JP5611604B2 - Method for manufacturing membrane-electrode structure - Google Patents

Method for manufacturing membrane-electrode structure Download PDF

Info

Publication number
JP5611604B2
JP5611604B2 JP2010017161A JP2010017161A JP5611604B2 JP 5611604 B2 JP5611604 B2 JP 5611604B2 JP 2010017161 A JP2010017161 A JP 2010017161A JP 2010017161 A JP2010017161 A JP 2010017161A JP 5611604 B2 JP5611604 B2 JP 5611604B2
Authority
JP
Japan
Prior art keywords
membrane
polymer electrolyte
electrode structure
electrolyte membrane
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010017161A
Other languages
Japanese (ja)
Other versions
JP2011154969A (en
Inventor
恵子 森
恵子 森
相馬 浩
浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010017161A priority Critical patent/JP5611604B2/en
Publication of JP2011154969A publication Critical patent/JP2011154969A/en
Application granted granted Critical
Publication of JP5611604B2 publication Critical patent/JP5611604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、膜−電極構造体の製造方法に関する。   The present invention relates to a method for producing a membrane-electrode structure.

従来、燃料電池等に用いられる膜−電極構造体として、触媒層とガス拡散層とを備える1対の電極と、両電極の該触媒層により挟持された固体高分子電解質膜とを備えるものが知られている。前記膜−電極構造体は、例えば、前記両電極の触媒層とガス拡散層とが前記高分子電解質膜と同一の大きさに形成されており、該両電極の外周縁が該高分子電解質膜の外周縁に一致するように積層されている。   2. Description of the Related Art Conventionally, a membrane-electrode structure used in a fuel cell or the like includes a pair of electrodes including a catalyst layer and a gas diffusion layer, and a solid polymer electrolyte membrane sandwiched by the catalyst layers of both electrodes. Are known. In the membrane-electrode structure, for example, the catalyst layer and the gas diffusion layer of both electrodes are formed in the same size as the polymer electrolyte membrane, and the outer peripheral edge of both electrodes is the polymer electrolyte membrane. It is laminated | stacked so that it may correspond with the outer periphery.

ところが、前記両電極の外周縁が前記高分子電解質膜の外周縁に一致するように積層されていると、前記各ガス拡散層に供給されたガスが該高分子電解質膜の外周縁から反対側に回り込み、互いに混合するとの問題がある。また、両電極の外周縁同士の位置が近いために、両電極が電気的に短絡する虞があるという問題もある。   However, when the outer peripheral edges of the electrodes are stacked so as to coincide with the outer peripheral edge of the polymer electrolyte membrane, the gas supplied to each gas diffusion layer is opposite to the outer peripheral edge of the polymer electrolyte membrane. There is a problem of wrapping around and mixing each other. Moreover, since the positions of the outer peripheral edges of both electrodes are close, there is a problem that both electrodes may be electrically short-circuited.

前記問題を解決するために、前記高分子電解質膜を両電極よりも大きく形成し、両電極の外周縁が高分子電解質膜2の外周縁よりも内周側に位置するようにして積層した膜−電極構造体が知られている。このような構成を備える膜−電極構造体によれば、各ガス拡散層に供給されたガスを、前記高分子電解質膜の両電極の外周縁から外方に張り出した部分により遮蔽して、その混合を防止することができる。また、前記高分子電解質膜の前記張り出した部分により、両電極の電気的短絡を防止することができる。   In order to solve the above problem, the polymer electrolyte membrane is formed larger than both electrodes, and is laminated such that the outer peripheral edge of both electrodes is located on the inner peripheral side of the outer peripheral edge of the polymer electrolyte membrane 2 -Electrode structures are known. According to the membrane-electrode structure having such a configuration, the gas supplied to each gas diffusion layer is shielded by the portions projecting outward from the outer peripheral edges of both electrodes of the polymer electrolyte membrane. Mixing can be prevented. Further, the overhanging portion of the polymer electrolyte membrane can prevent an electrical short circuit between both electrodes.

