JP5621401B2 - Method for manufacturing connection structure - Google Patents

Method for manufacturing connection structure Download PDF

Info

Publication number
JP5621401B2
JP5621401B2 JP2010182542A JP2010182542A JP5621401B2 JP 5621401 B2 JP5621401 B2 JP 5621401B2 JP 2010182542 A JP2010182542 A JP 2010182542A JP 2010182542 A JP2010182542 A JP 2010182542A JP 5621401 B2 JP5621401 B2 JP 5621401B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
light
film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182542A
Other languages
Japanese (ja)
Other versions
JP2010268002A (en
Inventor
山本 潤
潤 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2010182542A priority Critical patent/JP5621401B2/en
Publication of JP2010268002A publication Critical patent/JP2010268002A/en
Priority to KR1020110070885A priority patent/KR101261160B1/en
Application granted granted Critical
Publication of JP5621401B2 publication Critical patent/JP5621401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Wire Bonding (AREA)

Description

本発明は、光透過性配線基板の電極と半導体チップのバンプとが、異方性導電フィルムを用いて異方性導電接続されてなる接続構造体の製造方法に関する。   The present invention relates to a method for manufacturing a connection structure in which electrodes of a light-transmitting wiring board and bumps of a semiconductor chip are anisotropically conductively connected using an anisotropic conductive film.

透明ガラス基板にICチップを実装したCOG(Chip on Glass)実装体、例えば液晶パネルが実用化されている。このような液晶パネルにおいて、透明ガラス基板の外側にバックライトが設けられており、バックライトからの光を透明ガラス基板に入射させている。このため、必然的にガラス基板に実装されているICチップに光が照射されることになる。このため、半導体チップのシリコン部分の電子の光励起により、半導体チップが誤動作し、表示の文字化けや表示抜け等の表示不良が生ずることが懸念される。   A COG (Chip on Glass) mounting body in which an IC chip is mounted on a transparent glass substrate, for example, a liquid crystal panel has been put into practical use. In such a liquid crystal panel, a backlight is provided outside the transparent glass substrate, and light from the backlight is incident on the transparent glass substrate. For this reason, light is necessarily irradiated to the IC chip mounted on the glass substrate. For this reason, there is a concern that the semiconductor chip malfunctions due to photoexcitation of electrons in the silicon portion of the semiconductor chip, resulting in display defects such as garbled display or missing display.

このような懸念を払拭するため、ガラス基板にICチップを実装する際に使用する異方性導電フィルムとして、光吸収性のカーボン粒子を配合して遮光性を付与した遮光性異方性導電フィルムを使用することが提案されている。   In order to eliminate such concerns, a light-shielding anisotropic conductive film provided with light-shielding properties by blending light-absorbing carbon particles as an anisotropic conductive film used when mounting an IC chip on a glass substrate It has been proposed to use

特開2000−123639号公報Japanese Unexamined Patent Publication No. 2000-1223639

しかしながら、特許文献1のカーボン粒子により遮光性が付与された異方性導電フィルムの場合、カーボン粒子の配合によりフィルム全体の比誘電率が増加するという問題があった。そのような比誘電率が増加した異方性導電フィルムを高密度実装に適用した場合、非常に近接した隣接配線間でノイズが発生することが懸念される。また、このような遮光性異方性導電フィルムは、異方性導電接続前から遮光性であるため、ガラス基板への異方性導電フィルムの仮貼り時や仮貼りした異方性導電フィルムへのICチップの仮設置時に、ガラス基板の電極やアライメントマークを視認することが困難になり、結果的にガラス基板とICチップとのアライメントが困難になっていた。   However, in the case of the anisotropic conductive film to which the light shielding property is imparted by the carbon particles of Patent Document 1, there is a problem that the relative dielectric constant of the entire film increases due to the blending of the carbon particles. When such an anisotropic conductive film having an increased relative dielectric constant is applied to high-density mounting, there is a concern that noise may occur between adjacent wirings that are very close to each other. Moreover, since such a light-shielding anisotropic conductive film is light-shielding before the anisotropic conductive connection, it is possible to temporarily attach the anisotropic conductive film to the glass substrate or to the temporarily attached anisotropic conductive film. When the IC chip is temporarily installed, it is difficult to visually recognize the electrodes and alignment marks on the glass substrate, and as a result, alignment between the glass substrate and the IC chip is difficult.

本発明の目的は、以上のような従来の課題を解決しようとするものであり、ガラス基板等の光透過性配線基板とICチップ等の半導体素子との間のアライメントを高いレベルで行うことができ、且つ光透過性配線基板からの光を半導体素子に入射させないような高い遮光性を示す異方性導電フィルムを使用して接続構造体を製造できるようにすることである。   An object of the present invention is to solve the conventional problems as described above, and to perform alignment between a light-transmitting wiring board such as a glass substrate and a semiconductor element such as an IC chip at a high level. It is possible to manufacture a connection structure using an anisotropic conductive film that has a high light-shielding property so that light from a light-transmitting wiring board is not incident on a semiconductor element.

本発明者は、異方性導電接続処理前には異方性導電フィルムを通してアライメントが可能であるが、異方性導電接続処理と同時又はそれ以降には光透過性が低下して遮光性を示す異方性導電フィルムを使用することにより上述の目的を達成できるとの仮定の下、異方性導電フィルムの構成成分について調査したところ、熱硬化性エポキシ系樹脂組成物にスチレンブロック共重合体を特定量配合することにより解決できることを見出し、本発明を完成させるに至った。   The present inventor can perform alignment through the anisotropic conductive film before the anisotropic conductive connection treatment, but the light transmission is reduced at the same time or after the anisotropic conductive connection treatment, and the light shielding property is reduced. Under the assumption that the above-mentioned object can be achieved by using the anisotropic conductive film shown, the components of the anisotropic conductive film were investigated, and a styrene block copolymer was added to the thermosetting epoxy resin composition. It has been found that the problem can be solved by blending a specific amount of the present invention, and the present invention has been completed.

即ち、本発明は、光透過性配線基板の電極と半導体素子のバンプとが、異方性導電フィルムを用いて異方性導電接続されてなる接続構造体の製造方法であって、
該異方性導電フィルムとして、エポキシ化合物と、エポキシ用硬化剤と、膜形成ポリマーと、シランカップリング剤とを含有する熱硬化型エポキシ樹脂組成物に導電性粒子を分散させて成膜したものであって、熱硬化型エポキシ系樹脂組成物が、更にスチレン系ブロック共重合体を異方性導電フィルム中に5〜20質量%となる割合で含有しているものを使用し、
光透過性配線基板の電極に、該異方性導電フィルムを仮貼りし、
仮貼りされた異方性導電フィルム上に半導体素子を、異方性導電フィルムを通してアライメントしながら仮設置し、
仮設置された半導体素子を加熱加圧することにより異方性導電フィルムを介して光透過性配線基板の電極に異方性導電接続処理し、異方性導電接続処理と同時又はそれ以降に異方性導電フィルムの光透過率を低下させる製造方法、及びその製造方法により得られた接続構造体を提供する。
That is, the present invention is a method for manufacturing a connection structure in which electrodes of a light-transmitting wiring board and bumps of a semiconductor element are anisotropically conductively connected using an anisotropic conductive film,
The anisotropic conductive film formed by dispersing conductive particles in a thermosetting epoxy resin composition containing an epoxy compound, an epoxy curing agent, a film-forming polymer, and a silane coupling agent The thermosetting epoxy resin composition further contains a styrenic block copolymer in a proportion of 5 to 20% by mass in the anisotropic conductive film,
Temporarily sticking the anisotropic conductive film to the electrode of the light transmissive wiring board,
Temporarily installing the semiconductor element while aligning the anisotropic conductive film on the anisotropic conductive film temporarily attached,
Anisotropic conductive connection treatment is applied to the electrode of the light-transmitting wiring board through the anisotropic conductive film by heating and pressurizing the temporarily installed semiconductor element, and anisotropic at the same time or after the anisotropic conductive connection treatment A manufacturing method for reducing the light transmittance of a conductive film and a connection structure obtained by the manufacturing method are provided.

本発明の接続構造体の製造方法においては、異方性導電フィルムとして、エポキシ化合物と、エポキシ用硬化剤と、膜形成ポリマーと、シランカップリング剤とを含有する熱硬化型エポキシ樹脂組成物に導電性粒子を分散させて成膜したものであって、熱硬化型エポキシ系樹脂組成物が、更にスチレン系ブロック共重合体を異方性導電フィルム中に5〜20質量%となる割合で含有しているものを使用する。この異方性導電フィルムは、異方性導電接続前には光透過性であるため、光透過性配線基板への半導体素子のアライメントを異方性導電フィルムを通して可能とするが、異方性導電接続処理と同時又はそれ以降には光透過性が低下するので、半導体素子への光入射を防止することができる。   In the method for producing a connection structure of the present invention, a thermosetting epoxy resin composition containing an epoxy compound, an epoxy curing agent, a film-forming polymer, and a silane coupling agent is used as the anisotropic conductive film. The film is formed by dispersing conductive particles, and the thermosetting epoxy resin composition further contains a styrene block copolymer in a proportion of 5 to 20% by mass in the anisotropic conductive film. Use what you have. Since this anisotropic conductive film is light transmissive before anisotropic conductive connection, the semiconductor element can be aligned with the light transmissive wiring board through the anisotropic conductive film. At the same time as or after the connection process, the light transmittance is lowered, so that the light incident on the semiconductor element can be prevented.

異方性導電接続処理と同時又はそれ以降に異方性導電フィルムの光透過性が低下する理由は、異方性導電接続の際の硬化反応により、フィルム、IC、ガラス基板といった部材に熱膨張や収縮等が生じ、それによりフィルム中の熱硬化型エポキシ樹脂組成物中でスチレン系ブロック共重合体の相分離が進行し、生じた相分離構造によって光散乱や光吸収が生ずるためと考えられる。   The reason why the light transmittance of the anisotropic conductive film decreases at the same time as or after the anisotropic conductive connection treatment is due to the thermal expansion of the film, IC, and glass substrate due to the curing reaction during the anisotropic conductive connection. This is thought to be because the phase separation of the styrenic block copolymer proceeds in the thermosetting epoxy resin composition in the film, causing light scattering and light absorption due to the resulting phase separation structure. .

実際、本発明の接続構造体の製造方法において、異方性導電接続の際に高温/高圧の条件で実装すると、より高い遮光性を発現することができる。換言すれば、この異方性導電フィルムを、高温実装(例えば、210〜240℃での実装)に適用した場合、硬化反応が急激に進行し、相分離構造の架橋密度が高くなり、他方、高圧実装(例えば、80〜140MPaでの実装)に適用した場合、フィルムの構成成分の混合が加速され、相分離構造のドメインの微細化を促すため、異方性導電接続処理と同時又はそれ以降の異方性導電フィルムの光散乱・光吸収の効率が向上するためであると考えられる。   Actually, in the method for manufacturing a connection structure according to the present invention, when the anisotropic conductive connection is performed under the condition of high temperature / high pressure, higher light shielding property can be exhibited. In other words, when this anisotropic conductive film is applied to high-temperature mounting (for example, mounting at 210 to 240 ° C.), the curing reaction proceeds rapidly, and the cross-linking density of the phase separation structure increases, When applied to high-pressure mounting (for example, mounting at 80 to 140 MPa), the mixing of the constituent components of the film is accelerated, and the phase separation structure domains are promoted to be refined. This is probably because the light scattering / light absorption efficiency of the anisotropic conductive film is improved.

本発明の製造方法の対象物は、光透過性配線基板の電極と半導体素子のバンプとが、異方性導電フィルムを用いて異方性導電接続されてなる接続構造体である。まず、この接続構造体の構成について説明し、次いでその製造方法について詳細に説明する。   An object of the manufacturing method of the present invention is a connection structure in which electrodes of a light-transmitting wiring board and bumps of a semiconductor element are anisotropically conductively connected using an anisotropic conductive film. First, the configuration of the connection structure will be described, and then the manufacturing method will be described in detail.

<接続構造体の構成>
接続構造体を構成する光透過性配線基板としては、光透過性ガラス基板、光透過性石英基板、光透過性プラスチック基板に、インジウム−スズ複合酸化物などの光透過性導電材料から形成された配線や電極、アルミニウムや銅などの金属材料から形成された配線や電極を有する配線基板を挙げることができる。
<Configuration of connection structure>
The light-transmitting wiring board constituting the connection structure is formed of a light-transmitting conductive material such as indium-tin composite oxide on a light-transmitting glass substrate, a light-transmitting quartz substrate, and a light-transmitting plastic substrate. The wiring board which has the wiring and electrode which were formed from wiring, an electrode, metal materials, such as aluminum and copper, can be mentioned.

半導体素子としては、いわゆる集積回路素子と称されているICチップや、LEDなどの光学素子等の半導体電子部品を広く使用することができる。また、バンプとしては、金スタッドバンプ、ハンダバンプ等を適用することができる。   As semiconductor elements, semiconductor electronic parts such as IC chips called so-called integrated circuit elements and optical elements such as LEDs can be widely used. As the bump, a gold stud bump, a solder bump, or the like can be applied.

異方性導電フィルムとしては、エポキシ化合物と、エポキシ用硬化剤と、膜形成ポリマーと、シランカップリング剤とを含有する熱硬化型エポキシ樹脂組成物に、導電性粒子を分散し、成膜したフィルムであって、熱硬化型エポキシ樹脂組成物が、更にスチレン系ブロック共重合体を含有しているものを使用する。スチレン系ブロック共重合体の異方性導電フィルム中の含有量は、5〜20質量%、好ましくは8〜15質量%である。5質量%未満であると、十分な遮光性を獲得することができず、20質量%を超えると、異方性導電フィルムの接続信頼性が大きく低下するからである。   The anisotropic conductive film was formed by dispersing conductive particles in a thermosetting epoxy resin composition containing an epoxy compound, an epoxy curing agent, a film-forming polymer, and a silane coupling agent. A film that is a thermosetting epoxy resin composition and further contains a styrenic block copolymer is used. Content in the anisotropic conductive film of a styrene-type block copolymer is 5-20 mass%, Preferably it is 8-15 mass%. It is because sufficient light-shielding property cannot be acquired as it is less than 5 mass%, and when it exceeds 20 mass%, the connection reliability of an anisotropic conductive film will fall large.

異方性導電接続処理前の異方性導電フィルム及び異方性導電接続処理後の異方性導電フィルムの光透過性の意味は、以下に説明するように定義される。   The meaning of light transmittance of the anisotropic conductive film before the anisotropic conductive connection treatment and the anisotropic conductive film after the anisotropic conductive connection treatment is defined as described below.

光透過波長1100nmの光に対する膜厚25μmの異方性導電フィルムの異方性導電接続処理前の光透過率は、厚さ0.7mmおよび厚さ0.5mmの2枚の透明ガラス基板で異方性導電接続処理前の異方性導電フィルムを挟んだときに、分光光度計で測定した数値である。その数値は、小さすぎると半導体素子の正確なアライメントの妨げとなるので、好ましくは60%以上、より好ましくは70%以上である。他方、異方性導電接続処理後の異方性導電フィルムの光透過率は、厚さ0.7mmおよび厚さ0.5mmの2枚の透明ガラス基板で挟んだ異方性導電フィルムを200℃で60Paという条件で10秒間、加熱加圧したときに、分光光度計で測定した数値である。その数値が大きすぎると遮光性が不十分のため半導体素子の誤作動の要因となるので、好ましくは50%以下、より好ましくは40%以下である。   The light transmittance before anisotropic conductive connection treatment of an anisotropic conductive film having a film thickness of 25 μm with respect to light having a light transmission wavelength of 1100 nm is different between two transparent glass substrates having a thickness of 0.7 mm and a thickness of 0.5 mm. It is a numerical value measured with a spectrophotometer when the anisotropic conductive film before the anisotropic conductive connection treatment is sandwiched. The numerical value is preferably 60% or more, and more preferably 70% or more, because if the value is too small, accurate alignment of the semiconductor elements is hindered. On the other hand, the light transmittance of the anisotropic conductive film after the anisotropic conductive connection treatment is 200 ° C. with an anisotropic conductive film sandwiched between two transparent glass substrates having a thickness of 0.7 mm and a thickness of 0.5 mm. This is a numerical value measured with a spectrophotometer when heated and pressurized for 10 seconds under the condition of 60 Pa. If the numerical value is too large, the light shielding property is insufficient and causes a malfunction of the semiconductor element. Therefore, it is preferably 50% or less, more preferably 40% or less.

異方性導電フィルムを構成する熱硬化型エポキシ樹脂組成物は、前述したとおり、エポキシ化合物、エポキシ用硬化剤、膜形成ポリマー、シランカップリング剤、スチレン系ブロック共重合体を含有する。   As described above, the thermosetting epoxy resin composition constituting the anisotropic conductive film contains an epoxy compound, an epoxy curing agent, a film-forming polymer, a silane coupling agent, and a styrene block copolymer.

エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。本発明では、JIS K7117−1による粘度(25℃)が2〜200Pa・sの液状エポキシ化合物を使用することが、パネルに対する良好な転着性と硬化後の良好な接続信頼性とを実現できる点で好ましい。   Examples of the epoxy compound include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a modified epoxy resin thereof, an alicyclic epoxy resin, and the like. it can. In the present invention, use of a liquid epoxy compound having a viscosity (25 ° C.) of 2 to 200 Pa · s according to JIS K7117-1 can realize good transferability to the panel and good connection reliability after curing. This is preferable.

このような低分子液状エポキシ化合物の熱硬化型エポキシ樹脂組成物中の配合量は、少なすぎると、硬化前の異方性導電フィルムの被着体への転着性や、硬化後の異方性導電フィルムの被着体への密着性が不十分となり、また、多すぎると異方性導電フィルム作成時の熱硬化型エポキシ樹脂組成物の塗布不良や、異方性導電フィルムのリール状態での保存時における熱硬化型エポキシ樹脂組成物のはみだし不具合が生ずる要因となる傾向があるので、好ましくは15〜65質量%、より好ましくは30〜50質量%である。   If the amount of such a low molecular weight liquid epoxy compound in the thermosetting epoxy resin composition is too small, the transfer property to the adherend of the anisotropic conductive film before curing or the anisotropic property after curing Adhesiveness of the conductive conductive film to the adherend becomes insufficient, and if it is too much, it may be due to poor application of the thermosetting epoxy resin composition at the time of anisotropic conductive film creation or the reel state of the anisotropic conductive film. The thermosetting epoxy resin composition tends to become a cause of occurrence of a problem when stored, and is preferably 15 to 65% by mass, more preferably 30 to 50% by mass.

エポキシ用硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。特に、低温・速硬化の点からカチオン系硬化剤を好ましく使用できる。   Examples of epoxy curing agents include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents. In particular, a cationic curing agent can be preferably used from the viewpoint of low temperature and rapid curing.

エポキシ用硬化剤の熱硬化型エポキシ樹脂組成物中の配合量は、少なすぎると異方性導電フィルムの硬化不良が生じ、多すぎると異方性導電フィルムの製品ライフが低下する傾向があるので、好ましくは熱硬化型エポキシ樹脂組成物中に好ましくは1〜20質量%、より好ましくは3〜10質量%である。   If the amount of the epoxy curing agent in the thermosetting epoxy resin composition is too small, curing of the anisotropic conductive film will be poor, and if too large, the product life of the anisotropic conductive film tends to decrease. In the thermosetting epoxy resin composition, preferably 1 to 20% by mass, more preferably 3 to 10% by mass.

膜形成ポリマーとしては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。   Examples of the film-forming polymer include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.

膜形成ポリマーの熱硬化型エポキシ樹脂組成物中の配合量は、少なすぎるとフィルム形成能が低下することとなり、多すぎると樹脂組成物の溶解性不良、塗布不良が発生することとなる傾向があるので、好ましくは15〜55質量%、より好ましくは30〜40質量%である。   If the blending amount of the film-forming polymer in the thermosetting epoxy resin composition is too small, the film-forming ability will decrease, and if it is too large, the resin composition will have poor solubility and poor coating. Since it exists, Preferably it is 15-55 mass%, More preferably, it is 30-40 mass%.

シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。   Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.

シランカップリング剤の熱硬化型エポキシ樹脂組成物中の配合量は、少なすぎると異方性導電フィルムとガラス基板との密着性が低下し、多すぎるとシランカップリング剤の加水分解による弊害が顕著となる傾向があるので、好ましくは0.5〜3質量%、より好ましくは1〜2質量%である。   If the blending amount of the silane coupling agent in the thermosetting epoxy resin composition is too small, the adhesion between the anisotropic conductive film and the glass substrate is lowered, and if it is too large, the adverse effect due to hydrolysis of the silane coupling agent is caused. Since there exists a tendency to become remarkable, Preferably it is 0.5-3 mass%, More preferably, it is 1-2 mass%.

スチレン系ブロック共重合体としては、A−B型またはA−B−A型ブロック共重合体であり、スチレン−アクリルブロック共重合体、スチレン−ブタジエンブロック共重合体、スチレン−酢酸ビニルブロック共重合体、スチレン−エチレン−ブチレンブロック共重合体、スチレン−エチレン−プロピレンブロック共重合体、スチレン−エチレン−スチレンブロック共重合体、スチレン−イソプレンブロック共重合体等が例示される。これらスチレン系ブロック共重合体の中でも、スチレンの共重合組成比が30wt%以上のものが、分散性と粘度のバランスの観点から、好ましい。なお、これらスチレン系ブロック共重合体には、任意の範囲でエポキシ基やカルボキシル基を導入してもよく、また、このようなブロック共重合体として市販品を用いることもできる。   Styrenic block copolymers are AB type or ABA type block copolymers, such as styrene-acrylic block copolymers, styrene-butadiene block copolymers, and styrene-vinyl acetate block copolymers. Examples thereof include a styrene-ethylene-butylene block copolymer, a styrene-ethylene-propylene block copolymer, a styrene-ethylene-styrene block copolymer, and a styrene-isoprene block copolymer. Among these styrenic block copolymers, those having a styrene copolymer composition ratio of 30 wt% or more are preferable from the viewpoint of the balance between dispersibility and viscosity. In addition, an epoxy group or a carboxyl group may be introduced into these styrenic block copolymers in an arbitrary range, and a commercially available product may be used as such a block copolymer.

異方性導電フィルムを構成する導電性粒子としては、異方性導電接着剤に従来用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げることができ、これらの2種以上を併用することができる。これらの粒径は、通常1〜10μmである。   The conductive particles constituting the anisotropic conductive film can be appropriately selected from those conventionally used for anisotropic conductive adhesives. For example, metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be used, and two or more of these can be used in combination. These particle sizes are usually 1-10 μm.

導電性粒子の異方性導電フィルム中の配合量は、少なすぎると接続信頼性の不良となり、多すぎるとショート発生の原因となる傾向があるので、好ましくは5〜50質量%、より好ましくは10〜35質量%である。   If the blending amount of the conductive particles in the anisotropic conductive film is too small, connection reliability becomes poor, and if it is too large, there is a tendency to cause a short-circuit, so 5 to 50% by mass, more preferably It is 10-35 mass%.

<接続構造体の製造>
まず、以上のような構成成分からなる異方性導電フィルムであって、異方性導電接続処理により光透過性が低下する異方性導電フィルムを、光透過性配線基板の電極に仮貼りする。また、仮貼り操作・条件は、公知の手法・条件を採用することができる。
<Manufacture of connection structure>
First, an anisotropic conductive film composed of the above-described constituent components, which has an optically conductive film whose optical transparency is reduced by the anisotropic conductive connection treatment, is temporarily attached to the electrode of the optically transparent wiring board. . In addition, as the temporary pasting operation / condition, a known method / condition may be employed.

次に、仮貼りされた異方性導電フィルム上に半導体素子を、異方性導電フィルムを通してアライメントしながら仮設置する。この仮設置時に、この異方性導電フィルムは、異方性導電接続処理前なので光透過性が低下していない。従って、光透過性配線基板のアライメントマークや電極を目印にして、半導体素子を光透過性配線基板の所定の位置に容易にアライメントすることができる。また、仮設置操作・条件も、公知の手法・条件を採用することができる。   Next, the semiconductor element is temporarily placed on the temporarily attached anisotropic conductive film while being aligned through the anisotropic conductive film. At the time of this temporary installation, since this anisotropic conductive film is before the anisotropic conductive connection treatment, the light transmission is not lowered. Therefore, the semiconductor element can be easily aligned at a predetermined position on the light-transmitting wiring board using the alignment mark or electrode of the light-transmitting wiring board as a mark. Also, a known method / condition can be adopted as the temporary installation operation / condition.

次に、仮設置された半導体素子を加熱加圧ボンダー等で加熱加圧することにより異方性導電フィルムを硬化させる異方性導電接続処理を行う。この異方性導電接続処理と同時又はそれ以降には異方性導電フィルムの光透過率が低下する。これにより、光透過性配線基板の電極と半導体素子のバンプとが、異方性導電フィルムを用いて異方性導電接続されてなる接続構造体を得ることができる。   Next, an anisotropic conductive connection process is performed to cure the anisotropic conductive film by heating and pressurizing the temporarily installed semiconductor element with a heat and pressure bonder or the like. At the same time as or after this anisotropic conductive connection treatment, the light transmittance of the anisotropic conductive film decreases. Thereby, the connection structure by which the electrode of a light-transmitting wiring board and the bump of a semiconductor element are anisotropically conductive-connected using an anisotropic conductive film can be obtained.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

参考例(スチレン系ブロック共重合体の調製)
温度計、窒素導入管、撹拌機及びコンデンサーを備えたガラス製反応器に、水300質量部、部分鹸化ポリビニルアルコール(ゴーセーノールKH−17、日本合成化学工業(株))の1%水溶液15質量部、及びヒドロキシアパタイトの10%分散液(スーパータイト10、日本化学工業(株))15質量部を投入し、混合した。この混合液に、ポリメリックぺルオキシド0.5質量部を添加し、室温で1時間撹拌して分散させた。この分散物に酢酸ビニル30質量部を添加し、反応器に窒素を導入しながら60℃で2時間撹拌することにより重合させた(第1段重合)。
Reference example (Preparation of styrenic block copolymer)
In a glass reactor equipped with a thermometer, a nitrogen introduction tube, a stirrer and a condenser, 300 parts by mass of water, 15 parts by mass of a 1% aqueous solution of partially saponified polyvinyl alcohol (GOHSENOL KH-17, Nippon Synthetic Chemical Industry Co., Ltd.) And 15 parts by mass of a 10% dispersion of hydroxyapatite (Super Tight 10, Nippon Chemical Industry Co., Ltd.) were added and mixed. To this mixed solution, 0.5 part by mass of polymeric peroxide was added and dispersed by stirring for 1 hour at room temperature. To this dispersion, 30 parts by mass of vinyl acetate was added, and polymerization was carried out by stirring at 60 ° C. for 2 hours while introducing nitrogen into the reactor (first stage polymerization).

第1段重合の後、重合混合物を室温にまで冷却した後、混合物にスチレン70質量部を添加し、室温で1時間撹拌を続けた。続いて、反応器に窒素を導入しながら、更に80℃で8時間撹拌を続け、更に90℃で0.5時間撹拌を続けることにより再度重合させた(第2段重合)。   After the first stage polymerization, the polymerization mixture was cooled to room temperature, 70 parts by mass of styrene was added to the mixture, and stirring was continued at room temperature for 1 hour. Subsequently, while introducing nitrogen into the reactor, the mixture was further stirred at 80 ° C. for 8 hours, and further stirred at 90 ° C. for 0.5 hour to perform polymerization again (second stage polymerization).

得られた混合物を室温にまで冷却し、目的の共重合体を沈殿物として得た。この沈殿物を、5%塩酸130質量部で洗浄し、続いて水で洗浄して濾別し、乾燥することにより白色粒状のスチレン系ブロック共重合体を得た(収率85%)。この共重合体中のスチレンと酢酸ビニルとの組成比は、70:30であった。   The obtained mixture was cooled to room temperature, and the target copolymer was obtained as a precipitate. This precipitate was washed with 130 parts by mass of 5% hydrochloric acid, subsequently washed with water, filtered, and dried to obtain a white granular styrenic block copolymer (yield 85%). The composition ratio of styrene and vinyl acetate in this copolymer was 70:30.

実施例1
(異方性導電接続処理により光透過性が低下する異方性導電フィルムの作成)
表1の配合処方の成分を、撹拌機を用いて均一に混合し、得られた混合物をバーコーターにより25μm厚のフィルムに成形することにより、異方性導電フィルムを作成した。
Example 1
(Creation of anisotropic conductive film whose light transmittance is reduced by anisotropic conductive connection treatment)
The components of the formulation of Table 1 were uniformly mixed using a stirrer, and the resultant mixture was formed into a film having a thickness of 25 μm by a bar coater to prepare an anisotropic conductive film.

Figure 0005621401
Figure 0005621401

(異方性導電フィルム(ACF)の光透過率の測定)
得られた異方性導電フィルムを、厚さ0.7mmおよび厚さ0.5mmの2枚の透明ガラス基板に挟み、分光光度計(MCPD−100、大塚電子(株)製)を用いて、波長1100nmの光の光透過率を測定した。続いて、異方性導電接続条件に相当する表2の圧着条件で加熱加圧し、室温まで放冷した後、再度光透過率を測定した。異方性導電フィルムの加熱加圧前後の光透過率の結果を表2に示す。
(Measurement of light transmittance of anisotropic conductive film (ACF))
The obtained anisotropic conductive film was sandwiched between two transparent glass substrates having a thickness of 0.7 mm and a thickness of 0.5 mm, and using a spectrophotometer (MCPD-100, manufactured by Otsuka Electronics Co., Ltd.) The light transmittance of light having a wavelength of 1100 nm was measured. Then, after heat-pressing on the crimping | compression-bonding conditions of Table 2 corresponded to anisotropic conductive connection conditions and standing to cool to room temperature, the light transmittance was measured again. Table 2 shows the results of light transmittance before and after heating and pressing of the anisotropic conductive film.

(接続構造体の製造並びにICチップの視認性(透明性・遮光性)評価)
液晶ガラスパネルの電極上に、幅3mmの異方性導電フィルムを、仮貼り装置を用いて60℃で仮貼りした。次に、異方性導電フィルムを通して液晶パネルのアライメントマークを目印に、異方性導電フィルム上に、金バンプが設けられた2mm×20mmのICチップを、バンプ側から50℃で仮設置した。液晶ガラスパネル側を通してICチップを観察したところ、仮設置したICチップのフェース面の文字を視認することができた。この圧着前の視認の程度を以下の基準で評価し、得られた結果を表2に示す。
(Manufacture of connection structures and evaluation of IC chip visibility (transparency and light shielding))
On the electrode of the liquid crystal glass panel, an anisotropic conductive film having a width of 3 mm was temporarily pasted at 60 ° C. using a temporary pasting apparatus. Next, a 2 mm × 20 mm IC chip provided with gold bumps on the anisotropic conductive film was temporarily installed at 50 ° C. from the bump side with the alignment mark of the liquid crystal panel as a mark through the anisotropic conductive film. When the IC chip was observed through the liquid crystal glass panel side, the characters on the face of the temporarily installed IC chip could be visually recognized. The degree of visual recognition before this crimping was evaluated according to the following criteria, and the results obtained are shown in Table 2.

(検証方法)
顕微鏡(OLYMPUS MX50)と、CCDカメラ(FLOVEL ADP210)と、画像処理ソフト(FLOVEL Filing System)とを使用し、落射光を一定として、ソフトの輝度ヒスト表示にて差異を確認した。その際、輝度分布を256階調で表示した。数値が小さいほど暗いことを示し、即ち、落射光の反射が少なく、光を散乱、吸収していることを示している。
(Method of verification)
Using a microscope (OLYMPUS MX50), a CCD camera (FLOWEL ADP210), and image processing software (FLOWEL Filing System), the incident light was kept constant, and the difference was confirmed by displaying the brightness of the software. At that time, the luminance distribution was displayed in 256 gradations. The smaller the value is, the darker the image is, that is, the less reflected light is, and the light is scattered and absorbed.

ランク 基準
AA: R、G、Bすべて200以上
A: R、G、Bすべて100以上200未満
B: R、G、Bすべて50以上100未満
C: R、G、Bすべて50未満
Rank criteria
AA: R, G, B all 200 or more A: R, G, B all 100 or more and less than 200 B: R, G, B all 50 or more and less than 100 C: R, G, B all less than 50

仮設置されたICチップを、続いて加熱ボンダーを用いて、表2の圧着条件で加熱加圧することにより、液晶ガラスパネルの電極にICチップのバンプが異方性導電接続された接続構造体を得た。液晶ガラスパネル側から、硬化した異方性導電フィルムを通して圧着後のICチップを観察し、上記の検証方法と同様に検証し、以下の基準で評価した。得られた結果を表2に示す。   The connection structure in which the bumps of the IC chip are anisotropically conductively connected to the electrodes of the liquid crystal glass panel by heating and pressing the temporarily installed IC chip using a heating bonder under the pressure bonding conditions shown in Table 2. Obtained. From the liquid crystal glass panel side, the IC chip after pressure bonding was observed through the cured anisotropic conductive film, verified in the same manner as the above verification method, and evaluated according to the following criteria. The obtained results are shown in Table 2.

ランク 基準
AA: R、G、Bすべて50未満
A: R、G、Bすべて50以上100未満
B: R、G、Bすべて100以上200未満
C: R、G、Bすべて200以上
Rank Criteria AA: R, G, B all less than 50 A: R, G, B all 50 or more and less than 100 B: R, G, B all 100 or more and less than 200 C: R, G, B all 200 or more

(接続構造体の初期並びに加速試験(高温高湿環境保管)後の接続信頼性の評価)
製造直後の接続構造体の接続信頼性(初期)と、高温高湿環境(85℃、85%RH)に500時間放置した後の接続信頼性を、4端子法にて導通抵抗値を測定し、以下の基準に従って評価した。得られた結果を表2に示す。
(Evaluation of connection reliability after initial and accelerated test (high temperature and high humidity environment storage) of connection structure)
The connection resistance (initial) of the connection structure immediately after manufacturing and the connection reliability after being left in a high temperature and high humidity environment (85 ° C, 85% RH) for 500 hours were measured for the conduction resistance value by the 4-terminal method. Evaluation was made according to the following criteria. The obtained results are shown in Table 2.

ランク 基準
A: 0〜10Ω未満
B: 10以上50Ω未満
C: 50Ω以上
Rank criteria
A: 0 to less than 10Ω B: 10 to less than 50Ω C: 50Ω or more

(接続構造体の絶縁性評価)
製造直後の接続構造体の隣接端子間の絶縁性を、絶縁抵抗値を測定し、以下の基準に従って評価した。得られた結果を表2に示す。
(Insulation evaluation of connection structure)
The insulation resistance between adjacent terminals of the connection structure immediately after manufacture was measured according to the following criteria by measuring the insulation resistance value. The obtained results are shown in Table 2.

ランク 基準
A: 1.0×10Ω以上
B: 1.0×10Ω以上1.0×10Ω未満
C: 1.0×10Ω未満
Rank Criteria A: 1.0 × 10 9 Ω or more B: 1.0 × 10 6 Ω or more and less than 1.0 × 10 9 Ω C: Less than 1.0 × 10 6 Ω

実施例2
スチレン系ブロック共重合体の配合量を5質量部から10質量部に変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Example 2
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrene block copolymer was changed from 5 parts by mass to 10 parts by mass, and a connection structure was prepared and evaluated in the same manner. . The obtained results are shown in Table 2.

実施例3
スチレン系ブロック共重合体の配合量を5質量部から20質量部に変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Example 3
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrene block copolymer was changed from 5 parts by mass to 20 parts by mass, and a connection structure was prepared and evaluated in the same manner. . The obtained results are shown in Table 2.

実施例4
スチレン系ブロック共重合体の配合量を5質量部から10質量部に変更し、且つ圧着温度を200℃から220℃に変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Example 4
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrene block copolymer was changed from 5 parts by mass to 10 parts by mass and the pressure bonding temperature was changed from 200 ° C to 220 ° C. Then, a connection structure was created and evaluated in the same manner. The obtained results are shown in Table 2.

実施例5
スチレン系ブロック共重合体の配合量を5質量部から10質量部に変更し、且つ圧着圧力を60MPaから80MPaに変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Example 5
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrenic block copolymer was changed from 5 parts by mass to 10 parts by mass and the pressure bonding pressure was changed from 60 MPa to 80 MPa. A connection structure was created and evaluated in the same manner. The obtained results are shown in Table 2.

実施例6
スチレン系ブロック共重合体の配合量を5質量部から10質量部に変更し、且つ圧着温度を200℃から190℃に変更し、圧着圧力を60MPaから40MPaに変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Example 6
Example 1 except that the blending amount of the styrenic block copolymer is changed from 5 parts by weight to 10 parts by weight, the pressure bonding temperature is changed from 200 ° C. to 190 ° C., and the pressure bonding pressure is changed from 60 MPa to 40 MPa. Similarly, an anisotropic conductive film was prepared, a connection structure was prepared, and evaluated in the same manner. The obtained results are shown in Table 2.

比較例1
スチレン系ブロック共重合体の配合量を5質量部から1量部に変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Comparative Example 1
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrene block copolymer was changed from 5 parts by mass to 1 part by mass, and a connection structure was prepared and evaluated in the same manner. . The obtained results are shown in Table 2.

比較例2
スチレン系ブロック共重合体の配合量を5質量部から25量部に変更する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Comparative Example 2
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the blending amount of the styrene block copolymer was changed from 5 parts by weight to 25 parts by weight, and a connection structure was prepared and evaluated in the same manner. . The obtained results are shown in Table 2.

比較例3
スチレン系ブロック共重合体に代えてカーボンブラックを10質量部使用する以外は、実施例1と同様にして異方性導電フィルムを作成し、接続構造体を作成し、同様に評価した。得られた結果を表2に示す。
Comparative Example 3
An anisotropic conductive film was prepared in the same manner as in Example 1 except that 10 parts by mass of carbon black was used instead of the styrene block copolymer, and a connection structure was prepared and evaluated in the same manner. The obtained results are shown in Table 2.

Figure 0005621401
Figure 0005621401

表2からわかるように、所定のスチレン系ブロック共重合体を5〜20質量%となるように含有する実施例1〜6の異方性導電フィルムは、圧着条件を変動させても、異方性導電接続処理後に、良好な遮光性を示した。しかも、初期接続信頼性、加速試験後の接続信頼性に優れ、隣接端子間の絶縁性にも優れていた。   As can be seen from Table 2, the anisotropic conductive films of Examples 1 to 6 containing the predetermined styrenic block copolymer in an amount of 5 to 20% by mass are anisotropic even when the pressure bonding conditions are changed. After the conductive conductive connection treatment, good light shielding properties were exhibited. Moreover, the initial connection reliability and the connection reliability after the acceleration test were excellent, and the insulation between adjacent terminals was also excellent.

それに対し、所定のスチレン系ブロック共重合体を過度に少ない1質量%となるように含有する比較例1の異方性導電フィルムは、圧着後の遮光性が十分ではなかった。また、所定のスチレン系ブロック共重合体を過度に多い25質量%となるように含有する比較例2の異方性導電フィルムは、接続信頼性に問題があり、実使用できないものであった。なお、遮光材として従来のカーボンブラックを使用した比較例3の異方性導電フィルムは、そもそも圧着前の透明性が悪く、正確なアライメントが望めないものであった。   On the other hand, the anisotropic conductive film of Comparative Example 1 containing an excessively small amount of the predetermined styrene-based block copolymer at 1% by mass did not have sufficient light-shielding properties after pressure bonding. In addition, the anisotropic conductive film of Comparative Example 2 containing a predetermined styrene block copolymer so as to have an excessively large amount of 25% by mass has a problem in connection reliability and cannot be used in practice. In addition, the anisotropic conductive film of Comparative Example 3 using conventional carbon black as a light shielding material was originally poor in transparency before pressure bonding, and accurate alignment could not be expected.

本発明の接続構造体の製造方法においては、異方性導電フィルムとして、異方性導電接続前には異方性導電フィルムを通してアライメントが可能であるが、異方性導電接続後には光透過性が低下する異方性導電フィルムを使用する。従って、異方性導電処理前にはガラス基板に対するICのアライメントは可能であり、しかも、異方性導電接続処理後には、ICへの光入射を防止することが可能となる。よって、本発明の製造方法は、COG実装体の製造に有用である。   In the manufacturing method of the connection structure according to the present invention, the anisotropic conductive film can be aligned through the anisotropic conductive film before the anisotropic conductive connection. An anisotropic conductive film in which the resistance is lowered is used. Therefore, it is possible to align the IC with respect to the glass substrate before the anisotropic conductive process, and it is possible to prevent light from entering the IC after the anisotropic conductive connection process. Therefore, the manufacturing method of the present invention is useful for manufacturing a COG package.

Claims (2)

光透過性配線基板の電極と半導体素子のバンプとが、異方性導電フィルムを用いて異方性導電接続されてなる接続構造体の製造方法であって、
該異方性導電フィルムとして、エポキシ化合物と、エポキシ用硬化剤と、膜形成ポリマーと、シランカップリング剤とを含有する熱硬化型エポキシ樹脂組成物に導電性粒子を分散させて成膜したものであって、熱硬化型エポキシ系樹脂組成物が、更にスチレン系ブロック共重合体を異方性導電フィルム中に5〜20質量%となる割合で含有し、波長1100nmの光に対する膜厚25μmの異方性導電フィルムの光透過率が、異方性導電接続処理前に60%以上であり、異方性導電接続処理後に50%以下であるものを使用し、
光透過性配線基板の電極に、該異方性導電フィルムを仮貼りし、
仮貼りされた異方性導電フィルム上に半導体素子を、異方性導電フィルムを通してアライメントしながら仮設置し、
仮設置された半導体素子を加熱加圧することにより異方性導電フィルムを介して光透過性配線基板の電極に異方性導電接続処理し、異方性導電接続処理と同時又はそれ以降に異方性導電フィルムの光透過率を低下させる製造方法。
A method of manufacturing a connection structure in which electrodes of a light-transmitting wiring board and bumps of a semiconductor element are anisotropically conductively connected using an anisotropic conductive film,
The anisotropic conductive film formed by dispersing conductive particles in a thermosetting epoxy resin composition containing an epoxy compound, an epoxy curing agent, a film-forming polymer, and a silane coupling agent The thermosetting epoxy resin composition further contains a styrene block copolymer in a proportion of 5 to 20% by mass in the anisotropic conductive film, and has a film thickness of 25 μm with respect to light having a wavelength of 1100 nm. The light transmittance of the anisotropic conductive film is 60% or more before the anisotropic conductive connection treatment, and is 50% or less after the anisotropic conductive connection treatment,
Temporarily sticking the anisotropic conductive film to the electrode of the light transmissive wiring board,
Temporarily installing the semiconductor element while aligning the anisotropic conductive film on the anisotropic conductive film temporarily attached,
Anisotropic conductive connection treatment is applied to the electrode of the light-transmitting wiring board through the anisotropic conductive film by heating and pressurizing the temporarily installed semiconductor element, and anisotropic at the same time or after the anisotropic conductive connection treatment Manufacturing method which reduces the light transmittance of a conductive film.
エポキシ用硬化剤として、カチオン系硬化剤を使用する請求項1記載の製造方法。   The production method according to claim 1, wherein a cationic curing agent is used as the epoxy curing agent.
JP2010182542A 2010-08-17 2010-08-17 Method for manufacturing connection structure Active JP5621401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010182542A JP5621401B2 (en) 2010-08-17 2010-08-17 Method for manufacturing connection structure
KR1020110070885A KR101261160B1 (en) 2010-08-17 2011-07-18 Method for manufacturing connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182542A JP5621401B2 (en) 2010-08-17 2010-08-17 Method for manufacturing connection structure

Publications (2)

Publication Number Publication Date
JP2010268002A JP2010268002A (en) 2010-11-25
JP5621401B2 true JP5621401B2 (en) 2014-11-12

Family

ID=43364664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182542A Active JP5621401B2 (en) 2010-08-17 2010-08-17 Method for manufacturing connection structure

Country Status (2)

Country Link
JP (1) JP5621401B2 (en)
KR (1) KR101261160B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686703A (en) 1994-12-16 1997-11-11 Minnesota Mining And Manufacturing Company Anisotropic, electrically conductive adhesive film
JPH10168411A (en) * 1996-12-06 1998-06-23 Seiko Epson Corp Anisotropically conductive adhesive, liquid crystal display and electronic equipment
JP4288517B2 (en) 1998-07-01 2009-07-01 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP2003318224A (en) * 2002-04-19 2003-11-07 Seiko Instruments Inc Manufacturing method of semiconductor device and display device, and junction material
JP2005268590A (en) * 2004-03-19 2005-09-29 Sharp Corp Anisotropic conducting film, packaging structure using it, and display unit
JP5093482B2 (en) * 2007-06-26 2012-12-12 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive material, connection structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010268002A (en) 2010-11-25
KR101261160B1 (en) 2013-05-09
KR20120023522A (en) 2012-03-13

Similar Documents

Publication Publication Date Title
US8148641B2 (en) Anisotropic conductive material, connected structure, and production method thereof
US8980043B2 (en) Anisotropic conductive film, joined structure and method for producing the joined structure
US9023464B2 (en) Connecting film, and joined structure and method for producing the same
TWI488745B (en) Double layered anisotropic conductive film and apparatus comprising the same
TWI550640B (en) Semiconductor devices connected by anisotropic conductive film comprising conductive microspheres
TW201800478A (en) Anisotropic conductive film
JP6180159B2 (en) Anisotropic conductive film, connection method, and joined body
WO2010098324A1 (en) Method of producing semiconductor device
CN103740311B (en) Quick-setting anisotropy conductiving glue and preparation method thereof
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
WO2012086278A1 (en) Anisotropic conductive adhesive film, connection structure and method for manufacturing same
JP5540559B2 (en) Method for producing film adhesive for circuit connection
JPH10226773A (en) Anisotropically conductive film
JP2001126541A (en) Anisotropic-conductive film and electric/electronic parts
TWI628675B (en) Anisotropic conductive film, connection method, and joined structure
JP5621401B2 (en) Method for manufacturing connection structure
KR102114802B1 (en) Anisotropic conductive film, connection method, and connected body
JP2010024384A (en) Anisotropically electroconductive composition
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
JPH02288019A (en) Anisotropic conductive film
WO2016052130A1 (en) Anisotropic conductive film and bonding method
JP3480754B2 (en) Method for producing anisotropic conductive film
KR101000798B1 (en) Anisotropic conductive film adhesive and flat panel display device produced with the same
JP4240460B2 (en) Adhesive, adhesive manufacturing method, and electrical apparatus
JPWO2009072497A1 (en) Circuit member connecting adhesive and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250