JP2017157358A - Method for fuel battery cell production - Google Patents

Method for fuel battery cell production Download PDF

Info

Publication number
JP2017157358A
JP2017157358A JP2016038595A JP2016038595A JP2017157358A JP 2017157358 A JP2017157358 A JP 2017157358A JP 2016038595 A JP2016038595 A JP 2016038595A JP 2016038595 A JP2016038595 A JP 2016038595A JP 2017157358 A JP2017157358 A JP 2017157358A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte membrane
layer
outer peripheral
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016038595A
Other languages
Japanese (ja)
Other versions
JP6551261B2 (en
Inventor
淳二 中西
Junji Nakanishi
淳二 中西
哲 中澤
Satoru Nakazawa
哲 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016038595A priority Critical patent/JP6551261B2/en
Publication of JP2017157358A publication Critical patent/JP2017157358A/en
Application granted granted Critical
Publication of JP6551261B2 publication Critical patent/JP6551261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To facilitate a fuel battery cell production, to reduce the cost therefor, and to save the resources therefor.SOLUTION: A method for fuel battery cell production according to the present invention comprises the steps of: disposing an electrolyte membrane precursor on a center portion of a porous resin reinforcement base; impregnating, by hot pressing, the electrolyte precursor into the center portion of the reinforcement base and clogging pores of an outer peripheral portion outside the center portion of the reinforcement base, thereby modifying the outer peripheral portion of the reinforcement base into a resin frame; forming a reinforced electrolyte membrane having the resin frame by turning the electrolyte precursor impregnated into the center portion of the reinforcement base into an electrolyte; and laminating respective catalyst layers, diffusion layers and separators on the electrolyte membrane on both sides to assemble a fuel battery cell.SELECTED DRAWING: Figure 2

Description

本発明は、燃料電池のセルの製造方法に関する。   The present invention relates to a method of manufacturing a fuel cell.

特許文献1には、膜電極接合体(MEA:Membrane Electrode Assembly)の外周にシール部材としての樹脂フレームが配置されたフレーム付きのMEAを用いた燃料電池のセルが開示されている。樹脂フレームはMEAの周縁端部に接着剤にて接着されてMEAと一体化されている。   Patent Document 1 discloses a cell of a fuel cell using an MEA with a frame in which a resin frame as a sealing member is arranged on the outer periphery of a membrane electrode assembly (MEA). The resin frame is bonded to the peripheral edge of the MEA with an adhesive and integrated with the MEA.

特開2015−215958号公報JP-A-2015-215958

特許文献1の燃料電池のセルでは、MEAの外周部にシール部材を設けるために、MEAの周縁端部に接着剤で樹脂フレームを貼り合わせる工程を要している。また、樹脂フレーム及び接着剤は高価な部材である。このため、製造の容易化、低コスト化、省資源化等が望まれていた。   In the fuel cell of Patent Document 1, in order to provide a seal member on the outer periphery of the MEA, a process of attaching a resin frame to the peripheral edge of the MEA with an adhesive is required. The resin frame and the adhesive are expensive members. For this reason, easy manufacturing, cost reduction, resource saving and the like have been desired.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池のセルの製造方法が提供される。この燃料電池のセルの製造方法は、多孔性を有する樹脂製の補強基材の中央部に電解質膜前駆体を配置する工程と;熱プレスにより、前記補強基材の中央部に電解質前駆体を含浸させるとともに、前記補強基材の中央部の外側の外周部の空孔を閉塞させることにより、前記補強基材の外周部を樹脂フレームに変質させる工程と;前記補強基材の中央部に含浸された前記電解質前駆体を電解質に変換することによって、前記樹脂フレームを有する補強された電解質膜を作製する工程と;前記電解質膜の両面に触媒層と拡散層とセパレータとを積層して燃料電池のセルを組み立てる工程と;を備える。
この形態の燃料電池のセルの製造方法によれば、補強基材の中央部の外側の外周部の空孔を、熱プレスによって閉塞させることにより、補強された電解質膜の外周部に樹脂製フレームが一体に形成されたフレーム付きの電解質膜を作製し、これを用いて燃料電池のセルを組み立てることにより、従来技術のような高価な樹脂フレームを高価な接着剤を用いて膜電極接合体に貼り合わせる工程を省略することができるので、製造の容易化、低コスト化、省資源化を図ることができる。
(1) According to one form of this invention, the manufacturing method of the cell of a fuel cell is provided. The fuel cell manufacturing method includes a step of disposing an electrolyte membrane precursor in a central portion of a porous resin-made reinforcing base; and an electrolyte precursor in the central portion of the reinforcing base by hot pressing. And impregnating the outer peripheral portion of the reinforcing base material into a resin frame by closing the outer peripheral portion of the outer periphery of the central portion of the reinforcing base material, and impregnating the central portion of the reinforcing base material. Forming a reinforced electrolyte membrane having the resin frame by converting the electrolyte precursor into an electrolyte; and laminating a catalyst layer, a diffusion layer, and a separator on both sides of the electrolyte membrane; Assembling the cells.
According to the fuel cell manufacturing method of this embodiment, a resin frame is formed on the outer peripheral portion of the reinforced electrolyte membrane by closing the outer peripheral outer peripheral hole of the reinforcing base by hot pressing. An electrolyte membrane with a frame that is integrally formed is fabricated, and a fuel cell is assembled using the membrane, so that an expensive resin frame as in the prior art is made into a membrane electrode assembly using an expensive adhesive. Since the bonding step can be omitted, manufacturing can be facilitated, costs can be reduced, and resources can be saved.

なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料電池のセル、フレーム付きの膜電極接合体、フレーム付きの電解質膜、及びこれらの製造方法等の形態で実現することができる。   The present invention can be realized in various modes, for example, in the form of a fuel cell, a membrane electrode assembly with a frame, an electrolyte membrane with a frame, and a manufacturing method thereof. be able to.

本発明の一実施形態としての燃料電池のセルの構成を示す説明図である。It is explanatory drawing which shows the structure of the cell of the fuel cell as one Embodiment of this invention. 実施形態の燃料電池のセルの製造の手順を示す説明図である。It is explanatory drawing which shows the procedure of manufacture of the cell of the fuel cell of embodiment. 比較例の燃料電池のセルの製造の手順を示す説明図である。It is explanatory drawing which shows the procedure of manufacture of the cell of the fuel cell of a comparative example.

図1は、本発明の一実施形態としての燃料電池のセルの構成を示す説明図である。図1では、燃料電池のセル(以下、「単セル」とも呼ぶ)200の断面構成の周縁端部を図示している。単セル200は、樹脂フレーム104が一体形成されたフレーム付きのMEA150と、フレーム付きのMEA150を挟持する一対のセパレータ160,170と、を備えている。単セル200は、樹脂フレーム104にセパレータ160,170が圧着されて一体化されることによってシール性が確保されている。なお、燃料電池は、通常、単セル200を複数積層したスタック構造とされる。   FIG. 1 is an explanatory diagram showing a configuration of a cell of a fuel cell as one embodiment of the present invention. FIG. 1 illustrates a peripheral edge portion of a cross-sectional configuration of a fuel cell (hereinafter also referred to as a “single cell”) 200. The single cell 200 includes a MEA 150 with a frame in which the resin frame 104 is integrally formed, and a pair of separators 160 and 170 that sandwich the MEA 150 with a frame. The single cell 200 has a sealing property as a result of the separators 160 and 170 being pressed and integrated with the resin frame 104. The fuel cell usually has a stack structure in which a plurality of single cells 200 are stacked.

MEA150は、補強された電解質膜100のアノード側の面にアノード側触媒層110及びアノード側拡散層130が順に積層され、カソード側の面にカソード側触媒層120及びカソード側拡散層140が順に積層されている。   In the MEA 150, the anode side catalyst layer 110 and the anode side diffusion layer 130 are sequentially laminated on the anode side surface of the reinforced electrolyte membrane 100, and the cathode side catalyst layer 120 and the cathode side diffusion layer 140 are sequentially laminated on the cathode side surface. Has been.

電解質膜100は、補強層102と、補強層102の両面に設けられた電解質層106,108とを有する補強された電解質膜である。電解質層106,108を形成する材料としては、湿潤状態で良好なプロトン伝導性を発揮する高分子電解質、例えば、パーフルオロカーボンスルホン酸を備えるフッ素系の高分子電解質が用いられる。補強層102は、多孔性を有する樹脂製の補強基材の空孔に電解質が充填された構造を有している。補強層102を形成するための補強基材としては、多孔性を有する樹脂(例えば、PTFE)で構成された基材を用いることができる。また、空孔に充填された電解質は、電解質層106,108と同じである。   The electrolyte membrane 100 is a reinforced electrolyte membrane having a reinforcing layer 102 and electrolyte layers 106 and 108 provided on both sides of the reinforcing layer 102. As a material for forming the electrolyte layers 106 and 108, a polymer electrolyte that exhibits good proton conductivity in a wet state, for example, a fluorine-based polymer electrolyte including perfluorocarbon sulfonic acid is used. The reinforcing layer 102 has a structure in which pores of a porous resin-made reinforcing base material are filled with an electrolyte. As the reinforcing base material for forming the reinforcing layer 102, a base material made of a porous resin (for example, PTFE) can be used. The electrolyte filled in the holes is the same as the electrolyte layers 106 and 108.

樹脂フレーム104は、補強層102の外周部で補強層102と一体に形成されている。樹脂フレーム104は、後述するように、補強層102を形成するための多孔性を有する樹脂製の補強基材のうち、補強層102に対応する中央部よりも外側の外周部の空孔を閉塞することにより、補強層102と一体に形成されている。   The resin frame 104 is formed integrally with the reinforcing layer 102 at the outer peripheral portion of the reinforcing layer 102. As will be described later, the resin frame 104 blocks pores in the outer peripheral portion outside the central portion corresponding to the reinforcing layer 102 out of the porous resin reinforcing base material for forming the reinforcing layer 102. By doing so, it is formed integrally with the reinforcing layer 102.

アノード側触媒層110及びカソード側触媒層120は、いずれも白金や白金合金等の触媒を担持した触媒担持カーボンを含んでいる。   Each of the anode side catalyst layer 110 and the cathode side catalyst layer 120 contains catalyst-carrying carbon carrying a catalyst such as platinum or a platinum alloy.

アノード側拡散層130は、拡散基材層132とマイクロポーラス層134とを備えており、マイクロポーラス層134がアノード側触媒層110に接するように配置されている。カソード側拡散層140も、拡散基材層142とマイクロポーラス層144とを備えており、マイクロポーラス層144がカソード側触媒層120に接するように配置されている。拡散基材層132,142は、例えば、カーボン多孔質体(例えば、カーボンペーパー、カーボンクロス等)によって構成される。マイクロポーラス層134,144は、PTFE等の撥水性樹脂及び炭素粒子等の導電性材料を主成分とするコーティング薄膜によって構成される。なお、マイクロポーラス層は省略可能である。   The anode side diffusion layer 130 includes a diffusion base material layer 132 and a microporous layer 134, and the microporous layer 134 is disposed so as to be in contact with the anode side catalyst layer 110. The cathode side diffusion layer 140 also includes a diffusion base material layer 142 and a microporous layer 144, and the microporous layer 144 is disposed so as to be in contact with the cathode side catalyst layer 120. The diffusion base material layers 132 and 142 are made of, for example, a carbon porous body (for example, carbon paper, carbon cloth, etc.). The microporous layers 134 and 144 are formed of a coating thin film mainly composed of a water repellent resin such as PTFE and a conductive material such as carbon particles. The microporous layer can be omitted.

図2は、実施形態の燃料電池のセルの製造の手順を示す説明図である。なお、図2は、電解質膜100と触媒層110,120と拡散層130,140の積層方向の断面を表している。実施形態の単セル200は、以下の工程1〜工程5によって作製される。   FIG. 2 is an explanatory diagram illustrating a procedure for manufacturing a cell of the fuel cell according to the embodiment. FIG. 2 shows a cross section in the stacking direction of the electrolyte membrane 100, the catalyst layers 110 and 120, and the diffusion layers 130 and 140. The single cell 200 of the embodiment is manufactured by the following steps 1 to 5.

工程1において、延伸によって多孔性となる樹脂材料(例えば、PTFE材)を延伸して、補強層102及び樹脂フレーム104を形成するための多孔性の補強基材BPを作製する。そして、工程2において、補強基材BPの両面の中央部に電解質膜前駆体を配置して、補強基材BPの全体を熱プレスすることにより、電解質前駆体を補強基材BPの空孔に溶融含浸させるとともに、補強基材BPの中央部の外側の外周部の空孔を閉塞させて、補強基材BPの外周部を樹脂フレーム104に変質させる。なお、熱プレスの温度は、電解質膜前駆体を配置した補強基材BPの中央部を熱プレスする中央熱プレス部材310については、電解質前駆体のガラス転移温度以上で補強基材BPのガラス転移温度よりも低い温度、例えば、200℃に設定される。一方、電解質膜前駆体を配置した中央部よりも外側の外周部を熱プレスする外周熱プレス部材320ついては、補強基材BPの空孔を閉塞可能な温度、例えば、380℃に設定される。なお、中央熱プレス部材310と外周熱プレス部材320の間には、中央部の温度と外周部の温度とを異なった温度に設定可能とするための非加熱部材330を設けることが好ましい。工程3では、加水分解処理及び酸処理することにより電解質前駆体を電解質に変換させる。この変換は、例えば、電解質前駆体のSOF基をSOH基に変換させる処理である。以上により、補強層102のアノード側及びカソード側の両面に電解質層106,108を有する補強された電解質膜100を形成するとともに、電解質膜100の外周部に補強層102と一体に形成された樹脂フレーム104を有するフレーム付きの電解質膜100を作製する。 In step 1, a resin material (for example, PTFE material) that becomes porous by stretching is stretched to produce a porous reinforcing base material BP for forming the reinforcing layer 102 and the resin frame 104. In step 2, the electrolyte membrane precursor is disposed in the center of both surfaces of the reinforcing base material BP, and the entire reinforcing base material BP is hot-pressed, so that the electrolyte precursor becomes a hole in the reinforcing base material BP. While melting and impregnating, the outer peripheral portion of the outer periphery of the central portion of the reinforcing base BP is closed, and the outer peripheral portion of the reinforcing base BP is transformed into the resin frame 104. Note that the temperature of the hot press is not lower than the glass transition temperature of the electrolyte precursor and the glass transition temperature of the reinforcing base BP for the central hot press member 310 that hot presses the central portion of the reinforcing base BP on which the electrolyte membrane precursor is disposed A temperature lower than the temperature, for example, 200 ° C. is set. On the other hand, the outer peripheral heat press member 320 that heat-presses the outer peripheral portion outside the center portion where the electrolyte membrane precursor is disposed is set to a temperature at which the pores of the reinforcing base material BP can be closed, for example, 380 ° C. In addition, it is preferable to provide the non-heating member 330 between the center hot press member 310 and the outer periphery heat press member 320 so that the temperature of the center part and the temperature of the outer periphery part can be set to different temperatures. In step 3, the electrolyte precursor is converted into an electrolyte by hydrolysis and acid treatment. This conversion is, for example, a process of converting SO 2 F groups of the electrolyte precursor into SO 3 H groups. As described above, the reinforced electrolyte membrane 100 having the electrolyte layers 106 and 108 is formed on both the anode side and the cathode side of the reinforcing layer 102, and the resin formed integrally with the reinforcing layer 102 on the outer peripheral portion of the electrolyte membrane 100. An electrolyte membrane 100 with a frame having a frame 104 is produced.

次に、工程4において、電解質膜100のアノード側の面にアノード側触媒層110を塗工し、アノード側触媒層110の上にアノード側拡散層130を圧着するとともに、電解質膜100のカソード側の面にカソード側触媒層120を塗工し、カソード側触媒層120の上にカソード側拡散層140を圧着する。これにより、電解質膜100の両面に触媒層110,120及び拡散層130,140が積層されたMEA150を作製する。   Next, in step 4, the anode side catalyst layer 110 is applied to the anode side surface of the electrolyte membrane 100, the anode side diffusion layer 130 is pressure-bonded onto the anode side catalyst layer 110, and the cathode side of the electrolyte membrane 100. The cathode side catalyst layer 120 is applied to the surface of the substrate, and the cathode side diffusion layer 140 is pressure-bonded onto the cathode side catalyst layer 120. Thereby, the MEA 150 in which the catalyst layers 110 and 120 and the diffusion layers 130 and 140 are laminated on both surfaces of the electrolyte membrane 100 is manufactured.

そして、工程5において、フレーム付きのMEA150を一対のアノード側セパレータ160及びカソード側セパレータ170で挟持し、熱プレスによって、フレーム付きのMEA150と一対のアノード側セパレータ160及びカソード側セパレータ170を一体化することにより、単セル200を組み立てる。   In step 5, the MEA 150 with the frame is sandwiched between the pair of anode-side separators 160 and the cathode-side separator 170, and the MEA 150 with the frame is integrated with the pair of anode-side separators 160 and the cathode-side separator 170 by hot pressing. As a result, the unit cell 200 is assembled.

図3は、比較例の燃料電池のセルの製造の手順を示す説明図である。なお、図3は図2と同様に、電解質膜100Rと触媒層110,120と拡散層130,140の積層方向の断面を表している。比較例の単セル200Rは、以下の工程1〜工程6によって作製される。   FIG. 3 is an explanatory diagram showing a procedure for manufacturing a cell of a fuel cell of a comparative example. 3 shows a cross section in the stacking direction of the electrolyte membrane 100R, the catalyst layers 110 and 120, and the diffusion layers 130 and 140, as in FIG. The single cell 200R of the comparative example is manufactured by the following steps 1 to 6.

実施形態の工程1〜工程4(図2)と同様に、比較例の工程1では補強基材BPを作製し、比較例の工程2及び工程3では補強された電解質膜100Rを作製し、比較例の工程4ではMEA150Rを作製する。但し、比較例の工程2及び工程3において作製される電解質膜100Rは、実施形態の工程2及び工程3において作製される電解質膜100と異なり、補強基材BPの全体が補強層102とされている。また、比較例の工程4において作製されるMEA150Rは、実施形態の工程4において作製されるMEA150と異なり、アノード側触媒層110及びアノード側拡散層130が、平面視において、電解質膜100Rと同様の大きさの矩形状に形成されており、カソード側触媒層120及びカソード側拡散層140が電解質膜100Rよりも一回り小さい大きさの矩形状に形成されている。すなわち、断面視において、MEA150Rの周縁端部の形状は、カソード側触媒層120及びカソード側拡散層140に対して電解質膜100Rが外側に突出した段状となり、電解質膜100Rが露出した形状となる。   Similar to Steps 1 to 4 (FIG. 2) of the embodiment, the reinforcing base material BP is manufactured in Step 1 of the comparative example, and the reinforced electrolyte membrane 100R is manufactured in Steps 2 and 3 of the comparative example. In step 4 of the example, MEA 150R is fabricated. However, the electrolyte membrane 100R produced in the step 2 and the step 3 of the comparative example is different from the electrolyte membrane 100 produced in the step 2 and the step 3 of the embodiment, and the entire reinforcing substrate BP is the reinforcing layer 102. Yes. Further, the MEA 150R manufactured in the process 4 of the comparative example is different from the MEA 150 manufactured in the process 4 of the embodiment, and the anode side catalyst layer 110 and the anode side diffusion layer 130 are the same as the electrolyte membrane 100R in plan view. The cathode side catalyst layer 120 and the cathode side diffusion layer 140 are formed in a rectangular shape that is slightly smaller than the electrolyte membrane 100R. That is, in the cross-sectional view, the shape of the peripheral edge of the MEA 150R is a step shape in which the electrolyte membrane 100R protrudes outward with respect to the cathode side catalyst layer 120 and the cathode side diffusion layer 140, and the electrolyte membrane 100R is exposed. .

次に、比較例の工程5では、樹脂フレーム152の内周縁部をMEA150Rのカソード側の電解質膜100Rの外周縁部に接着層154を介して接着することにより、フレーム付きのMEA150Rを作製する。なお、樹脂フレーム152は、MEA150Rの外周縁部に係合するような内周縁部を有する枠形状となっている。   Next, in Step 5 of the comparative example, the inner peripheral edge of the resin frame 152 is bonded to the outer peripheral edge of the electrolyte membrane 100R on the cathode side of the MEA 150R via the adhesive layer 154, thereby manufacturing the MEA 150R with a frame. The resin frame 152 has a frame shape having an inner peripheral edge that engages with the outer peripheral edge of the MEA 150R.

そして、比較例の工程6では、実施形態の工程5(図2)と同様に、フレーム付きのMEA150Rを一対のアノード側セパレータ160R及びカソード側セパレータ170Rで挟持し、熱プレスによって、フレーム付きのMEA150Rと一対のアノード側セパレータ160R及びカソード側セパレータ170Rを一体化することにより、単セル200Rを組み立てる。   Then, in Step 6 of the comparative example, like the step 5 (FIG. 2) of the embodiment, the MEA 150R with the frame is sandwiched between the pair of anode side separator 160R and the cathode side separator 170R, and the MEA 150R with the frame is subjected to hot press. The single cell 200R is assembled by integrating the pair of anode side separator 160R and cathode side separator 170R.

以上説明したように、実施形態の単セル200の製造の手順(図2)においては、補強された電解質膜100を作製する場合において、補強層102に用いられる補強基材BPの中央部に電解質前駆体を溶融含浸させるとともに、補強基材BPの中央部よりも外側の外周部の空孔を熱プレスにより閉塞させている。これにより、シール部材となる樹脂フレーム104を補強層102と一体に形成している。従って、実施形態の単セル200の製造の手順においては、比較例の単セル200Rの製造の手順(図3)における工程5、すなわち、MEA150Rにシール部材となる樹脂フレーム152を貼り合せてフレーム付きのMEA150Rを作成する工程を省略することができ、製造の容易化を図ることができる。   As described above, in the manufacturing procedure of the unit cell 200 of the embodiment (FIG. 2), when the reinforced electrolyte membrane 100 is manufactured, the electrolyte is provided in the central portion of the reinforcing base material BP used for the reinforcing layer 102. The precursor is melted and impregnated, and the holes in the outer peripheral portion outside the central portion of the reinforcing base BP are closed by hot pressing. As a result, the resin frame 104 serving as a seal member is formed integrally with the reinforcing layer 102. Therefore, in the manufacturing procedure of the unit cell 200 of the embodiment, the step 5 in the manufacturing procedure (FIG. 3) of the unit cell 200R of the comparative example, that is, the MEA 150R is bonded to the resin frame 152 serving as a sealing member, and the frame is attached. The step of creating the MEA 150R can be omitted, and the manufacturing can be facilitated.

また、樹脂フレーム152用の樹脂フレーム部材及び接着層154用の接着剤が不要となるため、低コスト化、省資源化を図ることができる。また、補強層102に用いられる補強基材BPには、PP,PET等の樹脂材料に比べて化学耐久性の高いPTFEが利用されているので、化学耐久性の向上を図ることができる。また、比較例の場合、別部材の樹脂フレーム152を、接着層154を介して電解質膜100Rに貼り合せているが、電解質膜は水で膨潤するため、接着力が低下して、耐久性が低下する可能性がある。これに対して、実施形態の場合、樹脂フレーム104は補強層102と同一の補強基材BPで一体に形成されているので、比較例のような問題は発生しない。   In addition, since the resin frame member for the resin frame 152 and the adhesive for the adhesive layer 154 are not required, cost reduction and resource saving can be achieved. In addition, since the reinforcing base material BP used for the reinforcing layer 102 is made of PTFE having higher chemical durability than resin materials such as PP and PET, the chemical durability can be improved. In the case of the comparative example, the resin frame 152 as a separate member is bonded to the electrolyte membrane 100R via the adhesive layer 154. However, since the electrolyte membrane swells with water, the adhesive strength is reduced and the durability is improved. May be reduced. On the other hand, in the case of the embodiment, since the resin frame 104 is integrally formed of the same reinforcing base material BP as the reinforcing layer 102, the problem as in the comparative example does not occur.

本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the above-described effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

100…電解質膜
100R…電解質膜
102…補強層
104…樹脂フレーム
106,108…電解質層
110…アノード側触媒層
120…カソード側触媒層
130…アノード側拡散層
132…拡散基材層
134…マイクロポーラス層
140…カソード側拡散層
142…拡散基材層
144…マイクロポーラス層
150…膜電極接合体(MEA)
150R…膜電極接合体(MEA)
152…樹脂フレーム
154…接着層
160…アノード側セパレータ
160R…アノード側セパレータ
170…カソード側セパレータ
170R…カソード側セパレータ
200…単セル
200R…単セル
310…中央熱プレス部材
320…外周熱プレス部材
330…非加熱部材
BP…補強基材
DESCRIPTION OF SYMBOLS 100 ... Electrolyte membrane 100R ... Electrolyte membrane 102 ... Reinforcement layer 104 ... Resin frame 106,108 ... Electrolyte layer 110 ... Anode side catalyst layer 120 ... Cathode side catalyst layer 130 ... Anode side diffusion layer 132 ... Diffusion base material layer 134 ... Microporous Layer 140 ... Cathode side diffusion layer 142 ... Diffusion base material layer 144 ... Microporous layer 150 ... Membrane electrode assembly (MEA)
150R ... Membrane electrode assembly (MEA)
DESCRIPTION OF SYMBOLS 152 ... Resin frame 154 ... Adhesive layer 160 ... Anode side separator 160R ... Anode side separator 170 ... Cathode side separator 170R ... Cathode side separator 200 ... Single cell 200R ... Single cell 310 ... Central hot press member 320 ... Outer peripheral heat press member 330 ... Non-heating member BP ... Reinforcement base material

Claims (1)

燃料電池のセルの製造方法であって、
多孔性を有する樹脂製の補強基材の中央部に電解質膜前駆体を配置する工程と、
熱プレスにより、前記補強基材の中央部に電解質前駆体を含浸させるとともに、前記補強基材の中央部の外側の外周部の空孔を閉塞させることにより、前記補強基材の外周部を樹脂フレームに変質させる工程と、
前記補強基材の中央部に含浸された前記電解質前駆体を電解質に変換することによって、前記樹脂フレームを有する補強された電解質膜を作製する工程と、
前記電解質膜の両面に触媒層と拡散層とセパレータとを積層して燃料電池のセルを組み立てる工程と、
を備える、燃料電池のセルの製造方法。
A method of manufacturing a fuel cell, comprising:
A step of disposing an electrolyte membrane precursor at the center of a porous resin reinforcing substrate;
The outer peripheral part of the reinforcing base material is resin-impregnated by impregnating the electrolyte precursor in the central part of the reinforcing base material and closing the outer peripheral outer peripheral hole of the central part of the reinforcing base material by hot pressing. A process of transforming into a frame;
Producing a reinforced electrolyte membrane having the resin frame by converting the electrolyte precursor impregnated in a central portion of the reinforcing substrate into an electrolyte;
Assembling a fuel cell by laminating a catalyst layer, a diffusion layer and a separator on both surfaces of the electrolyte membrane;
A method for producing a fuel cell.
JP2016038595A 2016-03-01 2016-03-01 Method of manufacturing fuel cell Active JP6551261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038595A JP6551261B2 (en) 2016-03-01 2016-03-01 Method of manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038595A JP6551261B2 (en) 2016-03-01 2016-03-01 Method of manufacturing fuel cell

Publications (2)

Publication Number Publication Date
JP2017157358A true JP2017157358A (en) 2017-09-07
JP6551261B2 JP6551261B2 (en) 2019-07-31

Family

ID=59809914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038595A Active JP6551261B2 (en) 2016-03-01 2016-03-01 Method of manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JP6551261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183252A (en) * 2018-04-17 2019-10-24 旭化成株式会社 Diaphragm, electrolytic bath, and hydrogen manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2008066084A (en) * 2006-09-06 2008-03-21 Toyota Motor Corp Electrolyte membrane, membrane electrode assembly, and manufacturing method of them
JP2014120317A (en) * 2012-12-17 2014-06-30 Toyota Motor Corp Electrolyte membrane for fuel cell, membrane-electrode joined body and manufacturing method of electrolyte membrane for fuel cell
JP2014157713A (en) * 2013-02-15 2014-08-28 Toyota Motor Corp Manufacturing method of reinforcement film and manufacturing method of electrolyte film with reinforcement film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2008066084A (en) * 2006-09-06 2008-03-21 Toyota Motor Corp Electrolyte membrane, membrane electrode assembly, and manufacturing method of them
JP2014120317A (en) * 2012-12-17 2014-06-30 Toyota Motor Corp Electrolyte membrane for fuel cell, membrane-electrode joined body and manufacturing method of electrolyte membrane for fuel cell
JP2014157713A (en) * 2013-02-15 2014-08-28 Toyota Motor Corp Manufacturing method of reinforcement film and manufacturing method of electrolyte film with reinforcement film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183252A (en) * 2018-04-17 2019-10-24 旭化成株式会社 Diaphragm, electrolytic bath, and hydrogen manufacturing method
JP7136580B2 (en) 2018-04-17 2022-09-13 旭化成株式会社 Diaphragm, method for manufacturing diaphragm, electrolytic cell, and method for producing hydrogen

Also Published As

Publication number Publication date
JP6551261B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
KR101345826B1 (en) Membrane electrode joint product and solid polymer electrolyte fuel battery
WO2008001701A1 (en) Method for producing electrolyte membrane for fuel cell and method for producing membrane-electrode assembly
JP2006511061A5 (en)
JP2007095669A (en) Electrolyte film-electrode assembly
JPWO2015147098A1 (en) Membrane electrode assembly manufacturing method, membrane electrode assembly, and polymer electrolyte fuel cell
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP6579021B2 (en) Fuel cell
JP2016126911A (en) Fuel battery single cell
JP2009176573A (en) Method of manufacturing membrane-electrode assembly of fuel cell
JP5594021B2 (en) Membrane electrode assembly and manufacturing method thereof
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP5181678B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
JP6551261B2 (en) Method of manufacturing fuel cell
JP2008066084A (en) Electrolyte membrane, membrane electrode assembly, and manufacturing method of them
JP2010192392A (en) Porous membrane complex for fuel cell, electrolyte membrane-electrode-porous membrane complex for fuel cell, and manufacturing method of them
JP6432398B2 (en) Fuel cell single cell
JP5233286B2 (en) Manufacturing method of membrane electrode assembly
JP2010102857A (en) Method for manufacturing membrane electrode assembly
JP4792445B2 (en) Fuel cell separator
JP2009123381A (en) Electrolyte membrane structure of solid polymer fuel cell and its manufacturing method
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP5900034B2 (en) Fuel cell and fuel cell manufacturing method
JP5655802B2 (en) Membrane electrode assembly manufacturing method, membrane electrode assembly, and fuel cell
JP2009170382A (en) Manufacturing method for membrane-electrode assembly of fuel cell
JP2019145321A (en) Manufacturing method of fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6551261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151