しかし、前記膜−電極構造体を用いる燃料電池において、出力を向上するために前記高分子電解質膜の膜厚を薄くすると、該高分子電解質膜の機械的強度が低下し、前記両電極の外周縁から張り出した部分が破損しやすくなる。そこで、本出願人により、前記触媒層が、前記固体高分子電解質膜の外周縁よりも内周側に位置するとともに、少なくとも一方の電極のガス拡散層が、該固体高分子電解質膜を被覆すると共に、外周縁に全周に亘って設けられた接着剤層を介して該固体高分子電解質膜に接着されている膜−電極構造体が提案されている(特許文献1参照)。特許文献1記載の膜−電極構造体では、前記接着剤層により、前記触媒層の外周縁から外方に張り出して延在する高分子電解質膜が保護され、破損を防止することができると期待される。   However, in a fuel cell using the membrane-electrode structure, if the thickness of the polymer electrolyte membrane is reduced in order to improve the output, the mechanical strength of the polymer electrolyte membrane is reduced, and the outside of both electrodes The part that protrudes from the peripheral edge tends to be damaged. Therefore, the present applicant has positioned the catalyst layer on the inner peripheral side of the outer peripheral edge of the solid polymer electrolyte membrane, and the gas diffusion layer of at least one electrode covers the solid polymer electrolyte membrane. At the same time, there has been proposed a membrane-electrode structure that is bonded to the solid polymer electrolyte membrane via an adhesive layer provided on the entire periphery of the outer periphery (see Patent Document 1). In the membrane-electrode structure described in Patent Document 1, the adhesive layer is expected to protect the polymer electrolyte membrane extending outward from the outer peripheral edge of the catalyst layer and prevent damage. Is done.

特許文献1記載の膜−電極構造体は、前記1対の電極の触媒層により挟持された前記固体高分子電解質膜をホットプレスし、前記各電極と前記固体高分子電解質膜とを一体化することにより製造される。   In the membrane-electrode structure described in Patent Document 1, the solid polymer electrolyte membrane sandwiched between the catalyst layers of the pair of electrodes is hot-pressed to integrate the electrodes and the solid polymer electrolyte membrane. It is manufactured by.

ところで、燃料電池は、多数の膜−電極構造体を互いにセパレータを介して積層することにより構成される。このとき、各膜−電極構造体の厚さにバラツキがあると、前記燃料電池において所定の性能が得られないことがある。そこで、前記ホットプレスは、前記1対の電極により挟持された前記固体高分子電解質膜を、1.5〜4.5MPa程度の圧力で一挙動で押圧することにより、形成される膜−電極構造体を塑性変形させて所定の厚さとすることが行われている。   By the way, the fuel cell is configured by laminating a large number of membrane-electrode structures with separators interposed therebetween. At this time, if the thickness of each membrane-electrode structure varies, a predetermined performance may not be obtained in the fuel cell. Therefore, the hot press is a membrane-electrode structure formed by pressing the solid polymer electrolyte membrane sandwiched between the pair of electrodes with a pressure of about 1.5 to 4.5 MPa. The body is plastically deformed to a predetermined thickness.

特開2003−68323号公報JP 2003-68323 A

しかしながら、前記1対の電極により挟持された前記固体高分子電解質膜を、前記範囲の圧力で一挙動で押圧すると、前記接着剤層を構成する接着剤が前記ガス拡散層に過度に浸透し、該固体高分子電解質膜と該ガス拡散層との間で十分な接着強度が得られないという不都合がある。   However, when the solid polymer electrolyte membrane sandwiched between the pair of electrodes is pressed with one behavior at a pressure in the range, the adhesive constituting the adhesive layer excessively penetrates the gas diffusion layer, There is an inconvenience that sufficient adhesive strength cannot be obtained between the solid polymer electrolyte membrane and the gas diffusion layer.

本発明は、かかる不都合を解消して、触媒層の外周縁から外方に延在する固体高分子電解質膜の破損を防止でき、膜−電極構造体を所定の厚さに形成することができると共に、固体高分子電解質膜とガス拡散層との間で優れた接着強度を得ることができる製造方法を提供することを目的とする。   The present invention eliminates such inconvenience, can prevent damage to the solid polymer electrolyte membrane extending outward from the outer peripheral edge of the catalyst layer, and can form a membrane-electrode structure with a predetermined thickness. In addition, an object is to provide a production method capable of obtaining excellent adhesive strength between the solid polymer electrolyte membrane and the gas diffusion layer.

かかる目的を達成するために、本発明は、触媒層とガス拡散層を備える1対の電極と、両電極の該触媒層により挟持された固体高分子電解質膜とを備える膜−電極構造体であって、前記両電極の触媒層は、該固体高分子電解質膜の外周縁よりも内周側に位置し、少なくとも一方の電極のガス拡散層は、該固体高分子電解質膜を被覆すると共に、外周縁に全周に亘って設けられた接着剤層を介して該固体高分子電解質膜に接着されている膜−電極構造体の製造方法において、前記1対の電極により挟持された前記固体高分子電解質膜を押圧して前記接着剤層を硬化させて膜−電極構造体を形成する第1の押圧工程と、前記第1の押圧工程よりも大きな圧力で前記膜−電極構造体を押圧して該膜−電極構造体を所定の厚さに成形する第2の押圧工程とを備え、前記第2の押圧工程は、前記第1の押圧工程に続いて直ちに行うことを特徴とする。 In order to achieve such an object, the present invention provides a membrane-electrode structure comprising a pair of electrodes comprising a catalyst layer and a gas diffusion layer, and a solid polymer electrolyte membrane sandwiched between the catalyst layers of both electrodes. The catalyst layers of both electrodes are located on the inner peripheral side of the outer peripheral edge of the solid polymer electrolyte membrane, and the gas diffusion layer of at least one electrode covers the solid polymer electrolyte membrane, In the method of manufacturing a membrane-electrode structure bonded to the solid polymer electrolyte membrane via an adhesive layer provided on the entire outer periphery, the solid height sandwiched between the pair of electrodes. A first pressing step of pressing a molecular electrolyte membrane to cure the adhesive layer to form a membrane-electrode structure; and pressing the membrane-electrode structure with a pressure greater than that of the first pressing step. The second pressing process for forming the membrane-electrode structure to a predetermined thickness With the door, the second pressing step, and carrying out immediately following the first pressing step.

本発明の製造方法によれば、1対の電極により挟持された固体高分子電解質膜を押圧して前記各電極と前記固体高分子電解質膜とを一体化する際に、まず、第1の押圧工程で前記接着剤層を硬化させる。そして、第1の押圧工程に続いて直ちに、第2の押圧工程で、前記第1の押圧工程よりも大きな圧力で前記膜−電極構造体を押圧して該膜−電極構造体を所定の厚さに成形する。 According to the manufacturing method of the present invention, when the solid polymer electrolyte membrane sandwiched between the pair of electrodes is pressed to integrate the electrodes and the solid polymer electrolyte membrane, first, the first press The adhesive layer is cured in the process. Then, immediately after the first pressing step, in the second pressing step, the membrane-electrode structure is pressed at a predetermined thickness by pressing the membrane-electrode structure with a pressure larger than that of the first pressing step. Molded to the size.

従って、本発明の製造方法によれば、前記接着剤層を形成する接着剤が前記ガス拡散層に過度に浸透することを防止して、前記固体高分子電解質膜と該ガス拡散層との間で優れた接着強度を得ることができる。また、この結果、本発明の製造方法によれば、触媒層の外周縁から外方に延在する前記固体高分子電解質膜を前記ガス拡散層により保護することができ、該固体高分子電解質膜の破損を防止することができる。   Therefore, according to the manufacturing method of the present invention, the adhesive forming the adhesive layer is prevented from excessively penetrating into the gas diffusion layer, and between the solid polymer electrolyte membrane and the gas diffusion layer. Excellent adhesion strength can be obtained. As a result, according to the production method of the present invention, the solid polymer electrolyte membrane extending outward from the outer periphery of the catalyst layer can be protected by the gas diffusion layer, and the solid polymer electrolyte membrane can be protected. Can be prevented from being damaged.

さらに、本発明の製造方法によれば、前記接着剤層が硬化して前記固体高分子電解質膜と前記ガス拡散層とが接着された後、第1の押圧工程よりも大きな圧力で前記膜−電極構造体を押圧することにより、該膜−電極構造体を塑性変形させて確実に所定の厚さに成形することができる。   Furthermore, according to the manufacturing method of the present invention, after the adhesive layer is cured and the solid polymer electrolyte membrane and the gas diffusion layer are bonded, the membrane- By pressing the electrode structure, the membrane-electrode structure can be plastically deformed and reliably formed into a predetermined thickness.

本発明の製造方法において、前記第1の押圧工程は、0.15〜0.75MPaの範囲の圧力で行うと共に、前記第2の押圧工程は、1.5〜4.5MPaの範囲の圧力で行うことが好ましい。   In the production method of the present invention, the first pressing step is performed at a pressure in the range of 0.15 to 0.75 MPa, and the second pressing step is performed at a pressure in the range of 1.5 to 4.5 MPa. Preferably it is done.

前記第1の押圧工程における圧力が0.15MPa未満では、前記接着剤層を硬化させることが難しくなることがある。また、前記第1の押圧工程における圧力が0.75MPaを超えると、前記接着剤層を形成する接着剤が前記ガス拡散層に浸透しやすくなる。   If the pressure in the first pressing step is less than 0.15 MPa, it may be difficult to cure the adhesive layer. Moreover, when the pressure in the first pressing step exceeds 0.75 MPa, the adhesive forming the adhesive layer easily penetrates into the gas diffusion layer.

一方、前記第2の押圧工程における圧力が1.5MPa未満では、前記第1の押圧工程で形成された膜−電極構造体を塑性変形させるに至らないことがある。また、前記第2の押圧工程における圧力が4.5MPaを超えると、前記膜−電極構造体が過度に塑性変形することがある。   On the other hand, if the pressure in the second pressing step is less than 1.5 MPa, the membrane-electrode structure formed in the first pressing step may not be plastically deformed. Further, when the pressure in the second pressing step exceeds 4.5 MPa, the membrane-electrode structure may be excessively plastically deformed.

