垂直方向にあり、ストライプ状のドメイン構造を有している。空間分解能はそのドメインのサイズに依存するためそれほど高くなく、飽和に要する磁界が小さい。一方、面内膜は膜面垂直方向の磁界を受けて、磁化方向が面内方向から滑らかに回転するため、空間分解能が高く、飽和に要する磁界は大きい。本発明においては、被検査物の外周面から全体的に漏洩磁界がでており、欠陥部での漏洩磁界の乱れを検出するため、垂直膜を用いる場合には、磁気光学膜が磁気飽和しないように、外部からのバイアス磁界による磁界分布調要機構が必要になり煩雑となる。更に、被検査物のエッジ部では特に漏洩磁界が大きくなるため、調整はさらに困難になる。その点で、膜面垂直方向の磁界検出レンジの大きな面内膜を用いることが好ましく、同時に空間分解能も高くすることができる。   As the magneto-optical film used here, a Bi-substituted iron garnet film having a large magneto-optical effect is preferable, and is generally manufactured by a liquid phase epitaxial (LPE) method. The magnetic characteristics are preferably such that the magnetic field required for saturation in the direction parallel to the film surface is smaller than that in the direction perpendicular to the film surface. The magnetic properties of a Bi-substituted iron garnet film produced by the LPE method are divided into a perpendicular magnetization film that is easily magnetized in the direction perpendicular to the film surface and an in-plane magnetization film that is difficult to magnetize. In general, the perpendicular magnetization film has an easy axis of magnetization in the vertical direction and has a stripe-like domain structure. Since the spatial resolution depends on the size of the domain, it is not so high and the magnetic field required for saturation is small. On the other hand, the in-plane film receives a magnetic field in the direction perpendicular to the film surface, and the magnetization direction rotates smoothly from the in-plane direction. Therefore, the spatial resolution is high and the magnetic field required for saturation is large. In the present invention, a leakage magnetic field is generally generated from the outer peripheral surface of the object to be inspected, and the magneto-optic film is not magnetically saturated when a vertical film is used to detect the disturbance of the leakage magnetic field at the defective portion. Thus, a magnetic field distribution adjustment mechanism using an external bias magnetic field is required, which is complicated. Furthermore, since the leakage magnetic field is particularly large at the edge portion of the object to be inspected, adjustment becomes more difficult. In this respect, it is preferable to use an in-plane film having a large magnetic field detection range in the direction perpendicular to the film surface, and at the same time, the spatial resolution can be increased.

図1のAに示すように、センサ位置に停滞している永久磁石14によって、回転用ベルト12を介して対向している被検査物10に磁界が印加されると共に、前記永久磁石14の磁力により前記被検査物10が回転用ベルト12へと引き付けられる。従って、被検査物10は、その自重と磁力とにより回転用ベルト12の表面に押し付けられている。この状態(永久磁石が静止している状態)で、前記回転用ベルト12を横方向(中心軸に直交する水平方向:矢印a方向)に動かすと、被検査物10と回転用ベルト12との間の摩擦力によって、前記被検査物10に回転力が生じ、該被検査物10はセンサ位置に止まったままの状態で、即ち位置を変えずに、中心軸の周りに回転する(矢印b方向)。このとき回転用ベルト12の下方の永久磁石14により磁界を印加された被検査物10の表面からは漏洩磁界が生じ、上方に設置されている磁気センサ16を用いて、被検査物10が1回転する間に外周面全体の欠陥を検査することが可能になる。   As shown in A of FIG. 1, a magnetic field is applied to the object to be inspected 10 facing through the rotating belt 12 by the permanent magnet 14 stagnating at the sensor position, and the magnetic force of the permanent magnet 14 is also shown. Thus, the inspection object 10 is attracted to the rotating belt 12. Therefore, the inspection object 10 is pressed against the surface of the rotating belt 12 by its own weight and magnetic force. When the rotating belt 12 is moved in the horizontal direction (horizontal direction orthogonal to the central axis: arrow a direction) in this state (the permanent magnet is stationary), the inspection object 10 and the rotating belt 12 A rotational force is generated in the inspection object 10 due to the frictional force between them, and the inspection object 10 rotates around the central axis while remaining at the sensor position, that is, without changing the position (arrow b). direction). At this time, a leakage magnetic field is generated from the surface of the inspection object 10 to which the magnetic field is applied by the permanent magnet 14 below the rotating belt 12, and the inspection object 10 is 1 by using the magnetic sensor 16 installed above. During the rotation, it becomes possible to inspect the entire outer peripheral surface for defects.

