WO2012086278A1 - Anisotropic conductive adhesive film, connection structure and method for manufacturing same - Google Patents

Anisotropic conductive adhesive film, connection structure and method for manufacturing same Download PDF

Info

Publication number
WO2012086278A1
WO2012086278A1 PCT/JP2011/071580 JP2011071580W WO2012086278A1 WO 2012086278 A1 WO2012086278 A1 WO 2012086278A1 JP 2011071580 W JP2011071580 W JP 2011071580W WO 2012086278 A1 WO2012086278 A1 WO 2012086278A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
terminal
conductive particles
adhesive film
flexible substrate
Prior art date
Application number
PCT/JP2011/071580
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 荒木
剛志 田巻
浅栄 高林
朋之 石松
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to CN201180004885.7A priority Critical patent/CN102668251B/en
Priority to KR1020127011026A priority patent/KR101410185B1/en
Publication of WO2012086278A1 publication Critical patent/WO2012086278A1/en
Priority to HK12112615.6A priority patent/HK1171871A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/023Hard particles, i.e. particles in conductive adhesive at least partly penetrating an electrode

Definitions

  • the present invention provides an anisotropic conductive adhesive film for anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate, and the terminals of the flexible substrate and the rigid substrate are different from each other using the anisotropic conductive adhesive film.
  • the present invention relates to a connection structure that is isotropically conductively connected and a method for manufacturing the same.
  • the conductive particles of the anisotropic conductive adhesive film in which the conductive particles are dispersed in the binder resin composition the conductive particles themselves are deformed by heat and pressure treatment during anisotropic conductive connection.
  • it is widely used to form an electroless nickel thin film on the surface of the resin core particles and, if necessary, an electroless gold flash plating thin film (Patent) Reference 1).
  • connection structure obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate such as a glass substrate using an anisotropic conductive adhesive film containing such conductive particles is different.
  • Patent Document 2 a connection structure obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate using the anisotropic conductive adhesive film described in Patent Document 1 is described in Patent Document 2.
  • indentation of the terminal is observed from the side of the flexible substrate, the conductive particles are too flexible, and the conductive particles do not sufficiently penetrate into the terminal of the flexible substrate, so that there is no indentation that can be observed on the terminal. It was.
  • connection resistance increases and connection reliability may decrease.
  • An object of the present invention is to solve the above-described problems of the prior art, and is obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate using an anisotropic conductive adhesive film. Further, it is intended to allow the connection structure to observe the indentation of the terminal from the flexible substrate side and to ensure good connection reliability even when stored in a high temperature and high humidity environment.
  • the present inventors have made the conductive particles of the anisotropic conductive adhesive film not the terminals of the rigid substrate but the flexible substrate. It has been found that the above-mentioned object can be achieved by sufficiently biting into the terminal, and the present invention has been completed.
  • the present invention is an anisotropic conductive adhesive film for anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate, in which conductive particles are dispersed in a binder resin composition.
  • the conductive conductive adhesive film when the particle diameter of the conductive particles after the anisotropic conductive connection is A and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 ⁇ (AB)
  • the conductive particles have a particle diameter of 4 ⁇ m or more and a compression hardness of 4500 kgf / mm 2 or more so that the indentation rate defined by / A is 40% or more, and the maximum diameter of the conductive particles is a
  • the anisotropic conductive adhesive film is characterized in that when the minimum diameter is b, the sphericity of the conductive particles represented by a / b is 5 or less.
  • the present invention provides a connection structure in which terminals of a flexible substrate and terminals of a rigid substrate are anisotropically conductively connected via an anisotropic conductive adhesive film in which conductive particles are dispersed in a binder resin composition.
  • the conductive particles of the anisotropic conductive adhesive film to be sandwiched between the terminals of the flexible substrate and the rigid substrate have a particle diameter of 4 ⁇ m or more and a compression hardness of 4500 kgf / mm 2 or more.
  • the conductivity is set so that the indentation rate defined by 100 ⁇ (AB) / A is 40% or more.
  • Particles are flexible substrates It provides a connection structure characterized in that bite into the terminal.
  • the present invention is a method for manufacturing the above-described connection structure, wherein the anisotropic conductive adhesive film of the present invention is temporarily attached to a terminal of a rigid substrate, and the anisotropic conductive adhesive film is sandwiched between the rigid conductive substrates.
  • the flexible substrate is arranged so that the terminals of the flexible substrate correspond to the terminals of the substrate, the particle diameter of the conductive particles after the anisotropic conductive connection is A, and between the terminals of the flexible substrate and the rigid substrate Heating and pressing the anisotropic conductive adhesive film with a heating bonder from the flexible substrate side so that the indentation rate defined by 100 ⁇ (AB) / A is 40% or more when the gap is B
  • anisotropic conductive connection is performed.
  • the particle diameter, compression hardness, and sphericity of the conductive particles are limited to specific ranges, respectively. Therefore, when the particle diameter of the conductive particles in the connection structure after anisotropic conductive connection is A, and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 ⁇ (AB) ) / A, the indentation rate can be 40% or more. Therefore, the indentation of the terminal can be observed from the flexible substrate side of the connection structure, and good connection reliability can be ensured even when stored in a high temperature and high humidity environment.
  • the anisotropic conductive adhesive film of the present invention is made of a resin substrate such as polyimide, polyester, polyamide, polysulfone, a terminal of a flexible substrate in which copper wiring, aluminum wiring, etc. are formed, and a glass substrate, ceramic substrate, glass epoxy
  • a glass substrate is mentioned in terms of transparency.
  • a semiconductor chip or the like may be mounted on the flexible substrate or the rigid substrate. Further, the terminals of each substrate may be plated with gold as necessary.
  • the particle diameter of the conductive particles 1 after anisotropic conductive connection is A
  • the gap between the terminal 3 of the rigid substrate 2 and the terminal 5 of the flexible substrate 4 is B.
  • the indentation rate defined by 100 ⁇ (AB) / A is 40% or more, preferably 60% or more.
  • the indentation of a terminal can be observed from the flexible substrate side, and it can be made not to increase the connection resistance of the anisotropic conductive connection part by an anisotropic conductive adhesive film under a thermal humidity test.
  • the indentation rate is 0% (when AB is 0)
  • the indentation rate is 100% (when B is 0)
  • the particle diameter of the conductive particles constituting the anisotropic conductive adhesive film of the present invention is 4 ⁇ m or more, preferably 6 ⁇ m or more, because if the particle diameter is too small, it becomes difficult to make indentations on the terminals of the flexible substrate.
  • the upper limit of the particle diameter can be appropriately determined according to the pitch and thickness variation of the terminals to be connected, but is preferably 15 ⁇ m or less.
  • a more preferable particle diameter range is 6 to 10 ⁇ m.
  • the compression hardness of the conductive particles used in the present invention is 4500 kgf / mm 2 or more, preferably 6000 kgf / mm 2 or more because if the compression hardness of the conductive particles is too low, it becomes difficult to make indentations on the terminals of the flexible substrate. Moreover, since there exists a tendency for connection reliability to fall when too high, 7000 kgf / mm ⁇ 2 > or less is desirable.
  • the compression hardness is synonymous with the compression strength at the time of 10% compression displacement, and can be measured using a general micro compression tester.
  • the conductive particles used in the present invention have a sphericity of 5 or less when the maximum diameter obtained by observation with a metal microscope is a and the minimum diameter is b. It exhibits a sphericity, preferably a sphericity of 3 or less. This is because if the sphericity exceeds 5, the connection reliability tends to decrease. If the maximum diameter a is too small, indentation tends to be difficult to develop, and if it is too large, anisotropic conductivity tends to decrease. Therefore, the maximum diameter a is preferably 4 to 15 ⁇ m, more preferably 6 to 10 ⁇ m.
  • the minimum diameter b is too small, indentation tends to be difficult to develop, and if it is too large, anisotropic conductivity tends to decrease, so it is preferably 4 to 15 ⁇ m, more preferably 6 to 10 ⁇ m.
  • the sphericity is logically always 1 or more.
  • Examples of the conductive particles having the properties described above include nickel, cobalt, silver, copper, gold, palladium, solder and other metal particles, divinylbenzene-based resin, benzoguanamine resin and other resin particles on the surface thereof. Those having an electroless plating film formed thereon can be applied.
  • a binder resin composition used for a known anisotropic conductive adhesive film can be employed.
  • it can be composed of a film-forming resin, a liquid epoxy compound (curing component) or an acrylic monomer (curing component), a curing agent, a silane coupling agent, and the like.
  • the film-forming resin examples include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to.
  • a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.
  • liquid epoxy compound examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, modified epoxy compounds thereof, alicyclic epoxy compounds, and the like. Can do.
  • curing agent examples include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents.
  • Acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate , Trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, and the like.
  • the curing agent radiation polymerization initiator
  • examples of the curing agent include organic peroxides and azobisbutyronitrile.
  • silane coupling agent examples include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
  • a filler In the binder resin composition, a filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like can be blended as necessary.
  • the content of the conductive particles in the anisotropic conductive adhesive film of the present invention is too small, the connection reliability is lowered, and if it is too large, the anisotropic conductivity is lowered. Therefore, the content is preferably 0.3 to 30% by mass. More preferably, it is 5 to 10% by mass.
  • the thickness of the anisotropic conductive adhesive film of the present invention is not particularly limited, but is usually 10 to 45 ⁇ m.
  • the anisotropic conductive adhesive of the present invention can be prepared by charging a binder resin composition component and conductive particles into a stirring vessel and mixing them according to a conventional method.
  • connection structure of the present invention manufactured using the anisotropic conductive film of the present invention will be described.
  • connection structure of the present invention the terminal of the flexible substrate and the terminal of the rigid substrate as described above are anisotropic through an anisotropic conductive adhesive film in which conductive particles are dispersed in a binder resin composition.
  • a conductively connected connection structure characterized in that the anisotropic conductive film of the present invention is used as an anisotropic conductive adhesive film to be sandwiched between a terminal of a flexible substrate and a terminal of a rigid substrate.
  • the particle diameter of the conductive particles after anisotropic conductive connection is A, and between the terminals of the flexible substrate and the rigid substrate.
  • the conductive particles bite into the terminals of the flexible substrate so that the indentation rate defined by 100 ⁇ (AB) / A is 40% or more, preferably 60% or more. It has a structure. In this case, in order to facilitate observation of the indentation of the conductive particles from the flexible substrate, it is preferable that the conductive particles do not bite into the terminals of the rigid substrate.
  • connection structure of the present invention examples include a liquid crystal display device, an organic EL display device, a solar cell module, an LED lighting device, and the like.
  • connection structure of the present invention can be manufactured as described below.
  • the anisotropic conductive adhesive film of the present invention is temporarily attached on a terminal of a rigid substrate according to a conventional method.
  • a flexible substrate is arrange
  • anisotropic conductive connection is performed by heating and pressing the anisotropic conductive adhesive film with a heating bonder from the flexible substrate side.
  • the particle diameter of the conductive particles after anisotropic conductive connection is A and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 ⁇ (AB) / A
  • Anisotropic conductive connection is performed in consideration of the blending composition of the binder resin composition, the material of the conductive particles, the surface state of the terminal, and the like so that the defined indentation rate is 40% or more. Thereby, the connection structure of the present invention can be obtained.
  • the indentation rate can be controlled by adjusting the heating and pressing conditions at the time of anisotropic conductive connection. For example, the indentation rate can be increased by lowering the heating temperature or increasing the pressure. Conversely, the indentation rate can be lowered by increasing the heating temperature or decreasing the pressure. Moreover, it can also adjust by selecting raw materials, such as a flexible substrate, a rigid substrate, those terminals, and electroconductive particle. Moreover, it can also adjust combining them.
  • Examples 1 to 13 and Comparative Examples 2 to 5 Preparation of conductive particles 100 g of nickel particles having an average particle size shown in Table 1 were stirred in an aqueous solution of hydrochloric acid 50 mL / L for 5 minutes. The nickel particles that had been filtered and washed once with repulp water were charged with 1 L (pH 6, temperature 60 ° C.) of an aqueous solution containing EDTA-4Na (10 g / L) and citric acid-2Na (10 g / L). Added to the reaction vessel with stirring.
  • the mixed solution is filtered, and the filtrate is washed with repulp water three times, and then dried using hot air at 100 ° C. to form an electroless gold plating thin film having a thickness of about 10 to 20 nm on the nickel powder surface. Sex particles were obtained.
  • the average particle diameter of the conductive particles can be approximated to the average particle diameter of the raw material nickel particles because the electroless gold-plated thin film is very thin.
  • the average particle diameter of the nickel particles is a particle diameter at a point where the cumulative mass corresponds to 50% when the particle size distribution is measured by a laser diffraction scattering method (measuring device: Microtrac MT3100, Nikkiso Co., Ltd.).
  • the sphericity of the conductive particles is obtained by photographing the conductive particles using a metal microscope (MX51, Olympus Corporation), obtaining the maximum diameter a and the minimum diameter b of the particles, and calculating a / b as the sphericity. Calculated. The obtained results are shown in Table 1.
  • anisotropic conductive adhesive film 5 parts by mass of conductive particles, 22 parts by mass of phenoxy resin (YP-50, Nippon Kasei Manufacturing Co., Ltd.), 5 parts by mass of dicyclopentadiene dimethacrylate (DCP, Shin-Nakamura Chemical Co., Ltd.), urethane acrylate (M-1600, Toagosei Co., Ltd.) 10 parts by mass, acrylic rubber (SG-80H, Nagase ChemteX Corporation) 5 parts by mass, phosphorus-containing methacrylate (PM2, Nippon Kayaku Co., Ltd.) 1 part by mass, 2 parts by mass of a diacyl peroxide initiator (Nyper BW, NOF Corporation) and 50 parts by mass of toluene were mixed, and the resulting mixture was applied to a release sheet so that the dry thickness was 35 ⁇ m, and 80 ° C. Was dried for 5 minutes to obtain an anisotropic conductive adhesive film.
  • phenoxy resin YP
  • anisotropic conductive adhesive film polyimide flexible substrate (polyimide thickness 38 ⁇ m, copper wiring pitch 200 ⁇ m, wiring height 8 ⁇ m) and printed wiring board (FR-4 grade, Panasonic Corporation: copper wiring pitch 200 ⁇ m) And a wiring height of 35 ⁇ m) were subjected to anisotropic conductive connection under the heating and pressing conditions of 170 ° C., 4 MPa, and 5 seconds to prepare a connection structure.
  • the cross section of the anisotropic conductive connection portion of the obtained connection structure is polished, and the particle diameter A and the inter-wiring gap B (inter-terminal gap between which conductive particles are sandwiched) are measured with a metal microscope.
  • the obtained results are shown in Table 1.
  • connection resistance of the obtained connection structure when stored for 500 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% was measured, and the connection reliability was evaluated according to the following criteria.
  • the obtained results are shown in Table 1.
  • the evaluation result is desirably A or B.
  • connection portion of the connection structure is wired from the flexible substrate side using conductive particles.
  • the indentation of (terminal) was observed and the indentation state was evaluated according to the following criteria.
  • the obtained results are shown in Table 1.
  • the evaluation result is desirably A or B.
  • the indentation is caused by the deformation of the flexible substrate.
  • Comparative Example 1 A palladium catalyst was supported on the divinylbenzene resin particles (5 g) having an average particle diameter of 8 ⁇ m by an immersion method. Next, an electroless nickel plating solution (pH 12, plating solution temperature 50 ° C.) prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles. Electroless nickel plating was performed, and nickel-coated resin core particles having a nickel plating layer (10 to 20 nm thick) formed on the surface were obtained as conductive particles.
  • an electroless nickel plating solution pH 12, plating solution temperature 50 ° C.
  • the obtained nickel-coated resin core particles were subjected to electroless gold plating in the same manner as in Example 1 to obtain Ni—Au-coated resin core particles as conductive particles.
  • the average particle diameter, compression hardness, and sphericity were determined in the same manner as in Example 1, and the obtained results are shown in Table 1.
  • the anisotropic conductive adhesive film was produced similarly to Example 1, the indentation rate of electroconductive particle was calculated
  • connection reliability was evaluated as C.
  • the indentation state evaluation was C because the average particle diameter of the conductive particles used was as small as 3 ⁇ m.
  • the indentation state evaluation was C because the indentation rate of the conductive particles was as low as 35%.
  • the anisotropic conductive adhesive film of the present invention limits the particle diameter, compression hardness, and sphericity of the conductive particles used to specific ranges. Therefore, when the particle diameter of the conductive particles in the connection structure after anisotropic conductive connection is A, and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 ⁇ (AB) ) / A, the indentation rate can be 40% or more. Therefore, the indentation of the terminal can be observed from the flexible substrate side of the connection structure, and good connection reliability can be ensured even when stored in a high temperature and high humidity environment. Therefore, the anisotropic conductive adhesive film of the present invention is useful for anisotropic conductive connection between a flexible substrate and a rigid substrate.

Abstract

Provided is an anisotropic conductive adhesive film for anisotropic conductive connection of a terminal of a flexible substrate with a terminal of a rigid substrate, wherein conductive particles are employed having a particle size of at least 4 µm and a compressive hardness of at least 4500 kgf/mm2, such that the pressing-in ratio defined by 100∙(A - B)/A, where A is the particle size of the conductive particles after anisotropic conductive connection and B is the gap between the terminal of the flexible substrate and the terminal of the rigid substrate, is at least 40%. Also, the conductive particle sphericity expressed by a/b, where a is the maximum diameter of the conductive particles and b is the minimum diameter thereof, is no more than 5.

Description

異方性導電接着フィルム、接続構造体及びその製造方法Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
 本発明は、フレキシブル基板の端子とリジッド基板の端子とを異方性導電接続するための異方性導電接着フィルム、その異方性導電接着フィルムを用いてフレキシブル基板及びリジッド基板の端子同士が異方性導電接続された接続構造体、及びその製造方法に関する。 The present invention provides an anisotropic conductive adhesive film for anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate, and the terminals of the flexible substrate and the rigid substrate are different from each other using the anisotropic conductive adhesive film. The present invention relates to a connection structure that is isotropically conductively connected and a method for manufacturing the same.
 導電性粒子がバインダー樹脂組成物中に分散した異方性導電接着フィルムの当該導電性粒子として、異方性導電接続の際の加熱加圧処理により、導電性粒子自体が変形して端子との接触面積が増大するように、樹脂コア粒子の表面に無電解ニッケル薄膜を形成し、更に必要に応じて、無電解金フラッシュメッキ薄膜を形成したものを使用することが広く行われている(特許文献1)。 As the conductive particles of the anisotropic conductive adhesive film in which the conductive particles are dispersed in the binder resin composition, the conductive particles themselves are deformed by heat and pressure treatment during anisotropic conductive connection. In order to increase the contact area, it is widely used to form an electroless nickel thin film on the surface of the resin core particles and, if necessary, an electroless gold flash plating thin film (Patent) Reference 1).
 ところで、このような導電性粒子を含有する異方性導電接着フィルムを用い、フレキシブル基板の端子とガラス基板等のリジッド基板の端子とを異方性導電接続して得た接続構造体について、異方性導電接着フィルムによる接続状態を確認するために、異方性導電接着フィルム中の導電性粒子によりフレキシブル基板の端子に生じた圧痕をフレキシブル基板側から顕微鏡等を使用して観察することが行われている(特許文献2)。 By the way, a connection structure obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate such as a glass substrate using an anisotropic conductive adhesive film containing such conductive particles is different. In order to confirm the connection state by the anisotropic conductive adhesive film, it is possible to observe the indentation generated on the terminal of the flexible substrate by the conductive particles in the anisotropic conductive adhesive film from the flexible substrate side using a microscope or the like. (Patent Document 2).
特開平9-199206号公報JP-A-9-199206 特開2008-91843号公報JP 2008-91843 A
 しかしながら、特許文献1に記載された異方性導電接着フィルムを用いてフレキシブル基板の端子とリジッド基板の端子とを異方性導電接続して得た接続構造体について、特許文献2に記載されているようにフレキシブル基板側から端子の圧痕を観察した場合、導電性粒子が柔軟すぎ、フレキシブル基板の端子に導電性粒子が十分に食い込まず、端子に観察できるような圧痕を生じさせないという問題があった。また、高温高湿環境下に保存した場合には接続抵抗が増大し、接続信頼性が低下する場合があるという問題もあった。 However, a connection structure obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate using the anisotropic conductive adhesive film described in Patent Document 1 is described in Patent Document 2. When indentation of the terminal is observed from the side of the flexible substrate, the conductive particles are too flexible, and the conductive particles do not sufficiently penetrate into the terminal of the flexible substrate, so that there is no indentation that can be observed on the terminal. It was. In addition, when stored in a high-temperature and high-humidity environment, there is a problem in that connection resistance increases and connection reliability may decrease.
 本発明の目的は、以上の従来の技術の課題を解決しようとすることであり、異方性導電接着フィルムを用いてフレキシブル基板の端子とリジッド基板の端子とを異方性導電接続して得た接続構造体について、フレキシブル基板側から端子の圧痕を観察できるようにし、しかも高温高湿環境下に保存した場合でも良好な接続信頼性を確保できるようにすることである。 An object of the present invention is to solve the above-described problems of the prior art, and is obtained by anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate using an anisotropic conductive adhesive film. Further, it is intended to allow the connection structure to observe the indentation of the terminal from the flexible substrate side and to ensure good connection reliability even when stored in a high temperature and high humidity environment.
 本発明者らは、導電性粒子の大きさと圧縮硬さと真球度とを所定の範囲に調整することにより、異方性導電接着フィルムの導電性粒子を、リジッド基板の端子ではなくフレキシブル基板の端子に十分に食い込ませることができ、それにより上述の目的が達成できることを見出し、本発明を完成させるに至った。 By adjusting the size, compression hardness, and sphericity of the conductive particles within a predetermined range, the present inventors have made the conductive particles of the anisotropic conductive adhesive film not the terminals of the rigid substrate but the flexible substrate. It has been found that the above-mentioned object can be achieved by sufficiently biting into the terminal, and the present invention has been completed.
 即ち、本発明は、フレキシブル基板の端子とリジッド基板の端子とを異方性導電接続するための異方性導電接着フィルムであって、導電性粒子がバインダー樹脂組成物に分散してなる異方性導電接着フィルムにおいて、異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、導電性粒子が4μm以上の粒子径と、4500kgf/mm以上の圧縮硬さとを有し、且つ導電性粒子の最大径をaとし、最小径をbとしたときに、a/bで表される導電性粒子の真球度が5以下であることを特徴とする異方性導電接着フィルムを提供する。 That is, the present invention is an anisotropic conductive adhesive film for anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate, in which conductive particles are dispersed in a binder resin composition. In the conductive conductive adhesive film, when the particle diameter of the conductive particles after the anisotropic conductive connection is A and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 · (AB) The conductive particles have a particle diameter of 4 μm or more and a compression hardness of 4500 kgf / mm 2 or more so that the indentation rate defined by / A is 40% or more, and the maximum diameter of the conductive particles is a The anisotropic conductive adhesive film is characterized in that when the minimum diameter is b, the sphericity of the conductive particles represented by a / b is 5 or less.
 また、本発明は、フレキシブル基板の端子とリジッド基板の端子とが、導電性粒子がバインダー樹脂組成物に分散してなる異方性導電接着フィルムを介して異方性導電接続された接続構造体において、フレキシブル基板の端子とリジッド基板の端子との間に挟持されるべき異方性導電接着フィルムの導電性粒子が、4μm以上の粒子径と、4500kgf/mm以上の圧縮硬さとを有し、且つその最大径をaとし、最小径をbとしたときに、a/bで表される導電性粒子の真球度が5以下であり、異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、導電性粒子がフレキシブル基板の端子に食い込んでいることを特徴とする接続構造体を提供する。 Further, the present invention provides a connection structure in which terminals of a flexible substrate and terminals of a rigid substrate are anisotropically conductively connected via an anisotropic conductive adhesive film in which conductive particles are dispersed in a binder resin composition. The conductive particles of the anisotropic conductive adhesive film to be sandwiched between the terminals of the flexible substrate and the rigid substrate have a particle diameter of 4 μm or more and a compression hardness of 4500 kgf / mm 2 or more. In addition, when the maximum diameter is a and the minimum diameter is b, the sphericity of the conductive particles represented by a / b is 5 or less, and the particles of the conductive particles after anisotropic conductive connection When the diameter is A and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, the conductivity is set so that the indentation rate defined by 100 · (AB) / A is 40% or more. Particles are flexible substrates It provides a connection structure characterized in that bite into the terminal.
 更に、本発明は、上述の接続構造体の製造方法であって、リジッド基板の端子上に本発明の異方性導電接着フィルムを仮り貼りし、その異方性導電接着フィルムを挟んで、リジッド基板の端子にフレキシブル基板の端子が対応するように、フレキシブル基板を配置し、異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、フレキシブル基板側から、加熱ボンダーで異方性導電接着フィルムを加熱加圧することにより異方性導電接続を行うことを特徴とする製造方法を提供する。 Furthermore, the present invention is a method for manufacturing the above-described connection structure, wherein the anisotropic conductive adhesive film of the present invention is temporarily attached to a terminal of a rigid substrate, and the anisotropic conductive adhesive film is sandwiched between the rigid conductive substrates. The flexible substrate is arranged so that the terminals of the flexible substrate correspond to the terminals of the substrate, the particle diameter of the conductive particles after the anisotropic conductive connection is A, and between the terminals of the flexible substrate and the rigid substrate Heating and pressing the anisotropic conductive adhesive film with a heating bonder from the flexible substrate side so that the indentation rate defined by 100 · (AB) / A is 40% or more when the gap is B To provide a manufacturing method characterized in that anisotropic conductive connection is performed.
 本発明の異方性導電接着フィルムにおいては、導電性粒子の粒子径、圧縮硬さ、真球度をそれぞれ特定の範囲に限定している。このため、異方性導電接続後の接続構造体における導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率を40%以上にすることができる。よって、接続構造体のフレキシブル基板側から端子の圧痕を観察でき、しかも高温高湿環境下に保存した場合でも良好な接続信頼性を確保できる。 In the anisotropic conductive adhesive film of the present invention, the particle diameter, compression hardness, and sphericity of the conductive particles are limited to specific ranges, respectively. Therefore, when the particle diameter of the conductive particles in the connection structure after anisotropic conductive connection is A, and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 · (AB) ) / A, the indentation rate can be 40% or more. Therefore, the indentation of the terminal can be observed from the flexible substrate side of the connection structure, and good connection reliability can be ensured even when stored in a high temperature and high humidity environment.
導電性粒子の押し込み率の説明図である。It is explanatory drawing of the indentation rate of electroconductive particle.
 本発明の異方性導電接着フィルムは、ポリイミド、ポリエステル、ポリアミド、ポリスルホン等の樹脂フィルムに、銅配線、アルミニウム配線などが形成されたフレキシブル基板の端子と、ガラス基板、セラミックス基板、ガラスエポキシ製のプリント配線基板等のリジッド基板に、ITO配線、銅配線、アルミニウム配線などが形成されたリジッド基板の端子とを、異方性導電接続するための異方性導電接着フィルムであって、導電性粒子がバインダー樹脂組成物に分散してなるものである。ここで、好ましいリジッド基板としては、透明性の点でガラス基板が挙げられる。なお、フレキシブル基板やリジッド基板には、半導体チップ等が実装されていてもよい。また、それぞれの基板の端子には、必要に応じて金メッキなどを施しておいてもよい。 The anisotropic conductive adhesive film of the present invention is made of a resin substrate such as polyimide, polyester, polyamide, polysulfone, a terminal of a flexible substrate in which copper wiring, aluminum wiring, etc. are formed, and a glass substrate, ceramic substrate, glass epoxy An anisotropic conductive adhesive film for anisotropic conductive connection between a rigid board such as a printed wiring board and a rigid board having ITO wiring, copper wiring, aluminum wiring, etc. formed thereon. Is dispersed in a binder resin composition. Here, as a preferable rigid substrate, a glass substrate is mentioned in terms of transparency. Note that a semiconductor chip or the like may be mounted on the flexible substrate or the rigid substrate. Further, the terminals of each substrate may be plated with gold as necessary.
 本発明においては、図1に示すように、異方性導電接続後の導電性粒子1の粒子径をAとし、リジッド基板2の端子3とフレキシブル基板4の端子5との間のギャップをBとしたときに、100・(A-B)/Aで定義される押し込み率が40%以上、好ましくは60%以上となるようにする。これにより、フレキシブル基板側から端子の圧痕を観察でき、しかも熱湿試験下で異方性導電接着フィルムによる異方性導電接続部の接続抵抗を増大させないようにすることができる。なお、押し込み率が0%である場合(A-Bが0の場合)、導電性粒子が端子にめり込まずに端子間で押しつぶされた状態を意味する。また、押し込み率が100%である場合(Bが0の場合)、導電性粒子がフレキシブル基板の端子に完全に押し込まれた状態を意味する。 In the present invention, as shown in FIG. 1, the particle diameter of the conductive particles 1 after anisotropic conductive connection is A, and the gap between the terminal 3 of the rigid substrate 2 and the terminal 5 of the flexible substrate 4 is B. The indentation rate defined by 100 · (AB) / A is 40% or more, preferably 60% or more. Thereby, the indentation of a terminal can be observed from the flexible substrate side, and it can be made not to increase the connection resistance of the anisotropic conductive connection part by an anisotropic conductive adhesive film under a thermal humidity test. Note that when the indentation rate is 0% (when AB is 0), it means that the conductive particles are crushed between the terminals without being penetrated into the terminals. Further, when the indentation rate is 100% (when B is 0), it means that the conductive particles are completely indented into the terminals of the flexible substrate.
 本発明の異方性導電接着フィルムを構成する導電性粒子の粒子径は、小さすぎるとフレキシブル基板の端子に圧痕を付けにくくなるので、4μm以上、好ましくは6μm以上である。粒子径の上限については、接続すべき端子のピッチや厚さバラツキ等に応じて適宜決定することができるが、15μm以下が好ましい。より好ましい粒子径の範囲は、6~10μmである。 The particle diameter of the conductive particles constituting the anisotropic conductive adhesive film of the present invention is 4 μm or more, preferably 6 μm or more, because if the particle diameter is too small, it becomes difficult to make indentations on the terminals of the flexible substrate. The upper limit of the particle diameter can be appropriately determined according to the pitch and thickness variation of the terminals to be connected, but is preferably 15 μm or less. A more preferable particle diameter range is 6 to 10 μm.
 本発明において使用する導電性粒子の圧縮硬さは、低すぎるとフレキシブル基板の端子に圧痕を付けにくくなるので、4500kgf/mm以上、好ましくは6000kgf/mm以上である。また、高すぎると接続信頼性が低下する傾向があるので、7000kgf/mm以下が望ましい。ここで、圧縮硬さは、10%圧縮変位時の圧縮強度と同義であり、一般的な微小圧縮試験機を用いて測定することができる。 The compression hardness of the conductive particles used in the present invention is 4500 kgf / mm 2 or more, preferably 6000 kgf / mm 2 or more because if the compression hardness of the conductive particles is too low, it becomes difficult to make indentations on the terminals of the flexible substrate. Moreover, since there exists a tendency for connection reliability to fall when too high, 7000 kgf / mm < 2 > or less is desirable. Here, the compression hardness is synonymous with the compression strength at the time of 10% compression displacement, and can be measured using a general micro compression tester.
 また、本発明において使用する導電性粒子は、真球度を金属顕微鏡観察で得られるその最大径をaとし、最小径をbとしたときに、a/bと定義した場合に、5以下の真球度、好ましくは3以下の真球度を示す。これは、真球度が5を超えると接続信頼性が低下する傾向があるからである。なお、最大径aは、小さすぎると圧痕が発現し難くなる傾向があり、大きすぎると異方導電性が低下する傾向があるので、好ましくは4~15μm、より好ましくは6~10μmである。他方、最小径bは、小さすぎると圧痕が発現し難くなる傾向があり、大きすぎると異方導電性が低下する傾向があるので、好ましくは4~15μm、より好ましくは6~10μmである。なお、本発明において真球度は、論理的に必ず1以上となる。 The conductive particles used in the present invention have a sphericity of 5 or less when the maximum diameter obtained by observation with a metal microscope is a and the minimum diameter is b. It exhibits a sphericity, preferably a sphericity of 3 or less. This is because if the sphericity exceeds 5, the connection reliability tends to decrease. If the maximum diameter a is too small, indentation tends to be difficult to develop, and if it is too large, anisotropic conductivity tends to decrease. Therefore, the maximum diameter a is preferably 4 to 15 μm, more preferably 6 to 10 μm. On the other hand, if the minimum diameter b is too small, indentation tends to be difficult to develop, and if it is too large, anisotropic conductivity tends to decrease, so it is preferably 4 to 15 μm, more preferably 6 to 10 μm. In the present invention, the sphericity is logically always 1 or more.
 以上説明した性状を有する導電性粒子としては、ニッケル、コバルト、銀、銅、金、パラジウム、ハンダ等の金属粒子、ジビニルベンゼン系樹脂、ベンゾグアナミン樹脂等の樹脂粒子の表面に無電解ニッケルメッキ膜等の無電解メッキ膜を形成したものを適用することができる。 Examples of the conductive particles having the properties described above include nickel, cobalt, silver, copper, gold, palladium, solder and other metal particles, divinylbenzene-based resin, benzoguanamine resin and other resin particles on the surface thereof. Those having an electroless plating film formed thereon can be applied.
 このような導電性粒子を分散させるバインダー樹脂組成物としては、公知の異方性導電接着フィルムに用いられているバインダー樹脂組成物を採用することができる。例えば、膜形成樹脂、液状エポキシ化合物(硬化成分)あるいはアクリルモノマー(硬化成分)、硬化剤、シランカップリング剤等から構成することができる。 As the binder resin composition in which such conductive particles are dispersed, a binder resin composition used for a known anisotropic conductive adhesive film can be employed. For example, it can be composed of a film-forming resin, a liquid epoxy compound (curing component) or an acrylic monomer (curing component), a curing agent, a silane coupling agent, and the like.
 膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。 Examples of the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.
 液状エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ノボラック型エポキシ化合物、それらの変性エポキシ化合物、脂環式エポキシ化合物などを挙げることができ、これらの2種以上を併用することができる。この場合、硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。 Examples of the liquid epoxy compound include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, modified epoxy compounds thereof, alicyclic epoxy compounds, and the like. Can do. In this case, examples of the curing agent include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents.
 アクリルモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等を挙げることができる。この場合、硬化剤(ラジカル重合開始剤)としては、有機過酸化物、アゾビスブチロニトリル等を挙げることができる。 Acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate , Trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, and the like. In this case, examples of the curing agent (radical polymerization initiator) include organic peroxides and azobisbutyronitrile.
 シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
 バインダー樹脂組成物には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。 In the binder resin composition, a filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like can be blended as necessary.
 本発明の異方性導電接着フィルム中の導電性粒子の含有量は、少なすぎると接続信頼性が低下し、多すぎると異方導電性が低下するので、好ましくは0.3~30質量%、より好ましくは5~10質量%である。 If the content of the conductive particles in the anisotropic conductive adhesive film of the present invention is too small, the connection reliability is lowered, and if it is too large, the anisotropic conductivity is lowered. Therefore, the content is preferably 0.3 to 30% by mass. More preferably, it is 5 to 10% by mass.
 本発明の異方性導電接着フィルムの厚みは、特に限定されるものではないが、通常10~45μmである。 The thickness of the anisotropic conductive adhesive film of the present invention is not particularly limited, but is usually 10 to 45 μm.
 本発明の異方性導電接着剤は、撹拌容器に、バインダー樹脂組成物構成成分と導電性粒子とを投入し、常法に従って混合することにより調製することができる。 The anisotropic conductive adhesive of the present invention can be prepared by charging a binder resin composition component and conductive particles into a stirring vessel and mixing them according to a conventional method.
 次に、本発明の異方性導電フィルムを用いて製造された本発明の接続構造体について説明する。 Next, the connection structure of the present invention manufactured using the anisotropic conductive film of the present invention will be described.
 本発明の接続構造体は、既に説明したようなフレキシブル基板の端子とリジッド基板の端子とが、導電性粒子がバインダー樹脂組成物に分散してなる異方性導電接着フィルムを介して異方性導電接続された接続構造体であり、フレキシブル基板の端子とリジッド基板の端子との間に挟持されるべき異方性導電接着フィルムとして、本発明の異方性導電フィルムを使用することを特徴とする。この接続構造体は、本発明の異方性導電フィルムを使用しているため、異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上、好ましくは60%以上となるように、導電性粒子がフレキシブル基板の端子に食い込んでいる構造を有する。この場合、フレキシブル基板から導電性粒子の圧痕の観察を容易にするために、リジッド基板の端子へ導電性粒子が食い込まない方が好ましい。 In the connection structure of the present invention, the terminal of the flexible substrate and the terminal of the rigid substrate as described above are anisotropic through an anisotropic conductive adhesive film in which conductive particles are dispersed in a binder resin composition. A conductively connected connection structure, characterized in that the anisotropic conductive film of the present invention is used as an anisotropic conductive adhesive film to be sandwiched between a terminal of a flexible substrate and a terminal of a rigid substrate. To do. Since this connection structure uses the anisotropic conductive film of the present invention, the particle diameter of the conductive particles after anisotropic conductive connection is A, and between the terminals of the flexible substrate and the rigid substrate. When the gap of B is B, the conductive particles bite into the terminals of the flexible substrate so that the indentation rate defined by 100 · (AB) / A is 40% or more, preferably 60% or more. It has a structure. In this case, in order to facilitate observation of the indentation of the conductive particles from the flexible substrate, it is preferable that the conductive particles do not bite into the terminals of the rigid substrate.
 このような本発明の接続構造体の具体例としては、液晶表示装置、有機EL表示装置、太陽電池モジュール、LED照明装置等が挙げられる。 Specific examples of such a connection structure of the present invention include a liquid crystal display device, an organic EL display device, a solar cell module, an LED lighting device, and the like.
 本発明の接続構造体は、以下に説明するように製造することができる。 The connection structure of the present invention can be manufactured as described below.
 まず、リジッド基板の端子上に本発明の異方性導電接着フィルムを常法に従って仮り貼りする。そして、その異方性導電接着フィルムを挟んで、リジッド基板の端子にフレキシブル基板の端子が対応するように、フレキシブル基板を配置する。 First, the anisotropic conductive adhesive film of the present invention is temporarily attached on a terminal of a rigid substrate according to a conventional method. And a flexible substrate is arrange | positioned so that the terminal of a flexible substrate may correspond to the terminal of a rigid substrate on both sides of the anisotropic conductive adhesive film.
 次に、フレキシブル基板側から、加熱ボンダーで異方性導電接着フィルムを加熱加圧することにより異方性導電接続を行う。この場合、異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、バインダー樹脂組成物の配合組成や、導電性粒子の材料、端子の表面状態等を考慮しつつ、異方性導電接続を行う。これにより、本発明の接続構造体を得ることができる。 Next, anisotropic conductive connection is performed by heating and pressing the anisotropic conductive adhesive film with a heating bonder from the flexible substrate side. In this case, when the particle diameter of the conductive particles after anisotropic conductive connection is A and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 · (AB) / A Anisotropic conductive connection is performed in consideration of the blending composition of the binder resin composition, the material of the conductive particles, the surface state of the terminal, and the like so that the defined indentation rate is 40% or more. Thereby, the connection structure of the present invention can be obtained.
 なお、押し込み率のコントロールは、異方性導電接続の際の加熱加圧条件等を調整することにより行うことができる。例えば、加熱温度を低くしたり、加圧圧力を高めたりすることで、押し込み率を上げることができる。逆に、加熱温度を高くしたり、加圧圧力を低めたりすることで、押し込み率を下げることができる。また、フレキシブル基板、リジッド基板、それらの端子、導電粒子等の素材を選択することにより調整することもできる。また、それらを組み合わせて調整することもできる。 It should be noted that the indentation rate can be controlled by adjusting the heating and pressing conditions at the time of anisotropic conductive connection. For example, the indentation rate can be increased by lowering the heating temperature or increasing the pressure. Conversely, the indentation rate can be lowered by increasing the heating temperature or decreasing the pressure. Moreover, it can also adjust by selecting raw materials, such as a flexible substrate, a rigid substrate, those terminals, and electroconductive particle. Moreover, it can also adjust combining them.
 以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
  実施例1~13、比較例2~5
(導電性粒子の調製)
 表1の平均粒子径のニッケル粒子100gを、塩酸50mL/Lの水溶液中で5分間撹拌した。これを濾過し、1回リパルプ水洗を施したニッケル粒子を、EDTA-4Na(10g/L)とクエン酸-2Na(10g/L)とを含む水溶液1L(pH6、温度60℃)が入れられた反応容器に撹拌しながら添加した。
Examples 1 to 13 and Comparative Examples 2 to 5
(Preparation of conductive particles)
100 g of nickel particles having an average particle size shown in Table 1 were stirred in an aqueous solution of hydrochloric acid 50 mL / L for 5 minutes. The nickel particles that had been filtered and washed once with repulp water were charged with 1 L (pH 6, temperature 60 ° C.) of an aqueous solution containing EDTA-4Na (10 g / L) and citric acid-2Na (10 g / L). Added to the reaction vessel with stirring.
 次いで、反応容器中の得られた混合水溶液に、シアン化金カリウム(10g/L、Auとして6.8g/L)、EDTA-4Na(10g/L)およびクエン酸-2Na(10g/L)を含有する混合水溶液(A液)300mLと、水素化ホウ素カリウム(30g/L)及び水酸化ナトリウム(60g/L)を含有する混合水溶液(B液)300mLとを、それぞれ異なる導入口から同時に20分間で添加し、さらに10分間撹拌を続けることにより無電解金メッキを行った。 Next, to the resulting mixed aqueous solution in the reaction vessel, potassium gold cyanide (10 g / L, 6.8 g / L as Au), EDTA-4Na (10 g / L) and citric acid-2Na (10 g / L) were added. 300 mL of mixed aqueous solution (Liquid A) containing 300 mL of mixed aqueous solution (Liquid B) containing potassium borohydride (30 g / L) and sodium hydroxide (60 g / L) simultaneously from different inlets for 20 minutes Then, electroless gold plating was performed by continuing stirring for 10 minutes.
 金メッキ終了後、混合液を濾過し、濾過物を3回リパルプ水洗した後、100℃の熱風を用いて乾燥し、ニッケル粉末表面上に約10~20nm厚の無電解金メッキ薄膜が形成された導電性粒子を得た。この導電性粒子の平均粒子径は、無電解金メッキ薄膜が非常に薄いため、原料のニッケル粒子の平均粒子径に近似できる。 After the gold plating is completed, the mixed solution is filtered, and the filtrate is washed with repulp water three times, and then dried using hot air at 100 ° C. to form an electroless gold plating thin film having a thickness of about 10 to 20 nm on the nickel powder surface. Sex particles were obtained. The average particle diameter of the conductive particles can be approximated to the average particle diameter of the raw material nickel particles because the electroless gold-plated thin film is very thin.
 なお、ニッケル粒子の平均粒子径は、レーザー回折散乱法により粒度分布を測定(測定装置:マイクロトラックMT3100、日機装(株))し、累積質量が50%に相当する点での粒子径である。 The average particle diameter of the nickel particles is a particle diameter at a point where the cumulative mass corresponds to 50% when the particle size distribution is measured by a laser diffraction scattering method (measuring device: Microtrac MT3100, Nikkiso Co., Ltd.).
 また、得られた導電性粒子の10%圧縮変位時の圧縮硬さを微小圧縮試験機(PCT-200、島津製作所(株))を用いて測定した。得られた結果を表1に示す。 The compression hardness of the obtained conductive particles at 10% compression displacement was measured using a micro compression tester (PCT-200, Shimadzu Corporation). The obtained results are shown in Table 1.
 導電性粒子の真球度は、導電性粒子を金属顕微鏡(MX51、オリンパス(株))を用いて撮影し、粒子の最大径aと最小径bとを求め、真球度としてa/bを算出した。得られた結果を表1に示す。 The sphericity of the conductive particles is obtained by photographing the conductive particles using a metal microscope (MX51, Olympus Corporation), obtaining the maximum diameter a and the minimum diameter b of the particles, and calculating a / b as the sphericity. Calculated. The obtained results are shown in Table 1.
(異方性導電接着フィルムの作製)
 導電性粒子5質量部に、フェノキシ樹脂(YP-50、新日化エポキシ製造(株))22質量部、ジシクロペンタジエンジメタクリレート(DCP、新中村化学工業(株))5質量部、ウレタンアクリレート(M-1600、東亞合成(株))10質量部、アクリルゴム(SG-80H、ナガセケムテックス(株))5質量部、リン含有メタクリレート(PM2、日本化薬(株))1質量部、ジアシルパーオキサイド系開始剤(ナイパーBW、日油(株))2質量部、及びトルエン50質量部を混合し、得られた混合物を剥離シートに乾燥厚が35μmとなるように塗布し、80℃で5分間乾燥することにより異方性導電接着フィルムを得た。
(Preparation of anisotropic conductive adhesive film)
5 parts by mass of conductive particles, 22 parts by mass of phenoxy resin (YP-50, Nippon Kasei Manufacturing Co., Ltd.), 5 parts by mass of dicyclopentadiene dimethacrylate (DCP, Shin-Nakamura Chemical Co., Ltd.), urethane acrylate (M-1600, Toagosei Co., Ltd.) 10 parts by mass, acrylic rubber (SG-80H, Nagase ChemteX Corporation) 5 parts by mass, phosphorus-containing methacrylate (PM2, Nippon Kayaku Co., Ltd.) 1 part by mass, 2 parts by mass of a diacyl peroxide initiator (Nyper BW, NOF Corporation) and 50 parts by mass of toluene were mixed, and the resulting mixture was applied to a release sheet so that the dry thickness was 35 μm, and 80 ° C. Was dried for 5 minutes to obtain an anisotropic conductive adhesive film.
 得られた異方性導電接着フィルムを使用し、ポリイミドフレキシブル基板(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)と、プリント配線基板(FR-4グレード、パナソニック(株):銅配線ピッチ200μm、配線高35μm)とを、170℃、4MPa、5秒という加熱加圧条件で異方性導電接続して接続構造体を作成した。 Using the obtained anisotropic conductive adhesive film, polyimide flexible substrate (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height 8 μm) and printed wiring board (FR-4 grade, Panasonic Corporation: copper wiring pitch 200 μm) And a wiring height of 35 μm) were subjected to anisotropic conductive connection under the heating and pressing conditions of 170 ° C., 4 MPa, and 5 seconds to prepare a connection structure.
 得られた接続構造体の異方性導電接続部の断面を研磨し、金属顕微鏡で粒子径Aと配線間ギャップB(導電性粒子が挟持されている端子間ギャップ)とを測定し、導電性粒子の押し込み率(=100・(A-B)/A)を求めた。得られた結果を表1に示す。 The cross section of the anisotropic conductive connection portion of the obtained connection structure is polished, and the particle diameter A and the inter-wiring gap B (inter-terminal gap between which conductive particles are sandwiched) are measured with a metal microscope. The indentation rate of the particles (= 100 · (AB) / A) was determined. The obtained results are shown in Table 1.
 また、得られた接続構造体について、温度85℃、湿度85%の高温高湿環境下に500時間保存した場合の接続抵抗を測定し、以下の基準で接続信頼性を評価した。得られた結果を表1に示す。実用上、評価結果がA又はBであることが望まれる。 Also, the connection resistance of the obtained connection structure when stored for 500 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% was measured, and the connection reliability was evaluated according to the following criteria. The obtained results are shown in Table 1. In practice, the evaluation result is desirably A or B.
 ランク  評価基準
  A: 接続抵抗値が2.0Ω未満の場合
  B: 接続抵抗値が2.0Ω以上4.0Ω未満の場合
  C: 接続抵抗値が4.0Ω以上の場合
Rank Evaluation Criteria A: When the connection resistance value is less than 2.0Ω B: When the connection resistance value is 2.0Ω or more and less than 4.0Ω C: When the connection resistance value is 4.0Ω or more
 また、特開2008-91843号公報の図1~図3に記載の測定装置と同様の構成の装置を作成し、それを用いて接続構造体の接続部をフレキシブル基板側から導電性粒子による配線(端子)の圧痕を観察し、以下の基準で圧痕状態を評価した。得られた結果を表1に示す。実用上、評価結果がA又はBであることが望まれる。なお、圧痕はフレキシブル基板が変形することにより生じたものである。 Also, an apparatus having the same configuration as the measuring apparatus described in FIGS. 1 to 3 of Japanese Patent Application Laid-Open No. 2008-91843 is created, and using this, the connection portion of the connection structure is wired from the flexible substrate side using conductive particles. The indentation of (terminal) was observed and the indentation state was evaluated according to the following criteria. The obtained results are shown in Table 1. In practice, the evaluation result is desirably A or B. The indentation is caused by the deformation of the flexible substrate.
 ランク  評価基準
  A: 接続部の観察箇所10ヶ所中8ヶ所以上で圧痕を確認できた場合
  B: 接続部の観察箇所10ヶ所中1~7ヶ所で圧痕を確認できた場合
  C: 接続部の観察箇所10ヶ所中に圧痕が確認できない場合
Rank Evaluation Criteria A: When indentation can be confirmed at 8 or more out of 10 observation points of connection part B: When indentation can be confirmed at 1 to 7 out of 10 observation part of connection part C: Observation of connection part When indentation cannot be confirmed in 10 locations
  比較例1
 平均粒子径8μmのジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、ニッケルメッキ層(10~20nm厚)が表面に形成されたニッケル被覆樹脂コア粒子を導電性粒子として得た。
Comparative Example 1
A palladium catalyst was supported on the divinylbenzene resin particles (5 g) having an average particle diameter of 8 μm by an immersion method. Next, an electroless nickel plating solution (pH 12, plating solution temperature 50 ° C.) prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles. Electroless nickel plating was performed, and nickel-coated resin core particles having a nickel plating layer (10 to 20 nm thick) formed on the surface were obtained as conductive particles.
 得られたニッケル被覆樹脂コア粒子を、実施例1と同様に無電解金メッキ処理を施すことにより、導電性粒子としてNi-Au被覆樹脂コア粒子を得た。 The obtained nickel-coated resin core particles were subjected to electroless gold plating in the same manner as in Example 1 to obtain Ni—Au-coated resin core particles as conductive particles.
 得られた導電性粒子について、実施例1と同様に、平均粒子径、圧縮硬さ、真球度を求め、得られた結果を表1に示した。また、実施例1と同様に、異方性導電接着フィルムを作製して導電性粒子の押し込み率を求め、また、接続信頼性を評価し、さらに圧痕状態を評価した。得られた結果を表1に示す。 For the obtained conductive particles, the average particle diameter, compression hardness, and sphericity were determined in the same manner as in Example 1, and the obtained results are shown in Table 1. Moreover, the anisotropic conductive adhesive film was produced similarly to Example 1, the indentation rate of electroconductive particle was calculated | required, connection reliability was evaluated, and the indentation state was further evaluated. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~13の異方性導電接着フィルムを使用して作製した接続構造体の場合、接続信頼性及び圧痕状態の評価結果がいずれもA又はBであり、実用上問題がないものであった。 From Table 1, in the case of the connection structure produced using the anisotropic conductive adhesive films of Examples 1 to 13, the evaluation results of the connection reliability and the indentation state are both A or B. It was not.
 他方、比較例1の異方性導電接着フィルムを使用して作製した接続構造体の場合、使用した導電性粒子の10%圧縮変形時の圧縮硬さが700kgf/mmと非常に低く、また、導電性粒子の押し込み率も12%と低いため、圧痕状態の評価がCであった。 On the other hand, in the case of the connection structure manufactured using the anisotropic conductive adhesive film of Comparative Example 1, the compression hardness at the time of 10% compression deformation of the used conductive particles is very low as 700 kgf / mm 2 , The indentation rate was C, because the indentation rate of the conductive particles was as low as 12%.
 比較例2の異方性導電接着フィルムを使用して作製した接続構造体の場合、使用した導電性粒子の平均粒子径が3μmと小さいため、圧痕状態の評価がCであった。 In the case of a connection structure manufactured using the anisotropic conductive adhesive film of Comparative Example 2, the average particle diameter of the conductive particles used was as small as 3 μm, and thus the evaluation of the indentation state was C.
 比較例3の異方性導電接着フィルムを使用して作製した接続構造体の場合、真球度が5.3と大きいので接続信頼性の評価がCであった。 In the case of the connection structure produced using the anisotropic conductive adhesive film of Comparative Example 3, the sphericity was as large as 5.3, and thus the connection reliability was evaluated as C.
 比較例4の異方性導電接着フィルムを使用して作製した接続構造体の場合、使用した導電性粒子の平均粒子径が3μmと小さいため、圧痕状態の評価がCであった。 In the case of the connection structure produced using the anisotropic conductive adhesive film of Comparative Example 4, the indentation state evaluation was C because the average particle diameter of the conductive particles used was as small as 3 μm.
 比較例5の異方性導電接着フィルムを使用して作製した接続構造体の場合、導電性粒子の押し込み率が35%と低いため、圧痕状態の評価がCであった。 In the case of the connection structure produced using the anisotropic conductive adhesive film of Comparative Example 5, the indentation state evaluation was C because the indentation rate of the conductive particles was as low as 35%.
 本発明の異方性導電接着フィルムは、使用する導電性粒子の粒子径、圧縮硬さ、真球度をそれぞれ特定の範囲に限定している。このため、異方性導電接続後の接続構造体における導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率を40%以上にすることができる。従って、接続構造体のフレキシブル基板側から端子の圧痕を観察でき、しかも高温高湿環境下に保存した場合でも良好な接続信頼性を確保できる。よって、本発明の異方性導電接着フィルムは、フレキシブル基板とリジッド基板とを異方性導電接続する際に有用である。 The anisotropic conductive adhesive film of the present invention limits the particle diameter, compression hardness, and sphericity of the conductive particles used to specific ranges. Therefore, when the particle diameter of the conductive particles in the connection structure after anisotropic conductive connection is A, and the gap between the terminal of the flexible substrate and the terminal of the rigid substrate is B, 100 · (AB) ) / A, the indentation rate can be 40% or more. Therefore, the indentation of the terminal can be observed from the flexible substrate side of the connection structure, and good connection reliability can be ensured even when stored in a high temperature and high humidity environment. Therefore, the anisotropic conductive adhesive film of the present invention is useful for anisotropic conductive connection between a flexible substrate and a rigid substrate.
 1 導電性粒子
 2 リジッド基板
 3 リジッド基板の端子
 4 フレキシブル基板
 5 フレキシブル基板の端子
 A 導電性粒子の粒子径
 B 端子間ギャップ
DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Rigid board 3 Rigid board terminal 4 Flexible board 5 Flexible board terminal A Conductive particle diameter B Gap between terminals

Claims (6)

  1.  フレキシブル基板の端子とリジッド基板の端子とを異方性導電接続するための異方性導電接着フィルムであって、導電性粒子がバインダー樹脂組成物に分散してなる異方性導電接着フィルムにおいて、
     異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、導電性粒子が4μm以上の粒子径と、4500kgf/mm以上の圧縮硬さとを有し、且つ導電性粒子の最大径をaとし、最小径をbとしたときに、a/bで表される導電性粒子の真球度が5以下であることを特徴とする異方性導電接着フィルム。
    An anisotropic conductive adhesive film for anisotropic conductive connection between a terminal of a flexible substrate and a terminal of a rigid substrate, wherein the conductive particles are dispersed in a binder resin composition,
    Defined as 100 · (AB) / A where A is the particle size of the conductive particles after anisotropic conductive connection and B is the gap between the terminal of the flexible substrate and the terminal of the rigid substrate. The conductive particles have a particle diameter of 4 μm or more and a compression hardness of 4500 kgf / mm 2 or more so that the indentation rate is 40% or more, the maximum diameter of the conductive particles is a, and the minimum diameter is b. An anisotropic conductive adhesive film, wherein the sphericity of the conductive particles represented by a / b is 5 or less.
  2.  導電性粒子の圧縮硬さが7000kgf/mm以下であり、粒子径が15μm以下であり、真球度が5以下である請求項1記載の異方性導電接着フィルム。 The anisotropic conductive adhesive film according to claim 1, wherein the compression hardness of the conductive particles is 7000 kgf / mm 2 or less, the particle diameter is 15 µm or less, and the sphericity is 5 or less.
  3.  フレキシブル基板の端子とリジッド基板の端子とが、導電性粒子がバインダー樹脂組成物に分散してなる異方性導電接着フィルムを介して異方性導電接続された接続構造体において、
     フレキシブル基板の端子とリジッド基板の端子との間に挟持されるべき異方性導電接着フィルムの導電性粒子が、4μm以上の粒子径と、4500kgf/mm以上の圧縮硬さとを有し、且つその最大径をaとし、最小径をbとしたときに、a/bで表される導電性粒子の真球度が5以下であり、
     異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、導電性粒子がフレキシブル基板の端子に食い込んでいることを特徴とする接続構造体。
    In the connection structure in which the terminals of the flexible substrate and the terminals of the rigid substrate are anisotropically conductively connected via an anisotropic conductive adhesive film in which conductive particles are dispersed in the binder resin composition,
    The conductive particles of the anisotropic conductive adhesive film to be sandwiched between the terminals of the flexible substrate and the rigid substrate have a particle diameter of 4 μm or more and a compression hardness of 4500 kgf / mm 2 or more, and When the maximum diameter is a and the minimum diameter is b, the sphericity of the conductive particles represented by a / b is 5 or less,
    Defined as 100 · (AB) / A where A is the particle size of the conductive particles after anisotropic conductive connection and B is the gap between the terminal of the flexible substrate and the terminal of the rigid substrate. A connection structure characterized in that conductive particles bite into terminals of a flexible substrate so that the indentation rate is 40% or more.
  4.  リジッド基板がガラス基板である請求項3記載の接続構造体。 4. The connection structure according to claim 3, wherein the rigid substrate is a glass substrate.
  5.  導電性粒子の圧縮硬さが7000kgf/mm以下であり、粒子径が15μm以下であり、真球度が5以下である請求項3又は4記載の接続構造体。 The connection structure according to claim 3 or 4, wherein the conductive particles have a compression hardness of 7000 kgf / mm 2 or less, a particle diameter of 15 µm or less, and a sphericity of 5 or less.
  6.  請求項3記載の接続構造体の製造方法であって、
     リジッド基板の端子上に請求項1又は2記載の異方性導電接着フィルムを仮り貼りし、その異方性導電接着フィルムを挟んで、リジッド基板の端子にフレキシブル基板の端子が対応するように、フレキシブル基板を配置し、
     異方性導電接続後の導電性粒子の粒子径をAとし、フレキシブル基板の端子とリジッド基板の端子との間のギャップをBとしたときに100・(A-B)/Aで定義される押し込み率が40%以上となるように、フレキシブル基板側から、加熱ボンダーで異方性導電接着フィルムを加熱加圧することにより異方性導電接続を行うことを特徴とする製造方法。
    It is a manufacturing method of the connection structure according to claim 3,
    Temporarily affixing the anisotropic conductive adhesive film according to claim 1 or 2 on the terminal of the rigid substrate, and sandwiching the anisotropic conductive adhesive film, so that the terminal of the flexible substrate corresponds to the terminal of the rigid substrate, Place a flexible board,
    Defined as 100 · (AB) / A where A is the particle size of the conductive particles after anisotropic conductive connection and B is the gap between the terminal of the flexible substrate and the terminal of the rigid substrate. A manufacturing method comprising performing anisotropic conductive connection by heating and pressing an anisotropic conductive adhesive film with a heating bonder from the flexible substrate side so that the indentation rate is 40% or more.
PCT/JP2011/071580 2010-12-24 2011-09-22 Anisotropic conductive adhesive film, connection structure and method for manufacturing same WO2012086278A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180004885.7A CN102668251B (en) 2010-12-24 2011-09-22 Anisotropic conductive adhesive film, connection structure and method for manufacturing same
KR1020127011026A KR101410185B1 (en) 2010-12-24 2011-09-22 Anisotropic conductive film, connection structure and method of manufacturing the same
HK12112615.6A HK1171871A1 (en) 2010-12-24 2012-12-06 Anisotropic conductive adhesive film, connection structure and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288005 2010-12-24
JP2010288005A JP6061443B2 (en) 2010-12-24 2010-12-24 Anisotropic conductive adhesive film, connection structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012086278A1 true WO2012086278A1 (en) 2012-06-28

Family

ID=44014451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071580 WO2012086278A1 (en) 2010-12-24 2011-09-22 Anisotropic conductive adhesive film, connection structure and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP6061443B2 (en)
KR (1) KR101410185B1 (en)
CN (1) CN102668251B (en)
HK (1) HK1171871A1 (en)
WO (1) WO2012086278A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003935A (en) * 2011-10-20 2015-01-08 日立化成株式会社 Adhesive composition, connection structure and method of producing the structure
JP2015503295A (en) 2011-12-05 2015-01-29 アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド System and method for traffic aggregation of multiple WAN backhauls and multiple separate LAN networks
CN104342058B (en) * 2014-10-25 2016-08-24 深圳飞世尔新材料股份有限公司 A kind of preparation method of photocuring anisotropic conductive film
EP3806397B1 (en) 2014-12-04 2023-11-22 Assia Spe, Llc Method and apparatus for predicting successful dsl line optimization
KR102182945B1 (en) 2015-01-13 2020-11-25 데쿠세리아루즈 가부시키가이샤 Bump-forming film, semiconductor device, manufacturing method thereof, and connection structure
KR102449287B1 (en) * 2015-05-27 2022-09-29 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and connection structure
JP6659247B2 (en) * 2015-06-16 2020-03-04 デクセリアルズ株式会社 Connecting body, manufacturing method of connecting body, inspection method
CN105070351A (en) * 2015-06-30 2015-11-18 苏州纳微科技有限公司 Flexible conductive microballoon and applications thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312176A (en) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd Connecting member, and structure and method for connecting electrodes using this connecting member
JPH11134935A (en) * 1997-10-29 1999-05-21 Sekisui Finechem Co Ltd Conductive fine grain, anisotropic conductive adhesive, and conductive connecting structure
JP2002124128A (en) * 2000-10-16 2002-04-26 Sony Chem Corp Adhesives and adhesive film
WO2009063827A1 (en) * 2007-11-12 2009-05-22 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486346B2 (en) * 1998-07-16 2004-01-13 ソニーケミカル株式会社 Bare chip mounting structure
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP3738655B2 (en) * 2000-03-31 2006-01-25 ソニーケミカル株式会社 Anisotropic conductive adhesive material and connection method
JP2008091843A (en) * 2006-10-04 2008-04-17 Takatori Corp Crimped-state inspection apparatus of substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312176A (en) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd Connecting member, and structure and method for connecting electrodes using this connecting member
JPH11134935A (en) * 1997-10-29 1999-05-21 Sekisui Finechem Co Ltd Conductive fine grain, anisotropic conductive adhesive, and conductive connecting structure
JP2002124128A (en) * 2000-10-16 2002-04-26 Sony Chem Corp Adhesives and adhesive film
WO2009063827A1 (en) * 2007-11-12 2009-05-22 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member

Also Published As

Publication number Publication date
CN102668251A (en) 2012-09-12
CN102668251B (en) 2015-04-29
JP2011068913A (en) 2011-04-07
KR101410185B1 (en) 2014-06-19
KR20120099424A (en) 2012-09-10
JP6061443B2 (en) 2017-01-18
HK1171871A1 (en) 2013-04-05

Similar Documents

Publication Publication Date Title
JP6061443B2 (en) Anisotropic conductive adhesive film, connection structure and manufacturing method thereof
JP5476280B2 (en) Polymer particles
US8932716B2 (en) Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
TWI398880B (en) Circuit connection material and circuit connection structure
TWI502608B (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
WO2010125965A1 (en) Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
KR102649655B1 (en) Adhesive composition
TWI385676B (en) An anisotropic conductive material, a connecting structure, and a method for manufacturing the same
JP2011040189A (en) Conductive particle, anisotropic conductive material, and connection structure
US10177465B2 (en) Electrically conductive material
KR101886909B1 (en) Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure
JP2011060502A (en) Conductive particle with insulating particles, anisotropic conductive material, and connection structure
JP2012209097A (en) Anisotropic conductive material and connection structure
JP5310750B2 (en) Anisotropic conductive film
JP6870618B2 (en) Adhesive composition and structure for circuit connection
JP2010159328A (en) Conductive particle, anisotropic conductive material, and connecting structure
JP2019044043A (en) Adhesive composition for circuit connection and structure
JP2017063033A (en) Conductive particle, conductive film, connection structure and method for manufacturing connection structure
TWI814761B (en) adhesive film
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
TWI740807B (en) Conductive material, connection structure, and manufacturing method of connection structure
JPWO2020009238A1 (en) Conductive particles with insulating particles, conductive materials and connecting structures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127011026

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850891

Country of ref document: EP

Kind code of ref document: A1