本発明の製造方法により得られる膜−電極構造体の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the membrane-electrode structure obtained by the manufacturing method of this invention. 図1に示す膜−電極構造体に用いる電極の構成を示す平面図。The top view which shows the structure of the electrode used for the membrane-electrode structure shown in FIG. 図1に示す膜−電極構造体の製造方法を示す説明的断面図。Explanatory sectional drawing which shows the manufacturing method of the membrane-electrode structure shown in FIG.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の製造方法は、例えば、図1に示す構成を備える膜−電極構造体1の製造に用いられる。膜−電極構造体1は、高分子電解質膜2と、高分子電解質膜2を挟持する1対の電極3,4とを備えている。電極3,4はそれぞれ、触媒層5,6と、ガス拡散層7,8とを備えており、高分子電解質膜2は触媒層5,6により挟持されている。   The manufacturing method of this embodiment is used, for example, for manufacturing the membrane-electrode structure 1 having the configuration shown in FIG. The membrane-electrode structure 1 includes a polymer electrolyte membrane 2 and a pair of electrodes 3 and 4 that sandwich the polymer electrolyte membrane 2. Each of the electrodes 3 and 4 includes catalyst layers 5 and 6 and gas diffusion layers 7 and 8, and the polymer electrolyte membrane 2 is sandwiched between the catalyst layers 5 and 6.

膜−電極構造体1において、一方の電極3は、固体高分子電解質膜2の外周縁よりも内周側に位置しており、触媒層5とガス拡散層7とは同一の大きさを備えている。これに対して、他方の電極4は、触媒層6は固体高分子電解質膜2の外周縁よりも内周側に位置しているが、ガス拡散層8は固体高分子電解質膜2と同一の大きさを備えており、外周縁に設けられた接着剤層9を介して固体高分子電解質膜2に接着されている。接着剤層9は、ガス拡散層8の外周縁の全周に亘って形成されており、内周縁が触媒層6の外周縁に接している。   In the membrane-electrode structure 1, one electrode 3 is located on the inner peripheral side of the outer peripheral edge of the solid polymer electrolyte membrane 2, and the catalyst layer 5 and the gas diffusion layer 7 have the same size. ing. On the other hand, in the other electrode 4, the catalyst layer 6 is located on the inner peripheral side with respect to the outer peripheral edge of the solid polymer electrolyte membrane 2, but the gas diffusion layer 8 is the same as the solid polymer electrolyte membrane 2. It has a size and is adhered to the solid polymer electrolyte membrane 2 via an adhesive layer 9 provided on the outer peripheral edge. The adhesive layer 9 is formed over the entire outer periphery of the gas diffusion layer 8, and the inner periphery is in contact with the outer periphery of the catalyst layer 6.

前記構成を備える膜−電極構造体1によれば、固体高分子電解質膜2が触媒層5,6の外周縁から外方に延在しているので、ガス拡散層7,8に供給されるガスが相互に混合することを防止することができる。また、電極3,4が電気的に短絡することを防止することができる。さらに、固体高分子電解質膜2は接着剤層9を介してガス拡散層8に接着されてガス拡散層8に支持されているので、破損することを防止することができる。   According to the membrane-electrode structure 1 having the above-described configuration, the solid polymer electrolyte membrane 2 extends outward from the outer peripheral edges of the catalyst layers 5 and 6, and thus is supplied to the gas diffusion layers 7 and 8. Gases can be prevented from mixing with each other. Moreover, it is possible to prevent the electrodes 3 and 4 from being electrically short-circuited. Furthermore, since the solid polymer electrolyte membrane 2 is bonded to the gas diffusion layer 8 via the adhesive layer 9 and supported by the gas diffusion layer 8, it can be prevented from being damaged.

尚、膜−電極構造体1において、電極4の触媒層6は、電極3の触媒層5よりも小さく、触媒層5の外周縁よりも内周側に位置している。このようにすることにより、触媒層5,6の端縁が固体高分子電解質膜2に対して異なる位置に配されることとなり、触媒層5,6の端縁により固体高分子電解質膜2にかかる応力を低減することができる。   In the membrane-electrode structure 1, the catalyst layer 6 of the electrode 4 is smaller than the catalyst layer 5 of the electrode 3 and is located on the inner peripheral side of the outer peripheral edge of the catalyst layer 5. By doing so, the edges of the catalyst layers 5, 6 are arranged at different positions with respect to the solid polymer electrolyte membrane 2, and the solid polymer electrolyte membrane 2 is formed by the edges of the catalyst layers 5, 6. Such stress can be reduced.

次に、膜−電極構造体1の製造方法について説明する。   Next, a method for manufacturing the membrane-electrode structure 1 will be described.