1個の被検査物10についての検査が終了したならば、図1のBに示すように、永久磁石14をセンサ位置から横方向(矢印c方向)に移動する。すると、被検査物10も磁力で引き付けられて永久磁石14と一緒に移送される(矢印d方向)。このとき、回転用ベルト12は停止してもよいし、動き続けていてもよい。これを利用すると、複数の永久磁石を間隔をおいて配列して順次センサ位置へと移動させることにより、複数の被検査物を間欠的に順次センサ位置まで移送させることができる。永久磁石を横方向へ移動させて被検査物をセンサ位置に移動し、永久磁石を止めた状態で回転用ベルトを動かすと被検査物が回転し検査部分で検査ができる。検査が終了すれば再び永久磁石を移動して、被検査物を移送させることができる。   When the inspection of one inspection object 10 is completed, the permanent magnet 14 is moved in the lateral direction (arrow c direction) from the sensor position as shown in FIG. Then, the inspected object 10 is also attracted by the magnetic force and transferred together with the permanent magnet 14 (arrow d direction). At this time, the rotating belt 12 may be stopped or may continue to move. By utilizing this, a plurality of inspected objects can be intermittently sequentially transferred to the sensor position by arranging a plurality of permanent magnets at intervals and sequentially moving them to the sensor position. When the permanent magnet is moved in the lateral direction, the inspection object is moved to the sensor position, and the rotating belt is moved while the permanent magnet is stopped, the inspection object rotates and inspection can be performed at the inspection portion. When the inspection is completed, the permanent magnet can be moved again to transfer the object to be inspected.

なお、図1には示していないが、円筒状の被検査物の両端部近傍にも磁気センサを設置しておけば、外周面のみならず、端部における開口部の判別や閉塞部の欠陥検査も同時に行うことが可能となる。   Although not shown in FIG. 1, if a magnetic sensor is also installed in the vicinity of both ends of a cylindrical inspection object, not only the outer peripheral surface but also the opening at the end and the defect of the closed portion Inspection can be performed at the same time.

例えば、被検査物が円筒状の電池外装ケースの場合、内部に電池素子を収容した後にかしめるために開口端近傍部がわずかに大径になっていることがある。そのように、円筒状の被検査物の外径が軸方向で僅かに変わっているような場合には、図2に示すように、回転用ベルト32の表面に幅方向の段差を設けることで、被検査物30の軸方向の外径変化を補正し、被検査物30の軸方向の傾きを矯正することも可能である。回転用ベルト32の下方で前記被検査物30に対向するように永久磁石34が位置し、センサ位置にて被検査物30の上方に磁気センサ36が設けられる点は、図1の場合と同様である。   For example, when the object to be inspected is a cylindrical battery outer case, the vicinity of the opening end may have a slightly larger diameter in order to caulk after the battery element is accommodated therein. Thus, when the outer diameter of the cylindrical object is slightly changed in the axial direction, a step in the width direction is provided on the surface of the rotation belt 32 as shown in FIG. It is also possible to correct the change in the outer diameter of the inspection object 30 in the axial direction and correct the inclination of the inspection object 30 in the axial direction. The permanent magnet 34 is positioned below the rotating belt 32 so as to face the inspection object 30, and the magnetic sensor 36 is provided above the inspection object 30 at the sensor position as in the case of FIG. It is.

なお、回転用ベルトの断面形状を、図示のように、幅方向で対称にすれば、被検査物の開口端近傍が僅かに大径となっている場合でも、被検査物を向きを揃えることなく移送し検査することができる。そこで図2では、被検査物30の両端近傍にも、それぞれ別の磁気センサ36a,36bを設けて、開口端がどちら側にあるのか、及び閉塞端(底部)の欠陥検査ができるように構成している。   If the cross-sectional shape of the rotating belt is made symmetrical in the width direction as shown in the figure, the direction of the inspection object is aligned even when the vicinity of the opening end of the inspection object has a slightly large diameter. Can be transported and inspected Therefore, in FIG. 2, separate magnetic sensors 36a and 36b are provided in the vicinity of both ends of the object to be inspected 30 so that the side of the open end and the closed end (bottom) can be inspected. doing.

図3は、本発明に係る磁気探傷装置の一実施例を示す説明図である。この装置は、被検査物である円筒状の電池外装ケース40を横向き(ここでは中心軸が紙面に垂直な方向となる向き)で移送する方式であり、電池外装ケース40を、その外周面が接するように支持する無端の回転用ベルト42と、該回転用ベルト42を動かすベルト駆動機構43と、回転用ベルト42を介して前記電池外装ケース40に対向するように下方に配置した複数の永久磁石44と、該永久磁石44がセンサ位置で一時的に停滞するように間欠駆動する磁石移動機構45と、前記電池外装ケース40の上方に位置するようにセンサ位置に設置した磁気センサ46を備えている。   FIG. 3 is an explanatory view showing an embodiment of the magnetic flaw detector according to the present invention. This apparatus is a method of transferring a cylindrical battery outer case 40, which is an object to be inspected, in a horizontal direction (here, a direction in which the central axis is perpendicular to the paper surface). An endless rotating belt 42 supported so as to contact, a belt driving mechanism 43 that moves the rotating belt 42, and a plurality of permanent belts disposed below the battery outer case 40 via the rotating belt 42. A magnet 44; a magnet moving mechanism 45 that intermittently drives the permanent magnet 44 so that the permanent magnet 44 temporarily stays at the sensor position; and a magnetic sensor 46 installed at the sensor position so as to be positioned above the battery outer case 40. ing.

前記回転用ベルト42は、摩擦力を利用して電池外装ケース40を回転させるものであり、通常のベルトコンベアなどと同様に、両端に位置するローラを回転駆動するベルト駆動機構43によって回転用ベルト42を矢印a方向に動かすことができる構成である。磁石移動機構45は、前記回転用ベルト42の内側に位置し、複数の永久磁石44を間隔をおいて配列して連結ベルトなどに固定しておき、前記回転用ベルト42とは別々に動かすことができるように構成したものである。前記連結ベルトを間欠的に駆動し、それによる永久磁石44の移動(矢印c方向)により磁力を利用して電池外装ケース40を移送(矢印d方向)する。   The rotating belt 42 rotates the battery outer case 40 using frictional force, and the rotating belt 42 is rotated by a belt driving mechanism 43 that rotationally drives rollers located at both ends, as in a normal belt conveyor. In this configuration, 42 can be moved in the direction of arrow a. The magnet moving mechanism 45 is located inside the rotating belt 42, and a plurality of permanent magnets 44 are arranged at intervals and fixed to a connecting belt or the like, and moved separately from the rotating belt 42. It is configured to be able to. The connecting belt is intermittently driven, and the battery outer case 40 is transferred (arrow d direction) using magnetic force by the movement of the permanent magnet 44 (arrow c direction).

電池外装ケース40には対応する永久磁石44で磁界が印加されているので、センサ位置で該永久磁石44の移動を止め、回転用ベルトのみを動かす(矢印a方向)ことで、電池外装ケース40はセンサ位置にて回転(矢印b方向)し、欠陥検査が行われる。1個の電池外装ケースについての検査が終了すれば、再び永久磁石を移動して次の電池外装ケースをセンサ位置に移送して検査を行う。このようにして複数の電池外装ケースを連続して検査することができる。電池外装ケースの表面にプレス加工時の油が付着している場合でも付着量が多くはないので上記の移送・回転動作は可能であった。   Since the magnetic field is applied to the battery outer case 40 by the corresponding permanent magnet 44, the movement of the permanent magnet 44 is stopped at the sensor position, and only the rotating belt is moved (in the direction of arrow a). Rotates at the sensor position (in the direction of arrow b), and defect inspection is performed. When the inspection for one battery outer case is completed, the permanent magnet is moved again and the next battery outer case is transferred to the sensor position to perform the inspection. In this way, a plurality of battery outer cases can be inspected continuously. Even when oil at the time of pressing is adhered to the surface of the battery outer case, the amount of adhesion is not large, and thus the above-mentioned transfer / rotation operation was possible.

