JP5616664B2 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
JP5616664B2
JP5616664B2 JP2010078149A JP2010078149A JP5616664B2 JP 5616664 B2 JP5616664 B2 JP 5616664B2 JP 2010078149 A JP2010078149 A JP 2010078149A JP 2010078149 A JP2010078149 A JP 2010078149A JP 5616664 B2 JP5616664 B2 JP 5616664B2
Authority
JP
Japan
Prior art keywords
light source
exposure
mode
light
pixel rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010078149A
Other languages
English (en)
Other versions
JP2011206336A (ja
Inventor
充 樋口
充 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010078149A priority Critical patent/JP5616664B2/ja
Publication of JP2011206336A publication Critical patent/JP2011206336A/ja
Application granted granted Critical
Publication of JP5616664B2 publication Critical patent/JP5616664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内視鏡先端部にCMOS型固体撮像素子を有する電子内視鏡を備えた内視鏡システムに関する。
医療分野において、内視鏡システムを利用した医療診断が盛んに行われている。内視鏡システムは、体腔内に挿入される挿入部を備えた電子内視鏡(スコープ)と、電子内視鏡が着脱自在に接続され、電子内視鏡に内蔵された固体撮像素子から出力された撮像信号を受信して画像処理を行い、観察画像をモニタに出力するプロセッサ装置と、電子内視鏡内のライトガイドを通して体腔内を照明する光を発生する光源装置と、を備えて構成される。
電子内視鏡に使用される代表的な固体撮像素子としてはCCD(Charge Coupled Device)型撮像素子がある。しかしながら、消費電力の問題から近年の急速な多画素化と高速読出し化の要求に応えるのが困難になってきている。
その一方で、CMOS(Complementary Metal Oxide Semiconductor)型撮像素子は、低電圧駆動が可能であり、多画素化と高速読出し化の要求に対応することが容易である。また、製造工程においてCMOSプロセスを使用でき、同一チップ内に駆動回路や処理回路などの周辺回路を混載することが可能であり、小型化にも有利である。このことから、近年では、CMOS型撮像素子(以下、CMOSセンサともいう)を備えた電子内視鏡が各種提案されている(例えば、特許文献1参照)。
一般にCMOS型固体撮像素子の多くは、受光面(撮像面)に複数の画素がマトリクス状に配置されており、電子シャッタの一種であるローリングシャッタにより露光制御が行われる。即ち、図11に示すように、画素行毎に時間軸方向に順次ずれたタイミングで、受光面に入射した光を電荷として各画素のフォトセンサに蓄積させる。このような順次露光制御により各画素のフォトセンサに蓄積された電荷は、画素行毎に時間軸方向に順次ずれたタイミングで画素信号として読み出される。なお、図11に示した例では、フィールド周期(1垂直同期期間)は1/60秒であり、フィールド周期毎にプログレッシブ走査方式で全画素行の電荷信号が逐次読み出される。つまり、固体撮像素子からは1/60秒毎に1フレーム分の画像信号(撮像信号)が出力される。
特開2009−201540号公報
しかしながら、ローリングシャッタによる露光制御が行われるCMOS型固体撮像素子では、図11に示したように露光期間が画素行毎に異なるため、高速で動く被写体を撮像すると、それにより得られる画像が歪むという問題がある。
本発明はこのような事情に鑑みてなされたもので、CMOS型固体撮像素子を用いたときに生じる撮像画像の歪みを低減した内視鏡システムを提供することを目的とする。
前記目的を達成するために、第1の本発明に係る内視鏡システムは、マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、全画素行の露光動作を同時に開始させるべく全画素行にリセット動作を行わせるリセット信号を供給するものであって、静止画撮像時には動画撮像時よりも前記リセット信号を供給するタイミングを遅くして全画素行の露光期間を短くするリセット信号供給手段と、全画素行の露光動作を同時に終了させるべく前記照明光の前記被検体への照射を停止させるものであって、少なくとも各画素行に蓄積された電荷が読み出されている間は前記照明光の前記被検体への照射を停止する照明光制御手段と、全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、を備える内視鏡システムであって、前記固体撮像素子の動作モードとして、第1フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第1の同時露光モード、前記第1フィールド周期の1/n倍(但し、nは2以上の自然数)の第2フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第2の同時露光モード、及び各画素行の露光動作及び読み出し動作を画素行毎に時間軸方向に順次ずれたタイミングで行う順次露光モードからなる複数の動作モードを含み、前記複数の動作モードを切り替えるモード切替手段を備えたことを特徴とする。
本発明によれば、リセット信号供給手段及び照明光制御手段によって全画素行の露光期間を一致させることができる。これにより、CMOS型固体撮像素子を用いたときに生じる画像歪みを低減することができる。また、撮像状況に応じて固体撮像素子の動作モードを切り替えることが可能となり、ユーザーの利便性が向上する。
また、本発明では、プログレッシブ走査方式で読み出しが行われる第1の同時露光モードの場合には、高解像な画像が得られるので静止画撮像時に好適である。一方、インターレース走査方式で読み出しが行われる第2の同時露光モードの場合には、フィールド周期(垂直同期期間)を短縮化でき、画像の更新頻度が速くなるので動画撮像時に好適である。
本発明では、前記順次露光モードは、各画素行の露光動作画素行毎に時間軸方向に順次ずれたタイミングで行うとともに、前記第1フィールド周期毎にプログレッシブ走査方式による読み出しを行うことがより好ましい。これによれば、第1及び第2の同時露光モードよりも、各画素行の露光時間を長く確保することが可能となるので、被検体からの反射光(入射光)が十分得られない場合に露出不足を解消することができ、特に電子内視鏡のように暗い環境下で撮像が行われる場合に好適である。
また、前記光源はランプ光源であり、前記照明光制御手段は、前記照明光の前記被検体への照射を可能とする開放位置と前記照明光の前記被検体への照明を遮断する遮断位置との間で移動可能に構成されたシャッタ部材の駆動を制御するシャッタ制御手段であることが好ましい。ランプ光源としては、キセノンランプやハロゲンランプなどが好適である。
また、前記目的を達成するために、第2の本発明に係る内視鏡システムは、マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、全画素行の露光動作を同時に開始させるとともに同時に終了させるべく前記光源の発光タイミング及び発光強度を制御可能であり、少なくとも各画素行に蓄積された電荷が読み出されている間は前記光源からの発光を停止し、さらに静止画撮像時には動画撮像時よりも前記光源の発光時間を短くして全画素行の露光期間を短くする光源制御手段と、全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、を備える内視鏡システムであって、前記固体撮像素子の動作モードとして、第3フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第3の同時露光モード、前記第3フィールド周期の1/n倍(但し、nは2以上の自然数)の第4フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第4の同時露光モード、及び各画素行の露光動作及び読み出し動作を画素行毎に時間軸方向に順次ずれたタイミングで行う順次露光モードからなる複数の動作モードを含み、前記複数の動作モードを切り替えるモード切替手段を備えたことを特徴とする。
本発明によれば、光源制御手段による光源制御によって全画素行の露光期間を一致させることができる。これにより、CMOS型固体撮像素子を用いたときに生じる画像歪みを低減させることができる。また、撮像状況に応じて固体撮像素子の動作モードを切り替えることが可能となり、ユーザーの利便性が向上する。
また、本発明では、プログレッシブ走査方式で読み出しが行われる第3の同時露光モードの場合には、高解像な画像が得られるので静止画撮像時に好適である。一方、インターレース走査方式で読み出しが行われる第3の同時露光モードの場合には、フィールド周期(垂直同期期間)を短縮化でき、画像の更新頻度が速くなるので動画撮像時に好適である。
本発明では、前記順次露光モードは、各画素行の露光動作画素行毎に時間軸方向に順次ずれたタイミングで行うとともに、前記第3フィールド周期毎にプログレッシブ走査方式による読み出しを行うことがより好ましい。これによれば、第3及び第4の同時露光モードよりも、各画素行の露光時間を長く確保することが可能となるので、被検体からの反射光(入射光)が十分得られない場合に露出不足を解消することができ、特に電子内視鏡のように暗い環境下で撮像が行われる場合に好適である。
本発明では、前記光源は半導体光源であることが好ましい。半導体光源としては、LED(発光ダイオード)やLD(レーザーダイオード)などが好適である。
また、前記目的を達成するために、第3の発明に係る内視鏡システムは、マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、全画素行の露光動作を同時に開始させるべく全画素行にリセット動作を行わせるリセット信号を供給するものであって、静止画撮像時には動画撮像時よりも前記リセット信号を供給するタイミングを遅くして全画素行の露光期間を短くするリセット信号供給手段と、全画素行の露光動作を同時に終了させるべく前記照明光の前記被検体への照射を停止させるものであって、少なくとも各画素行に蓄積された電荷が読み出されている間は前記照明光の前記被検体への照射を停止する照明光制御手段と、全画素行の露光動作を同時に開始させるとともに同時に終了させるべく前記光源の発光タイミング及び発光強度を制御可能であり、少なくとも各画素行に蓄積された電荷が読み出されている間は前記光源からの発光を停止し、さらに静止画撮像時には動画撮像時よりも前記光源の発光時間を短くして全画素行の露光期間を短くする光源制御手段と、全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、前記光源の種別を判別する光源判別手段と、を備え、前記固体撮像素子の複数の動作モードとして、前記リセット信号供給手段及び前記照明光制御手段によって露光制御が行われるモードであって、第1フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第1の同時露光モードと、前記第1フィールド周期の1/n 1 倍(但し、n 1 は2以上の自然数)の第2フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第2の同時露光モードと、を含むとともに、前記光源制御手段によって露光制御が行われるモードであって、第3フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第3の同時露光モードと、前記第3フィールド周期の1/n 2 倍(但し、n 2 は2以上の自然数)の第4フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第4の同時露光モードと、を含み、前記光源判別手段で判別された前記光源の種別に応じて、前記複数の動作モードの中から任意の動作モードに切り替えるモード切替手段を備えたことを特徴とする。
本発明によれば、光源の種別に応じて最適な動作モードに切り替えることができるので、ユーザーの利便性が向上する。
本発明によれば、全画素行の露光期間を一致させることができるので、CMOS型固体撮像素子を用いたときに生じる画像歪みを低減することができる。
内視鏡システムの概略構成を示した全体構成図 電子内視鏡の先端部を示した正面図 電子内視鏡の先端部を示した側面断面図 内視鏡システムの制御系を示したブロック図 固体撮像素子の動作モードの一例を示したタイミングチャート図 固体撮像素子の動作モードの他の例を示したタイミングチャート図 固体撮像素子の動作モードの更に他の例を示したタイミングチャート図 第2の実施形態に係る固体撮像素子の動作モードの一例を示したタイミングチャート図 第2の実施形態に係る固体撮像素子の動作モードの他の例を示したタイミングチャート図 第3の実施形態に係る内視鏡システムの制御系を示したブロック図 従来のCMOS型固体撮像素子の動作の一例を示したタイミングチャート図
以下、添付図面に従って本発明に係る内視鏡システムの好ましい実施の形態について詳説する。
(第1の実施形態)
まず、本発明に係る内視鏡システムの第1の実施形態について説明する。
〔内視鏡システムの全体構成〕
図1は本実施形態に係る内視鏡システムの概略構成を示した全体構成図である。図1に示すように、本実施形態の内視鏡システム10は、電子内視鏡12、プロセッサ装置14、光源装置16などから構成される。電子内視鏡12は、患者(被検体)の体腔内に挿入される可撓性の挿入部20と、挿入部20の基端部分に連設された操作部22と、プロセッサ装置14及び光源装置16に接続されるユニバーサルコード24とを備えている。
挿入部20の先端には、体腔内撮影用の撮像チップ(撮像装置)54(図3参照)などが内蔵された先端部26が連設されている。先端部26の後方には、複数の湾曲駒を連結した湾曲部28が設けられている。湾曲部28は、操作部22に設けられたアングルノブ30が操作されて、挿入部20内に挿設されたワイヤが押し引きされることにより、上下左右方向に湾曲動作する。これにより、先端部26が体腔内の所望の方向に向けられる。
ユニバーサルコード24の基端は、コネクタ36に連結されている。コネクタ36は、複合タイプのものであり、コネクタ36にはプロセッサ装置14が接続される他、光源装置16が接続される。
プロセッサ装置14は、ユニバーサルコード24内に挿通されたケーブル68(図3参照)を介して電子内視鏡12に給電を行い、撮像チップ54の駆動を制御するとともに、撮像チップ54からケーブル68を介して伝送された撮像信号を受信し、受信した撮像信号に各種信号処理を施して画像データに変換する。プロセッサ装置14で変換された画像データは、プロセッサ装置14にケーブル接続されたモニタ38に内視鏡画像として表示される。また、プロセッサ装置14は、コネクタ36を介して光源装置16と電気的に接続され、内視鏡システム10の動作を統括的に制御する。
〔電子内視鏡の先端部の構成〕
図2は電子内視鏡12の先端部26を示した正面図である。図2に示すように、先端部26の先端面26aには、観察窓40、照明窓42、鉗子出口44、及び送気・送水用ノズル46が設けられている。観察窓40は、先端部26の片側中央に配置されている。照明窓42は、観察窓40に関して対称な位置に2個配され、体腔内の被観察部位に光源装置16からの照明光を照射する。鉗子出口44は、挿入部20内に配設された鉗子チャンネル70(図3参照)に接続され、操作部22に設けられた鉗子口34(図1参照)に連通している。鉗子口34には、注射針や高周波メスなどが先端に配された各種処置具が挿通され、各種処置具の先端が鉗子出口44から露呈される。送気・送水用ノズル46は、操作部22に設けられた送気・送水ボタン32(図1参照)の操作に応じて、光源装置16に内蔵された送気・送水装置から供給される洗浄水や空気を、観察窓40や体腔内に向けて噴射する。
図3は電子内視鏡12の先端部26を示した側面断面図である。図3に示すように、観察窓40の奥には、体腔内の被観察部位の像光を取り込むための対物光学系50を保持する鏡筒52が配設されている。鏡筒52は、挿入部20の中心軸に対物光学系50の光軸が平行となるように取り付けられている。鏡筒52の後端には、対物光学系50を経由した被観察部位の像光を、略直角に曲げて撮像チップ54に向けて導光するプリズム56が接続されている。
撮像チップ54は、CMOS型の固体撮像素子58と、固体撮像素子58の駆動及び信号の入出力を行う周辺回路60とが一体形成されたモノリシック半導体(いわゆるCMOSセンサチップ)であり、支持基板62上に実装されている。固体撮像素子58の撮像面58aは、プリズム56の出射面と対向するように配置されている。撮像面58a上には、矩形枠状のスペーサ63を介して矩形板状のカバーガラス64が取り付けられている。撮像チップ54、スペーサ63、及びカバーガラス64は、接着剤を介して組み付けられている。これにより、塵埃などの侵入から撮像面58aが保護されている。
挿入部20の後端に向けて延設された支持基板62の後端部には、複数の入出力端子62aが支持基板62の幅方向に並べて設けられている。入出力端子62aには、ユニバーサルコード24を介してプロセッサ装置14との各種信号の遣り取りを媒介するための信号線66が接合されており、入出力端子62aは、支持基板62に形成された配線やボンディングパッド等(図示せず)を介して撮像チップ54内の周辺回路60と電気的に接続されている。信号線66は、可撓性の管状のケーブル68内にまとめて挿通されている。ケーブル68は、挿入部20、操作部22、及びユニバーサルコード24の各内部を挿通し、コネクタ36に接続されている。
また、図示は省略したが、照明窓42の奥には、照明部が設けられている。照明部には、光源装置16からの照明光を導くライトガイドの出射端が配されている。ライトガイドは、ケーブル68と同様に、挿入部20、操作部22、及びユニバーサルコード24の各内部を挿通し、コネクタ36に入射端が接続されている。
〔内視鏡システムの制御系の構成〕
図4は内視鏡システム10の制御系を示したブロック図である。図4に示すように、電子内視鏡12の先端部26には、固体撮像素子58、アナログ信号処理回路(AFE)72、TG78、及びCPU80が設けられている。
TG78は、CPU80の制御に基づき、固体撮像素子58の駆動パルス(垂直/水平走査パルス、リセットパルス等)とAFE72用の同期パルスとを発生する。固体撮像素子58は、TG78から入力される駆動パルスにより駆動され、対物光学系50を介して結像された光学像を光電変換して撮像信号として出力する。
固体撮像素子58の撮像面58aには、多数の画素がマトリクス状に配置されており、各画素にはそれぞれフォトセンサ(光電変換素子)が設けられている。固体撮像素子58の撮像面58aに入射した光は各画素のフォトセンサに電荷として蓄積される。そして、垂直走査回路及び水平走査回路(いずれも不図示)による垂直方向と水平方向の走査によって、各画素のフォトセンサに蓄積された電荷は画素信号として順次読み出され、所定のフレームレートで撮像信号として出力される。
なお、図示は省略するが、固体撮像素子58は、複数の色セグメントからなるカラーフィルタ(例えば、ベイヤー配列の原色カラーフィルタ)を備えた単板カラー撮像方式の固体撮像素子である。
また、固体撮像素子58を構成する各画素の回路構成としては従来周知であり、例えば3トランジスタ構成や4トランジスタ構成などの一般的な構成を適用することが可能であり、ここでは説明を省略する。
AFE72は、相関二重サンプリング(CDS)回路、自動ゲイン回路(AGC)、及びA/D変換器により構成されている。CDS回路は、固体撮像素子58から出力される撮像信号に対して相関二重サンプリング処理を施し、固体撮像素子58で生じるリセット雑音及びアンプ雑音の除去を行う。AGCは、CDS回路によりノイズ除去が行われた撮像信号を、CPU80から指定されたゲイン(増幅率)で増幅する。A/D変換器は、AGCにより増幅された撮像信号を、所定のビット数のデジタル信号に変換して出力する。AFE72でデジタル化されて出力された撮像信号(デジタル撮像信号)は、コネクタ36を介してプロセッサ装置14に入力される。
プロセッサ装置14は、CPU82、ROM84、RAM85、画像処理回路(DSP)86、及び表示制御回路88を備えている。
CPU82、プロセッサ装置14内の各部を制御するとともに、内視鏡システム10の全体を統括的に制御する。
ROM84には、プロセッサ装置14の動作を制御するための各種プログラムや制御用データ(後述する動作モードなど)が記憶される。また、RAM85には、CPU82により実行されるプログラムやデータなどが一時記憶される。
DSP86は、CPU82の制御に基づき、AFE72から入力された撮像信号に対し、色補間、色分離、色バランス調整、ガンマ補正、画像強調処理等を施し、画像データを生成する。DSP86から出力された画像データは表示制御回路88に入力される。
表示制御回路88は、DSP86から入力された画像データを、モニタ38に対応した信号形式に応じた映像信号に変換してモニタ38に出力する。
操作部90は、固体撮像素子58の動作モードを選択又は切り替えるためのボタン(モード切替ボタン)、その他ユーザーが指示を入力するための各種ボタンを含む。
光源装置16は、光源100、集光レンズ102、メカニカルシャッタ104、シャッタ駆動回路106、絞り機構108、絞り駆動回路110、光源駆動回路112、及びCPU114を備えている。
CPU114は、プロセッサ装置14のCPU82と通信し、シャッタ駆動回路106、絞り駆動回路110、及び光源駆動回路112の制御を行う。
光源100は、キセノンランプやハロゲンランプなどのランプ光源からなり、光源駆動回路112によりON/OFF制御される。ランプ光源として、水銀ランプ、メタルハライドランプなどを適用することも可能である。
絞り機構108は、光源100の光射出側に配置され、集光レンズ102に入射される光量を増減させる。なお、絞り機構108は、絞り駆動回路110により開閉制御される。
集光レンズ102は、絞り機構108を通過した光を集光して、光源装置16に接続された電子内視鏡12のライトガイド120の入射端に導く。ライトガイド120は、電子内視鏡12の基端から先端部26まで挿通され、出射端が前述の各照明窓42に接続されている。
メカニカルシャッタ104は、集光レンズ102で集光された光の光路を遮断する位置(遮断位置)と開放する位置(開放位置)との間で移動可能に構成されたシャッタ部材であり、シャッタ駆動回路106により駆動制御される。メカニカルシャッタ104としては、例えば円板上に開口部と遮光部が形成されたロータリーシャッタなどを適用することができる。なお、ロータリーシャッタについては従来周知の構成であるので説明を省略する。
上記のように構成された内視鏡システム10で体腔内を観察する際には、電子内視鏡12、プロセッサ装置14、光源装置16、及びモニタ38の電源をオンにして、電子内視鏡12の挿入部20を体腔内に挿入し、光源装置16からの照明光で体腔内を照明しながら、固体撮像素子58により撮像される体腔内の画像をモニタ38で観察する。
固体撮像素子58から出力された撮像信号は、AFE72で各種処理が施された後、プロセッサ装置14のDSP86に入力される。DSP86では、入力された撮像信号に対して各種信号処理が施され、画像データが生成される。DSP86で生成された画像データは、表示制御回路88に入力される。表示制御回路88では、入力された画像データをモニタ38の表示形式に対応した変換処理が施され、映像信号が生成される。表示制御回路88で生成された映像信号はモニタ38へ出力される。これにより、画像データがモニタ38に内視鏡画像として表示される。
〔固体撮像素子の動作モード〕
本実施形態では、固体撮像素子58の動作モード(撮像モード)として、全画素行の露光期間を一致させる露光制御が行われるモードを備えている。以下、本実施形態における固体撮像素子58の動作モードについて説明する。
<第1の同時露光モード>
図5は固体撮像素子58の動作モードの一例を示したタイミングチャート図である。
図5に示した動作モード(第1の同時露光モード)では、全画素行にグローバルリセット信号が供給される。グローバルリセット信号は、垂直同期信号がONになった後、所定の時間が経過したタイミングでONになる。グローバルリセット信号がONになると、各画素のフォトセンサに蓄積された電荷はリセットされ、電荷蓄積を可能な状態となる。
一方、光源装置16は一定周期で被検体への照明光の照射/非照射を繰り返すように制御される。図5に示すように、シャッタ駆動回路106からメカニカルシャッタ104に供給されるシャッタ駆動信号は所定周期でON(ハイレベル)とOFF(ローレベル)を繰り返す。シャッタ駆動信号がONになると、メカニカルシャッタ104は遮断位置に移動して、光源装置16は照明光を照明不能な非照射状態となる。一方、シャッタ駆動信号がOFFになると、メカニカルシャッタ104は開放位置に移動して、光源装置16は照明光を照射可能な照射状態となる。
シャッタ駆動信号は、グローバルリセット信号がONになるタイミングよりも前にONからOFFに切り替わり、メカニカルシャッタ104を開放位置に移動させ、光源装置16を照射状態にする。したがって、グローバルリセット信号がONになると、光源装置16から照明される照明光によって全画素行の露光動作が同時に開始される。
その後、露光時間に応じた所定のタイミングで、シャッタ駆動信号はOFFからONに切り替わり、メカニカルシャッタ104を遮断位置に移動させる。これにより、光源装置16は非照射状態となり、全画素行の露光動作が同時に終了する。
以上の動作により、全画素行の露光動作の開始と終了は同時に行われ、全画素行の露光期間は一致するようになる。
シャッタ駆動信号がOFFからONに切り替わった後(即ち、全画素行の露光動作が終了した後)、垂直同期信号がONになったタイミングで全画素行の蓄積電荷(画素信号)が順次読み出される。
図5に示した例では、フィールド周期(垂直同期期間)は1/30秒であり、フィールド周期毎に全画素行の画素信号(蓄積電荷)がプログレッシブ走査方式により逐次読み出される。したがって、固体撮像素子58からは1/30秒毎に1フレーム(=1フィールド)分の撮像信号が出力される。つまり、第1の同時露光モードでは、フレームレートは30fpsである。
こうして全画素行の読出しが終了した後、シャッタ駆動信号はONからOFFに切り替わり、メカニカルシャッタ104は開放位置に移動し、光源装置16は照射状態となる。その後、グローバルリセット信号がONになり、同様の動作が繰り返される。
第1の同時露光モードによれば、全画素行の露光期間が一致するように露光制御が行われるので、高速で動く被写体を撮像しても、ローリングシャッタによる露光制御が行われたときのような画像歪みは生じない。
また、本モードによれば、グローバルリセット信号がONになるタイミングを可変させることにより、動画や静止画などの撮像状況に応じて露光期間(即ち、シャッタ速度)を適宜変化させることができる。
特に、本モードでは、静止画撮像時と動画撮像時とでグローバルリセット信号がONなるタイミングを変化させる態様が好ましい。高速で移動する被写体を静止画撮像する場合、露光期間が長く(即ち、シャッタ速度が遅く)設定されていると、動画撮像時に比べて被写体のブレが顕著に現れてしまう。このため、静止画撮像時には、動画撮像時に比べてグローバルリセット信号がONになるタイミングを遅くして露光期間を短く(即ち、シャッタ速度を速く)するとともに、光源装置16の絞り機構108を開いて光量を増加させる。これにより、高速で動く被写体を静止画で撮像する場合でも、高速シャッタによりブレのない撮像が可能となる。
<第2の同時露光モード>
上述した第1の同時露光モードでは、フィールド周期毎にプログレッシブ走査方式により全画素行の読み出しが逐次行われるため、画像の解像度は高く、静止画撮像には適しているものの、全画素行の読み出しに時間がかかってしまい、動画撮像に適さないことも想定される。そこで、本実施形態では、第1の同時露光モードよりも動画撮像に適した動作モードとして、第2の同時露光モードが用意されている。
図6は固体撮像素子58の動作モードの他の例を示したタイミングチャート図である。
図6に示した動作モード(第2の同時露光モード)では、グローバルリセット信号による全画素行同時のリセット動作と光源装置16に設けられたメカニカルシャッタ104の駆動制御との組み合わせにより、全画素行の露光期間が一致するように露光制御が行われる点は図5に示した動作モード(第1の同時露光モード)と同様である。
第2の同時露光モードでは、第1の同時露光モードのフィールド周期の1/2周期(1/60秒)でインターレース(間引き)走査による読み出し動作が行われる。図6に示した例では、1、2、5、6、9、10行の画素行と、3、4、7、8、11、12行の画素行との2つのグループに分割され、各画素行の読み出し動作がフィールド周期毎に交互に行われている。もちろん、各画素行の読み出し動作が1行おきに行われ、フィールド周期毎に奇数行と偶数行で交互に行われてもよい。なお、第2の同時露光モードのフィールド周期は、第1の同時露光モードのフィールド周期の1/n(但し、nは2以上の自然数)でもよい。
シャッタ駆動信号は所定周期でON/OFFが繰り返され、少なくとも各画素行の読出し動作が行われる期間はON(即ち、メカニカルシャッタ104は遮断位置)であり、且つ、グローバルリセット信号がONとなるタイミングよりも前にOFF(即ち、メカニカルシャッタ104は開放位置)となっている。これにより、各画素行の電荷蓄積はグローバルリセット信号がONとなるタイミングで開始され、シャッタ駆動信号がONとなるタイミングで終了され、各画素行の露光期間は一致するようになっている。
第2の同時露光モードによれば、インターレース走査方式による読み出し動作が行われるため、第1の同時露光モードに比べて解像度は劣るものの、フィールド周期が短くなるので画像の更新が速く行われる。したがって、本モードは、動画撮像時に好適な動作モードである。
また、静止画撮像時には、動画撮像時に比べてグローバルリセット信号がONになるタイミングを遅らせて露光開始時間を遅くして露光期間を短くするとともに、光源装置16の絞り機構108を開いて光量を増加させることが好ましい。これにより、高速で動く被写体を静止画で撮像する場合でも、高速シャッタによりブレのない撮像が可能となる。
本実施形態では、操作部90(図4参照)の操作に基づき、固体撮像素子58の複数の動作モードが切り替えられる態様が好ましい。例えば、内視鏡システム10が起動された時点では、デフォルトの動作モードとして、動画撮像に適した第2の同時露光モードで動作するようにしておき、操作部90に設けられたモード切替スイッチ(不図示)をユーザーが押す度に、第1の同時露光モードと第2の同時露光モードが交互に切り替えられるようにする。切替スイッチの代わりに、動作モードの数に応じた選択ボタン(不図示)を用意しておき、動作モードを直接的に選択できるようにしてもよい。動作モードを切り替えるためのスイッチやボタンなどが配置される位置は特に限定されず、例えば、電子内視鏡12の操作部22、プロセッサ装置14に接続されるフットスイッチやキーボード(いずれも不図示)などに配置されていてもよい。なお、操作部90の操作はプロセッサ装置14のCPU82(又はCPU80)によって検出され、CPU82(又はCPU80)によって固体撮像素子58の動作モードの切替制御が行われる。
本実施形態では、第1及び第2の同時露光モードの他に、図11に示した動作モード、即ち、ローリングシャッタ方式による露光制御が行われる動作モード(ローリングシャッタモード)を備えていてもよい。この場合、3つの動作モード(第1の同時露光モード、第2の同時露光モード、及びローリングシャッタモード)を交互に切り替えられるようにしてもよいし、直接的に切り替えられるようにしてもよい。
また、複数の動作モードを切り替えられる態様において、ローリングシャッタモードに代えて、或いは、ローリングシャッタモードとともに、図7に示した動作モードを備え、上記のように複数の動作モードを切り替えられるようにしてもよい。
図7は固体撮像素子58の動作モードの更に他の例を示したタイミングチャート図である。図7に示した動作モード(暗時モード)は、本発明における順次露光モードに相当し、基本的な動作はローリングシャッタモードと同様であり、光源装置16から被検体に照明光が常に照明された状態で、ローリングシャッタ方式により画素行毎に時間軸方向に順次ずれたタイミングで露光動作及び読み出し動作が行われる。
暗時モードでは、第1の同時露光モードと同じフィールド周期(1/30秒)でプログレッシブ走査方式による読み出しが行われる。したがって、固体撮像素子58からは30秒毎に1フレーム分の撮像信号が出力され、フレームレートは30fpsとなっている。
暗時モードによれば、ローリングシャッタモードや第1及び第2の同時露光モードよりも、各画素行の露光期間を長く確保することが可能となるので、被検体からの反射光(入射光)が十分得られない場合に露出不足を解消することができ、特に電子内視鏡のように暗い環境下で撮像が行われる場合に好適な動作モードである。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。以下、第1の実施形態と共通する部分については説明を省略し、本実施形態の特徴的な部分を中心に説明する。
第2の実施形態では、固体撮像素子58の動作モードとして、第1の実施形態のようなグローバルリセット信号を用いることなく、光源100の発光タイミングや発光強度を制御することによって、全画素行の露光期間を一致させる露光制御が行われる。なお、本実施形態では、光源100として、LED(発光ダイオード)やLD(レーザーダイオード)などの半導体光源が用いられる。以下、本実施形態における固体撮像素子58の動作モードについて説明する。
<第3の同時露光モード>
図8は第2の実施形態に係る固体撮像素子58の動作モードの一例を示したタイミングチャート図である。
図8に示した動作モード(第3の同時露光モード)では、図5に示した動作モード(第1の同時露光モード)と同様に、全画素行の露光動作が同時に行われ、画素行毎に時間軸方向に順次ずれたタイミングで各画素行の画素信号が読み出される。
光源駆動回路112から光源100に供給される光源駆動信号は、少なくとも各画素行の画素信号の読み出し動作が行われている間はローレベルとなっており、光源100からの発光は停止される。
光源駆動信号がハイレベルのときは、振幅(電流値)に応じた強度で光源100から光が発光される。電子内視鏡12では周囲を暗くした状態で用いられるため、光源100が発光しているときに限って各画素行の露光動作が行われる。したがって、光源100の発光期間が各画素行の露光期間となり、全画素行の露光期間は一致するようになる。
光源100の発光タイミングや発光強度は適宜変更可能であり、光源装置16のCPU114によって制御される。なお、発光タイミングや発光強度を変化させる場合には、1回の露光動作あたりの露光量(積分光量)が一定となるように制御することが好ましい。例えば、発光時間を短くする場合には、一定の露光量が得られるように発光強度を上げる。なお、本例では、光源100の発光時間は0〜1/60秒の間で変更することができる。
<第4の同時露光モード>
図9は第2の実施形態に係る固体撮像素子58の動作モードの他の例を示したタイミングチャート図である。
図9に示した動作モード(第4の同時露光モード)は、グローバルリセット信号を用いることなく、光源100の発光タイミングや発光強度を制御することにより、全画素行の露光期間を一致させる露光制御が行われる点は、図8に示した動作モード(第3の同時露光モード)と同様である。
第4の同時露光モードでは、第3の同時露光モードのフィールド周期の1/2周期(1/60秒)でインターレース走査方式による読み出し動作が行われる。なお、第3の同時露光モードのフィールド周期は、第1の同時露光モードのフィールド周期の1/m(但し、mは2以上の自然数)でもよい。
第2の実施形態における各動作モード(第3及び第4の同時露光しモード)によれば、光源100としてLED、LDなどの半導体光源が用いられる場合に好適なモードであり、グローバルリセット信号を用いることなく、光源制御のみで全画素行の露光期間を一致させることができる。これにより、ローリングシャッタによる露光制御が行われたときのような画像歪みは発生しない。
また、固体撮像素子58の制御がシンプルとなるので、固体撮像素子58を有する撮像チップ54を簡易な構成で小型化することができ、それによって電子内視鏡12の挿入部の小型化を図ることが可能となる。
また、静止画撮像時と動画撮像時とで露光時間(即ち、光源100の発光時間)を変化させる態様が好ましい。具体的には、静止画撮像時には、動画撮像時に比べて光源100の発光時間を短くするとともに発光強度を上げる。これにより、高速で動く被写体を静止画で撮像する場合でも、高速シャッタによりブレのない撮像が可能となる。
また、第3の同時露光モードは、プログレッシブ走査方式による読み出し動作が行われるため静止画撮像に好適な動作モードである。一方、第4の同時露光モードは、インターレース走査方式による読み出し動作が行われるため、第3の同時露光モードに比べて解像度は劣るものの、画像の更新が速く行われるので、動画撮像時に好適な動作モードである。
第2の実施形態では、光源100として、LEDやLDなどの半導体光源が好ましく用いられる。例えば、青色LEDから発せられた青色レーザ光を光ファイバーにより内視鏡挿入部先端側に導き、光ファイバー先端に配置された蛍光体をその青色レーザ光により励起発光させて、白色照明光を照射する光源装置が好ましい。なお、このような光源装置については、特開2009−291347号公報、特開2009−297311号公報、特開2009−56107号公報に詳述されている。
また、第2の実施形態では、第1の実施形態と同様に、操作部90(図4参照)の操作に基づき、第3の同時露光モードと第4の同時露光モードを交互に切り替えられる態様が好ましい。また、これらの動作モードの他に、図11に示した動作モード(ローリングシャッタモード)や図7に示した動作モード(暗時モード)なども含めて切り替えられるようにしてもよい。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。以下、第1及び第2の実施形態と共通する部分については説明を省略し、本実施形態の特徴的な部分を中心に説明する。
図10は第3の実施形態に係る内視鏡システム10の制御系を示したブロック図である。図10に示すように、光源装置16にはEEPROM116が設けられている。EEPROM116には、光源100の種別情報(光源識別情報)のその他各部の制御に必要なパラメータ情報が記憶されており、CPU114により読み出されるようになっている。
本実施形態では、プロセッサ装置14と光源装置16の電源がオンにされると、これらの間の接続確認が行われ、その後、プロセッサ装置14のCPU82は、光源装置16のCPU114からEEPROM116に設定されている光源識別情報を取得する。
そして、CPU82は、光源識別情報に基づき、固体撮像素子58の動作モードを切り替える。光源装置16に搭載される光源100がランプ光源である場合には、第1の実施形態における各動作モードのいずれかに切り替え、光源100が半導体光源である場合には、第2の実施形態における各動作モードのいずれかに切り替える。
例えば、ランプ光源が用いられる場合には、まず始めに動画撮像に適した第2の同時露光モードに切り替え、その後は、ユーザーによる操作部90の操作に基づき、静止画撮像に適した第1の同時露光モードと交互に切り替えられるようにする。半導体光源が用いられる場合についても同様である。
また、図11に示した動作モード(ローリングシャッタモード)や図7に示した動作モード(暗時モード)に切り替えられるようにしてもよい。
以上、本発明の内視鏡システムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
10…内視鏡システム、12…電子内視鏡、14…プロセッサ装置、16…光源装置、20…挿入部、22…操作部、26…先端部、54…撮像チップ、58…固体撮像素子、82…CPU、90…操作部、100…光源、104…メカニカルシャッタ、106…シャッタ駆動回路、112…光源駆動回路、114…CPU

Claims (7)

  1. マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、
    前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、
    前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、
    全画素行の露光動作を同時に開始させるべく全画素行にリセット動作を行わせるリセット信号を供給するものであって、静止画撮像時には動画撮像時よりも前記リセット信号を供給するタイミングを遅くして全画素行の露光期間を短くするリセット信号供給手段と、
    全画素行の露光動作を同時に終了させるべく前記照明光の前記被検体への照射を停止させるものであって、少なくとも各画素行に蓄積された電荷が読み出されている間は前記照明光の前記被検体への照射を停止する照明光制御手段と、
    全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、を備える内視鏡システムであって、
    前記固体撮像素子の動作モードとして、第1フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第1の同時露光モード、前記第1フィールド周期の1/n倍(但し、nは2以上の自然数)の第2フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第2の同時露光モード、及び各画素行の露光動作及び読み出し動作を画素行毎に時間軸方向に順次ずれたタイミングで行う順次露光モードからなる複数の動作モードを含み、
    前記複数の動作モードを切り替えるモード切替手段を備えたことを特徴とする内視鏡システム。
  2. 前記順次露光モードは、各画素行の露光動作画素行毎に時間軸方向に順次ずれたタイミングで行うとともに、前記第1フィールド周期毎にプログレッシブ走査方式による読み出しを行うことを特徴とする請求項1に記載の内視鏡システム。
  3. 前記光源はランプ光源であり、
    前記照明光制御手段は、前記照明光の前記被検体への照射を可能とする開放位置と前記照明光の前記被検体への照明を遮断する遮断位置との間で移動可能に構成されたシャッタ部材の駆動を制御するシャッタ制御手段であることを特徴とする請求項1又は2に記載の内視鏡システム。
  4. マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、
    前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、
    前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、
    全画素行の露光動作を同時に開始させるとともに同時に終了させるべく前記光源の発光タイミング及び発光強度を制御可能であり、少なくとも各画素行に蓄積された電荷が読み出されている間は前記光源からの発光を停止し、さらに静止画撮像時には動画撮像時よりも前記光源の発光時間を短くして全画素行の露光期間を短くする光源制御手段と、
    全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、を備える内視鏡システムであって、
    前記固体撮像素子の動作モードとして、第3フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第3の同時露光モード、前記第3フィールド周期の1/n倍(但し、nは2以上の自然数)の第4フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第4の同時露光モード、及び各画素行の露光動作及び読み出し動作を画素行毎に時間軸方向に順次ずれたタイミングで行う順次露光モードからなる複数の動作モードを含み、
    前記複数の動作モードを切り替えるモード切替手段を備えたことを特徴とする内視鏡システム。
  5. 前記順次露光モードは、各画素行の露光動作画素行毎に時間軸方向に順次ずれたタイミングで行うとともに、前記第3フィールド周期毎にプログレッシブ走査方式による読み出しを行うことを特徴とする請求項4に記載の内視鏡システム。
  6. 前記光源は半導体光源であることを特徴とする請求項4又は5に記載の内視鏡システム。
  7. マトリクス状に配列された複数の画素を有するCMOS型の固体撮像素子及び被検体を照明する照明光を導光するライトガイドを有する電子内視鏡と、
    前記固体撮像素子の撮像信号から画像データを生成してモニタに出力するプロセッサ装置と、
    前記ライトガイドを介して前記被検体を照明する照明光を発する光源を有する光源装置と、を備えた内視鏡システムであって、
    全画素行の露光動作を同時に開始させるべく全画素行にリセット動作を行わせるリセット信号を供給するものであって、静止画撮像時には動画撮像時よりも前記リセット信号を供給するタイミングを遅くして全画素行の露光期間を短くするリセット信号供給手段と、
    全画素行の露光動作を同時に終了させるべく前記照明光の前記被検体への照射を停止させるものであって、少なくとも各画素行に蓄積された電荷が読み出されている間は前記照明光の前記被検体への照射を停止する照明光制御手段と、
    全画素行の露光動作を同時に開始させるとともに同時に終了させるべく前記光源の発光タイミング及び発光強度を制御可能であり、少なくとも各画素行に蓄積された電荷が読み出されている間は前記光源からの発光を停止し、さらに静止画撮像時には動画撮像時よりも前記光源の発光時間を短くして全画素行の露光期間を短くする光源制御手段と、
    全画素行の露光動作が終了した後、各画素行に蓄積された電荷を画素行毎に時間軸方向に順次ずれたタイミングで読み出す読み出し手段と、
    前記光源の種別を判別する光源判別手段と、を備え、
    前記固体撮像素子の複数の動作モードとして、
    前記リセット信号供給手段及び前記照明光制御手段によって露光制御が行われるモードであって、第1フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第1の同時露光モードと、前記第1フィールド周期の1/n1倍(但し、n1は2以上の自然数)の第2フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第2の同時露光モードと、を含むとともに、
    前記光源制御手段によって露光制御が行われるモードであって、第3フィールド周期毎に前記読み出し手段がプログレッシブ走査方式による読み出しを行う第3の同時露光モードと、前記第3フィールド周期の1/n2倍(但し、n2は2以上の自然数)の第4フィールド周期毎に前記読み出し手段がインターレース走査方式による読み出しを行う第4の同時露光モードと、を含み、
    前記光源判別手段で判別された前記光源の種別に応じて、前記複数の動作モードの中から任意の動作モードに切り替えるモード切替手段を備えたことを特徴とする内視鏡システム。
JP2010078149A 2010-03-30 2010-03-30 内視鏡システム Active JP5616664B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078149A JP5616664B2 (ja) 2010-03-30 2010-03-30 内視鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078149A JP5616664B2 (ja) 2010-03-30 2010-03-30 内視鏡システム

Publications (2)

Publication Number Publication Date
JP2011206336A JP2011206336A (ja) 2011-10-20
JP5616664B2 true JP5616664B2 (ja) 2014-10-29

Family

ID=44938110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078149A Active JP5616664B2 (ja) 2010-03-30 2010-03-30 内視鏡システム

Country Status (1)

Country Link
JP (1) JP5616664B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190455A1 (ko) * 2015-05-22 2016-12-01 세명대학교 산학협력단 코 자침 내시경

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099942A1 (ja) * 2011-12-27 2013-07-04 オリンパスメディカルシステムズ株式会社 撮像装置
WO2013146858A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 撮像装置、及びこれを備える内視鏡装置
JP6006147B2 (ja) * 2012-03-28 2016-10-12 富士フイルム株式会社 撮像装置、及びこれを備える内視鏡装置
CN104135908B (zh) * 2012-03-28 2016-07-06 富士胶片株式会社 摄像装置以及具备其的内窥镜装置
CN103796570B (zh) * 2012-04-26 2016-10-12 奥林巴斯株式会社 摄像系统
EP2856928A4 (en) * 2012-05-25 2016-03-02 Olympus Corp IMAGING SYSTEM
JP5735477B2 (ja) * 2012-12-14 2015-06-17 富士フイルム株式会社 内視鏡装置及びその作動方法
JP5735478B2 (ja) 2012-12-14 2015-06-17 富士フイルム株式会社 内視鏡装置及びその作動方法
JP5735479B2 (ja) 2012-12-14 2015-06-17 富士フイルム株式会社 内視鏡及装置びその作動方法
JP6063733B2 (ja) * 2012-12-25 2017-01-18 Hoya株式会社 内視鏡装置
CN105377111B (zh) * 2013-08-01 2017-08-04 奥林巴斯株式会社 内窥镜系统
EP3117757B1 (en) * 2014-03-12 2020-02-19 FUJIFILM Corporation Endoscope system
JP6293048B2 (ja) * 2014-12-26 2018-03-14 富士フイルム株式会社 内視鏡装置及び内視鏡装置の動作方法
EP3360460A4 (en) * 2015-10-07 2019-04-24 Olympus Corporation IMAGE CAPTURE SYSTEM, CONTROL DEVICE, CONTROL METHOD, CONTROL PROGRAM
WO2018079397A1 (ja) 2016-10-24 2018-05-03 オリンパス株式会社 内視鏡装置
JP6970825B2 (ja) 2018-05-29 2021-11-24 オリンパス株式会社 撮像システム
WO2021117330A1 (ja) * 2019-12-10 2021-06-17 富士フイルム株式会社 内視鏡システム、制御方法、及び制御プログラム
CN111728578B (zh) * 2020-06-09 2023-09-01 重庆金山科技(集团)有限公司 胶囊内镜控制方法及胶囊内镜
WO2022195744A1 (ja) * 2021-03-17 2022-09-22 オリンパスメディカルシステムズ株式会社 制御装置、内視鏡装置及び制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325557B2 (ja) * 2005-01-04 2009-09-02 ソニー株式会社 撮像装置および撮像方法
JP4779702B2 (ja) * 2006-02-27 2011-09-28 日本ビクター株式会社 固体撮像素子
JP2007243731A (ja) * 2006-03-09 2007-09-20 Canon Inc シフトレジスタ、固体撮像素子及び制御方法
JP5226195B2 (ja) * 2006-07-28 2013-07-03 オリンパスメディカルシステムズ株式会社 内視鏡装置及び内視鏡装置の作動方法
JP2009254736A (ja) * 2008-04-21 2009-11-05 Hoya Corp 内視鏡制御ユニットおよび内視鏡システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190455A1 (ko) * 2015-05-22 2016-12-01 세명대학교 산학협력단 코 자침 내시경

Also Published As

Publication number Publication date
JP2011206336A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5616664B2 (ja) 内視鏡システム
JP5435916B2 (ja) 電子内視鏡システム
JP5245022B1 (ja) 撮像装置
US9844312B2 (en) Endoscope system for suppressing decrease of frame rate without changing clock rate of reading
JP5899172B2 (ja) 内視鏡装置
JP5587834B2 (ja) 電子内視鏡装置及び電子内視鏡システム
JP5850630B2 (ja) 内視鏡システム及びその駆動方法
WO2015136963A1 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP2012143319A (ja) 内視鏡システム及びその駆動方法
JP6151850B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP6129731B2 (ja) 内視鏡システム及びその作動方法
JP2013244250A (ja) 電子内視鏡装置及びその撮像画像補正方法
JP6190906B2 (ja) 撮像モジュール、及び内視鏡装置
JP2013172908A (ja) 電子内視鏡装置及びその制御方法
JP5336410B2 (ja) 内視鏡システム及びその作動方法
JP5734060B2 (ja) 内視鏡システム及びその駆動方法
JP2010184046A (ja) 内視鏡、内視鏡駆動方法、並びに内視鏡システム
JP2010184047A (ja) 内視鏡、内視鏡駆動方法、並びに内視鏡システム
WO2019180983A1 (ja) 内視鏡システム、画像処理方法およびプログラム
WO2015146972A1 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP6277138B2 (ja) 内視鏡システム及びその作動方法
JP6227077B2 (ja) 内視鏡システム及びその作動方法
JP6005794B2 (ja) 内視鏡システム及びその駆動方法
JP5156560B2 (ja) 電子内視鏡システム
JP2009213629A (ja) 撮像システム及び内視鏡システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250