JP2010123509A - Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell - Google Patents

Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell Download PDF

Info

Publication number
JP2010123509A
JP2010123509A JP2008298300A JP2008298300A JP2010123509A JP 2010123509 A JP2010123509 A JP 2010123509A JP 2008298300 A JP2008298300 A JP 2008298300A JP 2008298300 A JP2008298300 A JP 2008298300A JP 2010123509 A JP2010123509 A JP 2010123509A
Authority
JP
Japan
Prior art keywords
frame
gas diffusion
diffusion layer
reinforcing film
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008298300A
Other languages
Japanese (ja)
Inventor
Koji Tominaga
幸史 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008298300A priority Critical patent/JP2010123509A/en
Publication of JP2010123509A publication Critical patent/JP2010123509A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the formation of an integrated structure of a catalyst layer, reinforcing film, and gas diffusion layer without positioning in manufacturing a membrane-electrode-gas diffusion layer assembly for a fuel cell. <P>SOLUTION: The membrane-electrode-gas diffusion layer assembly 20 for the fuel cell includes an electrolyte film 1, a frame-shaped reinforcing film 10 having an adhesive layer 3 with a release paper 4 on one side and reinforcing a peripheral edge part of the electrolyte film 1, and the gas diffusion layer 6 formed on the electrolyte film 1 and frame-shaped reinforcing film 10. In manufacturing the assembly 20, a rear surface of the above one side of the frame-shaped reinforcing film 10 is bonded to the electrolyte film 1, catalyst ink 5 is coated from an opening 11 of the frame-shaped reinforcing film 10 on the electrolyte film 1, the release paper 4 is peeled from the adhesive layer 3, and the gas diffusion layer 6 is adhered to the adhesive layer 3, from which the release paper 4 of the frame-shaped reinforcing film 10 is peeled, to temporarily bond. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池に用いられる膜(電解質膜を指す。以下同様)-電極-ガス拡散層接合体[Membrane-Electrode-Gas Diffusion Layer(GDL) Assembly;「MEGA」と略す。] の製造方法に関する。さらに詳細には、電解質膜の周縁部を補強するための補強フィルムを含む、MEGAの製造方法に関する。   Membrane-Electrode-Gas Diffusion Layer (GDL) Assembly; abbreviated as “MEGA”. ] Related to the manufacturing method. More specifically, the present invention relates to a MEGA manufacturing method including a reinforcing film for reinforcing the peripheral edge of an electrolyte membrane.

図3(a)、(b)に示されるように、主に、燃料電池に用いられるMEGA25の長寿命化のために特に電解質膜1の周縁部を補強する用途および水素又は空気/酸素の電解質膜1へのガス侵入を防止するためのガスケット用途に、電解質膜1の周縁部に額縁状の補強フィルム22、22を形成することが知られている。
加えて、燃料電池の発電性能を維持するためには、アノード側とカソード側との間のクロスリークの防止が必要であり、そのための一手段として、MEGA25を製造する際に、電解質膜1の面寸法を、電解質膜1の上に順に形成される電極触媒層5、5、ガス拡散層6、6の面寸法よりも大きくすることも知られている。
As shown in FIGS. 3 (a) and 3 (b), the use for reinforcing the peripheral portion of the electrolyte membrane 1 and the electrolyte of hydrogen or air / oxygen mainly for the purpose of extending the life of the MEGA 25 used in the fuel cell. It is known that frame-shaped reinforcing films 22 and 22 are formed on the peripheral edge of the electrolyte membrane 1 for a gasket application for preventing gas intrusion into the membrane 1.
In addition, in order to maintain the power generation performance of the fuel cell, it is necessary to prevent cross leakage between the anode side and the cathode side. As one means for this, when manufacturing the MEGA 25, the electrolyte membrane 1 It is also known that the surface dimensions are made larger than the surface dimensions of the electrode catalyst layers 5 and 5 and the gas diffusion layers 6 and 6 that are sequentially formed on the electrolyte membrane 1.

以下、さらに、特許文献1を用いて、MEGAの構成について説明を加える(この段落及び次の段落の参照番号は特許文献1で使用されているものである。)。特許文献1によれば、2枚の額縁状の補強フィルム22、22と、これら補強フィルム22、22の内周寸法より大きい外周寸法を有する電解質膜20を準備する。そして、電解質膜20の周縁部に補強フィルム22、22の内周縁部を重ねるようにして両面から挟持し、2枚の額縁状の補強フィルム22、22同士が粘着性フィルム(接着フィルム)50により接合されて、MEGA60を作製する。
特開2007−250249号公報
Hereinafter, the configuration of the MEGA will be further described with reference to Patent Document 1 (reference numbers in this paragraph and the next paragraph are those used in Patent Document 1). According to Patent Document 1, two frame-shaped reinforcing films 22 and 22 and an electrolyte membrane 20 having an outer peripheral dimension larger than the inner peripheral dimension of these reinforcing films 22 and 22 are prepared. And it sandwiches from both surfaces so that the inner peripheral edge part of the reinforcing films 22 and 22 overlaps with the peripheral edge part of the electrolyte membrane 20, and the two frame-shaped reinforcing films 22 and 22 are bonded to each other by the adhesive film (adhesive film) 50. The MEGA 60 is manufactured by bonding.
JP 2007-250249 A

ところが、特許文献1のMEGA60の製造方法では、触媒層26、補強フィルム22及びGDL28の位置合わせが必須となるところ、電解質膜20、触媒層26、補強フィルム22、及びGDL28の面寸法(外形寸法)が異なっている。よって、位置合わせが煩雑となり、ロールトゥロール(ROLL-TO-ROLL)によるMEGA60の連続生産(量産)が困難であった。また、電解質膜20、補強フィルム22、GDL28は、薄膜であるため剛性(靭性)がなく、単体でのハンドリング性が悪く、製造効率を低下させる要因となっていた。   However, in the manufacturing method of MEGA 60 of Patent Document 1, the alignment of the catalyst layer 26, the reinforcing film 22, and the GDL 28 is essential. However, the surface dimensions (outer dimensions) of the electrolyte membrane 20, the catalyst layer 26, the reinforcing film 22, and the GDL 28 are required. ) Is different. Therefore, the alignment becomes complicated, and continuous production (mass production) of MEGA 60 by roll-to-roll is difficult. In addition, since the electrolyte membrane 20, the reinforcing film 22, and the GDL 28 are thin films, they do not have rigidity (toughness), have poor handling properties as a single unit, and have been a factor of reducing manufacturing efficiency.

燃料電池は、今後益々様々な実用的用途で需要が拡大しつつあるところ、このような事態は望ましくない。
そこで、本発明は、斯かる実情に鑑み、触媒層、補強フィルム及びGDLの従来のような煩雑な位置合わせを不要とし、これらを容易に一体化することでハンドリング性を向上し、そして、連続生産可能な量産ラインに好適なMEGAの製造方法を提供することを目的とする。
In the future, demand for fuel cells is increasing for various practical applications, and such a situation is undesirable.
Therefore, in view of such circumstances, the present invention eliminates the need for complicated alignment of the catalyst layer, the reinforcing film, and the GDL as in the past, and improves handling by integrating them easily, and It aims at providing the manufacturing method of MEGA suitable for the mass production line which can be produced.

(発明の態様)
以下、発明の態様を示し、それらについて説明する。(1)が請求項1に相当する。
(Aspect of the Invention)
Hereinafter, embodiments of the invention will be shown and described. (1) corresponds to claim 1.

(1)電解質膜と、剥離紙付き粘着層を片面に有しかつ前記電解質膜の周縁部を補強
する額縁状補強フィルムと、前記電解質膜及び前記額縁状補強フィルムの上に形成されるガス拡散層と、を含む燃料電池用の膜-電極-ガス拡散層接合体の製造方法であって、前記額縁状補強フィルムの前記片面の裏面を前記電解質膜にホットプレス処理により接合する工程と、触媒インクを、前記額縁状補強フィルムの開口から前記電解質膜に塗布する工程と、前記剥離紙を、前記粘着層から剥離する工程と、ガス拡散層を、前記粘着層に接着する工程とを含む燃料電池用の膜-電極-ガス拡散層接合体の製造方法。
(1) An electrolyte membrane, a frame-shaped reinforcing film that has an adhesive layer with release paper on one side and reinforces a peripheral portion of the electrolyte membrane, and gas diffusion formed on the electrolyte membrane and the frame-shaped reinforcing film A membrane-electrode-gas diffusion layer assembly for a fuel cell comprising a layer, the step of joining the back surface of one side of the frame-shaped reinforcing film to the electrolyte membrane by hot pressing, and a catalyst A fuel comprising a step of applying ink to the electrolyte membrane from an opening of the frame-shaped reinforcing film, a step of peeling the release paper from the adhesive layer, and a step of adhering a gas diffusion layer to the adhesive layer A method for producing a membrane-electrode-gas diffusion layer assembly for a battery.

本項によれば、剥離紙付き粘着層を片面に有し、電解質膜の周縁部を補強する額縁状補強フィルムを、燃料電池用の膜-電極-ガス拡散層接合体(MEGA)の製造に採用したため、電解質膜に当該額縁状補強フィルムを接合すれば、MEGAの他の構成要素の位置が決定されるので、電解質膜、補強フィルム、触媒層及びGDLに関し、従来のような煩雑な位置合わせが不要となる。そして、本項によれば、電解質膜、補強フィルム、触媒層及びGDLを容易に一体構造とすることができ、製造上のハンドリング性が向上する。そのために、連続生産できる量産ラインで、MEGAを製造することが容易になる。     According to this section, a frame-like reinforcing film that has an adhesive layer with release paper on one side and reinforces the peripheral edge of the electrolyte membrane is used to manufacture a membrane-electrode-gas diffusion layer assembly (MEGA) for fuel cells. Since the position of the other components of MEGA is determined if the frame-shaped reinforcing film is joined to the electrolyte membrane because of the adoption, the conventional complicated positioning of the electrolyte membrane, the reinforcing film, the catalyst layer, and the GDL is determined. Is no longer necessary. And according to this term, an electrolyte membrane, a reinforcing film, a catalyst layer, and GDL can be easily made into an integrated structure, and handling in manufacture improves. Therefore, it becomes easy to manufacture MEGA with a mass production line capable of continuous production.

(2)前記剥離紙付き前記粘着層は接着剤を含むことを特徴とする(1)に記載の燃料電池用の膜-電極-ガス拡散層接合体の製造方法。 (2) The method for producing a membrane-electrode-gas diffusion layer assembly for a fuel cell according to (1), wherein the pressure-sensitive adhesive layer with release paper contains an adhesive.

額縁状補強フィルムに含まれる剥離紙付き粘着層は、剥離紙を剥離した後は、表面が接着剤を含む粘着層であるため、GDL(周縁部)を額縁状補強フィルムに微圧を加えながら載置するだけで、GDLが仮止めされる。本発明の製造方法で製造されたMEGAが、燃料電池にアセンブリされるまで、この仮止めによって膜-電極-ガス拡散層接合体が一体化され、量産ライン(自動ライン)においても、その搬送やハンドリングを容易にする。   The pressure-sensitive adhesive layer with release paper included in the frame-shaped reinforcing film is a pressure-sensitive adhesive layer containing an adhesive after the release paper is peeled off, so that GDL (peripheral part) is applied with a slight pressure to the frame-shaped reinforcing film. The GDL is temporarily fixed only by placing it. Until the MEGA manufactured by the manufacturing method of the present invention is assembled to the fuel cell, the membrane-electrode-gas diffusion layer assembly is integrated by this temporary fixing, and even in the mass production line (automatic line) Make handling easy.

(3)(1)又は(2)の製造方法によって製造された燃料電池用の膜-電極-ガス拡散層接合体。
(4)(3)に記載の前記膜-電極-ガス拡散層接合体を含むことを特徴とする燃料電池。(5)固体分子形燃料電池又はダイレクトメタノール形燃料電池であることを特徴とする(4)に記載の燃料電池。
(3) A membrane-electrode-gas diffusion layer assembly for a fuel cell produced by the production method of (1) or (2).
(4) A fuel cell comprising the membrane-electrode-gas diffusion layer assembly according to (3). (5) The fuel cell according to (4), which is a solid molecular fuel cell or a direct methanol fuel cell.

(3)、(4)、(5)項は、本発明の燃料電池用の膜-電極-ガス拡散層接合体の製造方法を使用して得られる製造物を例示するものである。   The items (3), (4), and (5) exemplify products obtained by using the method for producing a membrane-electrode-gas diffusion layer assembly for a fuel cell of the present invention.

(6)燃料電池の電解質膜の周縁部を補強するための額縁状補強フィルムであって、その片面に、ガス拡散層と接着するための粘着層が形成されていることを特徴とする額縁状補強フィルム。 (6) A frame-shaped reinforcing film for reinforcing the peripheral portion of the electrolyte membrane of the fuel cell, wherein a pressure-sensitive adhesive layer for bonding to the gas diffusion layer is formed on one surface thereof Reinforcing film.

本項は、上記製造方法で採用された額縁状補強フィルムは、単体で製造販売可能であるため、それを例示するものである。   This section exemplifies the frame-shaped reinforcing film employed in the above manufacturing method because it can be manufactured and sold alone.

(7)前記粘着層は、接着剤を含むことを特徴とする(6)に記載の額縁状補強フィルム。 (7) The frame-shaped reinforcing film according to (6), wherein the pressure-sensitive adhesive layer contains an adhesive.

本項は、(6)項の額縁状補強フィルムの粘着層の材料を例示するものである。   This term illustrates the material of the adhesive layer of the frame-shaped reinforcing film of item (6).

本発明によれば、触媒層、補強フィルム及びGDLの煩雑な位置合わせを不要とし、これらを容易に一体化することができるためハンドリング性が向上し、そして、連続生産可能な量産ラインに好適なMEGAの製造方法を提供することができる。   According to the present invention, complicated positioning of the catalyst layer, the reinforcing film, and the GDL is not required, and these can be easily integrated, so that handling is improved and suitable for a mass production line capable of continuous production. A method for manufacturing MEGA can be provided.

以下、本発明の実施の形態を、添付図面を参照して説明する。
図1及び図2は、発明を実施する形態の例であって、図中、同一の符号を付した部分は同一物を表わす。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 and FIG. 2 are examples of embodiments for carrying out the invention, and in the drawings, the same reference numerals denote the same components.

<実施形態>
図1は、本実施形態に係るMEGA20の製造方法を説明するための概念図であり、図2は、同製造方法を説明するための製造フロー図である。
以下、図1及び図2を参照しながら、本実施形態を説明する。
<Embodiment>
FIG. 1 is a conceptual diagram for explaining a manufacturing method of the MEGA 20 according to the present embodiment, and FIG. 2 is a manufacturing flow diagram for explaining the manufacturing method.
Hereinafter, the present embodiment will be described with reference to FIGS. 1 and 2.

準備工程(図1(1)、図2(2)):本工程では、電解質膜1と、剥離紙4付き粘着層3を額縁状樹脂シート2の片面に有し、電解質膜1の周縁部を補強する額縁状補強フィルム10を準備する。電解質膜1は、市販のナフィオン(登録商標)、ダウ膜(登録商標)、フレミオン(登録商標)、アシプレックス(登録商標)等を使用することができる。   Preparatory process (FIG. 1 (1), FIG. 2 (2)): In this process, the electrolyte membrane 1 and the adhesive layer 3 with release paper 4 are provided on one side of the frame-shaped resin sheet 2, and the peripheral portion of the electrolyte membrane 1 A frame-shaped reinforcing film 10 for reinforcing the frame is prepared. As the electrolyte membrane 1, commercially available Nafion (registered trademark), Dow membrane (registered trademark), Flemion (registered trademark), Aciplex (registered trademark), or the like can be used.

張りあわせ工程(図1(2)、図2(2)):本工程において、剥離紙4付き粘着層3は、粘着層3の剥離紙4がある面が電解質1のある側の反対側に存在するように、電解質膜1にホットプレス処理をして、剥離紙4付き粘着層3と電解質膜1とを接合する。接合後、図1(2)に示されるような開口11を有する構造体10が完成する。   Bonding process (FIG. 1 (2), FIG. 2 (2)): In this process, the pressure-sensitive adhesive layer 3 with release paper 4 has the surface of the pressure-sensitive adhesive layer 3 with the release paper 4 opposite to the side where the electrolyte 1 is present. As shown, the electrolyte membrane 1 is hot-pressed to bond the adhesive layer 3 with release paper 4 and the electrolyte membrane 1 together. After bonding, a structure 10 having an opening 11 as shown in FIG. 1 (2) is completed.

触媒インク塗布工程(図1(3)、図2(3)):構造体10は、額縁状補強フィルム10の開口11を有し、この開口11の底に存在する電解質膜1に触媒インク5を塗布する。触媒インク5の塗布方法は、スプレー法、インクジェット法、静電塗装、ダイコータ法等にいずれでもよい。触媒インク5の塗膜厚は、額縁状樹脂シート2の膜厚よりもやや厚めであることが好ましい。触媒インク5は乾燥すると、溶媒分が蒸発し、触媒層5が硬化し、収縮するからである。この工程が完了すると、触媒層5の周縁が額縁状樹脂シートに取り囲まれる構造が作製される。   Catalyst ink application process (FIG. 1 (3), FIG. 2 (3)): The structure 10 has an opening 11 of the frame-shaped reinforcing film 10, and the catalyst ink 5 is applied to the electrolyte membrane 1 existing at the bottom of the opening 11. Apply. The method for applying the catalyst ink 5 may be any of a spray method, an ink jet method, an electrostatic coating method, a die coater method, and the like. The coating thickness of the catalyst ink 5 is preferably slightly larger than the film thickness of the frame-shaped resin sheet 2. This is because when the catalyst ink 5 is dried, the solvent component is evaporated, and the catalyst layer 5 is cured and contracted. When this step is completed, a structure in which the periphery of the catalyst layer 5 is surrounded by the frame-shaped resin sheet is produced.

剥離紙剥離工程(図1(4)、図2(4)):本工程では、額縁状補強フィルム10の上層の剥離紙4を剥離する。ただし、粘着層3は額縁状樹脂シート2側に残存するようにする。剥離紙4は廃棄する。   Release paper peeling process (FIG. 1 (4), FIG. 2 (4)): In this process, the release paper 4 of the upper layer of the frame-shaped reinforcement film 10 is peeled. However, the adhesive layer 3 is left on the frame-shaped resin sheet 2 side. The release paper 4 is discarded.

ガス拡散層(GDL)張り合わせ工程(図1(5)、図2(5)):本工程では、額縁状の粘着層3の上にGDL6を張り合わせる。このときGDL6の周縁が額縁状の粘着層3の開口11をすべて覆うように設定し、MEGA20を上方から鉛直真下に向かって微圧で加圧する。その結果、額縁状の粘着層3の開口11の内周に沿ってGDL6が接合・固着される。これによりMEGA20のGDL6がMEGA20が燃料電池にアセンブリされるまで仮止めされる。このときGDL6の位置合わせを精密に行う必要はない。なぜなら、GDL6の周縁が額縁状の粘着層3の開口11をすべて覆う限りにおいて、GDL6が多少面方向にずれたとしても、触媒層5とGDL6が接触する領域は、常に額縁状補強フィルム10の開口11の領域に等しくなるからである。
このようにして、本発明に係る実施形態によって、アノード極側又はカソード極側のみに、触媒層5、額縁状補強フィルム2、GDL6がこの順に電解質膜1の上に積層されたハーフ状の膜-電極-ガス拡散層接合体(MEGA)20が製造される。MEGA20を完成させるには、同様の工程を、いずれの層も未だ積層されていない電解質膜1の反対の面(図1(5)では電解質膜1の下面)に施すことによって、MEGA20を完成することができる。
Gas diffusion layer (GDL) bonding step (FIG. 1 (5), FIG. 2 (5)): In this step, GDL 6 is bonded onto the frame-shaped adhesive layer 3. At this time, the peripheral edge of the GDL 6 is set so as to cover all the openings 11 of the frame-like adhesive layer 3, and the MEGA 20 is pressurized with a slight pressure from above to below the vertical. As a result, the GDL 6 is bonded and fixed along the inner periphery of the opening 11 of the frame-shaped adhesive layer 3. Thereby, GDL6 of MEGA20 is temporarily fixed until MEGA20 is assembled to a fuel cell. At this time, it is not necessary to precisely align the GDL6. This is because, as long as the periphery of the GDL 6 covers all the openings 11 of the frame-shaped adhesive layer 3, even if the GDL 6 is slightly displaced in the surface direction, the region where the catalyst layer 5 and the GDL 6 are in contact with each other is always This is because it becomes equal to the region of the opening 11.
Thus, according to the embodiment of the present invention, the catalyst layer 5, the frame-shaped reinforcing film 2, and the GDL 6 are laminated on the electrolyte membrane 1 in this order only on the anode electrode side or the cathode electrode side. -Electrode-gas diffusion layer assembly (MEGA) 20 is manufactured. In order to complete the MEGA 20, the MEGA 20 is completed by performing the same process on the opposite surface of the electrolyte membrane 1 where none of the layers has yet been laminated (the lower surface of the electrolyte membrane 1 in FIG. 1 (5)). be able to.

MEGA20は、単体でも製販可能であるが、燃料電池としてアセンブリするためには、このMEGA20両面のGDL6を、セパレータ(不図示)でサンドイッチしながら(
末端のセパレータ以外は、一枚のセパレータが隣同士の単セルが兼用する)、所望の電力が得られるように単セルを複数個スタックする。なお、複数個の単セルがスタックされた後は、所定の導電性プレートをスタック体の陽極側と陰極側の端面に配置し、導電性プレートに貫通穴を数個、例えば4個開け、スタック体の長さ以上の長いボルトをその貫通穴に4本通し、各ボルトに螺合するナットで締結し単セルすべてを一定圧力で押圧する。このときに、図1(5)に示されている触媒層5とGDL6との間の隙間が埋まる。触媒層5は金属担持導電性粒子(例えば白金担持カーボン粒子)による堅い三次元構造体からなるため、GDL6の構成要素のカーボンクロス又はカーボンペーパーから発生する毛羽が電解質膜1に突き刺さることことはなく、GDL6の周縁部も、額縁状樹脂シート2で同様にして同毛羽が電解質膜1に突き刺さることがない。
The MEGA 20 can be manufactured and sold as a single unit, but for assembly as a fuel cell, the GDL 6 on both sides of the MEGA 20 is sandwiched between separators (not shown) (
A single separator is also used as the adjacent single cell except for the separator at the end), and a plurality of single cells are stacked so that desired power can be obtained. After a plurality of single cells are stacked, a predetermined conductive plate is arranged on the anode side and cathode side end surfaces of the stack body, and several through holes, for example, four holes are formed in the conductive plate to stack. Four bolts longer than the length of the body are passed through the through holes and fastened with nuts that are screwed into the bolts, and all the single cells are pressed at a constant pressure. At this time, the gap between the catalyst layer 5 and the GDL 6 shown in FIG. Since the catalyst layer 5 is composed of a rigid three-dimensional structure made of metal-carrying conductive particles (for example, platinum-carrying carbon particles), fluff generated from carbon cloth or carbon paper as a constituent element of the GDL 6 does not pierce the electrolyte membrane 1. Similarly, the peripheral edge of the GDL 6 does not pierce the electrolyte membrane 1 with the frame-shaped resin sheet 2 in the same manner.

尚、本発明のMEGAの製造方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the MEGA manufacturing method of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

例えば、本実施形態は、図1に示したMEGA20の単体の製造方法について説明したが、各構成要素、すなわち、電解質膜1、額縁状補強フィルム10、及びGDL6をウェブ状(帯状、長尺状)に準備し、図示しない巻き出しロールと巻取りロールの間で搬送できるようにして、その途中に、上述の貼り合わせ工程、触媒インク塗布工程、剥離紙剥離工程及びガス拡散層貼り合わせ工程に対応して各装置を配置し、ロールトゥロールの量産ラインを設計施工することができる(MEGA20完成後MEGA20を燃料電池にアセンブリする前に図2の括弧内に示すように打ち抜き加工等で裁断する)。このようにMEGAの量産化を可能としたのは、本発明のMEGAの製造方法において、従来使用されることがなかった剥離紙4付き粘着層3を片面に有し、電解質膜1の周縁部を補強する額縁状補強フィルム10を使用することによって、額縁状補強フィルム10を電解質膜1に接合すると一義的に他の構成要素、触媒層、補強フィルム及びGDLの位置決めが行われるため、触媒層、補強フィルム及びGDLの従来のような煩雑な位置合わせを不要とし、かつ、これらを容易に一体化して製造中のMEGAのハンドリング性を向上させたためである。   For example, although this embodiment demonstrated the manufacturing method of the single-piece | unit of MEGA20 shown in FIG. 1, each component, ie, the electrolyte membrane 1, the frame-shaped reinforcement film 10, and GDL6, is web shape (band | belt shape, elongate shape). To the above-mentioned bonding step, catalyst ink coating step, release paper peeling step and gas diffusion layer bonding step. Correspondingly, each device can be arranged, and a roll-to-roll mass production line can be designed and constructed (after the MEGA 20 is completed, it is cut by punching or the like as shown in parentheses before assembly of the MEGA 20 into a fuel cell) ). In this way, the mass production of MEGA is possible because the MEGA production method of the present invention has a pressure-sensitive adhesive layer 3 with release paper 4 that has never been used on one side, and the peripheral portion of the electrolyte membrane 1. When the frame-shaped reinforcing film 10 is joined to the electrolyte membrane 1 by using the frame-shaped reinforcing film 10 that reinforces, the positioning of other components, the catalyst layer, the reinforcing film, and the GDL is performed. This is because complicated positioning as in the conventional case of the reinforcing film and the GDL is not required, and these are easily integrated to improve the handling property of the MEGA being manufactured.

図1は、本実施形態に係るMEGA20の製造方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a method for manufacturing the MEGA 20 according to the present embodiment. 図2は、同製造方法を説明するための製造フロー図である。FIG. 2 is a manufacturing flow diagram for explaining the manufacturing method. 図3は、従来のMEGAの構造を説明するための概略的な上面図(a)及び断面図(b)である。FIG. 3 is a schematic top view (a) and cross-sectional view (b) for explaining the structure of a conventional MEGA.

符号の説明Explanation of symbols

1:電解質膜、3:粘着層、4:剥離紙、5:触媒インク、6:ガス拡散層(GDL)、10:額縁状補強フィルム、11:開口、20:膜-電極-ガス拡散層接合体(MEGA) 1: electrolyte membrane, 3: adhesive layer, 4: release paper, 5: catalyst ink, 6: gas diffusion layer (GDL), 10: frame-shaped reinforcing film, 11: opening, 20: membrane-electrode-gas diffusion layer bonding Body (MEGA)

Claims (1)

電解質膜と、剥離紙付き粘着層を片面に有しかつ前記電解質膜の周縁部を補強する額縁状補強フィルムと、前記電解質膜及び前記額縁状補強フィルムの上に形成されるガス拡散層と、を含む燃料電池用の膜-電極-ガス拡散層接合体の製造方法であって、
前記額縁状補強フィルムの前記片面の裏面を前記電解質膜にホットプレス処理により接合する工程と、
触媒インクを、前記額縁状補強フィルムの開口から前記電解質膜に塗布する工程と、
前記剥離紙を、前記粘着層から剥離する工程と、
ガス拡散層を、前記粘着層に接着する工程と、
を含む燃料電池用の膜-電極-ガス拡散層接合体の製造方法。
An electrolyte membrane, a frame-like reinforcing film that has an adhesive layer with release paper on one side and reinforces a peripheral portion of the electrolyte membrane, a gas diffusion layer formed on the electrolyte membrane and the frame-like reinforcing film, A method for producing a membrane-electrode-gas diffusion layer assembly for a fuel cell comprising:
Bonding the back surface of the one side of the frame-shaped reinforcing film to the electrolyte membrane by hot pressing;
Applying a catalyst ink to the electrolyte membrane from the opening of the frame-shaped reinforcing film;
Peeling the release paper from the adhesive layer;
Adhering a gas diffusion layer to the adhesive layer;
For producing a membrane-electrode-gas diffusion layer assembly for a fuel cell comprising:
JP2008298300A 2008-11-21 2008-11-21 Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell Pending JP2010123509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298300A JP2010123509A (en) 2008-11-21 2008-11-21 Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298300A JP2010123509A (en) 2008-11-21 2008-11-21 Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell

Publications (1)

Publication Number Publication Date
JP2010123509A true JP2010123509A (en) 2010-06-03

Family

ID=42324660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298300A Pending JP2010123509A (en) 2008-11-21 2008-11-21 Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell

Country Status (1)

Country Link
JP (1) JP2010123509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069420A (en) * 2010-09-24 2012-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2012074314A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Manufacturing method of membrane electrode assembly, and membrane electrode assembly
KR101350186B1 (en) * 2011-09-27 2014-01-09 기아자동차주식회사 The sub-gasket adhesion method for fuel cell membrane electrode assembly production using ultrasonic vibration
JP2016219180A (en) * 2015-05-18 2016-12-22 凸版印刷株式会社 Membrane-electrode assembly manufacturing method and membrane-electrode assembly
WO2019035424A1 (en) * 2017-08-17 2019-02-21 エムテックスマート株式会社 Method for manufacturing catalyst-forming electrolyte membrane for pefc fuel cell
CN112909291A (en) * 2021-02-04 2021-06-04 山东魔方新能源科技有限公司 Preparation method of membrane electrode, membrane electrode and fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069420A (en) * 2010-09-24 2012-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2012074314A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Manufacturing method of membrane electrode assembly, and membrane electrode assembly
KR101350186B1 (en) * 2011-09-27 2014-01-09 기아자동차주식회사 The sub-gasket adhesion method for fuel cell membrane electrode assembly production using ultrasonic vibration
JP2016219180A (en) * 2015-05-18 2016-12-22 凸版印刷株式会社 Membrane-electrode assembly manufacturing method and membrane-electrode assembly
WO2019035424A1 (en) * 2017-08-17 2019-02-21 エムテックスマート株式会社 Method for manufacturing catalyst-forming electrolyte membrane for pefc fuel cell
JP2019036476A (en) * 2017-08-17 2019-03-07 エムテックスマート株式会社 Manufacturing method of catalyst-forming electrolyte membrane for pefc fuel cell
CN112909291A (en) * 2021-02-04 2021-06-04 山东魔方新能源科技有限公司 Preparation method of membrane electrode, membrane electrode and fuel cell

Similar Documents

Publication Publication Date Title
JP5324465B2 (en) Process method and system for assembling a fuel cell perimeter gasket
JP5363335B2 (en) Gas diffusion layer with built-in gasket
JP5302209B2 (en) Method of making a fuel cell subassembly
JP5695086B2 (en) 5-layer membrane electrode assembly having peripheral portions bonded thereto and manufacturing method thereof
KR101776755B1 (en) Manufacturing device of fuel cell component and manufacturing method
KR101337905B1 (en) The sub-gasket adhesion method for fuel cell membrane electrode assembly production using ultrasonic vibration
JP4843985B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH GASKET FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2010123509A (en) Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell
KR20120117266A (en) Apparatus for manufacturing membrane-electrode assembly
KR20120063574A (en) Manufacturing method of membrane-electrode assembly for polymer electrolyte membrane fuel cell
TW201201437A (en) Fuel cell module with sealing structure
JP7115450B2 (en) Fuel cell unit cell
JP5594021B2 (en) Membrane electrode assembly and manufacturing method thereof
US20210288338A1 (en) Fuel cell and method for producing fuel cell
JP5244165B2 (en) Direct methanol fuel cell structure and manufacturing method thereof
JP2010062009A (en) Method for manufacturing membrane-electrode structure for fuel cell
JP2010192392A (en) Porous membrane complex for fuel cell, electrolyte membrane-electrode-porous membrane complex for fuel cell, and manufacturing method of them
JP7307109B2 (en) Membrane electrode assembly with gas diffusion layer and manufacturing method thereof
JP5836060B2 (en) Manufacturing method of fuel cell
JP5273212B2 (en) Manufacturing method of electrolyte membrane-electrode assembly with gasket for polymer electrolyte fuel cell
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5611604B2 (en) Method for manufacturing membrane-electrode structure
JP2010129435A (en) Method of manufacturing membrane electrode assembly for fuel cell
KR101272513B1 (en) MEA for fuel cell and method for manufacturing the same