ここでは、磁気センサ46として、700μm厚の透明なSGGG単結晶基板上に液相エピタキシャル法により2μm厚のBi置換鉄ガーネット膜(磁気光学膜)を育成し、その上に200nm厚のPtスパッタ膜(反射膜)を形成した磁気光学素子を使用した。磁性ガーネット膜は、膜面垂直方向の飽和に要する磁界が400Oeの面内膜である。   Here, as the magnetic sensor 46, a Bi-substituted iron garnet film (magneto-optical film) having a thickness of 2 μm is grown on a transparent SGGG single crystal substrate having a thickness of 700 μm by a liquid phase epitaxial method, and a Pt sputtered film having a thickness of 200 nm is formed thereon. A magneto-optical element having a (reflection film) formed thereon was used. The magnetic garnet film is an in-plane film having a magnetic field required for saturation in the direction perpendicular to the film surface of 400 Oe.

検査に使用する光学系は次の如くである。光源50には緑色のLEDを用い、その出射光を偏光子52を用いて直線偏光にし、ビームスプリッタ54で光路を曲げて、磁気センサ56を上方から照射する。磁気光学膜を通り反射膜で反射した光は、ビームスプリッタ54を透過し、検光子56を通ってCCDカメラ58で受光し、パソコン60で画像データを取得した。なお、ビームスプリッタに代えてハーフミラーを用いてもよい。   The optical system used for the inspection is as follows. A green LED is used as the light source 50, and the emitted light is linearly polarized using the polarizer 52, the optical path is bent by the beam splitter 54, and the magnetic sensor 56 is irradiated from above. The light that passed through the magneto-optic film and was reflected by the reflecting film passed through the beam splitter 54, passed through the analyzer 56, received by the CCD camera 58, and acquired image data by the personal computer 60. A half mirror may be used instead of the beam splitter.

磁気光学膜内の磁化方向は自然状態で面内方向なので、直線偏光を磁気光学膜に照射すると、反射膜による反射光の偏波面は回転しない。従って、偏光子52と検光子56の透過軸が直交していれば、反射光は検光子56を透過できずCCDカメラ58で撮影した画像は暗くなる(黒色)。磁気光学膜内の磁化方向が膜面に対して垂直方向を向くと、直線偏光を磁気光学膜に照射したとき、反射膜による反射光の偏波面は回転する。従って、偏光子52と検光子56の透過軸が直交していれば、反射光は検光子56を透過しCCDカメラ58で撮影した画像は明るくなる(白色)。このようにして、被検査物表面の欠陥部に生じた漏洩磁界の乱れを1次元あるいは2次元の光強度分布として検出することで、欠陥検査が行える。   Since the magnetization direction in the magneto-optical film is the in-plane direction in a natural state, when linearly polarized light is applied to the magneto-optical film, the polarization plane of the reflected light by the reflection film does not rotate. Therefore, if the transmission axes of the polarizer 52 and the analyzer 56 are orthogonal to each other, the reflected light cannot pass through the analyzer 56 and the image taken by the CCD camera 58 becomes dark (black). When the magnetization direction in the magneto-optical film is perpendicular to the film surface, when the linearly polarized light is applied to the magneto-optical film, the plane of polarization of the reflected light from the reflective film rotates. Therefore, if the transmission axes of the polarizer 52 and the analyzer 56 are orthogonal to each other, the reflected light passes through the analyzer 56 and the image taken by the CCD camera 58 becomes bright (white). In this way, the defect inspection can be performed by detecting the disturbance of the leakage magnetic field generated in the defect portion on the surface of the inspection object as a one-dimensional or two-dimensional light intensity distribution.

本実施例の装置を用い、直方体のネオジム磁石を、円筒状の電池外装ケースと平行に回転用ベルトを介して配置して電池外装ケース周面の欠陥を観察したところ、幅200μm程度の微小な線状キズであっても確実に検出することができた。   Using the apparatus of this example, a rectangular neodymium magnet was placed in parallel with the cylindrical battery outer case via a rotating belt, and defects on the peripheral surface of the battery outer case were observed. Even linear flaws could be reliably detected.

また、図4に示すように、磁気センサ46の近傍に、該磁気センサ46を挟むように前後両方にそれぞれ抑えローラ48を設け、検査中に磁気センサ46と被検査物40との距離を一定に保持するようにすると、回転位置が定まり安定した検査が行える。なお、これらの抑えローラ48は自由に回転するフリーローラでよい。また、永久磁石44の移動に同期して前記抑えローラ48を上下させる(矢印eで示す)抑えローラ上下動機構49を設けると、被検査物をセンサ位置に搬入したり、センサ位置から搬出する障害になることもない。この図4に示す部分は、図3にそのまま適用できるものなので、対応する部分には同一符号を付し、それらについての説明は省略する。ここで、磁気センサと抑えローラが一体となって上下に可動するように構成してもよいし、磁気センサは固定で抑えローラのみ上下に可動する構成でもよい。   Further, as shown in FIG. 4, restraining rollers 48 are provided in the vicinity of the magnetic sensor 46 on both the front and rear sides so as to sandwich the magnetic sensor 46, and the distance between the magnetic sensor 46 and the inspection object 40 is constant during the inspection. If the rotation position is held, the rotational position is determined and stable inspection can be performed. These holding rollers 48 may be free rollers that rotate freely. Further, when a restraining roller vertical movement mechanism 49 is provided that moves the restraining roller 48 up and down in synchronization with the movement of the permanent magnet 44 (indicated by an arrow e), the inspection object is carried into or out of the sensor position. There is no obstacle. The parts shown in FIG. 4 can be applied to FIG. 3 as they are. Therefore, the corresponding parts are denoted by the same reference numerals, and description thereof will be omitted. Here, the magnetic sensor and the pressing roller may be configured to move integrally up and down, or the magnetic sensor may be configured to be fixed and movable only up and down.

10 被検査物
12 回転用ベルト
14 永久磁石
16 磁気センサ
DESCRIPTION OF SYMBOLS 10 Test object 12 Belt for rotation 14 Permanent magnet 16 Magnetic sensor

Claims (9)

磁性材料からなる被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界の乱れを、前記被検査物に近接配置した磁気センサを用いて検出する磁気探傷方法において、
前記被検査物は円筒状であって、その外周面が回転用ベルトに接触しており、該回転用ベルトを介して前記被検査物に対向している磁石によって前記被検査物に磁界が印加されると共に前記磁石の磁力により被検査物が回転用ベルトに引き付けられ、前記磁石をセンサ位置に停滞させた状態で前記回転用ベルトを動かすことにより、円筒状の前記被検査物がセンサ位置に止まったままで前記回転用ベルトとの間の摩擦力を利用して前記被検査物を中心軸の周りに回転させ、前記磁気センサによって被検査物の周面を検査することを特徴とする磁気探傷方法。
In a magnetic flaw detection method for applying a magnetic field to an inspection object made of a magnetic material and detecting a disturbance of a leakage magnetic field generated in a defect portion on the surface using a magnetic sensor disposed close to the inspection object.
The inspection object has a cylindrical shape, and an outer peripheral surface thereof is in contact with a rotation belt, and a magnetic field is applied to the inspection object by a magnet facing the inspection object via the rotation belt. In addition, the inspection object is attracted to the rotation belt by the magnetic force of the magnet, and the cylindrical inspection object is moved to the sensor position by moving the rotation belt in a state where the magnet is stopped at the sensor position. Magnetic flaw detection characterized in that the inspection object is rotated around a central axis by utilizing a frictional force between the rotation belt and the peripheral surface of the inspection object while being stopped. Method.
前記被検査物の一方もしくは両方の端部近傍にも磁気センサを配置し、被検査物の端面も同時に検査する請求項1記載の磁気探傷方法。   The magnetic flaw detection method according to claim 1, wherein a magnetic sensor is also disposed near one or both ends of the inspection object, and the end surface of the inspection object is also inspected simultaneously. 前記磁気センサが磁気光学素子であり、該磁気光学素子を、被検査物の外周近傍に設置して、偏光子を通した光を磁気光学素子へ照射し、該磁気光学素子の表面で反射した光または磁気光学素子を透過後に反射した光を検光子を通して観察することにより、磁気光学効果を利用して前記被検査物表面の欠陥部に生じた漏洩磁界の乱れを1次元あるいは2次元の光強度分布として検出する請求項1又は2記載の磁気探傷方法。   The magnetic sensor is a magneto-optical element, and the magneto-optical element is placed in the vicinity of the outer periphery of the object to be inspected, and the light passing through the polarizer is irradiated onto the magneto-optical element and reflected by the surface of the magneto-optical element. By observing the light or the light reflected after passing through the magneto-optical element through the analyzer, the disturbance of the leakage magnetic field generated in the defect portion of the surface of the object to be inspected using the magneto-optical effect is one-dimensional or two-dimensional light. 3. The magnetic flaw detection method according to claim 1, wherein the magnetic flaw detection method is detected as an intensity distribution. 前記磁気光学素子が磁気光学膜の片面に反射膜を設けた構造であり、前記磁気光学膜として、膜面平行方向の飽和に要する磁界が膜面垂直方向に比べて小さいBi置換鉄ガーネット膜を使用する請求項3記載の磁気探傷方法。   The magneto-optical element has a structure in which a reflection film is provided on one surface of a magneto-optical film, and the magneto-optical film is a Bi-substituted iron garnet film in which a magnetic field required for saturation in the direction parallel to the film surface is small compared to the direction perpendicular to the film surface. The magnetic flaw detection method according to claim 3, which is used. 前記回転用ベルトの断面形状は、その表面の幅方向に段差あるいは隙間を設けた形状であり、その形状によって円筒状の前記被検査物の軸方向の外径変化を補正している請求項1乃至4のいずれかに記載の磁気探傷方法。   The cross-sectional shape of the rotating belt is a shape having a step or a gap in the width direction of the surface thereof, and the change in the outer diameter in the axial direction of the cylindrical inspection object is corrected by the shape. The magnetic flaw detection method according to any one of 1 to 4. 前記被検査物が円筒状の電池外装ケースである請求項5記載の磁気探傷方法。   The magnetic flaw detection method according to claim 5, wherein the inspection object is a cylindrical battery outer case. 前記磁石が永久磁石であって、永久磁石をセンサ位置へと移動させることにより永久磁石の磁力を利用して被検査物をセンサ位置まで移送させ、永久磁石をセンサ位置から移動させることにより検査済みの被検査物をセンサ位置から移送する請求項1乃至6のいずれかに記載の磁気探傷方法。   The magnet is a permanent magnet. By moving the permanent magnet to the sensor position, the inspection object is transferred to the sensor position by using the magnetic force of the permanent magnet, and the permanent magnet is moved from the sensor position. 7. The magnetic flaw detection method according to claim 1, wherein the inspection object is transferred from the sensor position. 磁性材料からなる被検査物に磁界を印加し、その表面の欠陥部に生じた漏洩磁界の乱れを、前記被検査物に近接配置した磁気センサを用いて検出する磁気探傷装置において、
円筒状の被検査物を、その中心軸が水平となる向きで外周面が接するように載置する回転用ベルトと、該回転用ベルトを動かすベルト駆動機構と、前記回転用ベルトを介して前記被検査物に対向する永久磁石と、該永久磁石がセンサ位置で一時的に停滞するように間欠駆動する磁石移動機構と、センサ位置にて前記被検査物の外周面近傍となるように設置した磁気センサとを備え、前記永久磁石により前記被検査物に磁界を印加すると共に、前記永久磁石を移動させることにより磁力を利用して前記被検査物を移送させ、センサ位置にて前記回転用ベルトを動かすことにより摩擦力を利用して前記被検査物を回転させて前記磁気センサで欠陥検査を行うようにしたことを特徴とする磁気探傷装置。
In a magnetic flaw detection apparatus that applies a magnetic field to an inspection object made of a magnetic material and detects a disturbance of a leakage magnetic field generated in a defect portion on the surface using a magnetic sensor disposed close to the inspection object.
A rotating belt for placing a cylindrical object to be inspected so that the outer peripheral surface is in contact with the central axis in a horizontal direction, a belt driving mechanism for moving the rotating belt, and the rotating belt through the rotating belt. A permanent magnet that faces the object to be inspected, a magnet moving mechanism that intermittently drives the permanent magnet so as to temporarily stagnate at the sensor position, and a position near the outer peripheral surface of the object to be inspected at the sensor position. A magnetic sensor, and a magnetic field is applied to the object to be inspected by the permanent magnet, and the object to be inspected is transferred using a magnetic force by moving the permanent magnet. A magnetic flaw detector in which a defect is inspected by the magnetic sensor by rotating the inspection object by rotating the inspection object by using a friction force.
前記磁気センサ近傍に位置し検査中に磁気センサと被検査物との距離を一定に保持する抑えローラと、前記永久磁石の移動に同期して前記抑えローラを上下させる抑えローラ上下動機構が設けられている請求項8記載の磁気探傷装置。   There is provided a control roller that is located near the magnetic sensor and maintains a constant distance between the magnetic sensor and the object to be inspected during inspection, and a control roller vertical movement mechanism that moves the control roller up and down in synchronization with the movement of the permanent magnet. The magnetic flaw detector according to claim 8.
JP2010273413A 2010-12-08 2010-12-08 Magnetic flaw detection method and apparatus Expired - Fee Related JP5629899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273413A JP5629899B2 (en) 2010-12-08 2010-12-08 Magnetic flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273413A JP5629899B2 (en) 2010-12-08 2010-12-08 Magnetic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2012122832A JP2012122832A (en) 2012-06-28
JP5629899B2 true JP5629899B2 (en) 2014-11-26

Family

ID=46504419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273413A Expired - Fee Related JP5629899B2 (en) 2010-12-08 2010-12-08 Magnetic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP5629899B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367084B1 (en) * 2013-08-29 2014-02-25 주식회사 서울금속 Apparatus for inspecting defect of object using vision
KR102023739B1 (en) 2019-04-17 2019-09-20 주식회사 엘지화학 Inner crack detection device for secondary battery using eddy current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201654A (en) * 1992-12-26 1994-07-22 Sumitomo Metal Ind Ltd Method and apparatus for magneto-optical flaw detection
JP2006153856A (en) * 2004-10-28 2006-06-15 Toyo Kohan Co Ltd Device and method for inspecting scratch on external case for cell
JP5640298B2 (en) * 2010-08-27 2014-12-17 Fdk株式会社 Magneto-optical flaw detection method and apparatus used therefor

Also Published As

Publication number Publication date
JP2012122832A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2011148456A1 (en) Wire rope flaw detection device
Tehranchi et al. The inspection of magnetic flux leakage from metal surface cracks by magneto-optical sensors
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
JP6149370B2 (en) Magnetic domain discontinuity detection method
JP5441214B2 (en) Magneto-optical defect detection method
JP5629899B2 (en) Magnetic flaw detection method and apparatus
JP5640298B2 (en) Magneto-optical flaw detection method and apparatus used therefor
RU2381559C2 (en) Device and method for research of magnetic properties of objects
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
JP5550141B2 (en) Magneto-optical defect detection method
Eftekhari et al. Miniaturized magneto-optical imaging sensor for crack and micro-crack detection
JP2672912B2 (en) Optical magnetic field flaw detection method
JP2004077426A (en) Defect inspecting method for drive belt
JPH03245052A (en) Method and apparatus for magnetooptic flaw detection
JP2860336B2 (en) Steel plate magnetic inspection equipment
TWI614202B (en) Conveyance apparatus
JPH02253152A (en) Method and device for flaw detection
JPH06201654A (en) Method and apparatus for magneto-optical flaw detection
SU1698733A1 (en) Method of non-destructive testing of ferromagnetic materials and products
JPH04130265A (en) Magnetic flaw detecting apparatus for steel plate
JP2016020852A (en) Magnetic detection device
JPH02227655A (en) Method and device for magneto-optic flaw detection
JPH03276050A (en) Magneto-optical flaw detecting device
JP2022123902A (en) Inspection device and inspection method using superconducting magnetic sensor
SU452786A1 (en) Method of magnetic control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5629899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees