JP5634967B2 - ハイブリッド車両及びその制御方法 - Google Patents

ハイブリッド車両及びその制御方法 Download PDF

Info

Publication number
JP5634967B2
JP5634967B2 JP2011209123A JP2011209123A JP5634967B2 JP 5634967 B2 JP5634967 B2 JP 5634967B2 JP 2011209123 A JP2011209123 A JP 2011209123A JP 2011209123 A JP2011209123 A JP 2011209123A JP 5634967 B2 JP5634967 B2 JP 5634967B2
Authority
JP
Japan
Prior art keywords
speed
internal combustion
combustion engine
gear
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011209123A
Other languages
English (en)
Other versions
JP2013067346A (ja
Inventor
隆行 岸
隆行 岸
春彦 三木
春彦 三木
博美 川原田
博美 川原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011209123A priority Critical patent/JP5634967B2/ja
Publication of JP2013067346A publication Critical patent/JP2013067346A/ja
Application granted granted Critical
Publication of JP5634967B2 publication Critical patent/JP5634967B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、駆動源として内燃機関と電動機とを備えた車両(いわゆるハイブリッド車両)及びその制御方法に関し、特に電動機単独走行状態でのキックダウン時において内燃機関を始動して電動機と併用するハイブリッド走行に切り替える際の制御技術に関する。
車両用の変速機(トランスミッション)には、近年、変速時における機械的動力の伝達の途切れをなくすために、奇数段の変速段で構成される第1の変速機構の入力軸(以下、第1入力軸という)と内燃機関の出力軸(以下、機関出力軸という)とを係合可能な第1のクラッチと、偶数段の変速段で構成される第2の変速機構の入力軸(以下、第2入力軸という)と機関出力軸とを係合可能な第2のクラッチとを備え、これら2つのクラッチを交互につなぎ替えることで変速を行う、いわゆるデュアルクラッチ式変速機が知られている。デュアルクラッチ式変速機は、例えば、奇数段から偶数段に変速する際には、偶数段の歯車対を予め噛み合わせておき、奇数段に機械的動力を伝達する第1のクラッチを解放状態にすると共に、偶数段に機械的動力を伝達する第2のクラッチを係合状態にすることで、変速時における動力伝達の途切れを抑制している。
また、下記の特許文献1には、上述のように2つの変速機構を備え、一方の変速機構の入力軸に係合する電動機(以下、モータ)を更に具えたハイブリッドタイプの車両用駆動装置が示されている。このようなハイブリッドタイプの車両用駆動装置における動力供給形態には、内燃機関(以下、エンジン)のみで車両を走行するエンジン単独走行、モータのみで車両を走行するモータ単独走行(EV走行)、エンジンとモータとを組み合わせて車両を走行するハイブリッド走行(HEV走行)、の3形態がある。どの動力供給形態を採用すべきかは、車両の運転状態に応じて適切に制御されるようになっている。
上記モータ単独走行状態にあってはエンジンが停止されているため、車両走行中にモータ単独走行からエンジン走行に移行する場合には、エンジンを始動させる必要がある。そのために、車両走行に使用しているモータの回転を利用してエンジンの押し掛け始動(クランキング)を行い、エンジン始動した後に適切な変速段に設定してエンジン走行を行うようになっている。例えば、第1の変速機構の入力軸にモータが係合しているとすると、第1の変速機構の変速段(奇数段)を使用してモータ単独走行を行っているときにエンジン走行に移行するには、第1の変速機構の変速段(奇数段)の選択(変速出力軸への連結)を維持しつつ、第2の変速機構の変速段(偶数段)のうち適切な変速段を選択し且つ第2のクラッチを係合状態にして、モータの動力を該第2の変速機構の該選択された変速段及び第2のクラッチを介して機関出力軸に伝達し、これによってエンジンを押し掛け始動(クランキング)するようにしている。この場合、押し掛け始動に使用する変速段としては、該変速段が機関出力軸に接続された場合の機関回転速度が、予め設定された必要回転速度(押し掛け始動に必要な回転速度)以上となり且つ最も低くなるように該変速段が選択されるようになっている。これにより、瞬時にエンジン始動可能な高いギヤ段(変速段)で押し掛けが行われて、押し掛け時のモータのエネルギーロス(始動損とも言う)を低減するようにしている。このような従来のエンジンの押し掛け始動制御にあっては、エンジン始動後の目標駆動ギヤ段(目標変速段)を通常の変速段選択基準(詳しくは変速マップ)に従って決定し、変速制御を行うようになっている。
特許第4285571号
ところで、モータ単独走行からのエンジン押し掛け始動はアクセルペダルの踏み込み途中に実施されるケースが多く、また上述のように押し掛け始動時点若しくはエンジン点火完了時点でのアクセルペダル開度(すなわち踏み込み途中のアクセルペダル開度)や車速等に従ってエンジン始動後の目標駆動ギヤ段を決定することによれば、上記エンジン始動可能な高いギヤ段からエンジン始動後の目標駆動ギヤ段へとすぐに駆動ギヤ段(変速段)を持ち替えなければならない。しかし、従来では駆動の途切れが無いようキックダウン時における駆動ギヤ段(変速段)の持ち替えに時間がかかり最終的な駆動力到達への応答性が悪い、という問題があった。その理由は、例えば5速でモータ単独走行しているときに押し掛け始動用の変速段として6速を選択して押し掛け始動を行い、押し掛け始動時点若しくはエンジン点火完了時点でのアクセルペダル開度や車速等に応じて決定されるエンジン駆動用の目標駆動ギヤ段が3速であるような場合(つまりは5速から3速へのキックダウン)、モータは5速を介して駆動しているため6速で押し掛け始動されたエンジンの回転数が上昇中に6速から4速にギヤをダウンシフトすることによる4速での駆動を一旦経てから、目標駆動ギヤ段である3速へと最終的にギヤをダウンシフトする、というように駆動ギヤ段の持ち替えの多い変速制御形態となっていたためである。これを解決するために、5速でモータ単独走行しているときに直接的に5速から3速へとギヤをダウンシフトすることが考えられるが、そうするには第1クラッチを解放してモータトルクを抜く必要があり一旦は完全に駆動抜けを起してしまうことになるので都合が悪い。
本発明は上述の点に鑑みてなされたもので、モータ単独走行状態でのアクセルペダルオン操作時において、エンジンを始動してエンジンとモータとを併用したハイブリッド走行に切り替える際に、要求駆動力に応じた最適な駆動ギヤ段に高応答で変速制御することのできるようにしたハイブリッド車両及びその制御方法を提供しようとするものである。
本発明に係るハイブリッド車両は、駆動源に内燃機関(2)と電動機(3)とを有してなり、前記内燃機関出力軸及び前記電動機(3)からの機械的動力を該電動機(3)に接続された第1入力軸(100)で受け、複数の変速段のうちいずれか1つを係合して前記第1入力軸(100)と駆動輪(7R,7L)とを係合させることが可能な第1変速機構と、前記内燃機関出力軸からの機械的動力を第2入力軸(400)で受け、複数の変速段のうちいずれか1つを係合して前記第2入力軸(400)と駆動輪(7R,7L)とを係合させることが可能な第2変速機構と、前記内燃機関出力軸と前記第1入力軸(100)との係合及び非係合を切り替え可能な第1断接手段(C1)と、前記内燃機関出力軸と前記第2入力軸(400)との係合及び非係合を切り替え可能な第2断接手段(C2)と、前記第1変速機構及び第2変速機構における変速段の係合状態と、前記第1断接手段(C1)及び第2断接手段(C2)の係合状態とを制御可能な制御手段(10)とを備えたハイブリッド車両において、前記制御手段(10)は、駆動源として電動機(3)のみを用いた車両走行中のアクセルペダルオン操作に応じたキックダウンを行う際に、前記内燃機関(2)の押し掛け始動に使用する変速段として、押し掛け始動を行うときの前記内燃機関(2)の回転速度が予め設定された必要回転速度以上となる変速段を選択し、該選択した変速段を使用して前記内燃機関(2)の押し掛け始動を行うよう制御する手段(S1,S2)と、前記押し掛け始動に使用する変速段として現在の変速段と異なる前記第2変速機構の変速段が選択されて前記内燃機関(2)の押し掛け始動が行われた場合に、前記押し掛け始動に使用した変速段を維持したまま前記始動した内燃機関(2)のみを用いて車両を走行させるよう制御する手段(S5,S6)と、前記内燃機関(2)のみを用いた車両走行中に前記第1変速機構において最適な変速段に切り替えるよう制御する手段(S7)と、前記押し掛け始動に使用した変速段から前記切り替えた変速段に移行させると共に、前記電動機(3)と前記内燃機関(2)とを用いて車両を走行させるよう制御する手段(S8)とを含むことを特徴とする。
本発明にかかるハイブリッド車両では、電動機(3)のみを用いた車両走行中にアクセルペダルオン操作が行われたことに応じて、内燃機関(2)の押し掛け始動に使用する変速段として現在の変速段と異なる第2変速機構の変速段が選択されて前記内燃機関(2)の押し掛け始動が行われた場合に、前記押し掛け始動に使用した変速段を維持したまま前記始動した内燃機関(2)のみを用いて一時的に車両を走行させる。そして、内燃機関(2)のみを用いた車両走行中に、第1変速機構において車速に応じた最適な変速段に切り替えておき(キックダウンする)、押し掛け始動に使用した変速段から切り替えた変速段に移行させると共に電動機(3)と内燃機関(2)とを併用して車両を走行させるように制御するようにした。このように、押し掛け始動に使用した変速段を維持したまま内燃機関のみを用いて一時的に車両を走行させている間に、第1変速機構において車速に応じた最適な変速段に切り替えておくことにより、押し掛け始動に使用した変速段から最適な変速段に一気に移行させながら、電動機と内燃機関とを併用したハイブリッド走行に切り替えできるようになる。すなわち、内燃機関を始動してハイブリッド走行に切り替える際に、最適な駆動ギヤ段に高応答で変速制御することができるようになる。
なお、上記で括弧内に記した図面参照符号は、後述する実施形態において対応する構成要素等を参考のために例示したものである。
本発明によれば、電動機のみを用いた車両走行中にアクセルペダルオン操作が行われたことに応じて、現在の変速段と異なる第2変速機構の変速段が選択されて内燃機関の押し掛け始動が行われた場合に、押し掛け始動に使用した変速段を維持したまま内燃機関のみを用いて一時的に車両を走行させている間に、第1変速機構において車速に応じた最適な変速段に切り替えておく。これにより、押し掛け始動に使用した変速段から最適な変速段に一気に移行させながら、電動機と内燃機関とを併用したハイブリッド走行に車両の走行状態を切り替えできることから、ハイブリッド走行に切り替える際に最適な駆動ギヤ段に高応答で変速制御することができるようになる、という効果を奏する。
本発明の一実施形態における車両の概略的な接続構成図。 図1に示す変速機のスケルトン図。 図1に示す電子制御ユニットにより実行されるエンジン押し掛け制御処理の概略を示すフローチャート。 エンジン押し掛け制御の際の各機器の動作状態の時間的変化例。
以下、この発明の実施の形態を添付図面に従って詳細に説明する。
まず、本実施形態における車両の構成を説明する。図1は、本発明の一実施形態における車両の概略的な接続構成図である。本実施形態の車両1は、いわゆるハイブリッド車両であり、図1に示すように、駆動源としての内燃機関2及び電動機3と、電動機3を制御するための電動機制御手段20と、バッテリ30と、トランスミッション(以下、変速機)4と、ディファレンシャル機構5と、左右のドライブシャフト6R、6Lと、左右の駆動輪7R、7Lとを備える。ここで、前記電動機3はモータでありモータジェネレータを含み、前記バッテリ30は蓄電器でありキャパシタを含む。また、前記内燃機関2はエンジンでありディーゼルエンジンやターボエンジンなどを含む。内燃機関(以下、エンジン)2と電動機(以下、モータ)3の回転駆動力は、トランスミッション4、ディファレンシャル機構5およびドライブシャフト6R、6Lを介して左右の駆動輪7R、7Lに伝達される。
また、この車両1は、エンジン2、モータ3、変速機4、ディファレンシャル機構5、電動機(以下、モータ)制御手段20およびバッテリ30をそれぞれ制御するための電子制御ユニット(ECU:Electronic Control Unit)10を備える。電子制御ユニット10は1つのユニットとして構成されるだけでなく、例えば内燃機関2を制御するためのエンジンECU、モータ3やモータ制御手段20を制御するためのモータジェネレータECU、バッテリ30を制御するためのバッテリECU、変速機4を制御するためのATECUなど複数のECUから構成されてもよい。この実施形態に示す電子制御ユニット10は、エンジン2を制御するとともに、モータ3やバッテリ30、変速機4を制御する。
電子制御ユニット10は、各種の運転条件に応じて、モータ3のみを動力源とするモータ単独走行(EV走行)をするように制御したり、エンジン2のみを動力源とするエンジン単独走行をするように制御したり、エンジン2とモータ3の両方を動力源として併用する協働走行(ハイブリッド走行又はHEV走行)をするように制御する。また、電子制御ユニット10は、公知の各種の制御パラメータに従って後述する変速制御(図3参照)や、その他の各種の運転に必要な制御を行う。この実施形態においては、制御パラメータとして、例えば後述する第1変速機構及び第2変速機構において係合中のギヤ段(変速段)を検出するシフトセンサA1からのシフト位置、エンジン2の回転数を検出する回転数センサA2からのエンジン回転数、モータ3の回転数を検出する回転数センサA3からのモータ回転数、モータ3のトルクを検出するトルクセンサA4(例えばレゾルバなど)からのモータトルク、後述する第1クラッチC1及び第2クラッチC2における各トルクを検出するトルクセンサA5からのクラッチトルク、アクセルペダルの踏み込み量を検出するアクセルペダルセンサA6からのアクセルペダル(AP)開度、その他センサA7からの例えば車両速度(車速)や、ブレーキのオン/オフなどの運転者の操作に応じた各種信号などが入力されるようになっている。勿論、ここに記載した以外の信号が入力されてよい。
エンジン2は、燃料を空気と混合して燃焼することにより車両1を走行させるための駆動力を発生する内燃機関エンジンである。モータ3は、エンジン2とモータ3との協働走行やモータ3のみのEV走行の際には、バッテリ30の電気エネルギーを利用して車両1を走行させるための駆動力を発生するモータとして機能するとともに、車両1の減速時にはモータ3の回生により電力を発電する発電機としても機能する。すなわち、モータ3は例えば界磁に永久磁石を利用した永久磁石式3相交流モータ等のブラシレスDCモータであって、モータ制御手段20に接続されている。モータ制御手段20は例えばインバータ(電力変換器)であって、電子制御ユニット10によるスイッチング制御に従ってバッテリ30から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータ3へ出力する。これにより、モータ3は指定されたトルクを発生するように駆動される。また、モータ制御手段20は、エンジン2の出力を受けてモータ3が発電した3相交流電圧を電子制御ユニット10によるスイッチング制御に従って直流電圧に変換し、その変換した直流電圧をバッテリ30へ出力する。このモータ3の回生時には、バッテリ30は、モータ3により発電された電力(回生エネルギー)により充電される。
次に、本実施形態の変速機4の構成を説明する。図2は、図1に示す変速機4のスケルトン図である。ここに示す変速機4は、前進7速、後進1速の平行軸式トランスミッションであり、乾式のデュアルクラッチ式変速機(DCT:デュアルクラッチトランスミッション)である。
変速機4には、エンジン2の機関出力軸をなすクランクシャフト(図示せず)およびモータ3に接続される内側メインシャフト100(第1入力軸)と、この内側メインシャフト100の外筒をなす外側メインシャフト101(第2入力軸)と、内側メインシャフト100にそれぞれ平行なセカンダリシャフト400(第2入力軸)、アイドルギヤ300、リバースシャフト500と、これらのシャフトに平行で出力軸をなすカウンタシャフト200とが設けられる。
これらのシャフトのうち、外側メインシャフト101がアイドルギヤ300を介してリバースシャフト500およびセカンダリシャフト400に常時係合し、カウンタシャフト200がさらにディファレンシャル機構5に常時係合するように配置される。
また、変速機4は、奇数段用の第1クラッチC1(第1断接手段)と、偶数段用の第2クラッチC2(第2断接手段)とを備える。第1および第2クラッチC1、C2は乾式のクラッチである。第1クラッチC1は内側メインシャフト100(第1入力軸)に結合される。第2クラッチC2は、外側メインシャフト101(第2入力軸の一部)に結合され、外側メインシャフト101上に固定されたギヤ48からアイドルギヤ300を介してリバースシャフト500およびセカンダリシャフト400(第2入力軸の一部)に連結される。
内側メインシャフト100(第1入力軸)のモータ3よりの所定箇所にはプラネタリギヤ機構70が固定配置されており、プラネタリギヤ機構70のサンギヤ71はモータ3のロータに、キャリヤ73は3速駆動ギヤ43に、リングギヤ75は内側メインシャフト100(第1入力軸)にそれぞれ接続されている。内側メインシャフト100(第1入力軸)の外周には、図2において左側から順に、1速駆動ギヤとなるプラネタリギヤ機構70のキャリヤ73と、3速駆動ギヤ43と、7速駆動ギヤ47と、5速駆動ギヤ45が配置される。3速駆動ギヤ43、7速駆動ギヤ47、5速駆動ギヤ45はそれぞれ内側メインシャフト100に対して相対的に回転可能であり、また上記したようにギヤ43はプラネタリギヤ機構70のキャリヤ73に連結されている。更に、内側メインシャフト100上には、3速駆動ギヤ43と7速駆動ギヤ47との間に3−7速シンクロメッシュ機構(セレクタ機構)81が軸方向にスライド可能に設けられ、かつ、5速駆動ギヤ45に対応して5速シンクロメッシュ機構(セレクタ機構)82が軸方向にスライド可能に設けられる。所望のギヤ段に対応するシンクロメッシュ機構(セレクタ機構)をスライドさせて該ギヤ段のシンクロを入れることにより、該ギヤ段が内側メインシャフト100(第1入力軸)に連結される。メインシャフト100(第1入力軸)に関連して設けられたこれらのギヤ及びシンクロメッシュ機構によって、奇数段の変速段を実現するための第1変速機構が構成される。第1変速機構の各駆動ギヤは、カウンタシャフト200上に設けられた対応する従動ギヤに噛み合い、カウンタシャフト200を回転駆動する。
セカンダリシャフト400(第2入力軸)の外周には、図2において左側から順に、2速駆動ギヤ42、6速駆動ギヤ46と、4速駆動ギヤ44とが相対的に回転可能に配置される。更に、セカンダリシャフト400上には、2速駆動ギヤ42と6速駆動ギヤ46との間に2−6速シンクロメッシュ機構83が軸方向にスライド可能に設けられ、かつ、4速駆動ギヤ44に対応して4速シンクロメッシュ機構(セレクタ機構)84が軸方向にスライド可能に設けられる。この場合も、所望のギヤ段に対応するシンクロメッシュ機構(セレクタ機構)をスライドさせて該ギヤ段のシンクロを入れることにより、該ギヤ段がセカンダリシャフト400(第2入力軸)に連結される。セカンダリシャフト400(第2入力軸)に関連して設けられたこれらのギヤ及びシンクロメッシュ機構によって、偶数段の変速段を実現するための第2変速機構が構成される。第2変速機構の各駆動ギヤも、カウンタシャフト200上に設けられた対応する従動ギヤに噛み合い、カウンタシャフト200を回転駆動する。なお、セカンダリシャフト400に固定されたギヤ49はアイドルギヤ300に結合しており、該アイドルギヤ300から外側メインシャフト101を介して第2クラッチC2に結合される。
なお、第1変速機構において、任意の或る変速段を選択するとは、当該変速段に対応するギヤのシンクロが入れられて該ギヤが内側メインシャフト100(第1入力軸)に連結されることを意味する。また、この第1変速機構において、エンジン走行用の変速段(又は駆動ギヤ段)を実現するとは、該変速段(又は駆動ギヤ段)を上記のように選択した(シンクロを入れた)上で、対応する第1クラッチC1を係合させて内側メインシャフト100(第1入力軸)を機関出力軸に連結することを意味する。
同様に、第2変速機構において、任意の或る変速段を選択するとは、当該変速段に対応するギヤのシンクロが入れられて該ギヤがセカンダリシャフト400(第2入力軸)に連結されることを意味する。また、この第2変速機構において、エンジン走行用の変速段(又は駆動ギヤ段)を実現するとは、該変速段(又は駆動ギヤ段)を上記のように選択した(シンクロを入れた)上で、対応する第2クラッチC2を係合させてセカンダリシャフト400(第2入力軸)を機関出力軸に連結することを意味する。
リバースシャフト500の外周には、リバース駆動ギヤ46が相対的に回転可能に配置される。また、リバースシャフト500上には、リバース駆動ギヤ46に対応してリバースシンクロメッシュ機構85が軸方向にスライド可能に設けられ、また、アイドルギヤ300に係合するギヤ50が固定されている。リバース走行する場合は、シンクロメッシュ機構85のシンクロを入れて、第2クラッチC2を係合することにより、第2クラッチC2の回転が外側メインシャフト101及びアイドルギヤ300を介してリバースシャフト500に伝達され、リバース駆動ギヤ46が回転される。リバース駆動ギヤ46は内側メインシャフト100上のギヤ56に噛み合っており、リバース駆動ギヤ46が回転するとき内側メインシャフト100は前進時とは逆方向に回転する。内側メインシャフト100の逆方向の回転は、プラネタリギヤ機構70に連結したギヤ43を介してカウンタシャフト200に伝達される。リバースシャフト500に関連して設けられた上記ギヤ及びシンクロメッシュ機構によって、リバース段の変速段を実現するための反転機構が構成される。また、リバース駆動ギヤ46はオイルポンプ駆動シャフト90上のギヤOGとも噛み合っていることから、第1クラッチC1を係合することによる内側メインシャフト100の回転又は第2クラッチC2を係合することによる外側メインシャフト101の回転がリバース駆動ギヤ46を介してオイルポンプ駆動シャフト90へと伝達されて、これによりオイルポンプ駆動シャフト90が回転することに伴って第1変速機構及び第2変速機構の各部に作動油を供給するオイルポンプOPが駆動される。
カウンタシャフト200上には、図2において左側から順に、2−3速従動ギヤ51と、6−7速従動ギヤ52と、4−5速従動ギヤ53と、パーキング用ギヤ54と、ファイナル駆動ギヤ55とが固定的に配置される。ファイナル駆動ギヤ55は、ディファレンシャル機構5のディファレンシャルリングギヤ(図示せず)と噛み合うようになっており、これにより、カウンタシャフト200の出力軸の回転がディファレンシャル機構5の入力軸(つまり車両推進軸、足軸とも呼ばれる)に伝達される。
また、プラネタリギヤ機構70のリングギヤ75とプラネタリギヤ72,74に係合するように、ワンウェイクラッチ41が設けられる。
2−6速シンクロメッシュ機構83のシンクロスリープを左方向にスライドすると、2速駆動ギヤ42がセカンダリシャフト400に結合され、右方向にスライドすると、6速駆動ギヤ46がセカンダリシャフト400に結合される。また、4速シンクロメッシュ機構84のシンクロスリープを右方向にスライドすると、4速駆動ギヤ44がセカンダリシャフト400に結合される。このように偶数の駆動ギヤ段を選択した状態で、第2クラッチC2を係合することにより、変速機4は偶数の変速段(2速、4速、又は6速)に設定される。
3−7速シンクロメッシュ機構81のシンクロスリープを左方向にスライドすると、3速駆動ギヤ43が内側メインシャフト100に結合されて3速の変速段が選択され、右方向にスライドすると、7速駆動ギヤ47が内側メインシャフト100に結合されて7速の変速段が選択される。また、5速シンクロメッシュ機構82のシンクロスリープを右方向にスライドすると、5速駆動ギヤ45が内側メインシャフト100に結合されて5速の変速段が選択される。シンクロメッシュ機構81、82がどのギヤ43、47、45も選択していない状態では、プラネタリ機構70のキャリヤ73の回転がこれに連結したギヤ43を介してカウンタシャフト200に伝達され、1速の変速段が選択されることになる。奇数の駆動ギヤ段を選択した状態で第1クラッチC1を係合することにより、変速機4は奇数の変速段(1速、3速、5速、又は7速)に設定される。
変速機4で実現すべき変速段の決定及び該変速段を実現するための制御(第1変速機構及び第2変速機構における変速段の選択すなわちシンクロの切り替え制御と、第1クラッチ及び第2クラッチの係合及び解放(係合解除)の制御等)は、公知のように運転状況に従って電子制御ユニット10によって実行される。
次に、電子制御ユニット10によって実行されるエンジン押し掛け始動時の制御例について、図3を参照して説明する。図3は、エンジン押し掛け制御処理の概略を示すフローチャートである。図3に示すエンジン押し掛け制御処理は、原動機としてモータのみを用いた車両走行であるモータ走行(モータ単独走行)中に急なアクセルペダルの踏み込み操作(アクセルペダルオン操作)が行われて、エンジン2を始動させるべきことが決定されたときに開始される。
ステップS1では、奇数段のモータ単独走行中にエンジン2の押し掛け始動に使用する変速段として、押し掛け始動を行うときのエンジン回転速度が予め設定された必要回転速度(所定のエンジン始動回転数)以上となる変速段を選択し、該選択した変速段に切り替えるシンクロ制御によるプレシフトを行う。これにより、予めエンジン2を押し掛け始動するのに使用する変速段へのプレシフトを済ませておく。ここでの変速段の選択は、前記特許文献1等で公知の手法を適宜用いてよい。一例を示すと、この実施例においてはモータ走行が奇数段で行われているため、エンジン2の押し掛けに使用できる変速段は、偶数段のすべてと現在の変速段(モータ走行に使用している奇数段)である。これらのエンジン押し掛けに使用できる変速段のうち、押し掛け始動を行うときのエンジン回転数が予め設定された必要回転数(エンジンを押し掛け始動させるのに必要な最低エンジン回転数)以上になるかどうかを、現在のモータ回転数と各変速段のギヤ比の演算に基づいて判定する。そして、予め設定された必要回転数以上になる変速段が複数ある場合、そのうち最も低い回転数(つまり、最も高速側の変速段)を、押し掛け始動に使用する変速段として選択する。必要回転数以上のうち最も低い回転数となる変速段(つまり、最も高速側の変速段)を押し掛け始動に使用するものとして選択する理由は、押し掛け時のモータ3のエネルギーロスを最小限にするためである。
そこで、モータ走行中に急なアクセルペダルオン操作されたときに実行される本処理においては、エンジン2を押し掛け始動するために、モータ走行している現在の変速段(3速、5速の各奇数段)より高速側の変速段(引き上げギヤ段という)がモータ単独走行中に選択されてプレシフトがなされている。つまり、アクセルペダルが踏み込まれた場合には始動損を抑えるために、エンジン2を押し掛け始動するのに用いられる変速段として偶数段(4速、6速)が選択される。ただし、車両が一定速度での減速状態にあるような場合には、モータ走行している現在の変速段より高速側の変速段が選択されてしまうと、結果的に車速の減速に伴いエンジン2を始動するのには不十分な回転数(遅い回転数)しか得られない変速段を選択することになりかねない。これは、実際にエンジン2を押し掛け始動するまでにプレシフトする変速段を判断するための時間や後述するクラッチを締結するための時間が必要であり、これらの時間が経過したときにはプレシフトする変速段を選択した時よりも車速が減速してしまうことに起因する。そこで、車両が一定速度での減速状態にあるような場合には、車速が一定の減速度で減速するとの予測に応じて決定される減速予測車速に基づいてエンジン2の押し掛け始動に使用する(プレシフトする)変速段を選択するようにするとよい。減速予測車速はリニア関数を用いて減速度に応じた車速を算出することにより決定してもよいし、適宜の非リニア関数を用いて減速度に応じた車速を算出することにより決定してもよいし、若しくは適宜のテーブル又はマップ等を参照することにより減速度に応じた車速を決定するようにしてもよい。また、エンジン2の押し掛け始動に使用する変速段は、前記決定された減速予測車速によって適宜の変速テーブル又は変速マップ等を参照して選択すればよい。
ステップS2では、前記プレシフトされている変速段が6速(偶数段)である場合に、偶数段クラッチを繋ぎエンジン2の押し掛け始動を行うよう制御する。すなわち、第2クラッチC2(偶数クラッチ)を締結することによる前記選択した6速(偶数段)を介してのエンジン2へのモータトルクの伝達に基づいてエンジン2を押し掛け始動する。ステップS3は、エンジン2の始動に伴い発生されるエンジン回転数と前記偶数クラッチの締結により回転する偶数段シャフト(セカンダリシャフト400)の回転数に応じて、偶数クラッチつまり第2クラッチC2の締結を徐々に解除する制御を行う。これにより、モータ単独走行を行いながらエンジン2を始動した状態となる。
ステップS4は、駆動したい変速段がモータで駆動しているのと異なる軸(シャフト)の変速段であるか否かを判定する。一例として、ここでは5速(奇数段)でモータ駆動していることから、駆動したい変速段が偶数段(例えば4速)であれば異なる軸の変速段であると判定され、駆動したい変速段が奇数段(例えば3速)であれば同じ軸の変速段であると判定される。駆動したい変速段がモータで駆動しているのと同じ軸の変速段である場合には(ステップS4のNO)、後述するステップS5〜S7の処理を実行する。他方、駆動したい変速段がモータで駆動しているのと異なる軸の変速段である場合には(ステップS4のYES)、後述するステップS8及びS9の処理を実行する。
駆動したい変速段がモータで駆動しているのと異なる軸の変速段である場合に、ステップS8は、エンジン2の始動に伴い発生されたエンジン回転数が偶数クラッチ(第2クラッチC2)の締結により回転する偶数段シャフト(セカンダリシャフト400)の回転数を上回った時点で、締結を徐々に解除していた偶数クラッチを完全に解放させた上で偶数段の変速機構(第2変速機構)を駆動したい変速段に切り替える制御、具体的には6速から4速へと切り替える制御を行う。ステップS9は、駆動したい変速段への切り替え終了に伴い、エンジン2の回転数が切り替えられた変速段の回転数まで上昇したら、駆動トルクを偶数クラッチとモータ3との間で持ち替える制御を行うことにより、駆動したい変速段での駆動に移行する。
他方、駆動したい変速段がモータで駆動しているのと同じ軸の変速段である場合に、ステップS5は、エンジン2の始動に伴い発生されたエンジン回転数が偶数クラッチ(第2クラッチC2)の締結により回転する偶数段シャフト(セカンダリシャフト400)の回転数を上回った時点で、締結を徐々に解除していた偶数クラッチを半締結状態で解除停止する制御を行う。これにより、6速で駆動しながらエンジン2を吹き上げることができるのでエンジン回転数を高めることができる。
ステップS6は、モータ駆動を止めて奇数段を駆動したい変速段に切り替える制御、具体的には5速から3速へ切り替える制御を行う。すなわち、第1クラッチC1が完全に解放されモータトルクが抜かれている状態を一定時間維持し、その間にダウンシフトのための変速段(奇数段)切り替えを行うようシンクロ制御する。これによると、第2変速機構においては、エンジン2を押し掛け始動するために選択された変速段である6速(偶数段)を保持したまま第2クラッチC2を締結開始するので、該偶数段でのエンジン2による単独走行が行われることになる。一方、第1変速機構においては、そうしたエンジン単独走行が行われている間はモータトルクを抜くことから、その間に変速段(奇数段)のダウンシフト(例えば5速から3速)を完了できることになる。
ステップS7は、駆動したい変速段への切り替え終了に伴い、エンジン2の回転数が切り替えられた変速段の回転数まで上昇したら、駆動トルクを偶数段クラッチとモータ3との間で持ち替える制御を行うことにより、駆動したい変速段での駆動に移行する。エンジン2の回転数が切り替えられた(ダウンシフトされた)変速段の回転数まで上昇したら、駆動トルクを偶数クラッチと奇数クラッチとの間で持ち替える制御を行うことにより、駆動したい変速段での駆動に移行する。こうすることによって、エンジン2を押し掛け始動するために選択され一時的にはエンジン単独走行に用いられた変速段(偶数段)からダウンシフトされた変速段(奇数段)へと走行変速段を切り替えると共に、モータ3とエンジン2とを併用したハイブリッド走行状態へと移行することができるようになる。
ここで、5速でのモータ単独走行中に急にアクセルペダルが踏み込まれたときの本発明の動作例について図4を参照して説明する。図4は、エンジン押し掛け制御の際の各機器の動作状態の時間的変化例を示すもので、(a)は目標駆動力の時間的変化例を示し、(b)はエンジン2の回転数の時間的変化例を示し、(c)はモータ3のトルクの時間的変化例を示し、(d)は第2クラッチC2(偶数段用のクラッチ)のトルク(又はクラッチ締結圧)の時間的変化例を示し、(e)は第1クラッチC1(奇数段用のクラッチ)のトルク(又はクラッチ締結圧)の時間的変化例を示す。また、(f)はエンジン2を押し掛けのために選択された変速段の例を示し、(g)はモータ走行用変速段の例を示し、(h)は車速等に応じて決定される目標変速段の例を示し、(i)は実際に車両を駆動している現走行変速段の例を示す。なお、ここに示す例では、時刻t0に至るまで5速でモータ単独走行しているとする(図4(g),(i))。
時点t0は、アクセルペダルの踏み込み操作が行われた時点であり、この時点t0からt1の間ではアクセルペダルの踏み込み量や車速等に応じて決まる目標駆動力の増加に従ってモータトルクが増加する(図4(a),(c))。時点t1は、前述のエンジン押し掛け制御処理を実行すべきと判断された時点であり、この例ではエンジン押し掛け始動に使用する変速段として6速が選択されて第2変速機構において前記選択された6速がプレシフトされるとする(図4(f))。また、時点t1では目標駆動力を実現するのに最適な変速段(目標変速段)を6速に設定する(図4(h))。偶数段をエンジン2に結合するための第2クラッチC2(偶数クラッチ)のトルクは、時点t1からt2の間で徐々に増加する(図4(d)。また、モータ単独走行を確保する一方でエンジン押し掛けの動力も提供するので、モータ3のトルクも時点t1からt2の間で徐々に増加する(図4(c))。一方、奇数段をエンジン2に結合するための第1クラッチC1(奇数クラッチ)は、オフのまま(トルク0)である(図4(e))。
時点t2でエンジン2が回転し始める(図4(b))。時点t3でエンジン2が点火及び完爆しており、エンジン回転数がエンジン2を始動するのに使用したギア(6速)の回転数に到達する。時点t2からt3の間でエンジン回転数とエンジン2を始動したギア(6速)のシャフト回転数に応じて、モータ3のトルク及び第2クラッチC2のトルクが徐々に減少される(図4(c),(d))。また、時点t3では目標駆動力を実現するのに最適な変速段(目標変速段)を3速に設定する(図4(h))。時点t3においてエンジン2が点火してエンジン2のトルクが発生するのにあわせて、時点t3から時点t4でトルクが0となるようにモータ3のトルクを徐々に減少する一方で、時点t3において徐々に減少させていた第2クラッチC2のトルクを0にする前に再度増加に転じさせる(図4(c),(d))。つまり、時点t3からは第2クラッチC2を完全に切り離すことなく半クラッチを維持した状態で徐々に第2クラッチC2のトルクを増すことにより(押し掛け用に使用した6速の変速段は一度もエンジン2から切り離されない)、押し掛け用に使用した6速の変速段のままでエンジン2の駆動力を徐々にトルクを増すようにして駆動輪7R,7Lに伝達させる(図4(i))。
時点t4からt5の間、モータ3のトルクを0とし(図4(c))、その間に第1変速機構において変速段を5速から3速に切り替えるシンクロ制御を行うことでダウンシフトする(図4(g))。このダウンシフトが終了し且つエンジン回転数が3速の回転数に到達したら(時点t5)、第1クラッチC1(奇数クラッチ)の係合を開始する(図4(e))。こうして時点t3からt5の間で、モータ3からエンジン2へのトルクの持ち替えが行われ、時点t4からは6速でのエンジン単独走行に一時的に移行される。
時点t5では、奇数段(モータ走行変速段)をエンジン2に結合するための第1クラッチC1(奇数クラッチ)の係合を開始して第1クラッチC1のトルクを徐々に上げる一方で、第2クラッチC2(偶数クラッチ)のトルクを徐々に下げて0(係合解除)にする(図4(d),(e))。このとき、モータ3のトルクを所定の一定値まで上げる(図4(c))が、モータ3のトルクは3速インギアが完了した時点で上げ始めてもよい。こうすることで、時点t6以降ではモータ3とエンジン2を併用した3速の変速段でのハイブリッド走行が開始される。
従来技術と比較すると、従来技術では本発明のような制御を行っていないため、例えば、エンジン2の回転上昇中でありエンジン2の点火(初爆)が確認された時点t3で、公知の変速段選択基準(変速マップなど)に従い、駆動ギヤ段として4速を選択し、4速の変速段でのエンジン単独走行を一旦実現するが、その後のアクセルペダルの更なる踏み込みにより4速から3速へのキックダウンと判断して、更に3速にシフトダウンする、といったような本発明に比べると4速への変速段の入れ替えを介するだけ手順の多い変速制御となっていた。従って、本発明実施例では手順が少なく、上記時点t3からt6の間に4速への入れ替えを行うことなく一気に6速から3速への変速制御を行って3速に移行するのに対して、従来技術では、上記時点t3以降に6速から4速への変速制御を行い、さらにその後に4速から3速への変速制御を行うことにより6速から3速への移行を完了することから、どうしても制御に時間がかかり応答遅れが生じる。そのため、従来技術では、運転者による最終的な要求駆動力に応じたギヤ段(例えば3速)でのハイブリッド走行が実現されるまでにもたつきがあり、応答性が良くなかった。これに対して、本発明では、エンジン2を押し掛け始動するのに使用した6速(第2変速機構)を使って一時的なエンジン単独走行を実現しておき、その間にエンジン単独走行に供されていない第1変速機構において5速から3速への変速制御を行うことで、運転者による最終的な要求駆動力に応じたギヤ段(例えば3速)でのハイブリッド走行への移行を応答性よくまた駆動抜けを生じさせることなく実現することができる。
1 ハイブリッド車両
2 エンジン
3 モータ(電動機)
4 変速機
5 ディファレンシャル機構
6R,6L ドライブシャフト
7R,7L 駆動輪
10 電子制御ユニット
20 モータ制御手段
30 バッテリ
70 プラネタリギヤ機構
71 サンギヤ
72,74 プラネタリギヤ
73 キャリヤ
75 リングギヤ
C1 第1クラッチ
C2 第2クラッチ
100 内側メインシャフト
101 外側メインシャフト
200 カウンタシャフト
300 アイドルギヤ
400 セカンダリシャフト
500 リバースシャフト

Claims (3)

  1. 駆動源に内燃機関と電動機とを有してなり、
    前記内燃機関出力軸及び前記電動機からの機械的動力を該電動機に接続された第1入力軸で受け、複数の変速段のうちいずれか1つを係合して前記第1入力軸と駆動輪とを係合させることが可能な第1変速機構と、
    前記内燃機関出力軸からの機械的動力を第2入力軸で受け、複数の変速段のうちいずれか1つを係合して前記第2入力軸と駆動輪とを係合させることが可能な第2変速機構と、
    前記内燃機関出力軸と前記第1入力軸との係合及び非係合を切り替え可能な第1断接手段と、
    前記内燃機関出力軸と前記第2入力軸との係合及び非係合を切り替え可能な第2断接手段と、
    前記第1変速機構及び第2変速機構における変速段の係合状態と、前記第1断接手段及び第2断接手段の係合状態とを制御可能な制御手段と
    を備えたハイブリッド車両において、
    前記制御手段は、駆動源として電動機のみを用いた車両走行中のアクセルペダルオン操作に応じたキックダウンを行う際に、
    前記内燃機関の押し掛け始動に使用する変速段として、押し掛け始動を行うときの前記内燃機関の回転速度が予め設定された必要回転速度以上となる変速段を選択し、該選択した変速段を使用して前記内燃機関の押し掛け始動を行うよう制御する手段と、
    前記押し掛け始動に使用する変速段として現在の変速段と異なる前記第2変速機構の変速段が選択されて前記内燃機関の押し掛け始動が行われた場合に、前記押し掛け始動に使用した変速段を維持したまま前記始動した内燃機関のみを用いて車両を走行させるよう制御する手段と、
    前記内燃機関のみを用いた車両走行中に前記第1変速機構において最適な変速段に切り替えるよう制御する手段と、
    前記押し掛け始動に使用した変速段から前記切り替えた変速段に移行させると共に、前記電動機と前記内燃機関とを用いて車両を走行させるよう制御する手段と
    を含むことを特徴とするハイブリッド車両。
  2. 前記内燃機関の押し掛け始動を行うよう制御する手段は、車速が一定の減速度で減速するとの予測に応じて決定される減速予測車速に基づいて、前記内燃機関の押し掛け始動に使用する変速段を選択することを特徴とする請求項1に記載のハイブリッド車両。
  3. 駆動源に内燃機関と電動機とを有するハイブリッド車両の制御方法であって、
    前記ハイブリッド車両は、
    前記内燃機関出力軸及び前記電動機からの機械的動力を該電動機に接続された第1入力軸で受け、複数の変速段のうちいずれか1つを係合して前記第1入力軸と駆動輪とを係合させることが可能な第1変速機構と、
    前記内燃機関出力軸からの機械的動力を第2入力軸で受け、複数の変速段のうちいずれか1つを係合して前記第2入力軸と駆動輪とを係合させることが可能な第2変速機構と、
    前記内燃機関出力軸と前記第1入力軸との係合及び非係合を切り替え可能な第1断接手段と、
    前記内燃機関出力軸と前記第2入力軸との係合及び非係合を切り替え可能な第2断接手段と、
    前記第1変速機構及び第2変速機構における変速段の係合状態と、前記第1断接手段及び第2断接手段の係合状態とを制御可能な制御手段と
    を備えてなり、
    前記制御手段は、駆動源として電動機のみを用いた車両走行中のアクセルペダルオン操作に応じたキックダウンを行う際に、
    前記内燃機関の押し掛け始動に使用する変速段として、押し掛け始動を行うときの前記内燃機関の回転速度が予め設定された必要回転速度以上となる変速段を選択し、該選択した変速段を使用して前記内燃機関の押し掛け始動を行うよう制御するステップと、
    前記押し掛け始動に使用する変速段として現在の変速段と異なる前記第2変速機構の変速段が選択されて前記内燃機関の押し掛け始動が行われた場合に、前記押し掛け始動に使用した変速段を維持したまま前記始動した内燃機関のみを用いて車両を走行させるよう制御するステップと、
    前記内燃機関のみを用いた車両走行中に前記第1変速機構において最適な変速段に切り替えるよう制御するステップと、
    前記押し掛け始動に使用した変速段から前記切り替えた変速段に移行させると共に、前記電動機と前記内燃機関とを用いて車両を走行させるよう制御するステップと
    を備えるハイブリッド車両の制御方法。
JP2011209123A 2011-09-26 2011-09-26 ハイブリッド車両及びその制御方法 Active JP5634967B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209123A JP5634967B2 (ja) 2011-09-26 2011-09-26 ハイブリッド車両及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209123A JP5634967B2 (ja) 2011-09-26 2011-09-26 ハイブリッド車両及びその制御方法

Publications (2)

Publication Number Publication Date
JP2013067346A JP2013067346A (ja) 2013-04-18
JP5634967B2 true JP5634967B2 (ja) 2014-12-03

Family

ID=48473577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209123A Active JP5634967B2 (ja) 2011-09-26 2011-09-26 ハイブリッド車両及びその制御方法

Country Status (1)

Country Link
JP (1) JP5634967B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104002797B (zh) * 2014-06-13 2016-08-24 武汉理工通宇新源动力有限公司 一种用于混合动力汽车发动机自动启动的控制方法
KR101619250B1 (ko) 2014-09-24 2016-05-18 현대자동차 주식회사 변속제어시스템 및 그 방법
CN109823161B (zh) * 2019-03-26 2024-03-19 浙江工业职业技术学院 一种车用三电机混合动力变速驱动系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083171B2 (ja) * 2008-10-23 2012-11-28 トヨタ自動車株式会社 内燃機関始動制御装置
JP4607222B2 (ja) * 2009-01-27 2011-01-05 本田技研工業株式会社 ハイブリッド車両
DE102010008726A1 (de) * 2010-02-20 2011-08-25 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug

Also Published As

Publication number Publication date
JP2013067346A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP6108313B2 (ja) ハイブリッド車両におけるエンジン始動制御装置
KR20160035655A (ko) 차량의 변속장치
JP2017013752A (ja) ハイブリッド車両の制御装置
JP2004239327A (ja) 多段式自動変速機の変速制御装置
JP6350749B2 (ja) 電動車両の発進制御装置
WO2012160912A1 (ja) ハイブリッド車両の変速制御装置
JP5912327B2 (ja) デュアルクラッチ式自動変速機
JP2013203098A (ja) ハイブリッド車両の制御装置
JP2019078270A (ja) 変速機の制御装置
US20200023726A1 (en) Control device
JP2013035403A (ja) ハイブリッド車両
JP2013047532A (ja) デュアルクラッチ式自動変速機
JP5634967B2 (ja) ハイブリッド車両及びその制御方法
JP5376154B2 (ja) ハイブリッド電気自動車の変速制御装置
JP5989303B2 (ja) ハイブリッド車両
JP5770483B2 (ja) 車両用駆動装置
JP5906142B2 (ja) ハイブリッド車両の制御装置及び制御方法
JP2018122856A (ja) ハイブリッド車両の制御装置および変速制御方法
JP4644995B2 (ja) 平行軸式歯車変速装置
JP5947059B2 (ja) ハイブリッド車両の制御装置
JP5912050B2 (ja) ハイブリット車両
JP5929738B2 (ja) ハイブリッド車両の制御装置
JP2013035528A (ja) ハイブリッド車両
JP2013035404A (ja) ハイブリッド車両及びその制御方法
JP6165093B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250