まず、固体高分子電解質膜2を準備する。固体高分子電解質膜2としては、パーフルオロスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))、スルホン化ポリアリーレン化合物等の高分子電解質からなる膜を用いることができる。固体高分子電解質膜2は、常法により、例えば前記高分子電解質の有機溶媒溶液からキャスト法等により製膜することができる。   First, the solid polymer electrolyte membrane 2 is prepared. As the solid polymer electrolyte membrane 2, a membrane made of a polymer electrolyte such as a perfluorosulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) or a sulfonated polyarylene compound can be used. The solid polymer electrolyte membrane 2 can be formed by a conventional method, for example, a cast method from an organic solvent solution of the polymer electrolyte.

次に、電極3,4を作製する。電極3,4は、カーボンクロス、カーボンペーパー等の多孔質体からなるガス拡散層7,8上に、触媒層5,6を積層することにより形成される。触媒層5,6は、触媒ペーストをガス拡散層7,8上に塗布または蒸着することにより形成することができる。前記触媒ペーストは、例えば、白金粒子をカーボンブラックに担持させた触媒粒子と、イオン導伝性バインダーとからなる。   Next, the electrodes 3 and 4 are produced. The electrodes 3 and 4 are formed by laminating catalyst layers 5 and 6 on gas diffusion layers 7 and 8 made of a porous body such as carbon cloth or carbon paper. The catalyst layers 5 and 6 can be formed by applying or depositing a catalyst paste on the gas diffusion layers 7 and 8. The catalyst paste includes, for example, catalyst particles in which platinum particles are supported on carbon black, and an ion conductive binder.

ここで、電極3は、図2(a)に示すように、固体高分子電解質膜2の外周縁よりも内周側に納まる大きさのガス拡散層7上の全面に前記触媒ペーストを塗布または蒸着することにより触媒層5を形成する。一方、電極4は、図2(b)に示すように、固体高分子電解質膜2と同一の大きさのガス拡散層8上に、ガス拡散層8の外周縁よりも内周側に納まる大きさに前記触媒ペーストを塗布または蒸着することにより触媒層6を形成する。   Here, as shown in FIG. 2 (a), the electrode 3 is coated with the catalyst paste on the entire surface of the gas diffusion layer 7 having a size that fits on the inner peripheral side of the outer peripheral edge of the solid polymer electrolyte membrane 2. The catalyst layer 5 is formed by vapor deposition. On the other hand, as shown in FIG. 2B, the electrode 4 is accommodated on the gas diffusion layer 8 having the same size as that of the solid polymer electrolyte membrane 2 so as to be accommodated on the inner peripheral side from the outer peripheral edge of the gas diffusion layer 8. Further, the catalyst layer 6 is formed by applying or vapor-depositing the catalyst paste.

また、電極4は、その外周縁の全周に亘って接着剤を塗布し、触媒層6に接して接着剤層9を形成する。接着剤層9を形成する前記接着剤としては、例えば、エポキシ樹脂系接着剤、オレフィン樹脂系接着剤、アクリル樹脂系接着剤、ウレタン樹脂系接着剤、フッ素樹脂系接着剤等の接着剤を用いることができる。   In addition, the electrode 4 is coated with an adhesive over the entire circumference of the outer peripheral edge thereof, and forms an adhesive layer 9 in contact with the catalyst layer 6. Examples of the adhesive that forms the adhesive layer 9 include adhesives such as epoxy resin adhesives, olefin resin adhesives, acrylic resin adhesives, urethane resin adhesives, and fluororesin adhesives. be able to.

次に、図3に示すように、電極3,4を触媒層5,6の側で固体高分子電解質膜2に接するように、固体高分子電解質膜2の表裏両面に積層する。   Next, as shown in FIG. 3, the electrodes 3 and 4 are laminated on the front and back surfaces of the solid polymer electrolyte membrane 2 so as to be in contact with the solid polymer electrolyte membrane 2 on the catalyst layers 5 and 6 side.

次に、電極3,4が積層された固体高分子電解質膜2に対し、第1のホットプレス処理を施すことにより、図1に示す構成を備える膜−電極構造体1を形成する。前記第1のホットプレス処理は、例えば、100〜200℃の範囲の温度、0.15〜0.75MPaの範囲の圧力、60秒以内の時間で行う。この結果、触媒層5,6が固体高分子電解質膜2に熱圧着されると共に、接着剤層9が硬化して電極4側のガス拡散層8を固体高分子電解質膜2に確実に接着する。   Next, a first hot press process is performed on the solid polymer electrolyte membrane 2 on which the electrodes 3 and 4 are laminated, thereby forming a membrane-electrode structure 1 having the configuration shown in FIG. The first hot press treatment is performed, for example, at a temperature in the range of 100 to 200 ° C., a pressure in the range of 0.15 to 0.75 MPa, and a time within 60 seconds. As a result, the catalyst layers 5 and 6 are thermocompression bonded to the solid polymer electrolyte membrane 2 and the adhesive layer 9 is cured to securely bond the gas diffusion layer 8 on the electrode 4 side to the solid polymer electrolyte membrane 2. .

次に、前記第1のホットプレス処理により形成された膜−電極構造体1に対し、第2のホットプレス処理を施すことにより、膜−電極構造体1を所定の厚さに成形する。前記第2のホットプレス処理は、例えば、100〜200℃の範囲の温度、1.5〜4.5MPaの範囲の圧力、50〜500秒以内の時間で行う。この結果、膜−電極構造体1を塑性変形せしめて、所定の厚さに成形することができる。また、このとき、接着剤層9は前記第1のホットプレス処理により既に硬化しているので、前記接着剤がガス拡散層8に浸透することを防止することができる。   Next, the membrane-electrode structure 1 formed by the first hot press process is subjected to a second hot press process to form the film-electrode structure 1 to a predetermined thickness. The second hot press treatment is performed, for example, at a temperature in the range of 100 to 200 ° C., a pressure in the range of 1.5 to 4.5 MPa, and a time within 50 to 500 seconds. As a result, the membrane-electrode structure 1 can be plastically deformed and formed to a predetermined thickness. At this time, since the adhesive layer 9 has already been cured by the first hot press treatment, it is possible to prevent the adhesive from penetrating into the gas diffusion layer 8.

前記第2のホットプレス処理は、第1のホットプレス処理に続いて直ちに行うことにより、固体高分子電解質膜2、触媒層5,6、ガス拡散層7,8の相互の位置のずれを防止することができる。また、前記第1のホットプレス処理の後、直ちに前記第2のホットプレス処理を行うことにより、サイクルタイムを短縮するという効果も得ることができる。 The second hot press process is performed immediately after the first hot press process to prevent misalignment of the solid polymer electrolyte membrane 2, the catalyst layers 5, 6, and the gas diffusion layers 7, 8. can do. In addition, an effect of shortening the cycle time can be obtained by performing the second hot press process immediately after the first hot press process.

本実施形態の方法では、触媒層5,6はガス拡散層7,8に前記触媒ペーストを塗布または蒸着することにより形成しているが、他のフィルム等の基体上に該触媒ペーストを塗布して形成した触媒層5,6を固体高分子電解質膜2に熱転写するようにしてもよい。この場合には、触媒層5,6が転写された固体高分子電解質膜2に、ガス拡散層7と、接着剤層9が形成されたガス拡散層8とを積層し、前記第1及び第2のホットプレス処理を施せばよい。   In the method of the present embodiment, the catalyst layers 5 and 6 are formed by applying or vapor-depositing the catalyst paste on the gas diffusion layers 7 and 8, but the catalyst paste is applied on a substrate such as another film. The catalyst layers 5 and 6 thus formed may be thermally transferred to the solid polymer electrolyte membrane 2. In this case, the gas diffusion layer 7 and the gas diffusion layer 8 on which the adhesive layer 9 is formed are laminated on the solid polymer electrolyte membrane 2 to which the catalyst layers 5 and 6 are transferred, and the first and the first The hot pressing process 2 may be performed.

次に、本発明の実施例及び比較例を示す。   Next, examples and comparative examples of the present invention are shown.

本実施例では、接着剤層9を形成する接着剤としてエポキシ樹脂系接着剤(スリーボンド株式会社製、商品名:TB2204)を用いて、ガス拡散層8を作製した。   In this example, the gas diffusion layer 8 was produced using an epoxy resin adhesive (trade name: TB2204, manufactured by Three Bond Co., Ltd.) as an adhesive for forming the adhesive layer 9.

次に、電極3,4が積層された固体高分子電解質膜2に対し、第1のホットプレス処理を施すことにより、図1に示す構成を備える膜−電極構造体1を形成した。前記第1のホットプレス処理は、160℃の温度下、0.3MPaの圧力で、30秒間行った。   Next, the solid polymer electrolyte membrane 2 on which the electrodes 3 and 4 were laminated was subjected to a first hot press treatment to form a membrane-electrode structure 1 having the configuration shown in FIG. The first hot press treatment was performed at a pressure of 0.3 MPa at a temperature of 160 ° C. for 30 seconds.

次に、前記第1のホットプレス処理により形成された膜−電極構造体1に対し、第2のホットプレス処理を施すことにより、膜−電極構造体1を所定の厚さに成形した。前記第2のホットプレス処理は、160℃の温度下、3MPaの圧力で、4分30秒間行った。   Next, the membrane-electrode structure 1 formed by the first hot press process was subjected to a second hot press process to form the film-electrode structure 1 to a predetermined thickness. The second hot press treatment was performed at a temperature of 160 ° C. and a pressure of 3 MPa for 4 minutes and 30 seconds.

この結果、所定の厚さを備えると共に、電極4側のガス拡散層8が固体高分子電解質膜2に確実に接着されている膜−電極構造体1を得ることができた。
〔比較例〕
本比較例では、電極3,4が積層された固体高分子電解質膜2に対し、前記実施例における第1のホットプレス処理を行うことなく、第2のホットプレス処理のみを5分間行ったこと以外は、前記実施例と全く同一にして膜−電極構造体1を所定の厚さに成形した。
As a result, it was possible to obtain a membrane-electrode structure 1 having a predetermined thickness and having the gas diffusion layer 8 on the electrode 4 side securely bonded to the solid polymer electrolyte membrane 2.
[Comparative Example]
In this comparative example, only the second hot press process was performed for 5 minutes on the solid polymer electrolyte membrane 2 on which the electrodes 3 and 4 were laminated without performing the first hot press process in the above example. Except for the above, the membrane-electrode structure 1 was molded to a predetermined thickness in exactly the same manner as in the previous example.

この結果、所定の厚さを備える膜−電極構造体1を得ることができたが、該膜−電極構造体1では、接着剤層9を形成している接着剤が電極4側のガス拡散層8に過度に浸透していた。このため、前記膜−電極構造体1では、電極4側のガス拡散層8と固体高分子電解質膜2との間で、十分な接着力を得ることができなかった。   As a result, the membrane-electrode structure 1 having a predetermined thickness could be obtained. In the membrane-electrode structure 1, the adhesive forming the adhesive layer 9 was diffused on the electrode 4 side. Layer 8 was penetrating excessively. For this reason, in the membrane-electrode structure 1, sufficient adhesive force could not be obtained between the gas diffusion layer 8 on the electrode 4 side and the solid polymer electrolyte membrane 2.

1…膜−電極構造体、 2…固体高分子電解質膜、 3,4…電極、 5,6…触媒層、 7,8…ガス拡散層、 9…接着剤層。   DESCRIPTION OF SYMBOLS 1 ... Membrane-electrode structure, 2 ... Solid polymer electrolyte membrane, 3, 4 ... Electrode, 5, 6 ... Catalyst layer, 7, 8 ... Gas diffusion layer, 9 ... Adhesive layer.

Claims (2)

触媒層とガス拡散層を備える1対の電極と、両電極の該触媒層により挟持された固体高分子電解質膜とを備える膜−電極構造体であって、前記両電極の触媒層は、該固体高分子電解質膜の外周縁よりも内周側に位置し、少なくとも一方の電極のガス拡散層は、該固体高分子電解質膜を被覆すると共に、外周縁に全周に亘って設けられた接着剤層を介して該固体高分子電解質膜に接着されている膜−電極構造体の製造方法において、
前記1対の電極により挟持された前記固体高分子電解質膜を押圧して前記接着剤層を硬化させて膜−電極構造体を形成する第1の押圧工程と、
前記第1の押圧工程よりも大きな圧力で前記膜−電極構造体を押圧して該膜−電極構造体を所定の厚さに成形する第2の押圧工程とを備え、
前記第2の押圧工程は、前記第1の押圧工程に続いて直ちに行うことを特徴とする膜−電極構造体の製造方法。
A membrane-electrode structure comprising a pair of electrodes comprising a catalyst layer and a gas diffusion layer, and a solid polymer electrolyte membrane sandwiched between the catalyst layers of both electrodes, wherein the catalyst layers of both electrodes are The gas diffusion layer of at least one electrode located on the inner peripheral side of the outer peripheral edge of the solid polymer electrolyte membrane covers the solid polymer electrolyte membrane, and is provided on the outer peripheral edge over the entire periphery In the method for producing a membrane-electrode structure bonded to the solid polymer electrolyte membrane via an agent layer,
A first pressing step of pressing the solid polymer electrolyte membrane sandwiched between the pair of electrodes to cure the adhesive layer to form a membrane-electrode structure;
A second pressing step of pressing the membrane-electrode structure with a pressure larger than that of the first pressing step to form the membrane-electrode structure to a predetermined thickness;
The method of manufacturing a membrane-electrode structure, wherein the second pressing step is performed immediately after the first pressing step.
請求項1記載の膜−電極構造体の製造方法において、前記第1の押圧工程は、0.15〜0.75MPaの範囲の圧力で行うと共に、前記第2の押圧工程は、1.5〜4.5MPaの範囲の圧力で行うことを特徴とする膜−電極構造体の製造方法。   2. The method of manufacturing a membrane-electrode structure according to claim 1, wherein the first pressing step is performed at a pressure in a range of 0.15 to 0.75 MPa, and the second pressing step is 1.5 to 0.75. The manufacturing method of the membrane-electrode structure characterized by performing by the pressure of the range of 4.5 Mpa.
JP2010017161A 2010-01-28 2010-01-28 Method for manufacturing membrane-electrode structure Expired - Fee Related JP5611604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017161A JP5611604B2 (en) 2010-01-28 2010-01-28 Method for manufacturing membrane-electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017161A JP5611604B2 (en) 2010-01-28 2010-01-28 Method for manufacturing membrane-electrode structure

Publications (2)

Publication Number Publication Date
JP2011154969A JP2011154969A (en) 2011-08-11
JP5611604B2 true JP5611604B2 (en) 2014-10-22

Family

ID=44540780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017161A Expired - Fee Related JP5611604B2 (en) 2010-01-28 2010-01-28 Method for manufacturing membrane-electrode structure

Country Status (1)

Country Link
JP (1) JP5611604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141578B2 (en) 2016-03-18 2018-11-27 Honda Motor Co., Ltd. Method for producing fuel cell membrane electrode assembly
US10147962B2 (en) 2016-03-18 2018-12-04 Honda Motor Co., Ltd. Method for producing fuel cell membrane electrode assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6063284B2 (en) * 2013-02-14 2017-01-18 本田技研工業株式会社 Manufacturing method of electrolyte membrane / electrode structure for fuel cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525944B2 (en) * 1994-01-28 2004-05-10 旭硝子株式会社 Method for producing electrode / membrane assembly for polymer electrolyte fuel cell
JPH11224679A (en) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd Solid high polymer fuel cell and its manufacture
JP2000294258A (en) * 1999-04-02 2000-10-20 Asahi Glass Co Ltd Manufacture of solid high polymer fuel cell
JP4818546B2 (en) * 2001-08-29 2011-11-16 本田技研工業株式会社 Membrane / electrode structure
CA2428131C (en) * 2001-09-11 2010-11-16 Sekisui Chemical Co., Ltd. Membrane-electrode assembly, method of manufacturing the same, and polymer electrolyte fuel cell using the same
JP4359441B2 (en) * 2002-03-26 2009-11-04 パナソニック株式会社 Polymer electrolyte fuel cell
JP4028352B2 (en) * 2002-10-25 2007-12-26 本田技研工業株式会社 Electrolyte membrane / electrode structure
JP4421261B2 (en) * 2002-12-17 2010-02-24 本田技研工業株式会社 Method for manufacturing membrane-electrode structure
JP4647902B2 (en) * 2002-11-29 2011-03-09 本田技研工業株式会社 Method for manufacturing membrane-electrode structure
JP4304101B2 (en) * 2003-12-24 2009-07-29 本田技研工業株式会社 Electrolyte membrane / electrode structure and fuel cell
JP4846204B2 (en) * 2004-03-24 2011-12-28 Jsr株式会社 Method for producing electrolyte membrane-electrode assembly
US20060078781A1 (en) * 2004-10-08 2006-04-13 3M Innovative Properties Company Curable subgasket for a membrane electrode assembly
JP5165947B2 (en) * 2007-07-17 2013-03-21 株式会社東芝 Membrane / electrode assembly and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141578B2 (en) 2016-03-18 2018-11-27 Honda Motor Co., Ltd. Method for producing fuel cell membrane electrode assembly
US10147962B2 (en) 2016-03-18 2018-12-04 Honda Motor Co., Ltd. Method for producing fuel cell membrane electrode assembly

Also Published As

Publication number Publication date
JP2011154969A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
KR101345826B1 (en) Membrane electrode joint product and solid polymer electrolyte fuel battery
JP6079741B2 (en) Method for producing a single fuel cell
JP5673684B2 (en) Membrane electrode assembly, fuel cell using the same, and method for producing membrane electrode assembly
WO2008016185A1 (en) Membrane electrode assembly, method for producing the same, and solid polymer fuel cell using the same
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2007141674A (en) Manufacturing method of membrane-electrode assembly and method of assembling fuel cell
JP5611604B2 (en) Method for manufacturing membrane-electrode structure
JP2010123509A (en) Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JPH0878028A (en) Solid polymer electrolyte fuel cell and its manufacture
WO2008029818A1 (en) Electrolyte membrane, membrane electrode assembly, and methods for manufacturing the same
KR20180071618A (en) Membrane electrode assembly for fuel cell and method for manufacturing the same
JP5836060B2 (en) Manufacturing method of fuel cell
JP5273212B2 (en) Manufacturing method of electrolyte membrane-electrode assembly with gasket for polymer electrolyte fuel cell
JP5825241B2 (en) Fuel cell and fuel cell manufacturing method
JP5765307B2 (en) Manufacturing method of fuel cell
JP2011192655A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and its manufacturing method
JP5907054B2 (en) Manufacturing method of fuel cell
JP2008269909A (en) Manufacturing method of membrane electrode assembly used for fuel cell, and membrane electrode assembly
KR102512283B1 (en) Membrane-electrode assembly and preparation method thereof
JP5993987B2 (en) Manufacturing method of fuel cell
JP6133094B2 (en) Manufacturing method of fuel cell
JP2017157358A (en) Method for fuel battery cell production
JP2008218368A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees