JP5623385B2 - 反応光学測定装置およびその測定方法 - Google Patents

反応光学測定装置およびその測定方法 Download PDF

Info

Publication number
JP5623385B2
JP5623385B2 JP2011505979A JP2011505979A JP5623385B2 JP 5623385 B2 JP5623385 B2 JP 5623385B2 JP 2011505979 A JP2011505979 A JP 2011505979A JP 2011505979 A JP2011505979 A JP 2011505979A JP 5623385 B2 JP5623385 B2 JP 5623385B2
Authority
JP
Japan
Prior art keywords
light
optical
liquid container
light receiving
concave mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011505979A
Other languages
English (en)
Other versions
JPWO2010110096A1 (ja
Inventor
田島 秀二
秀二 田島
善直 平原
善直 平原
瀬川 修
修 瀬川
池田秀雄
秀雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Bio Research Co Ltd
Original Assignee
Universal Bio Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Bio Research Co Ltd filed Critical Universal Bio Research Co Ltd
Publication of JPWO2010110096A1 publication Critical patent/JPWO2010110096A1/ja
Application granted granted Critical
Publication of JP5623385B2 publication Critical patent/JP5623385B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、反応光学測定装置およびその測定方法に関するものである。
近年、特定のDNA断片を、迅速かつ容易に増幅するDNA増幅方法として、ポリメラーゼ連鎖反応(polymerase chain reaction: PCR)法が、生物関連のあらゆる分野で用いられている。PCR法は、鋳型DNAに相補的な2本のプライマーを設計し、そのプライマーに挟まれた領域を試験管内(in vitro)で複製する方法である。該方法は、鋳型DNA、プライマー、ヌクレオチド、耐熱性DNAポリメラーゼを含む反応溶液を各種温度でインキュベートするという温度サイクルを繰り返すことで指数関数的にDNAを増幅してPCR産物を得るものである。
1回のサイクルは、鋳型DNA、プライマー、DNAポリメラーゼ、ヌクレオチド及び反応バッファ液が入った容器について、二本鎖のDNAを一本鎖に変性し、一本鎖のDNAにプライマーがアニールし、前記一本鎖に相補的なDNA断片を2分子にする。次のサイクルで合成されたDNA断片も鋳型となるので、nサイクル後に合成されるDNA断片は、2分子となる。
リアルタイムPCRでは、PCRでの増幅産物の生成過程をリアルタイムで検出し、解析することによって、より正確な定量を行なうものであり、より正確で迅速な光学的測定を必要とし、そのために、種々の装置が開発されている。
特に、複数個(例えば96個)のウェルを有するマイクロプレートの前記ウェルに、各種のサンプルのDNA断片を収容してリアルタイムPCRを実行させて、ウェルを1個ずつ逐一測定しながら解析を行う代わりに、前記マイクロプレート内の複数個の前記ウェルを同時に光学的に測定して解析を行うものが開示されている(特許文献1、2)。
そのため、PCRが行なわれるマイクロプレート等の容器に設けられた全ウェルに対して、励起光を照射し該全ウェルで生じた蛍光を、レンズを用いた物体側および像側テレセントリック光学系を用い、それによって結像した該全ウェルの像をCCDチップ等の変換器を用いてその光量を測定していた(特許文献1、2)。
また、ウェルごとに共通の焦点系をもつ光ファイバ束をウェル内に収容した液面の上方に設け、または該光ファイバ束をウェル列に対応するように設けた光ファイバ束列を移動可能に設けるとともに、該光ファイバ束の一部の光ファイバについては、励起光の照射に用い、他の光ファイバについては、蛍光を受光部に導くために用いたものが考えられる(特許文献3)。
特開2006−226998号公報 米国特許第6498690号 米国特許第6448089号
しかしながら、前者の場合のようにレンズを用いて全ウェルを結像する場合には、球面収差、こま収差、非点収差または視野の湾曲、および色収差の結像誤差も制御しなければならない点が特許文献1の段落0034に記載されている。さらに、レンズを用いてテレセントリック光学系を用いようとすると、実際には、特許文献1の段落0035や特許文献2に示すように、ビーム路内に1つより多いレンズを順に配置した複数要素からなるレンズ設計が必要である点が開示されており、構造が複雑化し、装置規模が拡大しまた製造コストが増大するおそれがあった。さらに、コンパクトな空間で前記収差を抑えて一般に入手可能なCCDチップのような狭い視野に結像させる場合には、CCDサイズに合わせた光学系が必要となり、1つ以上のミラーや複雑なレンズ群(最低レンズ4枚必要)を必要とするおそれがあった。また、後者の場合には、励起光、蛍光それぞれのファイバへの入射効率が光源から液面までの距離やファイバ入射面の形状精度に依存し、必要とする感度を得るためには、やはり製造コストが増大するおそれがあった。
そこで、本発明は、以上の問題点を解決するためになされたものであり、その第1の目的は、複雑な光学系や精密な移動機構等を用いずに、簡単な機構を持つにも拘わらず、特に色収差が実質的になく、かつコンパクトで製造コストが安価な反応光学測定装置および光学測定方法を提供することである。第2の目的は、調整が容易で使用しやすい反応光学測定装置および光学測定方法を提供することである。第3の目的は、信頼性の高い反応光学測定装置および光学測定方法を提供することである。
第1の発明は、発光物質を含有する反応溶液を収容可能な複数個の液収容部が平面に沿って配列され、各液収容部において温度制御が行われる平面状液収容体と、1または複数個の前記各液収容部の開口部を通して前記平面に垂直方向に放射される発光の主光線を光軸に関し所定入射角で入射させて、前記平面状液収容体から離れた位置にある各結像位置に前記発光による実像を形成する1または複数の凹面鏡素子と、各所定測定位置において、前記各実像からの光を受光する受光部と、を有する反応光学測定装置である。
ここで、「反応溶液」とは、反応が行われる溶液であって、例えば、PCR反応溶液がある。「PCR反応溶液」とは、PCR反応が行なわれる溶液であって、鋳型DNA,プライマー、DNAポリメラーゼ、ヌクレオチド及び反応バッファ液等である。「発光」には、蛍光、燐光、化学発光等があり、発光が蛍光や燐光の場合には、前記各液収容部内に励起光を照射可能な励起光照射部が必要である。したがって、発光物質としては、蛍光物質、燐光物質、化学発光物質等がある。
「液収容部」とは、液を収容、貯溜、保持可能な部分であって、例えば、ウェル、容器、またはチューブ等がある。「平面状液収容体」とは、前記ウェルが平面状、例えば行列状に配列されたマイクロプレート、前記ウェルが列状または行状に配列されたカートリッジ容器、または、複数のチューブまたは容器が、列状、行状を含む平面状に配列された孔等に挿入して支持されたチューブ支持体または容器支持体がある。さらには、明らかに容器状の形状をしたものに限られず、DNAチップのようなチップ上にスポット状の液体が、複数配列された窪みに収容されているもの、液体の浸潤可能な浸潤スポット内に浸潤し、または載置された場合も含む。マイクロプレートは、例えば、9mmピッチの96個のウェルが8行×12列に配列されたものである。平面状液収容体は、温度制御の間に、蒸発等を防ぎ、また、光学的測定が可能となるように、前記開口部を閉塞するために、例えば、透明な1枚のシートで、該平面状液収容体に設けられた全ウェル、全チューブまたは全容器を被覆して閉塞するのが好ましい。さらに、反応を行うための所定の温度制御とは別に、前記シートで閉塞した平面状液収容体は、該シートへの内側からの結露を防止して、シートの除去を容易にしかつその透光性を保護するために、前記シートの上から、光の通過が可能で、かつ所定の一定温度で加熱するための各開口部に対応する貫通孔を有する加熱体を上側から前記シートに載置可能となるように設けるのが好ましい。
「凹面鏡素子」は、該素子による実像が、該素子から有限の距離でしかも物体側に結像することができる光学素子であり、主として球面凹面鏡素子と非球面凹面鏡素子がある。1の凹面鏡素子がそこからの発光の主光線を入射させてその実像を結像させることができる範囲は、1または複数の液収容部、または前記平面状液収容体全体である。ここで、1の凹面鏡素子は、好ましくは、n(>1)回の回転対称性をもち(例えば、円形、正方形、長方形等)かつ前記範囲に応じて必要十分な大きさをもつように該素子の反射面を囲む縁部を形成し、光軸をその回転対称軸線に一致させる。
また、発光の主光線を入射させてその実像を結像させることができる前記範囲を1または少数の液収容部のみに限定した凹面鏡素子の1または複数個を光学系に設けることで、凹面鏡素子から液収容部や結像位置までの距離を短縮させて光学系、したがって装置全体をコンパクトにすることができる。
「非球面凹面鏡素子」は、2方向において異なる曲率半径を有する凹面鏡素子をいい、2以上の方向で同一の曲率半径を有する球面凹面鏡素子とは異なる。
「2方向」とは、例えば、互いに直交する、縦方向(サジタル面)及び横方向(メリジオナル面)である。「非球面凹面鏡素子」としては、例えば、トロイダルミラーを用いる。
「所定入射角」とは、各液収容部から垂直方向に放射される前記発光の主光線と、前記凹面鏡素子の光軸とのなす角度であって、該所定入射角は、該凹面鏡素子の曲率半径や、測定対象である前記平面状液収容体の各収容部までの距離、および前記結像位置に基づき、前記平面状液収容体と前記結像位置同士が重ならないように定める。
前記非球面凹面鏡素子として、例えば、トロイダルミラーを用いた場合には、主光線と光軸との間の入射角をθ、トロイダルミラーの横方向(メリジオナル面)の曲率半径をRh,縦方向(サジタル面)の曲率半径をRvとすると、実像の条件、前記平面状液収容体ならびに受光素子の形状、面積等を考慮することで、選択されるべきトロイダルミラーの曲率半径Rh,Rv,入射角θ,平面状液収容体の各液収容部の中心とミラー中心との距離a,各結像位置までの距離b,が定められることになる。球面凹面鏡素子の場合には、Rv=Rhである。なお、適当な修正処理計算を施すようなプログラムを制御部に導入することによって、種々の凹面鏡素子を用いることができる。
ここで、「リアルタイムPCR」とは、PCRによって増幅する核酸(DNA)をリアルタイムで蛍光物質を利用してモニタリングする方法をいう。リアルタイムPCRにより、温度サイクルの途中で増幅を観測可能であること、及び定量的な結果が得られるという利点を持つものである。通常蛍光物質を含有する蛍光試薬を用いて行なう方法として、インターカレーション法、ハイブリダイゼーション法、およびLUX法である。
「インターカレーション法」は、SYBR(登録商標)GREEN I、エチジウムブロマイド 等の蛍光物質が伸長反応の際に、二本鎖DNAに入り込み、励起光の照射によって蛍光を発する特性を利用してDNA量を測定する方法である。「ハイブリダイゼーション法」は、PCRプライマーに加え、蛍光物質で標識したDNAプローブを用いて目的のPCR産物だけを検出する方法である。すなわち、蛍光で標識したDNAプローブが目的のPCR産物にハイブリダイゼーションすることで、そのハイブリダイズしたDNA(量)が検出される。「LUX法」は、オリゴ核酸に標識した蛍光物質の蛍光シグナルが、そのオリゴ核酸の形状(配列や一本鎖または二本鎖等)によって影響される性質を利用したものである。実際のリアルタイムPCRでは、1種類の蛍光物質で標識化したPCRプライマー(LUXプライマー)とそれに対する何も標識化されていないPCRプライマーを用いてリアルタイムPCRを行なう。そのLUXプライマーは、蛍光物質を3'末端付近に標識してあり、5'末端との間でヘアピン構造をとるように設計されている。LUXプライマーがヘアピン構造をとっている時は消光効果が解かれて蛍光シグナルが増大するようになる。このシグナル増大を測定することによって、PCR産物量を測定することができる。
「温度制御」とは、その対象となる液体または容器について、1または2以上の設定された所定温度に、設定された時間維持することを、定められた順序に従って、定められた回数実行することである。該温度制御の指示は、プログラムに基づいて該当する信号を送ることによってなされる。
「温度制御」は、制御の対象となる液体を収容する前記液収容部の温度を、外部からの信号等に基づいて上昇または下降させることができる温度源が設けられたヒートブロックを前記平面状液収容体に設けることによって行い、温度源としては、例えば、ペルチェ素子、ヒータ、冷却装置等がある。
「所定温度」とは、対象となる液体等の物が到達すべき目標とする温度であり、例えば、前記液体に含有するDNA等の核酸やオリゴヌクレオチド等をPCR法によって増幅する場合には、設定される所定温度としては、例えば、PCR法で行なわれる温度サイクル、すなわち、DNAの熱変性、アニーリング若しくはハイブリダイゼーション、伸長に各々必要な各温度、約94℃、50℃から60℃の間の温度、例えば、約50℃、および約72℃である。さらに、該所定温度には、例えば、高温度の所定温度から低温度の所定温度への移行の場合に、温度調節器によって、これらの所定温度よりも低い移行促進用温度で冷却を行なうことで、または、低温度の所定温度から高温度の所定温度への移行の際に、これらの所定温度よりもさらに高い移行促進用温度で加熱を行なうことで、移行時間を短縮して1サイクル時間を所定サイクル時間内に収めるための移行促進用温度を含む。「所定時間」は、各温度の維持に必要な時間であって、PCR法で用いる試薬や液量、ノズルの形状、素材、大きさ、厚さ等に依存するが、1サイクルで、合計が、例えば、数秒から数10秒、PCR法全体としての処理時間は、例えば、約数分から数10分程度である。なお、移行時間をも所定時間に含める。
「測定位置」とは、前記凹面鏡素子によって結像位置上に結像した前記各液収容部の開口部から放射された発光の主光線による各実像からの光を受光部内に取り入れるべき受光部に関する位置、例えば、受光部に設けられた受光素子の受光端や凸レンズ面、ファイバの先端等の受光端の位置であって、前記各結像位置に近接しまたは一致するように設定される。「近接」は、例えば、少なくとも1の前記発光の結像位置を通り、適当に設定した傾斜(例えば光軸に関し前記平面状液収容体と対称的な傾斜)をもつ平面または適当に設定した曲率を持つ曲面、または各発光による各結像位置を含む結像面と接しまたは交差するような平面または曲面上に、前記各結像位置を投影するようにして測定位置を設定する場合である。各測定位置は、各結像位置に一致させるのが測定精度上は好ましい。しかし、各結像位置を通る曲面は複雑な形状であるが、各測定位置を各結像位置に近接するような単純な測定平面または測定曲面上に設けることによって、装置構造を簡単化することができる。なお、各測定位置が各結像位置と一致しない場合には、各測定位置で生ずる収差が、受光部の感度の範囲内、または測定誤差内に含まれるように設定するのが好ましい。
また、各測定位置は、該受光部の前記受光端によって液収容部ごとの結像位置上の実像からの光が入射可能な距離内に設定する。これによって、受光を確実かつ容易に行なうことができることになる。また、実像の倍率または大きさは、受光部の大きさや形状によって定められることになる。したがって、平面状液収容体の大きさ、ピッチ、凹面鏡の大きさ、曲率半径、該平面状液収容体と凹面鏡素子との距離、結像位置、入射角等が定まることになる。
第2の発明は、前記受光部は、前記平面状液収容体の全部またはその一部の各液収容部に対応して、前記凹面鏡素子で反射した発光の主光線を受光可能な受光素子を前記各所定測定位置に設けた反応光学測定装置である。
前記平面状液収容体の全部または一部の各液収容部に対応して、受光素子を前記所定測定位置に設ける場合には、例えば、該所定測定位置として平面状に配置するのが構成を簡単化するためには好ましい。
「受光素子」には、例えば、光電素子が設けられ、1の受光素子は、1の前記液収容部の発光によって生じた主光線を受けるように設けられている。該「光電素子」とは、光電効果を利用した電子素子であって、光電管、光電子増倍管、光導電セル、フォトトランジスタ、フォトダイオード等を含む。
第3の発明は、前記受光素子を前記平面状液収容体の一部の前記液収容部に対応して設けた場合には、該受光素子および前記凹面鏡素子を含む光学系の全部もしくは一部、および前記平面状液収容体の双方、または、光学系の全部もしくは一部および前記平面状収容体のいずれか一方を移動する走査機構を有する反応光学測定装置である。
ここで、「光学系」には、前記凹面鏡素子、受光部、および必要ならば励起光照射部を含む。さらに後述する絞りをも含む。その光学系を動かすか否かは、その光学系が、前記平面状液収容体の全部をカバーしているか否かによって定まる。例えば、凹面鏡素子が前記平面状液収容体の一部のみの実像を結像している場合、励起光照射部が前記平面状液収容体の一部の液収容部のみを照射する場合、または受光部が前記平面状液収容体の一部の液収容部のみの実像を受光する場合には、走査機構によって該当する光学系または平面状液収容体を動かす必要がある。
前記平面状液収容体は、例えば、複数の前記液収容部が行列状に配列されている場合を含む。この場合、平面状液収容体の一部とは、例えば、行列状に配列された液収容部の1個分、数個分、1行分、1列分、数列分、または数行分、さらには、前記行数または列数の約数を用いた数行×数列のような行列の場合がある。
凹面鏡素子、受光素子等を前記平面状液収容体の一部の前記液収容部に対応して設けて前記走査機構を用いて走査する場合には、前記平面状液収容体の一部の液収容部としては、前記平面状液収容体を合同な領域に分割した単位であることが好ましい。そのような例としては、例えば、1個の液収容部、1行の液収容部群または1列の液収容部群、数個、数行または数列の液収容部群、数行×数列の行列状の液収容部群等がある。その場合には、前記一部の液収容部群について、光学系全体または光学系の一部を前記平面状液収容体との間を走査するように移動することによって、前記液収容体全体の測定を行なうことができる。
第4の発明は、前記受光素子を前記平面状液収容体の一部の前記液収容部に対応して設けた場合には、該受光素子および前記凹面鏡素子を含む光学系は一体として形成され、前記平面状液収容体が該光学系に対して移動する走査機構を有する反応光学測定装置である。一体として形成するには、例えば、共通の支持枠や光学系支持板を介して光学系を形成することによって行い、光学系を形成する部品間の相対的移動を不必要とすることができる。
第5の発明は、前記凹面鏡素子は、前記平面状液収容体に設けられた全部もしくは一部の液収容部の開口部を通しての発光による各実像を前記各結像位置に形成する大きさ及び形状を有する反応光学測定装置である。
第6の発明は、光源と、所定種類の波長帯域の励起光を透過することができる所定種類の励起光フィルタと、を設けた励起光照射部を有する反応光学測定装置である。
ここで、「光源」としては、キセノンランプまたはハロゲンランプ等の電球型光源、または照射すべき液収容部数に応じた個数または波長の種類および個数に応じた複数の発光素子、例えば、高輝度LEDを配列したアレイ状光源、ライン状光源、平面状光源等がある。「所定種類」とは、使用する蛍光や燐光の種類に応じた1または複数種類である。なお、受光部が受光する光の波長を選択するフィルタや前記光源の選択を行なうようにするのがコンパクト化には好ましい。また、「励起光照射部」は、例えば、直接励起光を前記液収容部に照射させる場合(第1および第3の実施の形態)と、一旦、凹面鏡素子で反射させた後、励起光を液収容部に照射させる場合(第2の実施の形態)と、横方向から2色性ミラー等を用いて液収容部に照射させる場合(第2の実施の形態)がある。
直接励起光を液収容部に照射させるその他の場合として、例えば、凹面鏡素子に、該凹面鏡素子がその主光線を入射させてその実像を結像可能な範囲に存在する液収容部の個数および位置に対応させて1または複数の小孔を穿設して、各孔に励起光照射用の光ファイバの端部を設ける場合がある。これによって、凹面鏡素子および励起光照射部を含む光学系を小さく形成して装置全体のコンパクト化および軽量化を図ることができる。
第7の発明は、前記光学系は、光源と、所定種類の波長帯域の励起光を透過することができる所定種類の励起光フィルタとを設けた励起光照射部を含めて一体として形成された反応光学測定装置である。
第8の発明は、前記受光素子は、光電素子と、前記測定位置で各液収容部の実像からの光を該光電素子に入射させる凸レンズを有する反応光学測定装置である。
第9の発明は、前記凹面鏡素子と前記受光部との間に、受光部に対して指定した波長の前記発光を選択して透過させまたは遮断する光学的フィルタを設けた反応光学測定装置である。
「光学的フィルタ」は、各種反応において、量または濃度を測定しようとするDNA断片等の物質を標識化した種類の光の波長を通過させ、それ以外の波長を持つ光の透過を阻止するためのものである。なお、複数種類の光の波長を出力する標識物質を用いる場合には、複数種類の光学フィルタを設けるようにして、各波長を持つ光を、該光学フィルタを透過させることによって該当する標識物質の存在またはその量を測定することができる。
第10の発明は、前記凹面鏡素子と前記受光部との間に、開口絞りを設けた反応光学測定装置である。
第11の発明は、発光物質を含有する反応溶液を、平面に沿って配列した液収容部を有する平面状液収容体の各液収容部に開口部を通して収容する収容工程と、該各液収容部内で温度制御を行なう温度制御工程と、1または複数個の前記各液収容部の開口部を通して前記平面に垂直方向に放射される発光の主光線を光軸に関し所定入射角で1または複数の凹面鏡素子に入射させて、前記平面状液収容体と重ならない位置にある各結像位置上に前記発光による実像を形成する結像工程と、各所定測定位置で発光による各実像からの光を液収容部ごとに受光する受光工程と、を有する反応光学測定方法である。
ここで、発光が蛍光、燐光の場合には、「前記開口部を通して各液収容部内に励起光を照射する照射工程」が、結像工程の前に必要となる。
第12の発明は、前記受光工程は、前記平面状液収容体の全部またはその一部の前記各液収容部に対応して、1の前記液収容部の開口部を通しての発光を各々受光可能な1または複数の受光素子によって受光し、該受光素子を含む光学系の全部若しくは一部および前記平面状液収容体の双方、または、光学系の全部若しくは一部および前記平面状液収容体のいずれか一方を移動する走査工程を含む反応光学測定方法である。
第1の発明または第11の発明によれば、凹面鏡素子を用いることによって、平面的な広がりをもつ平面状液収容体に対しても、各液収容部からの主光線を斜めに入射させることによって、該各液収容部からの発光の実像を光学系に対し平面状液収容体側であるが該平面状液収容体と重ならない各結像位置に結像させることができる。したがって、平面状液収容体から結像位置までの距離を該素子によって略折り返すことができるので、装置全体をコンパクトに形成することができる。また、光学系としては主として1の凹面鏡素子のみを設けるだけなので複雑なレンズの組合せを必要とせず、色収差が実質上なく信頼性が高い測定が可能であるとともに、構造を簡単化し製造費用を削減することができる。
なお、各所定測定位置として、前記各結像位置に一致させた場合には、さらに信頼性の高い測定を行なうことができる。一方、各所定測定位置として、前記各結像位置が含まれる曲面に近接するような単純な平面または曲面上に設定した場合には、装置構造を単純化させ、製造費用を削減することができる。
第2の発明または第12の発明によれば、前記受光部は、各測定位置での実像を、液収容部ごとに確実に受光素子が受光することができるので、液収容部ごとに正確に光量を測定することができる。また、第1の発明または第9の発明において、実像の全部を一斉に各受光素子が受光できるようにした場合には、走査機構を必要としないので機構上の構造が簡単化される。
第3の発明によれば、前記各液収容部に相当する実像の一部に対応するように受光素子を配列した場合には、受光素子の個数を削減するとともに、それに応じて、前記凹面鏡素子の大きさや照射部を構成する発光素子や光源の個数や強度を削減することによって、さらに構造を簡単化し、費用を削減することができることになる。
第4の発明によれば、光学系を一体として設けることができるので装置の構造をコンパクトに形成することができるとともに、精度の良い光学系を提供することができる。
第5の発明によれば、前記凹面鏡素子の全部または一部の液収容部の開口部を通しての発光による実像を前記各結像位置に形成する大きさおよび形状を有するように形成している。したがって、該平面状液収容体の全体の液収容部の実像を結像位置に形成する場合には、結像のための走査が必要なく高速に処理を行なうことができる。平面状液収容体の一部の液収容部の実像を形成することができる場合には、走査することによって全液収容部を結像することができる。
第6の発明によれば、励起光フィルタを設けることによって、複数種類の励起光を容易に照射することができる。
第7の発明によれば、前記光学系は、受光素子および凹面鏡素子のみならず励起光照射部をも一体として形成しているので、装置の構造をさらにコンパクト化することができるとともに、より一層精度の高い光学系を提供することができる。
第8の発明によれば、凸レンズを設けることによって、開口部の実像が広がった位置であっても、確実に集光することができるので、結像位置に対して測定位置を広い範囲内で設定することができる。
第9の発明によれば、受光部に対して、必要な波長帯域を選択することができるので、1の液収容部から種々の目的に応じた測定結果を得ることができる。
第10の発明によれば、横方向焦点と縦方向焦点との間に開口絞りを設けて物側テレセントリック光学系とすることによって、前記平面状液収容体面が、光軸方向に対して僅かに移動したり傾斜していても、または各液収容部の収容液面の高さに差があるとしてもまたは高さが変化しても像の形状が変化しない。また、絞りの開口面積を小さくすることで、焦点深度を深くすることができる。
本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の斜視図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の内部の1状態を前方向から示す斜視図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の内部の他の状態を前方向から示す斜視図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の内部を後方から示す斜視図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の内部の光学系を後方から示す斜視図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の光路を示す図である。 本発明の第1の実施の形態に係るリアルタイムPCR光学測定装置の光路を示す平面図である。 本発明の第2の実施の形態に係る光学系を示す透視図である。 本発明の第2の実施の形態に係る光学系を示す正面および側面透視図である。 本発明の第2の実施の形態に係るリアルタイムPCR光学測定装置の光路を示す図である。 本発明の第2の実施の形態に係る光学系の受光部を示す側面概略図および斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の1状態を前方向から示す斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の他の状態を後方向から示す斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の光学系を除去した状態で後方向から示す斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の光学系を拡大して示す側面図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の光学系の主要部を示す分解斜視図である。 本発明の第3の実施の形態に係る反応光学測定装置の内部の光学系の受光部の断面図である。 本発明の第3の実施の形態に係る反応光学測定装置の光路を示す図である。
続いて、本発明の実施の形態を図面に基づいて説明する。
図1には、本発明の実施の形態に係る反応光学測定装置としてのリアルタイムPCR光学測定装置10の斜視図を示すものであって、図1(A)には、該リアルタイムPCR光学測定装置10に設けた引出し14を開けた場合、図1(B)は、該引出し14を閉じた場合を示す。該装置10は、例えば、高さ約50cm、幅および奥行きは約30cm程度である。
該リアルタイムPCR光学測定装置10は、全体として遮光性のある筐体12内に組み込まれ、発光物質として蛍光物質を含有するPCR反応溶液を収容可能な複数個(この例では、8行×12列の9mmピッチの行列状に配列された96個)の液収容部としてのウェル26が、平面に沿って配列され、各ウェル26においてPCR法に基づく温度制御が行われる平面状液収容体としてのマイクロプレート22が前記引出し14内に設けられている。筐体12には、外部の電源や通信機器と接続するための端子やUSB端子が設けられたコネクタ部20を有する。また、筐体12には、換気口18が設けられ、前記引出し14には、該引出し14をロックするための左右方向に突出可能なロッキングバー15およびノブ16が設けられ、該ノブ16を手動で90度正逆両方向に回転して、垂直状態および水平状態と切り替えることで、該ロッキングバー15を出しまたは引っ込めるように切り替わる。
図2は、図1において、前記引出し14を開けた状態で前記筐体12を取り外して内部を詳細に示す斜視図である。
該装置10の前記引出し14内には、前記蛍光物質を含有するPCR反応溶液を収容する前記マイクロプレート22の各ウェル26に対して、PCR法に従った温度制御を行う温度制御器としてのペルチェ素子等を有する板状の加熱用ブロックからなるサーマル・サイクラー38が前記マイクロプレート22の下側に設けられている。また、加熱用ブロックの下側には放熱用フィン(図示せず)が設けられ、横側には冷却用ファン42が、前記引出し14が閉じられた状態で前記換気口18から取り入れた外気を前記放熱用フィンに向けて送風して前記マイクロプレート22を冷却可能となるように設けられている。
なお、便宜上、図2に示すように、前記マイクロプレート22によって形成される平面の法線方向をZ軸方向とし、行方向をX軸方向、列方向をY軸方向とする右手直交系を定義する。
PCR法に従った温度制御を行う際には、前記マイクロプレート22上に各ウェル26の各開口部を閉塞するための透明シート27(図6参照)が置かれてマイクロプレート22の上側に貼着されて取り付けられる。該透明シート27の上から該透明シート27の内側への結露を防止するための加熱用蓋24が前記マイクロプレート22に対して着脱可能に設けられる。
該加熱用蓋24は、一定温度に前記透明シート27を加熱するためのヒータが内蔵されたブロック状部材であって、前記マイクロプレート22の前記各ウェル26に対応する位置に96個の貫通孔28が設けられている。該貫通孔28には、前記マイクロプレート22からの主方向に放射する蛍光(発光)が出射可能であるのみならず、後述する励起光照射部としての高輝度LED配列部32からの励起光が前記各ウェル26に入射可能である。該加熱用蓋24は、前記引出し14を開閉することによって、該引出し14の両側面41の上縁部に前方向(Y軸方向)に向かって下降する傾斜40を設けた直線運動カムとして用い、該カムに従動する機構を該加熱用蓋24に設ける。これによって該加熱用蓋24は前後方向(Y軸方向)には移動することなく上下方向(Z軸方向)にのみ移動可能である。前記引出し14を開くと、前記加熱用蓋24は上昇して前記マイクロプレート22から離れ、該引出し14を閉じると、該加熱用蓋24が下降して前記マイクロプレート22の上側に取り付けられることになる。該加熱用蓋24が取り付けられた際には、該貫通孔28は、該貫通孔28を通って前記各ウェル26に対し前記励起光照射部からの励起光が入射しまたは放射する蛍光が出射可能となるように形成されている。
前記リアルタイムPCR光学測定装置10には、光学系が搭載され前後方向(Y軸方向)に移動可能なY移動体31が設けられている。
該Y移動体31は、前記筐体12が取り付けられる側枠板56の外側に取り付けられたタイミングベルト48によって前記Y移動体31の前記光学系支持板44に取り付けられたアーム46を介して駆動される。該タイミングベルト48は、前記側枠板56の内側に取り付けられたステッピング・モータ50によって、前記マイクロプレート22のウェル26の1行分ずつ、したがって、本例のように96ウェルのマイクロプレート22の場合には、最初の1行から9mm(δy)ごと順次移動して8行分を走査するように指示により走行駆動される。前記側枠板56には走査位置検知センサ52として、4組の発光素子および受光素子が該アーム46を表裏から挟むように設けられ、前記アーム46に設けられた前記マイクロプレート22の各行を示すように穿設した孔52aの穿孔位置およびその個数に基づき通過した光の受光状態によってその行位置を識別する。ここで、Y移動体31、タイミングベルト48、ステッピング・モータ50、およびアーム46、および走査位置検知センサ52等は前記走査機構に相当する。
図中、符号54は、モータ駆動用のボードであり、符号58は、温度制御用のボードであり、符号60は、前記トロイダルミラー30等を用いて測定したアナログデータをデジタルデータに変換するためのボードである。
該Y移動体31には、凹面鏡素子としての1行分の大きさで、反射面を囲む縁部が長方形状に切り出されたトロイダルミラー30と、前記励起光照射部として、複数の発光素子としての1行分の2種類の波長をもつ高輝度LED32a,32bを交互に並べた前記高輝度LED配列部32が設けられている。なお、トロイダルミラー30の詳細については後述する。すなわち、該凹面鏡素子の発光の主光線を入射させてその実像を結像させることができる前記範囲は12個の液収容部としてのウェルである。
これらの光学系の大部分は、該Y移動体31に設けられた光学系支持板44に、垂直方向に対して前記所定入射角θの倍の角度で前後方向(Y軸方向)に沿って傾斜させて取り付けられた光学系支持枠33に沿って取り付けられ、一部の光学系は垂直方向(Z軸方向)に沿って取り付けられる。例えば、迷光から光路を保護するための遮光用筒体34は、該光学系支持枠33の傾斜に沿って取り付けられ、遮光用筒体36は垂直方向に沿って該光学系支持枠33に取り付けられている。また、高輝度LED配列部32は励起光が、該貫通孔28の1行分に入射可能な角度で前後方向(Y軸方向)に傾けて取り付けられ、トロイダルミラー30は前出の1行分に対応した貫通孔28の中心軸に対し、前後方向(Y軸方向)に前記所定入射角θの角度で取り付けられている。
図3は、前記リアルタイムPCR光学測定装置10の前記引出し14を閉じるとともに、前記ロッキングバー15を、取り去った筐体12に設けられたロッキングホールに向かって突出させて前記引出し14をロック状態にした場合を示すとともに、さらに前記遮光用筒体34を除去して、下方にある前記光学的放射フィルタ62の上側に設けられた開口絞りとしての物体側テレセントリック構築用絞り61を示すものである。前記引出し14を閉じると、前記マイクロプレート22が前記加熱用蓋24の下側に位置し、該引出し14の両側面41の上縁部に設けられた傾斜40を有する直線運動カムの働きによって、前記加熱用蓋24が該マイクロプレート22の上側で下降し、該マイクロプレート22に設けられた前記透明シート27を挟むようにして該加熱用蓋24が該マイクロプレート22に取り付けられることになる。この状態で、前記マイクロプレート22の各ウェル26に対する温度制御がなされ、かつ、蛍光の測定が行なわれることになる。
図4は、前記装置10を後ろ側から見た斜視図である。
符号45は、前記光学系からの光がセンサ52等に影響を及ぼさないように光学系の一部を遮光状態に保つための遮光用覆いであり、前記遮光用筒体34が内部に貫通するように設けられている。符号64は、電源モジュールである。
図5は、前記装置10から、図4において、前記遮光用筒体34,36および前記遮光用覆い45を外して光学系の一部を後方向から露わに示したものである。同図に示すように、前記凹面鏡素子としてのトロイダルミラー30、該トロイダルミラーに隣接するように取り付けられた高輝度LED配列部32、前記光学的放射フィルタ62、および、結像位置75に一致する測定位置77(75)に沿って設けられた前記1行の各液収容部に対応するように設けた12個の受光素子73としてのレンズ72および光電素子としてのフォトダイオード70を有する。
該各受光素子73は、前記光学系支持枠33に取り付けられた支持基板71にブラケット等によって取り付けられている。
図5(B)は、該図5(A)に示した装置10に設けられた前記光学系を取り出したものであって、前記凹面鏡素子としての前記トロイダルミラー30と、前記蛍光を励起させるための2種類の励起光を切り換えて照射することができる前記高輝度LED配列部32と、前記トロイダルミラー30と受光素子73群との間の縦方向焦点および横方向焦点との間の位置であって、光学的放射フィルタ62よりもトロイダルミラー30側に設けられた物体側テレセントリック構築用絞り61と、前記マイクロプレート22から放射され、前記トロイダルミラー30によって反射された光から、3種類の波長帯域のみの蛍光を透過させるためにステッピング・モータ68によって自動的に回転させることで切り換え可能な3種類のフィルタ66,74,76が設けられた前記光学的放射フィルタ62と、前記トロイダルミラー30の各結像位置75が受光素子73のレンズ72面と一致するような各測定位置に沿って配列された1行分の12個の前記ウェル26に対応するように設けられた12個の受光素子73と(レンズ72およびフォトダイオード70)を有するものである。
図6および図7に、9mmピッチの8行×12列のマイクロプレート22および入射角θ=12度の場合の具体的なトロイダルミラー30を含む光学系の配置を示す。該トロイダルミラー30は、前記平面状液収容体として96個の8行×12列の9mmピッチで配列された液収容部としてのウェル26の内、1行分の12個のウェル26の開口部を通して該平面に垂直方向に放射される蛍光の主光線が入射可能で、光軸80(図6を参照のこと)に関して所定入射角θ=12度で入射させて、前記マイクロプレート22から離れた1行分の12個の対応する各結像位置75(図5を参照のこと)に倍率1の蛍光の実像を結像可能な大きさ、例えば,X軸方向に110mm、Y軸方向に18mmの大きさをもっている。
前記トロイダルミラー30の光学的中心から前記マイクロプレート22に収容されている液の液面23(各ウェル26には同一量の液体を分注しているので液面の高さは同一である)までの距離aが290mmである場合の、各ウェル26からの主光線の蛍光の実像が結ばれる前記各受光素子73の結像位置75(測定位置77と一致)を計算で求めたものを示す。
図6(A)は、前記メリジオナル面(ZY面)で切断したトロイダルミラー30およびマイクロプレート22を示す。メリジオナル面で切断したトロイダルミラー30の幅は18mmであり、主光線であるマイクロプレート22からの垂直方向に進む光線と該ミラー30の光軸80との間の角度、すなわち入射角θが12度であり、横方向の曲率半径Rhは300mmである。
一方、図6(B)は、前記メリジオナル面と直交する光軸面で切断したトロイダルミラー30の断面形状および前記トロイダルミラー30と、前記マイクロプレート22と、各ウェル中心からの主光線の反射後の経路と、前記液面23の各々の中心点の結像位置75の、ZX面へのそれぞれの投影を示す。前記光軸面で切断したトロイダルミラー30の長さは110mmであり、縦方向の曲率半径Rvは287.03mmである。ZX面に投影された、結像位置75の半分の6個(残りの半分の6個は光軸80に関して対称なので省略した)が示されている。また、マイクロプレート22は12列のウェル26が9mmピッチで配列されていることが示されている。
すなわち、その結像位置75は、前記トロイダルミラー30の光軸80上の中心点のZ座標を0とした場合には、本実施例によれば、光軸80に遠い方から、Z座標として、各々、-256.34mm、-261.43mm、-265.73mm、-268.64mm、-270.91mm、-272.62mmの位置である。
図7は、XY平面に投影した前記トロイダルミラー30による1列のウェル26の結像位置75およびマイクロプレート22の位置を示す。本実施例によれば、光軸80に遠いほうから、X座標として、各々43.75mm、36.5mm、28.86mm、20.84mm、12.61mm、4.23mmであり、Y座標として、各111.92mm、114.83mm、117.26mm、118.94mm、120.2mm、121.09mmである。したがって、1行の12個の各結像位置75の位置座標は測定位置77の位置座標に相当し、光軸80から遠い位置から(43.75mm、111.92mm、-256.34mm)、(36.5mm、114.83mm、-261.43mm)、(28.86mm、117.26mm、-265.73mm)、(20.84mm、118.94mm、-268.64mm)、(12.61mm、120.2mm、-270.91mm)、(4.23mm、121.09mm、-272.62mm)である。
また、各位置における受光素子73の軸方向についても図6および図7に示されている。この測定位置は、走査によって、Y軸方向にδy(本例の場合には、9mmに相当)ずつ平行移動することによって、Y座標のみが変化するので、第n行(nは1以上8以下の自然数)における測定位置77は、(43.75mm、111.92mm+(n-1)δy、-256.34mm)、(36.5mm、114.83mm+(n-1)δy、-261.43mm)、(28.86mm、117.26mm+(n-1)δy、-265.73mm)、(20.84mm、118.94mm+(n-1)δy、-268.64mm)、(12.61mm、120.2mm+(n-1)δy、-270.91mm)、(4.23mm、121.09mm+(n-1)δy、-272.62mm)である。
続いて、図面に基づいて、本実施の形態に係る反応光学測定装置としてのリアルタイムPCR光学測定装置10の動作について説明する。
該リアルタイム光学測定装置10の引出し14に設けられたノブ16を90度回転して水平にすることで前記ロッキングバー15を引っ込めて開閉可能状態にして引出し14を手動で開ける。すると、該引出し14の両側面41が引出し14の直線運動に連動する直線運動カムとして働き、前記加熱用蓋24が自動的に上昇して、前記マイクロプレート22の上側面から脱着し、マイクロプレート22が前記加熱用蓋24の直下の位置から引出し14とともにY軸方向に前進して図2に示すような位置にまで達する。
前記マイクロプレート22の各ウェル26に、各検体から抽出されたDNAおよび蛍光物質を含有するPCR反応溶液を96個の各ウェル26に、別途設けた分注装置等によって所定量のPCR溶液を等しく分注し、前記透明シート27を該マイクロプレート22の上側に帖着して、各ウェル26の開口部を閉じる。
その後、前記引出し14を後方向に向かって移動させて引出し14を閉じた後、前記ノブ16を90度回転させて前記ロッキングバー15を外方向に突出させて前記引出し14を閉じた状態にロックする。
すると、図3に示すように、前記マイクロプレート22は前記加熱用蓋24が前記透明シート27の上側から該マイクロプレート22に取り付けられることになる。この状態で、該加熱用蓋24を所定の一定温度にまで加熱することで結露を防止しながら、前記PCR法に従った温度制御が、該マイクロプレート22の下側に設けられたサーマル・サイクラー38によって行なわれることになる。と同時に、前記光学系による測定を、順次前記マイクロプレート22に対して、前記ステッピング・モータ50を駆動することによって、前記Y移動体31をY軸方向に沿って、最も奥の1行から順次手前の1行に向かって9mm移動させては各行上にトライダルミラー30等のY移動体31に取り付けられた光学系を停止させながら、順次8行分についての光学測定が行なわれる。
図5に示すように、光学測定は、前記加熱用蓋24の貫通孔28を通って、マイクロプレート22の内、最初の1行の12個のウェル26の開口部を通り前記高輝度LED配列部32の高輝度LED32aからの励起光を1行分の12個のウェル26内に収容されたPCR反応溶液に対して直接照射する。すると、前記ウェル26から垂直方向に放射される蛍光の主光線は、前記シート27および前記加熱用蓋24の貫通孔28を通って、前記トロイダルミラー30によって反射されて、前記物体側テレセントリック構築用絞り61、前記光学的放射フィルタ62、前記結像位置75にある12個の受光素子73の前記レンズ72を通過し、前記フォトダイオード70が受光してそのアナログ量である光量を前記ボード58により該当するデジタル量の電気信号に変換して、外部に設けた情報処理装置等に送付して、解析が行なわれることになる。最初の1行についての光学測定処理が完了すると、前記Y移動体31をY軸方向に向かって1行分、すなわち9mm移動して停止させ、同様に光学測定を行なって、8行分全部について前記Y移動体をY軸方向に移動させることによって走査する。本実施の形態に係る装置によれば、Y軸方向に沿って一定のピッチで光学系を移動することで良いので移動制御が容易である。また、受光素子の個数を削減することができる。
続いて、第2の実施の形態に係るリアルタイムPCR光学測定装置100について、図8乃至図11に基づいて説明する。
図8に示すように、該リアルタイムPCR光学測定装置100は、前述した第1の実施の形態の場合と同様、前記平面状液収容体としての前記マイクロプレート22に対して光学測定処理を行なうものである。該リアルタイムPCR光学測定装置100は、第1の実施の形態に係るリアルタイムPCR光学測定装置10と類似するものであるが、以下、主として異なる点について説明する。
図9に示すように、本実施の形態に係るリアルタイムPCR光学測定装置100は、光学系として反射面を囲む縁部が長方形状に切り出されたトロイダルミラー130と、励起光照射部としてのキセノンランプまたはハロゲンランプ等の1または複数の光源132と、フレネルレンズ132aと、所定の波長の光(この例では2種類の励起光)を選択可能な励起光用フィルタ132bと、前記トロイダルミラー130に入射させて液収容部としての前記ウェル26内に一斉に励起光を入射させるために該当する波長の光を反射する一方、前記トロイダルミラー130からの蛍光を含む波長の光を透過させる2色性ミラー132cと、3種類の蛍光波長の選択が可能な3種類のフィルタ174a,174b,174cの選択が可能な光学的放射フィルタ162とを有する。また、符号161は、開口絞りとしての物体側テレセントリック構築用絞りである。なお、前記マイクロプレート22から垂直方向に放出される蛍光の主光線に対し、前記トロイダルミラー130の光軸となす入射角θは、第1の実施の形態と同様に12度である。すなわち、該凹面鏡素子の発光の主光線を入射させてその実像を結像させることができる前記範囲は、液収容体としてのマイクロプレート22の全体である。
また、受光部としては、前記平面状液収容体としてのマイクロプレート22の1行分の12個の受光素子173が、前記結像位置175(図10参照)に一致せず、該結像位置175に近接する所定の測定平面に平行に設けられた支持基板171(図11参照)の前記測定平面上の所定測定位置177に対応する位置に取り付けられている。前記測定平面としては、例えば、Y軸方向に対し前記マイクロプレート22に形成された平面と光軸を挟んで同一角度となるような傾き、すなわち、2θ=24°をもたせるとともに、後述する結像位置175aを含む1つの行を通るようにしたような場合がある。また、本実施の形態では、光学系の全体を移動する代わりに、1行分の前記受光素子173および該受光素子173が取り付けられた支持基板171を移動可能に設け、該受光素子173以外の光学系であるトロイダルミラー130、前記光源132、前記フレネルレンズ132a等は前記マイクロプレート22等とともに、測定平面に対して静止しているように設ける。この点で光学系全体が一体として前記マイクロプレート22に対してY移動体31によってY軸方向に移動する第1の実施の形態とは相違する。
したがって、本実施の形態に係るY移動体としては、光学系の全体が搭載されるのではなく、光学系の前記受光素子173が取り付けられた前記支持基板171が取り付けられ、前記所定測定平面に平行に、Y軸方向に対し一定の傾斜角度で移動することになり、しかも、前記Y移動体の各移動距離は、マイクロプレート22の9mmピッチではなく、後述する図10に示すように、測定平面上の測定位置177の行間の距離、すなわち、光軸に近い方の最初の行(各行には12個のウェルが配列されている)から、順次8.7mm、8.53mm、8.61mm、8.79mm、9.08mm、9.48mm、10.02mmの測定平面に沿った距離を移動して停止して測定するという動作を行なうことで8行分の全96個のウェルの測定結果を得ることができることになる。
図10に示すように、本実施の形態に係るトロイダルミラー130は、前述した第1の実施の形態に係るトロイダルミラー30とは2つの曲率半径Rh、Rvは同じであり、材質についても同じであるが、第1の実施の形態に係るトロイダルミラー30の大きさが、前述したように前記平面状液収容体としての8行×12行の9mmピッチのマイクロプレート22の1行分の12個のウェル26からの垂直方向への蛍光の主光線を一斉に入射して、倍率1で一斉に結像位置に実像を結像することができる大きさ(例えば、X軸方向に110mm、Y軸方向に18mmの大きさ)をもつのに対して、本実施の形態に係るトロイダルミラー130は、該マイクロプレート22の8行×12列の9mmピッチの96個の全ウェル26からの垂直方向への蛍光の主光線を一斉に入射して、倍率1で一斉に結像位置に実像を結像することができる大きさ(例えば、X軸方向に110mm、Y軸方向に80mmの大きさ)をもつ点で相違する。なお、図10には、結像位置175を通る結像曲面が示されている。
図10は、9mmピッチの8行×12列のマイクロプレート22、および主光線であるマイクロプレート22からの垂直方向に進む主光線と該トロイダルミラー130の光軸180との間の角度、すなわち入射角θ=12度の場合に、具体的なトロイダルミラー130、該トロイダルミラー130の光学的中心から平面状液収容体に収容されている液の液面23(全ウェル26内で同一の高さであるとする)までの距離aが290mmである場合の、各ウェル26からの主光線の蛍光の実像が結ばれる結像位置175、および測定位置177(結像位置と異なり、かつ所定の測定平面に含まれる)を示すものである。ここで、所定測定位置177としては、少なくとも1つの前記結像位置175aを通り、前記光軸180に関し、Y軸方向において前記マイクロプレート22と対称的な前記傾斜をもつ平面上に前記結像位置175を投影させたものである。これによって、マイクロプレート22と測定位置177または結像位置175とを容易に対比することができる。
図10(A)は、メリジオナル面(ZY面)と直交する光軸面に投影されたトロイダルミラー130、結像位置175および測定位置177の半分の6個(残りの半分の6個は光軸180に関して対称なので省略した)を示す。前記光軸面で切断したトロイダルミラー130面の長さは、110mmであり、縦方向の曲率半径Rvは287.03mmである。
図10(B)は、メリジオナル面(ZY面)で切断したトロイダルミラー130およびマイクロプレート22を示す。メリジオナル面で切断したトロイダルミラー130の幅は、80mmであり、横方向の曲率半径Rhは300mmである。
図10を参照することで、全ウェル26の各測定位置177が前記測定平面上の直交系(XY座標)で特定することができる。
図11は、前記受光部に相当する1行分の12個の受光素子173と該受光素子173が取り付けられている支持基板171を示すものである。各受光素子173は、図11(A)に示すように、レンズ172と、フォトダイオード170が設けられている。該受光素子173の位置については、図10(A)に示すように、隣接する受光素子間の間隔は、該配列の中心から左右方向 (Y軸方向)に6個ずつが、4.4mm,8.85mm,9mm,9.28mm,9.68mm,10.21mmの間隔で取り付けられている。本実施の形態によれば、受光素子のみを移動することで全ウェルの光測定を行なうことができるので、装置規模を縮小することができる。
続いて、第3の実施の形態に係る反応光学測定装置200について図12乃至図19に基づいて説明する。
図12に示すように、該反応光学測定装置200は、第1および第2の実施の形態の場合と同様、前記平面状液収容体としての前記マイクロプレート222に対して測定処理を行うものである。図12は、該反応光学測定装置200の斜視図を示すものであって、図12(A)には、該反応光学測定装置200に設けた引出し214を開けた場合、図12(B)は、該引出し214を閉じた場合を示す。該装置は、例えば、高さ約50cm、幅および奥行きは約30cm程度である。
図12に示すように、該反応光学測定装置200は、全体として遮光性のある筐体212内に組み込まれ、発光物質として蛍光物質を含有する反応溶液を収容可能な複数個(この例では、第1の実施の形態に係る装置と異なり、マトリクス状容器が行と列とが入れ替えられて置かれ、12行×8列の9mmピッチの行列状に配列された96個)の液収容部としてのウェル226が平面に沿って配列され、各ウェル226において所定の反応工程に基づく温度制御が行われる平面状液収容部としてのマイクロプレート222が前記引出し214内に設けられている。筐体212には、外部の電源や通信機器と接続するための端子やUSB端子が設けられたコネクタ部259(図14参照)を有する。また、筐体212には、マイクロプレート222の温度制御用のファンの空気を取り入れる換気口218,219および、電子回路の冷却用の空気を取り入れる換気口213が設けられている。
さらに筐体212には、「運転中」等の表示を行なうLED217が設けられている。前記引出し214内部には、該引出しをロックするための左右方向に突出可能なロッキングバー215が設けられ、ノブ216を手動で90度正逆両方向に回転して、垂直状態および水平状態に切り替えることで、該ロッキングバー215を出しまたは引っ込めるように切り替わる。
図13は、図12において、前記引出し214を開け、後述する光学系保護カバー260等(図14を参照のこと)および前記筐体212を取り外した状態で内部を詳細に示す斜視図である。
該装置200の前記引出し214内には、前記蛍光物質を含有する反応溶液を収容する前記マイクロプレート222が略角柱状のマイクロプレート収納用窪み235内に収納され、該マイクロプレート222の各ウェル226に対して、所定の反応工程に従った温度制御を行う温度制御器としてのペルチェ素子等を有する板状の加熱用ブロック238が前記マイクロプレート222の下側に設けられている。また、加熱用ブロック238の下側には、冷却用ファン(図示せず)が、前記引出し214が閉じられた状態で前記換気口218から取り入れた外気を前記放熱用フィンに向けて上向きに送風して前記マイクロプレート222を冷却可能となるように設けられている。
なお、便宜上、図13に示すように、前記マイクロプレート222によって形成される平面の法線方向をZ軸方向とし、行方向をX軸方向、列方向をY軸方向とする右手直交系を定義する。
反応工程に従った温度制御を行う際には、前記マイクロプレート222上に各ウェル226の各開口部を閉塞するための透明シート221 (図19参照のこと)がマイクロプレート222の上側に貼着されて取り付けられている。該透明シート221の内側への結露を防止するための加熱用蓋224が前記マイクロプレート222に対して着脱可能に設けられている。
該加熱用蓋224は、一定温度に前記透明シート221を加熱するためにヒータが内蔵されたブロック状部材であって、マイクロプレート222の前記各ウェル226に対応する位置に96個の貫通孔228が設けられている。該貫通孔228には、前記マイクロプレート222からの主方向に放射する蛍光が出射可能であるのみならず、後述する励起光照射部232 (図16参照のこと)による励起光が前記各ウェル226に入射可能である。該加熱用蓋224は前記引出し214を開閉することによって、該引出し214の両側面241の上縁部にZ軸方向に向かって凹むように湾曲した曲面で縁取られた切欠き部239を設けた直線運動カムとして用い、該カムに従動する蓋開閉機構229(図15参照のこと)を前記加熱用蓋224に設ける。
これによって該加熱用蓋224は、前記引出し214を開くにつれて、前後方向(Y軸方向)には移動することなく上下方向(Z軸方向)にのみ移動し、最初、前記加熱用蓋224は上昇して前記マイクロプレート222から離れ、該引出し14を閉じた状態では、前記加熱用蓋224が下降して前記マイクロプレート222の上側に取り付けられることになる。該加熱用蓋224が取り付けられた際には、該貫通孔228は、該貫通孔228を通って前記各ウェル226に対し前記光照射部からの励起光が入射しかつ放射された蛍光が出射可能となるように形成されている。
前記反応光学測定装置200には、光学系が搭載されたY移動体231が前後方向(Y軸方向、列方向)に移動可能に設けられている。
該Y移動体231は、前記筐体212がその外側に取り付けられるべき2枚の側板249の上縁に設けられた2本のレール227と、該レール227に案内されて摺動可能に取り付けられた4つのガイド部材225によって支持されている。
該Y移動体231は、側板249から内側に張り出して取り付けられたステッピング・モータ250、前記筐体212がその外側に取り付けられるべき側板249に取り付けられ、前記ステッピング・モータ250によって回転駆動されるタイミングベルト251、該タイミングベルト251によって回転駆動されるボール螺子248、および該ボール螺子248と螺合するナット部が設けられ前記Y移動体231の光学系支持板244に取り付けられたアーム253によって走行駆動される。
すなわち、該Y移動体231は、前記ステッピング・モータ250等によって、指示に基づいて、Y軸の正逆方向に、前記マイクロプレート222のウェル226の1行分ずつ、したがって、本例のように96ウェルのマイクロプレート222の場合には、最初の1行から9mm(δy)ごと順次移動して12行分を走査可能である。
さらに、前記側板249には、走行範囲検知センサ252として、2組の発光素子および受光素子が前記アーム253に設けられた遮光性の検知用板を表裏から挟むように位置することでそのY軸上の両端を検知可能である。
ここで、前記Y移動体231、ステッピング・モータ250、タイミングベルト251、ボール螺子248、アーム253、走行範囲検知センサ252等は、前記走査機構に相当する。
図中、符号254は、モータ制御用のボードであり、符号258は温度制御用のボードである。符号252aは前記センサ252に電力を供給するためのコードである。符号247は前記各種ボードに電力を供給するためのコード束を導く配線用孔である。
該Y移動体231には、前記光学系支持板244により両側から支持され、前記マイクロプレート222のウェル226の1行分の長さ(X軸方向に沿った)および幅をもち、反射面を囲む縁部が長方形状に切り出された凹面鏡素子としてのトロイダルミラー230と、垂直方向(Z軸方向)に対して所定入射角θの倍の角度で前後方向(Y軸方向)に沿って傾斜させて前記光学系支持板244に取り付けられ、迷光から光路を保護するための前記長さおよび幅をもつミラー側遮光用筒体234と、前記マイクロプレート222のウェル226の1行分の長さおよび幅をもつスリット236が穿設され前記光学系支持板244に支持されたスリット形成板237とを有する。符号276は、後述するように、前記マイクロプレート照射光源切換え板である。すなわち、該凹面鏡素子の発光の主光線を入射させてその実像を結像させることができる前記範囲は液収容部としての8個のウェルである。
図14は、前記反応光学測定装置200について、前記筐体212を取り外し、かつ引出し214を閉じた状態で後ろ側から見た斜視図である。
ここで、符号245は、後述するフォトダイオード270が設けられ該フォトダイオード270のアナログ信号の取り出し及びデジタル変換用回路基板が設けられた光学系制御基板である。
符号255はモータを駆動するモータ駆動用ICであり、符号257は電源モジュールであり、符号259は、外部の電源や通信機器と接続するための端子やUSB端子が設けられたコネクタ部である。
図15は、図14において、さらに前記Y移動体231を除去した斜視図である。
ここで、符号229は、前記加熱用蓋224を、前記引出し214の開閉に応じて上下させるための蓋開閉機構である。
図16は、Y移動体231を詳細に示す断面図である。
符号266は、前記ミラー側遮光用筒体234と光学的に接続され該筒体234と同一の角度で前後方向(Y軸方向に沿って)傾斜させて前記光学系支持板244に取り付けられた受光側遮光用筒体である。
前記ミラー側遮光用筒体234は、その一端には、前記ミラー230の光軸方向に対して前記筒体234の傾斜角度が前記各度θとなるようにミラー230と接続し、その他端では、前記受光側遮光用筒体266と同一の傾斜角度で接続する。該ミラー側遮光用筒体234は、該複数種類のフィルタ262の中から順次選択されて、前記他端に設置可能なフィルタ262と、該フィルタ262の位置決め用センサ263と、該筒体234の外側面に取り付けられ前記複数のフィルタ262を前記端部に回転移動させるためのモータ269とを有する。
前記受光側遮光用筒体266はその一端が前記ミラー側遮光用筒体234と光学的に接続し、その他端には、前記光学系制御基板245に設けられた前記1行のウェル数に相当する8個のフォトダイオード270、凸レンズ272aおよびプリズム272bが略X軸方向に沿って設けられている。
前記Y移動体231には励起光照射部232が設けられている。該励起光照射部232は、前記スリット236および前記スリット形成板237を有し、該スリット形成板237の下側には、前記ウェル226の個数に相当する複数(この例では8個の)が各々1列状に配列された高輝度LED242a列および異なる種類の高輝度LED243a列と、該LED242a列およびLED243a列を支持するとともに、該LED242a,243a列で発生した熱を逃がすための放熱板242b,243bとを有する。
また、該励起光照射部232は、前記LED242a,243bから放射された光線群のいずれか一方のみを選択して隙間256を通って前記マイクロプレート222の1行分のウェルに照射する励起光選択機構を有する。該選択機構は一端が軸支された溝付きレバー242d,243dが各々取り付けられて所定角度範囲内で連動し下縁を中心にして回転して前記LED242a,243a列からの励起光の前記ウェル226への照射を遮蔽可能な前記マイクロプレート222のウェル226の1行分の長さ以上の長さをもつ切替用壁板242c,243cと、前記レバー242d,243dに各々設けられたピン242e,243eとスライド可能に係合する2つの溝が設けられたリンク棒274aと、該リンク棒274aに設けられたピン274bとスライド可能に係合する溝をもつクランク軸274cと、該クランク軸274cを所定角度正逆両方向に回転駆動するモータ274dとを有する。
なお、図16の状態は、高輝度LED243a列から放射されている励起光を透過させて前記マイクロプレート222の1行分の各ウェル226に照射する一方、前記高輝度LED242a列から放射されている励起光を遮蔽した状態を表している。なお、本実施例によれば、高輝度LEDの光源をオンオフを繰り返すことで、マイクロプレート222の各ウェル226への励起光の切換えを行なうのではないので、励起光の強度が安定し、かつ低電力で発光が行われる光源LEDの劣化を防止することができることになる。
図17(A)は、前記受光側遮光用筒体266を分解して示すものであって、扇状凹部形成台264と、該扇状凹部形成台264を閉塞し光電素子としての受光素子としてのフォトダイオード270の受光面が配列されプリズム272bとの間のスペーサ265が設けられた支持基板271と、前記フォトダイオード270およびそのアナログ信号の取り出し及びデジタル変換用回路が設けられた前記光学系制御基板245とを有する。
前記扇状凹部形成台264には、前記ミラー側遮光用筒体234と光学的に接続する物体側テレセントリック構築用絞り261が前記扇状凹部の要の位置に設けられ、該扇状凹部の外周部分には、8個の光学系素子272が、各ウェル226の実像が8個の各前記フォトダイオード270に入射する位置となるように配列されている。
図17(B)には、前記光学系素子272の拡大斜視図を示す。該光学系素子272は、凸レンズ272aおよび90度プリズム272bが一体的に設けられており、前記支持基板271に配列された受光面(この例では9.1mmの外径をもつ)に各ウェル226の実像が形成されるように設けられている。すなわち、該受光面が測定位置277であり、結像位置275となるように構成している。
図18は、前記受光面を測定位置277および結像位置275と一致させるための構成であって、前記受光側遮光用筒体266の断面図を示すものであり、前記各光学系素子272は、X軸方向(列方向)に沿っては、その位置は当然異なるが、Z'軸方向とY'軸方向についても異なることが示されている(XYZ右手座標系に対して、X軸を中心として、2θ回転したXY'Z'右手座標系)。
ここで、前記光学的素子272および光電素子としてのフォトダイオード270は前記受光素子273に相当する。したがって、本実施の形態によれば、前記1行分の8個の各ウェル226の実像を前記受光素子273の受光面に形成することができるので、精密で信頼性の高い発光の測定を行なうことができる。
図19は、平面状液収容体としての9mmピッチの12行×8列のマイクロプレート222および入射角θ=15度の場合の具体的なトロイダルミラー230を含む光学系の配置を示す。
該トロイダルミラー230は、前記平面状液収容体として96個の12行×8列の9mmピッチで配列された液収容部としてのウェル226の内、1行分の8個のウェル226の開口部を通して該平面に垂直方向(Z軸方向)に放射されるウェル226からの主光線が入射可能で、光軸280に関して所定入射角θ=15度で入射させて、前記マイクロプレート222から離れた1行分の8個の対応する各受光素子273の受光面に実像を結像可能な大きさを持っている。
前記トロイダルミラー230の光学的中心をXY'Z'座標系の原点(0,0,0)とした場合であって、該トロイダルミラー230の光学的中心から前記マイクロプレート222に収容されている液の液面223(各ウェル226には同一量の液体を分注しているので液面の高さは同一である)までの距離aが250mmである場合の、各ウェル226からの主光線の蛍光の実像が結ばれる各受光素子273の位置を計算で求めたものを示す。
図19(A)は、前記メリジオナル面(ZY面)で切断したトロイダルミラー230およびマイクロプレート222を示す。メリジオナル面で切断した場合には、主光線であるマイクロプレート222からの垂直方向に進む光線と該ミラー230の光軸280(Z軸に対して15度傾斜の光軸面内にある)との間の角度、すなわち入射角θが15度であり、横方向の曲率半径Rhは250mmである。
一方、図19(B)は、前記メリジオナル面と直交する光軸面側から見たトロイダルミラー230と、各ウェル226中心からの主光線の反射後の経路と、前記液面223の各々の中心点が結像する受光素子273の受光面とのZ'X面への投影を示す。なお、受光素子273はその半分の4個(残りの半分の4個は光軸280に関して対称なので省略下)が示されている。
すなわち、その結像位置を測定位置と一致するように、前記受光素子273の受光面に結像させるためには、前記各プリズム272bの反射面の中心位置のZ'座標については、光軸280に遠い方から、各々、-191.2mm、-195.2mm、-197.8mm、-199.1mmの位置となる。また、X座標については、光軸280から遠い方から、各々、32.2mm、23.4mm、14.1mm、4.7mmの位置となる。
さらに、前記各プリズム272bの反射面の中心位置のY'座標については、光軸280の遠い方から、-2.6mm、-1.4mm、-0.5mm、0mmとなる。したがって、1行の8個の各プリズム272bの反射面の中心位置の座標は、XY'Z'座標系にあっては、光軸280から遠い位置から(32.2mm、-2.6mm、-191.2mm)、(23.4mm、-1.4mm、-195.2mm)、(14.1mm、-0.5mm、-197.8mm)、(4.7mm、0mm、-199.1mm)およびこれらと光軸280に関して線対称の位置にある(-32.2mm、-2.6mm、-191.2mm)、(-23.4mm、-1.4mm、-195.2mm)、(-14.1mm、-0.5mm、-197.8mm)、(-4.7mm、0mm、-199.1mm)である。
図19(C)は、前記トロイダルミラー230の、前記メリジオナル面と直交するZ軸に対して15度傾斜する光軸面で切断したトロイダルミラー230の断面形状を現し、該光軸面で切断したトロイダルミラー230の縦方向の曲率半径Rvは、187.5mmである。
続いて、図面に基づいて、本実施の形態に係る反応光学測定装置200の動作について説明する。
該反応光学測定装置200の引出し214に設けられたノブ216を90度回転して水平にすることで前記ロッキングバー215を引っ込めて開閉可能状態にして引出し214を手動で空ける。すると、該引出し214の両側面241が引出し214の直線運動に連動する直線運動カムとして働き、前記加熱用蓋224が自動的に上昇して、前記マイクロプレート222の上側面から脱着し、マイクロプレート222が前記加熱用蓋224の直下の位置から引出し214とともにY軸方向に前進して図13の位置にまで達する。
前記マイクロプレート222の各ウェル226に、各検体から抽出された物質および蛍光物質を含有する反応溶液を96個の各ウェル226に、別途設けた分注装置等によって所定量、この例では50μlの試薬を等しく分注し、前記透明シート227を該マイクロプレート222の上側に貼着して、各ウェル226の開口部を閉じる。
その後、前記引出し214を後方向に向かって移動させて引出し214を閉じた後、前記ノブ216を90度回転させて前記ロッキングバー215を外方向に突出させて前記引出し214を閉じた状態にロックする。
すると、図14に示すように、前記マイクロプレート222は前記加熱用蓋224が前記透明シート221の上側から該マイクロプレート222に取り付けられることになる。この状態で、該加熱用蓋224を一定温度にまで加熱することで結露を防止しながら、前記処理内容に従った温度制御が、該マイクロプレート222の下側に設けられた加熱用ブロック238によって行われることになる。と同時に、前記光学系による測定を、順次前記マイクロプレート222に対して、前記ステッピング・モータ250を駆動することによって、前記Y移動体231をY軸方向に沿って、最も奥の1行から順次手前の1行に向かって9mm移動させては各行上に凹面鏡素子としてのトロイダルミラー230等のY移動体231に取り付けられた光学系を停止させながら、順次12行分についての光学測定が行われる。
図19等に示すように、光学測定は、前記加熱用蓋224の貫通孔228を通って、マイクロプレート222の内、最初の1行の8個のウェル226の開口部を通り必要な場合には前記励起光照射部232の高輝度LED242a,243a列からの励起光を1行分の8個ウェル226内に収容された反応溶液に対して直接照射する。
すると、前記ウェル226から垂直方向に放射される蛍光の主光線は、前記シート227および前記加熱用蓋224の貫通孔228を通って、前記トロイダルミラー230によって反射されて、前記光学的放射フィルタ262、前記物体側テレセントリック構築用絞り261、ある8個の前記受光素子273のレンズ272aおよびプリズム272bを介して結像位置である受光面を通して前記フォトダイオード270が受光してそのアナログ量である光量を前記光学系制御基板245の前記制御回路により該当するデジタル量の電気信号に変換して、外部に設けた情報処理装置等に送付して、解析が行われることになる。最初の1行についての光学測定処理が完了すると、前記Y移動体231をY軸方向に移動させることによって走査する。
本実施の形態に係る装置によれば、Y軸方向に沿って一定のピッチで光学系を移動することで良いので移動制御が容易である。また、受光素子の個数を第1の実施の形態の場合に比較してさらに削減することができる。また、一定ピッチで停止せずに、12行連続で光学測定することも可能であり、この場合12行分の測定時間を短縮することが可能である。
以上説明した各実施の形態は、本発明をより良く理解させる為に具体的に説明したものであって、別形態を制限するものではない。したがって、発明の主旨を変更しない範囲で変更可能である。例えば、前記実施の形態では、前記凹面鏡素子として、主として非球面凹面鏡素子の内トロイダルミラーのみについて説明したが、他の非球面凹面鏡素子を用いることもできる。また、非球面凹面鏡素子ではなく、球面凹面鏡素子を用いることもできる。なお、凹面鏡素子に代えて通常の平面鏡を用いる場合には、前記受光部がその反射光を受光するために新たに凸レンズを導入する必要がある。すると、装置規模が拡大するとともに、部品点数が増加し製造費用が増大するおそれがある。さらに新たに導入した凸レンズに基づく色収差を回避する必要が生ずることになる。
また、マイクロプレートについても8行×12列の9mmピッチの場合についてのみ説明したがこの場合に限定されることなく、種々のマイクロプレート、例えば、16列×24行の4.5mmピッチの場合や、その他12行×16列、6行×8列等の種々のピッチをもつマイクロプレートに対しても適用することができることはいうまでもない。
さらに、走査機構を用いた例のみを説明したが、受光素子を、全ウェル個数分配列することによって走査機構を用いることなく光学測定を行なうことができる。この場合には、走査機構部分なしで済ますことができるので、装置規模を削減するとともに、走査時間を必要としないのでより高速に処理を行なうことができることになる。また、走査機構は、前述したように光学系を動かす場合に限られず、平面状液収容体を動かす場合または双方を動かす場合がある。なお、X軸、Y軸、Z軸、縦方向および横方向、行および列等のような空間的な表示は、例示のみの目的であって、前記構造の空間的方向および位置を制限するものではない。以上の実施の形態では、1個の凹面鏡素子を、発光の主光線を入射させてその実像を結像させることができる前記範囲が複数の液収容部に対して用いた場合のみを説明したが、この場合に限られることはない。凹面鏡素子は複数であっても良く、前記範囲は1の液収容部であっても良い。したがって、例えば、平面状液収容体の液収容部の全個数に相当する数の凹面鏡素子が、各々1の液収容部を前記結像可能な範囲として、各液収容部に応じた位置に配列されたものであっても良い。
本発明は、反応光学測定装置および方法に関し、種々の反応を標識化して光学的に測定することが可能であり、例えば、PCRによって増幅する核酸(DNA)をリアルタイムでモニタリングすることで、得られたPCR産物の増幅曲線を使って、PCRの初期鋳型となったDNA量を求めることができる。特に、生化学分野、農業分野、製剤分野、医療分野、工業分野等の様々な分野で利用可能である。
10,100,(200) リアルタイムPCR光学測定装置(反応光学測定装置)
22,222 マイクロプレート(平面状液収容体)
30,130,230 トロイダルミラー
31,231 Y移動体
73,173,273 受光素子(受光部)
75,175,275 結像位置
77,177,277 測定位置

Claims (9)

  1. 発光物質を含有する反応溶液を収容可能な第1の複数個の液収容部が平面に沿って配列され、各液収容部において温度制御が行われる平面状液収容体と、第2の複数個の前記各液収容部の開口部を通して前記平面に垂直方向に放射される発光の主光線を光軸に関し所定入射角で一斉に入射させて、前記平面状液収容体から離れた位置にある前記第2の複数の各結像位置において前記発光による前記第2の複数の各実像を形成する1または複数の凹面鏡素子と、該凹面鏡素子によって前記第2の複数の各結像位置上に一斉に結像した前記各液収容部の開口部から放射された発光の主光線による前記第2の複数の各実像からの光を取り入れることができる前記第2の複数の各所定測定位置において、前記第2の複数の各実像からの光を各液収容部ごとに受光する受光部と、を有するとともに、
    前記受光部は、前記平面状液収容体の全部または一部の各液収容部に対応して、前記凹面鏡素子で反射した発光の主光線を受光可能な受光素子を前記第2の複数の各所定測定位置に設け、
    該受光素子および前記凹面鏡素子を含む光学系は一体として形成され、前記平面状液収容体が該光学系に対して移動する走査機構を有する反応光学測定装置。
  2. 該受光素子および前記凹面鏡素子を含む光学系の全部もしくは一部および前記平面状液収容体の双方、または、前記光学系の全部若しくは一部および前記平面状液収容体のいずれか一方を移動する走査機構を有する請求項に記載の反応光学測定装置。
  3. 前記凹面鏡素子は、前記平面状液収容体に設けられた全部もしくは一部の液収容部の開口部を通しての発光による各実像を前記各結像位置に形成する大きさ及び形状を有する請求項1に記載の反応光学測定装置。
  4. 光源と、所定種類の波長帯域の励起光を透過することができる所定種類の励起光フィルタと、を設けた励起光照射部を有する請求項1に記載の反応光学測定装置。
  5. 前記光学系は、光源と、所定種類の波長帯域の励起光を透過することができる所定種類の励起光フィルタとを設けた励起光照射部を含めて一体として形成された請求項に記載の反応光学測定装置。
  6. 前記受光素子は、光電素子と、前記測定位置で各液収容部の実像からの光を該光電素子に入射させる凸レンズを有する請求項に記載の反応光学測定装置。
  7. 前記凹面鏡素子と前記受光部との間に、受光部に対して指定した波長の発光を選択して透過させまたは遮断する光学的フィルタを設けた請求項1に記載の反応光学測定装置。
  8. 前記凹面鏡素子と前記受光部との間に、開口絞りを設けた請求項1乃至請求項のいずれかに記載の反応光学測定装置。
  9. 発光物質を含有する反応溶液を、平面に沿って配列した第1の複数個の液収容部を有する平面状液収容体の各液収容部に開口部を通して収容する収容工程と、該各液収容部内で温度制御を行なう温度制御工程と、第2の複数個の前記各液収容部の開口部を通して前記平面に垂直方向に放射される発光の主光線を光軸に関し所定入射角で1または複数の凹面鏡素子に一斉に入射させて、前記平面状液収容体と重ならない位置にある前記第2の複数の各結像位置上に前記発光による前記第2の複数の各実像を形成する結像工程と、該凹面鏡素子によって前記第2の複数の各結像位置上に一斉に結像した前記各液収容部の開口部から放射された発光の主光線による前記第2の複数の各実像からの光を取り入れることができる前記第2の複数の各所定測定位置で発光による前記第2の複数の各実像からの光を液収容部ごとに受光する受光工程と、を有するとともに、
    前記受光工程は、前記平面状液収容体の全部またはその一部の前記各液収容部に対応して、1の前記液収容部の開口部を通しての発光を各々受光可能な前記第2の複数の各受光素子によって受光し、該受光素子および前記凹面鏡素子を含む光学系は、一体に形成され、該光学系および前記平面状液収容体の双方、または、該光学的および前記平面状液収容体のいずれか一方を移動する走査工程を含む反応光学測定方法。
JP2011505979A 2009-03-26 2010-03-12 反応光学測定装置およびその測定方法 Expired - Fee Related JP5623385B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009077176 2009-03-26
JP2009077176 2009-03-26
PCT/JP2010/054257 WO2010110096A1 (ja) 2009-03-26 2010-03-12 反応光学測定装置およびその測定方法

Publications (2)

Publication Number Publication Date
JPWO2010110096A1 JPWO2010110096A1 (ja) 2012-09-27
JP5623385B2 true JP5623385B2 (ja) 2014-11-12

Family

ID=42780789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505979A Expired - Fee Related JP5623385B2 (ja) 2009-03-26 2010-03-12 反応光学測定装置およびその測定方法

Country Status (2)

Country Link
JP (1) JP5623385B2 (ja)
WO (1) WO2010110096A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481906B2 (en) * 2011-02-04 2016-11-01 Universal Bio Research Co., Ltd. Automatic light measurement device with a movable mount for coupling with multiple reaction containers
DE102011109332A1 (de) * 2011-08-03 2013-02-07 Eppendorf Ag Laborvorrichtung und Verfahren zur Behandlung von Laborproben
JP5853550B2 (ja) * 2011-09-29 2016-02-09 凸版印刷株式会社 温度制御装置及び温度制御方法
EP2867652B1 (en) 2012-06-28 2020-12-09 Fluoresentric, Inc. A chemical indicator device
WO2014014016A1 (ja) * 2012-07-17 2014-01-23 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
US20140273181A1 (en) 2013-03-15 2014-09-18 Biofire Diagnostics, Inc. Compact optical system for substantially simultaneous monitoring of samples in a sample array
CA2977859C (en) * 2015-06-23 2020-07-28 Metaoptima Technology Inc. Apparatus for imaging skin
JP7335494B2 (ja) * 2019-06-21 2023-08-30 東亜ディーケーケー株式会社 光学測定装置
CN114324242A (zh) * 2021-12-10 2022-04-12 江西超联光电科技有限公司 一种用于反射镜光学加工原位检测的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255272A (ja) * 2000-01-14 2001-09-21 Becton Dickinson & Co 核酸アッセイ用自動光学リーダ
JP2002514739A (ja) * 1997-10-31 2002-05-21 カール・ツアイス・シュティフテュング・ハンデルンド・アルス・カール・ツアイス 光学的アレイシステムおよびマイクロタイタープレート用読み取り器
JP2003524754A (ja) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Dnaのポリメラーゼ連鎖反応をモニタする装置
JP2003527598A (ja) * 2000-03-17 2003-09-16 フリズ バイオケム ゲーエムベーハー 試験物質中の有機分子の検出のための装置及び方法
JP2005345378A (ja) * 2004-06-04 2005-12-15 Nippon Sheet Glass Co Ltd 光検出装置
JP2006215025A (ja) * 2005-01-18 2006-08-17 F Hoffmann La Roche Ag テレセントリック性を用いた蛍光信号の結像

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020441A (ja) * 2002-06-18 2004-01-22 Fujitsu Ltd マイクロアレイ上の情報の読取装置
JP5029485B2 (ja) * 2008-05-12 2012-09-19 株式会社島津製作所 非球面反射光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514739A (ja) * 1997-10-31 2002-05-21 カール・ツアイス・シュティフテュング・ハンデルンド・アルス・カール・ツアイス 光学的アレイシステムおよびマイクロタイタープレート用読み取り器
JP2003524754A (ja) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Dnaのポリメラーゼ連鎖反応をモニタする装置
JP2001255272A (ja) * 2000-01-14 2001-09-21 Becton Dickinson & Co 核酸アッセイ用自動光学リーダ
JP2003527598A (ja) * 2000-03-17 2003-09-16 フリズ バイオケム ゲーエムベーハー 試験物質中の有機分子の検出のための装置及び方法
JP2005345378A (ja) * 2004-06-04 2005-12-15 Nippon Sheet Glass Co Ltd 光検出装置
JP2006215025A (ja) * 2005-01-18 2006-08-17 F Hoffmann La Roche Ag テレセントリック性を用いた蛍光信号の結像

Also Published As

Publication number Publication date
JPWO2010110096A1 (ja) 2012-09-27
WO2010110096A1 (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5623385B2 (ja) 反応光学測定装置およびその測定方法
JP7389095B2 (ja) 生体サンプルを評価するためのシステムおよび方法
US7295316B2 (en) Fluorescent detector with automatic changing filters
US9089828B2 (en) Optical system for chemical and/or biochemical reactions
JP4846152B2 (ja) 低発熱光源を有する蛍光測定器
ES2309835T3 (es) Formacion de imagenes de señales fluorescentes utilizando opticas telecentricas de excitacion y de imagen.
ES2296231T3 (es) Produccion de imagenes de señales fluorescentes con utilizacion de opticas telecentricas para la excitacion y la produccion de las imagenes.
EP1704403B1 (en) Multimode reader
EP1721146B1 (en) Apparatus and method for fluorescent detection in biological samples
JP6797296B2 (ja) 整列した複数の反応容器内の複数の分析物を光学的に励起し、該分析物からの蛍光を検知するための方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees