JP5605541B2 - フコシルキトビオース誘導体の製造方法 - Google Patents

フコシルキトビオース誘導体の製造方法 Download PDF

Info

Publication number
JP5605541B2
JP5605541B2 JP2010034229A JP2010034229A JP5605541B2 JP 5605541 B2 JP5605541 B2 JP 5605541B2 JP 2010034229 A JP2010034229 A JP 2010034229A JP 2010034229 A JP2010034229 A JP 2010034229A JP 5605541 B2 JP5605541 B2 JP 5605541B2
Authority
JP
Japan
Prior art keywords
compound
formula
group
chitobiose
fucosyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010034229A
Other languages
English (en)
Other versions
JP2010229126A (ja
Inventor
浩司 松岡
大陽 照沼
健 幡野
大希 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2010034229A priority Critical patent/JP5605541B2/ja
Publication of JP2010229126A publication Critical patent/JP2010229126A/ja
Application granted granted Critical
Publication of JP5605541B2 publication Critical patent/JP5605541B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、新規N−アセチルグルコサミン誘導体を利用したフコシルキトビオース誘導体の製造方法に関する。
花粉症などに代表されるアレルギー疾患は、近年、多くの人々に発症が認められており、その症状の続く期間が比較的長いこと、常にマスクなどにより外気の遮断に注意する必要があるなど、日常生活に対して多大な影響を及ぼしている。
アレルギーは、発生のメカニズムから主として4つのタイプに分類される。そのうち、原因抗原(アレルゲン)との接触から発症するまでの時間が比較的短い即時型としてI型、II型、III型、発症までの時間が比較的長い遅延型としてIV型の各タイプが知られている。これらのタイプは、アレルギーの発症過程の相違や原因となる因子の相違によって分類されている。I型アレルギーの反応因子はIgEタイプの免疫グロブリンであり、アレルゲンが体内に侵入しIgE産生細胞を刺激することで産生される。産生されたIgEは、肥満細胞、好塩基球に結合し、そのIgEにさらにアレルゲンである抗原が結合すると、肥満細胞や好塩基球からヒスタミン、セロトニンなどの生理活性物質が放出される。放出されたヒスタミンなどの生理活性物質は、血管透過性の亢進、血管の拡張、平滑筋の収縮などを引き起こし、また、浮腫や掻痒感などを生じさせる。これらの症状はアレルゲンの侵入から短時間(10分程度)で発症する。I型アレルギーとして知られている疾患には、花粉症、蕁麻疹、食物アレルギー、薬剤アレルギー、気管支喘息、アトピー性皮膚炎などがあり、反応が全身性であって急速な血圧低下を引き起こすアナフィラキシーショックを来す場合もある。
II型アレルギーは、IgG、IgMタイプの免疫グロブリンが関与し、抗原性を有する自己の細胞に結合し、さらに白血球が関与し、細胞破壊を引き起こすものである。代表的な疾患としては、自己免疫性溶血性貧血、不適合輸血、悪性貧血などが知られている。
さらに、もう1つの即時型アレルギーであるIII型アレルギーは、IgGが関与し、抗原、抗体及び補体によって形成された免疫複合体が血管を介して組織に到達し、当該組織に傷害をもたらすものである。代表的な疾患としては、血清病、全身性エリトマトーデス、急性糸球体腎炎などが挙げられる。
そして、遅延型として知られるIV型アレルギーは、体液性免疫とは関係なく、T細胞、マクロファージなどが関与する細胞性免疫に関連する。IV型アレルギーは、T細胞の関与によって炎症反応が引き起こされるものであるが、Th1細胞、Th2細胞のいずれが関与するかによって、炎症反応の発症機序が異なる。IV型アレルギーは即時型と異なり、発症までに1〜2日程度要する。代表的な疾患として、接触皮膚炎、シェーングレン症候群、ギラン・バレー症候群などが知られている。
I型アレルギー中でも花粉症の罹患者は年々増加の一途を辿っており、有効な治療方法の確立が期待されるところである。I型アレルギーの根治的治療法として、減感作療法などが現在行われており、このような治療法において使用される植物由来のアレルゲンの供給も必要とされている。植物のアレルゲンとしては、フコシルα(1→3)キトビオースを有する糖タンパク質が関係しているとの報告がなされているが、遊離型の糖鎖では、アレルゲンとIgEの結合を有意には阻害していないとの報告などもあり、糖鎖以外にペプチド領域の構造などもIgEとの結合には重要であろうとの見解も存在する。
しかし、フコシルα(1→3)キトビオースがアレルギー発症において重要な関連性を有する可能性は高く、この糖鎖を利用した新たなアレルギー治療法の開発が待たれるところである。フコシルα(1→3)キトビオースは、天然資源から大量に単離することが困難であり、また、フコシルα(1→3)キトビオースの合成方法も報告されてはいるが、報告されている方法では収率が低いため、本化合物をアレルゲンのソースとして利用するには、さらなる効率的で大量調製に適した方法論の確立が必要とされている。
Oguriら,Chem.Pharm.Bull.,28:3196−3202,1980
本発明者らは、上記事情に鑑み、フコシルα(1→3)キトビオース誘導体の製造方法につき鋭意研究を行った結果、従来の技術よりも収率の点で優れ、大量調製も可能な製造方法の確立に成功し、本発明を完成させた。
従って、本発明は、フコシルα(1→3)キトビオース誘導体の効率的で大量調製にも対応可能な新規製造方法の提供を目的とする。
さらに、本発明は、フコシルα(1→3)キトビオース誘導体の効率的で大量調製にも対応可能な新規製造方法に利用可能な新規グルコサミン誘導体の提供を目的とする。
また、本発明は、フコシルα(1→3)キトビオース誘導体を担持したポリマー、デンドリマー又は多糖の提供を目的とする。
すなわち、本発明は、下記の式( IV )の化合物中の1,6−無水環を開環する過程を含む、下記の式( V )のフコシルα(1→3)キトビオース誘導体を製造する方法である。
Figure 0005605541

Figure 0005605541

[式中、R、R、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表し、Rは、水素原子、低級アルキル基を表す。]
また、本発明は、下記の式( I )、式( II )及び式( III )の化合物から式( IV )の化合物を合成し、式( IV )の化合物中の1,6−無水環を開環することにより、式( V )のフコシルα(1→3)キトビオース誘導体を製造する方法である。
Figure 0005605541

Figure 0005605541

Figure 0005605541

Figure 0005605541

Figure 0005605541

[式中、R、R、R、R、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表し、Rは、水素原子、低級アルキル基を表し、Lauは(CH11CHであり、TrocはCOOCHCClである。]
さらに、本発明は、式( I )の化合物と式( II )の化合物から下記の式( VI )の化合物を合成し、式( VI )の化合物と式( III )の化合物から式( IV )の化合物を合成し、式( IV )の化合物中の1,6−無水環を開環することにより、式( V )のフコシルα(1→3)キトビオース誘導体を製造する方法である。
Figure 0005605541

[式中、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表す。]
さらに、本発明は、式( V )のフコシルα(1→3)キトビオース誘導体を合成するために有用な式( I )で表されるアセチルグルコサミン誘導体もしくはその塩、又はそれらの溶媒和物もしくは水和物である。
また、本発明は、フコシルα(1→3)キトビオース誘導体を含む(担持する)ポリマー、デンドリマー又は多糖である。本発明のポリマー、デンドリマー又は多糖は、フコシルα(1→3)キトビオース誘導体(本発明の方法によって製造されるものを含む)が結合したものであれば特に限定はされない。例えば、本発明のポリマーとして、次式(VII)で表されるポリマーなどを挙げることができる。
Figure 0005605541

[式中、R、R、R、R、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表し、Rは、水素原子、低級アルキル基を表す。また、x及びzは1以上の整数であり、yは0あるいは1以上の整数である。]
フコシルα(1→3)キトビオース誘導体の製造方法としては、Tejimaらにより報告された方法が知られている(非特許文献1)。しかし、この方法によると、最終産物であるフコシルα(1→3)キトビオース誘導体の収率が46.6%と低く、大量調製を行う上で、費用、時間、労力の面で、大きな負担が予想される。
本発明の方法によれば、収率が74%と高く、従来技術であるTejimaらの方法よりも大幅に収率の向上を達成することができる。本発明の方法とTejimaらの方法との相違は、合成中間体の無水環グルコサミンの無水環を開環するタイミングにある。発明者らは、上記式( VI )に示すように無水環の状態でフコースを導入した方が最終産物であるフコシルα(1→3)キトビオース誘導体の収率が顕著に上昇することを見出し、本発明を完成させた。すなわち、先行技術が報告された当時、無水環の化合物の3位の水酸基の求核性は低いとされており(非特許文献1を参照のこと)、無水環を保持した状態でのフコースの導入は効率が悪く、技術的にも困難であると考えられていた。さらに、フコース導入後の無水環の開環反応により、フコースとの結合が切断されてしまう可能性もあった。これに対し、本発明においては、むしろ、効率が悪いとされた無水環を保持した状態でのフコースの導入を試みることによって、最終産物の顕著な収率上昇を達成したのである。
さらに、本発明において使用される式( I )の化合物は、フコシルα(1→3)キトビオース誘導体の高い収率を達成する上で有効である。
本発明により、高い収率で式( V )に示すフコシルα(1→3)キトビオース誘導体を合成することが可能となる。
本発明により、植物アレルギー(例えば、花粉症など)のアレルゲンの研究材料を大量に供給することが可能となる。
式( I )〜式( VII )中のR、R、R、R、R、R、R及びRは、水素原子又は保護基として利用可能な置換基であればいずれであってもよく、同一でも異なってもよい。ここで保護基としては、当業者が選択可能なものであれば特に限定はされず、例えば、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基が好ましく、例えば、アセチル基、ベンジル基がより好ましい。
また、Rは、水素原子、炭素数1〜5の低級アルキル基であり、好ましくは、メチル基である。
本発明のフコシルα(1→3)キトビオース誘導体の製造方法においては、例えば、式( I )、式( II )及び式( III )の化合物を使用することができる。
式( II )においてRがベンジル基、Rが水素である化合物(9)は以下のスキームにより製造することができる。
Figure 0005605541
式( I )において、R〜Rがアセチル基である化合物(15)は、例えば、以下のスキームにより製造することができる。
Figure 0005605541
式( III )において、R〜Rがベンジル基、Rがメチル基である化合物(25)は、例えば、以下のスキームにより製造することができる。
Figure 0005605541
式( IV )中、R〜Rがアセチル基であり、R〜Rがベンジル基、Rがメチル基である化合物は、例えば、上記化合物(9)、化合物(15)及び化合物(25)から合成することができ、結合の順番は特に限定されない。化合物(9)と化合物(15)を先に結合させ、次いで、化合物(25)を結合させる方法は、例えば、以下に示す工程により実施することができる。
化合物(9)と化合物(15)は、例えば、以下のスキームにより結合することができる。
Figure 0005605541
次に、化合物(16)中、Trocをアセチル基に置換し、アジド部分をアセトアミド基に変換し、ベンジル基を水素に置換して化合物(20)を合成する。
Figure 0005605541
化合物(20)と化合物(25)をグリコシル化反応により結合して、化合物(26)を合成する。
Figure 0005605541

得られた化合物(26)の1,6−無水環を開環すれば、式(5)中、R〜Rがアセチル基、R〜Rがベンジル基、Rがメチル基である以下のフコシルα(1→3)キトビオース誘導体を製造することができる。1,6−無水環の開環方法としては、フコースとの結合を切断しない方法であれば、当業者に容易に選択し得るいかなる方法を使用することも可能であるが、例えば、無水酢酸存在下、酸で処理するアセトリシス(酢化分解、加酢酸分解)反応などにより実施することが好ましい。
Figure 0005605541

次に本発明を具体例によって説明するがこれらの例によって本発明が限定されるものではない。
本発明の式(VII)の化合物は、例えば、以下のようにして合成することができる。化合物(29)をオキサゾリン誘導体へ変換後、重合性アグリコンを導入し、脱保護するとモノマーが得られる。これを重合させれば式(VII)が得られる。
Figure 0005605541
1.キトビオースユニットの合成
1,6−アンヒドロ−2,3−O−エンド−ベンジリデン−β−D−マンノピラノース(4)
Figure 0005605541

窒素雰囲気下、60℃で一晩乾燥させた D−マンノース(1)(5.0g,27.8mmol)をピリジン(75mL)に溶解し、氷冷下、ピリジン(20mL)に溶解した塩化トシル(6.36g,33.4mmol)をゆっくり滴下し、滴下終了後、室温に戻して攪拌した。1時間後、余分な塩化トシルを加水分解させるため、水(35mL)を加え、(2)に変換した。精製することなく、氷冷下、1M 水酸化ナトリウムを反応溶液がpH10になるまで滴下した後、室温で攪拌した。TLCにて反応終了を確認後、3M 塩化水素を反応溶液がpH7になるまで滴下した。トルエン共沸によって濃縮し、熱酢酸エチル(125mL)を用いて3度デカンテーションを行い、濃縮することにより(3)(4.08g)の粗生成物を得た。
得られた(3)の粗生成物をDMFに溶解し、ベンジルアルコールジメチルアセタール(6.87mL)を滴下した後、p−トルエンスルホン酸(0.44g)を加えた。減圧下、60℃で3時間加熱攪拌した。TLCにて反応終了を確認後、炭酸水素ナトリウムを反応溶液がpH7になるように加え、反応を停止させた。トルエン共沸を行い、残渣をクロロホルムに希釈させ、氷水、飽和食塩水を用いて順次洗浄し、無水硫酸マグネシウムを用いて乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮した。エタノールを用いて結晶化を行い、目的の化合物(4)(1.77g,25%)を得た。
Rf 0.33{10:1 (v/v) CHCl3-MeOH };
1H NMR (200 MHz, CDCl3): δ 7.68-7.63 (m, 2H, aromatic), 7.42-7.38 (m, 3H, aromatic), 5.76 (s, 1H, CHPh), 5.54 (s, 1H, H-1), 4.60 (dd, 1H, J5,6a = 1.3 Hz, J5,6b = 6.3 Hz, H-5), 4.26-4.17 (m, 2H, H-2, H-3), 4.10-4.05 (m, 2H, H-4, H-6a), 3.88 (dd, 1H, J5,6b = 6.3 Hz, J6a,6b = 7.4 Hz, H-6b), 2.41 (d, 1H, OH)
4−O−アセチル−1,6−アンヒドロ−2,3−O−エンド−ベンジリデン−β−D−マンノピラノース(5)
Figure 0005605541

窒素雰囲気下、化合物(4)(6.67g,26.7mmol)をピリジン(60mL)に溶解し、氷冷下、無水酢酸(7.56mL,80.1mmol)を滴下した後、室温に戻して一晩攪拌した。TLCにて反応終了を確認後、氷冷下、メタノール(10mL)を加え余分な無水酢酸を分解させ、濃縮した。残渣をクロロホルムに希釈させ、氷水、飽和炭酸水素ナトリウム水溶液、飽和食塩水を用いて順次洗浄し、無水硫酸マグネシウムを用いて乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮した。エタノールを用いてエタノールを用いて結晶化を行い、目的の化合物(5)(7.80g,100%)を得た。
Rf 0.61{2:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 7.68-7.63 (m, 2H, aromatic), 7.42-7.38 (m, 3H, aromatic), 5.76 (s, 1H, CHPh), 5.54 (s, 1H, H-1), 5.12 (s, 1H, H-4), 4.60 (dd, 1H, J5,6a = 1.3 Hz, J5,6b = 6.2 Hz, H-5), 4.25-4.17 (m, 2H, H-2, H-3), 4.11 (dd, 1H, J5,6a = 1.5 Hz, J6a,6b = 7.7 Hz, H-6a), 3.88 (dd, 1H, J5,6b = 6.2 Hz, J6a,6b = 7.5 Hz, H-6b), 2.17 (s, 3H, OAc).
4−O−アセチル−1,6−アンヒドロ−3−O−ベンジル−β−D−マンノピラノース(6)
Figure 0005605541

窒素雰囲気下、化合物(5)(10.0g,34.2mmol)をTHF(100mL)に溶解し、活性化したモレキュラーシーブス4A(10g)を加えた。反応液にボラントリメチルアミン錯体(17.5g,239mmol)を加え攪拌した後、氷冷下、塩化アルミニウム(31.9g,239mmol)を少量ずつに分けて加え室温に戻して攪拌した。TLCにて反応終了を確認後、セライト濾過を行った。濾液をクロロホルムに希釈させ、氷水、1M 塩化水素水、飽和炭酸水素ナトリウム、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮した。濃縮した残渣をシリカゲルカラムクロマトグラフィ[8:1(v/v)トルエン−酢酸エチル、シリカゲル 800mL]で精製し、化合物(6)を(8.89g,88%)を得た。
Rf 0.46{2:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 7.45-7.28 (m, 5H, aromatic), 5.37 (s, 1H, H-1), 4.98 (s, 1H, H-4), 4.86 (d, 1H, Jgem = 11.5 Hz, one of CH2Ph), 4.62 (d, 1H, Jgem = 11.7 Hz, one of CH2Ph), 4.56 (dd, 1H, J5,6a = 5.9 Hz, J5,6b = 1.1 Hz, H-5) 4.20 (d, 1H, J5,6b = 0.8 Hz, J6a,6b = 7.4 Hz, H-6a), 3.79(d, 1H, J5,6a = 6.0 Hz, J6a,6b = 7.4 Hz, H-6a), 3.71(m, 1H, H-2), 3.70 (dd, 1H, J3,4 = 6.1 Hz, J2,3 = 1.9 Hz, H-3), 3.05 (d, 1H, J2,OH = 10.3 Hz, OH), 2.15 (s, 3H, OAc).
4−O−アセチル−1,6−アンヒドロ−2−アジド−3−O−ベンジル−2−デオキシ−β−D−グルコピラノース(8)
Figure 0005605541

アルゴン雰囲気下、化合物(6)(13.0g,44.2mmol)をジクロロエタン(85mL)に溶解し、−10℃でピリジン(7.15mL,88.4mmol)を滴下した後、無水トリフルオロメタンスルホン酸(11.2mL,66.3mmol)を滴下した。その後0℃に昇温させ、3時間攪拌した。TLCにて反応終了を確認後、メタノールを加え余分な無水トリフルオロメタンスルホン酸を分解させた。反応液をクロロホルムに希釈させ、氷水、1M 塩化水素水、飽和炭酸水素ナトリウム、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮することにより、化合物(7)を得た。
アルゴン雰囲気下、残渣をDMF(100mL)に溶解し、アジ化ナトリウム(8.62g,132mmol)を加え、1時間攪拌した。TLCにて反応終了を確認後、反応液をクロロホルムで希釈し、氷水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[6:1(v/v)ヘキサン−酢酸エチル、シリカゲル800mL]で精製し、化合物(8)(12.8g,91%)を得た。
Rf 0.50{8:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 7.42-7.30 (m, 5H, aromatic), 5.52 (s, 1H, H-1), 4.78 (s, 1H, H-4), 4.75 (d, 1H, Jgem = 12.1 Hz, one of CH2Ph), 4.68 (d, 1H, Jgem = 12.1 Hz, one of CH2Ph), 4.62 (m, 1H, H-5), 4.22 (dd, 1H, J5,6b = 1.1 Hz, J6a,6b = 7.4 Hz, H-6b), 3.82 (dd, 1H, J5,6a = 5.9 Hz, J6a,6b = 7.5 Hz, H-6a), 3.62 (quint, 1H, H-3), 3.26 (s, 1H, H-2), 2.15 (s, 3H, OAc).
1,6−アンヒドロ−2−アジド−3−O−ベンジル−2−デオキシ−β−D−グルコピラノース(9)
Figure 0005605541

窒素雰囲気下、化合物(8)(12.8g,40.0mmol)をメタノール(130mL)に溶解し、ナトリウムメトキシド(0.21g,4.00mmol)を加え室温で1時間攪拌した。TLCにて反応終了確認後、陽イオン交換樹脂IR−120B(H)を加え、綿濾過し、濃縮することにより化合物(9)(11.8g,100%)を定量的に得た。
Rf 0.45{8:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 7.37-7.33 (m, 5H, aromatic), 5.45 (s, 1H, H-1), 4.63 (s, 2H, CH2Ph), 4.57 (m, 1H, H-5), 4.26 (dd, 1H, J5,6b = 1.1 Hz, J6a,6b = 7.3 Hz, H-6b), 3.81 (dd, 1H, J5,6a = 5.9 Hz, J6a,6b = 7.1 Hz, H-6a), 3.61 (s, 1H, H-3), 3.62 (m, 4H, H-4), 3.52 (s, 1H, H-2), 2.70 (br, 1H, OH).
1,3,4,6−テトラ−O−アセチル−2−デオキシ−2−[p−メトキシベンジリデン(アミノ)]−β−D−グルコピラノース(12)
Figure 0005605541

窒素雰囲気下、D−グルコサミン塩酸塩(10)(30.0g,0.14mol)を1M 水酸化ナトリウム水溶液(150mL)に溶解し、p−アニスアルデヒド(20.3mL)加え攪拌する。その後、氷冷下、2時間攪拌を続け、反応溶液を氷水で濾過し、続いてエタノールとジエチルエーテルの混合液[1:1(v/v)エタノール−ジエチルエーテル]で洗浄し、乾燥させることで化合物(11)(38.7g,93%)を得た。
窒素雰囲気下、得られた化合物(11)(38.7g,0.13mol)をピリジン(150mL)に溶解し、氷冷下、無水酢酸(90mL)加え1時間攪拌した後、室温にして一晩攪拌した。TLCにて反応終了を確認後、氷水に落とし、濾過洗浄し、乾燥させて化合物(12)(42.0g,65%)を得た。
1H NMR (200 MHz, CDCl3): δ 8.16 (s, 1H, N=CH), 7.68 (m, 2H, aromatic), 6.94 (m, 1H, aromatic), 5.96 (d, 1H, J1,2 = 8.2 Hz, H-1), 5.48 (dd, 1H, J2,3 = 9.5 Hz, J3,4 = 9.6 Hz, H-3), 5.19 (dd, 1H, J3,4 = 9.9 Hz, J4,5 = 9.7 Hz, H-4), 4.43 (dd, 1H, J5,6b = 4.6 Hz, J6a,6b = 12.5 Hz, H-6b), 4.17 (dd, 1H, J5,6a = 2.0 Hz, J6a,6b = 12.5 Hz, H-6a), 4.02 (m, 1H, 5H), 3.84 (s, 3H, CH3), 3.50 (dd, J1,2 = 8.2 Hz, J2,3 = 9.5 Hz, H-2), 2.01, 2.04, 2.02 and 1.88 (each s, 12H, OAc).
1,3,4,6−テトラ−O−アセチル−β−D−グルコサミン−ヒドロクロライド(13)
Figure 0005605541

化合物(12)(42.0g,0.09mol)を温めたアセトン(420mL)に溶解し、5M 塩化水素水(19.0mL)加え、氷冷下、ジエチルエーテル(320mL)を加え、一晩攪拌した。反応溶液を濾過し、ジエチルエーテルで洗浄し、乾燥させて化合物(13)(34.5g,100%)を定量的に得た。
1H NMR (200 MHz, D2O): δ 5.82 (d, 1H, J1,2 = 8.79 Hz, H-1), 5.36 (dd, 1H, J2,3 = 10.5 Hz, J3,4 = 9.2 Hz, H-3), 5.01 (dd, 1H, J3,4 = 9.4 Hz, J4,5 = 9.3 Hz, H-4), 4.25 (dd, 1H, J5,6b = 4.6 Hz, J6a,6b = 13.3 Hz, H-6b), 4.08-3.99 (m, 2H, H-5, H-6a), 3.65 (dd, 1H, J1,2 = 8.8 Hz, J2,3 = 10.4 Hz, H-2), 2.05, 197, and 1.92 (each s, 12H, OAc).
1,3,4,6−テトラ−O−アセチル−2−デオキシ−2−(2,2,2−トリクロロエトキシカルボニルアミド)−β−D−グルコピラノース(14)
Figure 0005605541

化合物(13)(34.4g,0.09mol)を塩化メチレン(400mL)とピリジン(85mL)に溶解し、オルト蟻酸トリクロロエチル(TrocCl)(31mL,0.27mol)を加えた。TLCにて反応終了を確認後、メタノールを加え反応を止め、濃縮した。残渣をクロロホルムに希釈させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮した。酢酸エチル−ヘキサンで再結晶化を行い、化合物(14)(46.7g,100%)を定量的に得た。
Rf 0.60{1:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 5.77(d, 1H, J1,2 = 8.8 Hz, H-1), 5.45 (d, 1H, J2,NH = 9.3 Hz, NH), 5.33 (dd, 1H, J2,3 = 9.5 Hz, J3,4 = 9.9 Hz, H-3), 5.16 (dd, 1H, J3,4 = 9.5 Hz, J4,5 = 9.7 Hz, H-4), 4.73 (s, 2H, Cl3CCH2), 4.35 (dd, 1H, J5,6b = 4.6 Hz, J6b,6a = 12.5 Hz, H-6b), 4.16 (dd, 1H, J5,6a = 2.0 Hz, J6a,6b = 12.5 Hz, H-6a), 4.05-3.83 (m, 2H, H-2, H-5), 2.12(m, 12H, OAc).
ドデシル 3,4,6−トリ−O−アセチル−2−デオキシ−2−(2,2,2−トリクロロエトキシカルボニルアミド)−β−D−グルコピラノース(15)
Figure 0005605541

窒素雰囲気下、化合物(14)(2.0g,3.83mmol)を塩化メチレン(20mL)に溶解し、1−ドデカンチオール(2.74mL,11.5mmol)を加え攪拌し、三フッ化ホウ素・ジエチルエーテル錯体(0.96mL,7.76mmol)を滴下した。2.5時間攪拌した後、TLCにて反応終了を確認し、クロロホルムに希釈させ、氷水、飽和炭酸水素ナトリウム、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮した後、エタノールで再結晶化を行い、化合物(15)(2.48g,97%)を得た。
Rf 0.60{2:1 (v/v) Toluene-EtOAc};
1H NMR (400 MHz, CDCl3): δ 5.25 (dd, 1H, J3,4 = 9.8 Hz, J2,3 = 9.8 Hz, H-3), 5.16 (d, 1H, J2,NH = 9.3 Hz, NH), 5.11 (dd, 1H, J3,4 = 9.7 Hz, J4,5 = 9.7 Hz, H-4), 4.81 (d, 1H, Jgem =12.0 Hz, one of Cl3CCH2), 4.70 (d, 1H, Jgem =12.0 Hz, one of Cl3CCH2), 4.62 (d, 1H, J1,2 = 10.3 Hz, H-1), 4.28 (dd, 1H, J5,6a = 5.0 Hz, J6a,6b = 12.3 Hz, H-6a), 4.15 (dd, 1H, J5,6b = 2.3 Hz, J6a,6b = 12.3 Hz, H-6b), 3.81 (q, 1H, J2,3 = 10.0 Hz, J1,2 = 10.1 Hz, H-2), 3.72-3.68 (m, 1H, H-5), 2.72-2.66 (m, 2H, SCH2CH2(CH2)9CH3), 2.08 and 2.03 (s, 9H, OAc) 1.61-1.56 (m, 2H, SCH2CH2(CH2)9CH3), 1.41-1.26 (m, 18H, SCH2CH2(CH2)9CH3), 0.91-0.86 (m, 1H, 6.6 Hz, SCH2CH2(CH2)9CH3).
4−O−(3,4,6−トリ−O−アセチル−2−デオキシ−2−(2,2,2−トリクロロエトキシカルボニルアミノ−β−D−グルコピラノシル)−1,6−アンヒドロ−2−アジド−3−O−ベンジル−2−デオキシ−β−D−グルコピラノース(16)
Figure 0005605541

化合物(9)(0.3g,1.0mmol)と化合物(15)(1.33g,2.0mmol)を塩化メチレンに溶解し、活性化したモレキュラーシーブス4A(1.5g)を加え、氷冷下で攪拌した。窒素雰囲気下、NIS(0.67g,3.0mmol)とTMSOTf(0.054mL,0.3mmol)を加えた。−20℃、2.5時間攪拌した後、トリエチルアミン(0.042mL)を加えて反応を止め、セライト濾過を行った。濾液をクロロホルムに希釈させ、氷水、10% チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)トルエン−酢酸エチル、 シリカゲル200mL]で精製した。イソプロピルアルコールで再結晶化を行い、化合物(16)(0.6g,81%)を得た。
Rf 0.29{2:1 (v/v) Toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ 7.38-7.29 (m, 5H, phenyl), 5.61(t, 1H, J 9.9 Hz, NH), 5.47 (s, 1H, H-1), 5.33 (d, 1H, J2,NH’ = 6.4 Hz, NH’), 5.20 (d, 1H, J1’,2’ 7.6 Hz, H-1’), 5.07 (t, 1H, J4’,5’ = 9.8 Hz, H-4’), 4.79-4.57 (m, 5H, Cl3CCH2, PhCH2), 4.22 (dd, 1H, J5,6a’ = 4.6 Hz, J6a’,6b’ = 12.3 Hz, H-6a’), 4.14-4.10 (m, 2H, H-6a, H-6b’), 3.86 (s, 1H, H-1), 3.79 (s, 1H, H-4), 3.76 (m, 1H, H-6b), 3.07 (m, 1H, H-5’), 3.78 (m, 1H, H-2’), 3.81 (s, 1H, H-2), 2.04 and 2.03(s, 9H, OAc).
FAB-MS calcd for C28H33Cl3N4O13 [M+H]+ :739.1. Found: 739.2.
2.フコシルキトビオース誘導体の合成
2−アセトアミド−4−O−(3,4,6−トリ−O−アセチル−2−デオキシ−2−(2,2,2−トリクロロエトキシカルボニルアミノ−β−D−グルコピラノシル)−1,6−アンヒドロ−3−O−ベンジル−2−デオキシ−β−D−グルコピラノース(17).
Figure 0005605541

窒素雰囲気下、化合物(16)(2.5g,3.4mmol)をピリジン(25mL)に溶解し、氷冷下、チオ酢酸(13mL,0.27mol)を加え、攪拌した。30分後、室温に戻し、一晩攪拌した。TLCにて反応終了を確認後、反応溶液をトルエンで共沸させ、残渣をシリカゲルカラムクロマトグラフィ[1:0(v/v)→2:1(v/v)→ 0:1(v/v)トルエン−酢酸エチル、シリカゲル250mL]で精製し、キトビオース誘導体(17)(2.68g,100%)を定量的に得た.
Rf 0.19{10:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
1H NMR (400 MHz, CDCl3): δ7.34-7.29 (m, 5H, phenyl), 6.77(d, 1H, J2,H = 8.1 Hz, NH), 5.61 (d, 1H, J2,NH’ 8.8 Hz, NH’), 5.28 (s, 1H, H-1), 5.16 (m, 2H, H-4’, H-3’), 4.84 (m, 2H, H-1’, ), 4.59 (m, 4H, Cl3CCH2, PhCH2), 4.31 (m, 3H, H-6a, H-6b’, H-6b), 4.05 (d, 1H, H-3), 3.83-3.72(m, 3H, H-4, H-5’,H-6b’), 3.65 (s, 2H, H-2), 2.07-2.03(m, 12H, OAc).
FAB-MS calcd for C30H37Cl3N2O14 [M+H]+ :755.1. Found: 755.5.
Anal. Calcd for C30H37Cl3N2O14: C, 47.66; H, 4.93; N, 3.71, Found: C, 47.76; H, 4.89; N, 3.51.
2−アセトアミド−4−O−(2−アセトアミド−3,4,6−トリ−O−アセチル−2−デオキシ−β−D−グルコピラノシル)−1,6−アンヒドロ−3−O−ベンジル−2−デオキシ−β−D−グルコピラノース(19)
Figure 0005605541

化合物(17)(3.3g,4.4mmol)を酢酸(33mL)に溶解し、窒素雰囲気下、室温で亜鉛粉末(6.5g)を加え、攪拌した。TLCにて反応終了を確認後、セライト濾過により亜鉛粉末を除去し、濃縮することにより化合物(18)を得た。
得られた化合物(18)をピリジン(35mL)に溶解し、無水酢酸(3.1mL)を加え、室温で攪拌した。TLCにて反応終了を確認後、氷冷下でメタノール(1mL)を加え、残っている無水酢酸をつぶした。反応溶液をトルエンで共沸させ、クロロホルムに希釈させ、氷水、1M 塩化水素水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[10:4:1(v/v/v)クロロホルム−酢酸エチル−メタノール、シリカゲル300mL]で精製し濃縮することにより化合物(19)(2.6g,97%)を得た。
Rf 0.24{10:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
1H NMR (400 MHz, CDCl3): δ7.36-7.27 (m, 5H, aromatic), 6.77 (d, 1H, J2,NH = 10.0 Hz, NH), 5.88 (d, 1H, J2,NH’ = 8.8 Hz, NH’), 5.30 (s, 1H, H-1), 5.13 (m, 2H, H-4’, H-3’), 4.81 (d, 1H, J1,2 = 12.0 Hz, H-1’β), 4.51 (m, 3H, H-5, PhCH2), 4.34 (d, 1H, J2,3 = 6.4 Hz H-2), 4.29 (m, 2H, H-6a’, H-6b), 4.19-4.11 (m, 1H, H-2’), 4.09 (dd, 1H, J5,6b’ = 2.4 Hz, J6a’,6b’ = 12.4 Hz, H-6b’), 3.79 (s, 1H, H-4), 3.76 (t, 1H, J2,3 = 6.5 Hz, H-3), 3.61 (m, 1H, H-5’), 3.53 (s, 1H, H-6a), 2.12, 2.08, 2.05, 2.03 and 2.00 (each s, 15H, OAc).
FAB-MS calcd for C29H38N2O13 [M+H]+ :623.2. Found: 623.5.
2−アセトアミド−4−O−(3,4,6−トリ−O−アセチル−2−デオキシ−2−アセトアミド−β−D−グルコピラノシル)−1,6−アンヒドロ−2−デオキシ−β−D−グルコピラノース(20)
Figure 0005605541

化合物(19)(0.95g,1.53mmol)を酢酸エチル(10mL)に溶解し、パラジウム/炭素(450mg)を加え、水素雰囲気下室温で6日攪拌し活性炭濾過を行った。濾液を濃縮し、シリカゲルカラムクロマトグラフィ[5:4:1(v/v/v)クロロホルム−酢酸エチル−メタノール、シリカゲル75mL]で精製しエタノールで結晶化することにより、化合物(20)(0.81g,100%)を定量的に得た。
Rf 0.40{2:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
1H NMR (400 MHz, CDCl3): δ6.90 (d, 1H, J2,NH = 10.0 Hz, NH), 6.18 (d, 1H, J2’,NH’ = 9.2 Hz, NH’), 5.32 (s, 1H, H-1), 5.14 (m, 2H, H-3’, H-4’), 4.55 (m, 1H, H-5), 4.55 (m, 1H, J1’,2’ = 8.4 Hz, H-1’b), 4.31 (m, 2H, H-4, H-6a’), 4,24 (m, 2H, H-2’, H-2), 4.13 (dd, 1H, J5’,6b’ = 2.2 Hz, J6a’,6b’ = 11.8 Hz, H-6b’), 3.80 (m, 3H, H-3, H-6a, H-6b), 3.68 (ddd, 1H, J5’,6b’ = 2.2 Hz, H-5’), 3.50 (d, 1H, J3,OH = 5.6 Hz, OH), 2.13, 2.10, 2.06, 2.04 and 1.99 (each s, 15H, OAc).
13C NMR (100 MHz, CDCl3): δ171.89, 171.75, 170.93, 170.76 and 169.27 (-C=O of ester), 101.59(C-1), 99.76(C-1’), 74.98 (C-3), 72.52 (C-5), 72.07 (C-3’), 72.03 (C-5’), 71.09 (C-4’), 53.96 (C-2’), 50.77(C-2), 23.63 and 22.75 (-NHCOCH3), 20.78, 20.72 and 20.60 (-COOCH3).
FAB-MS calcd for C22H32N2O13 [M+H]+ :533.2. Found: 533.3.
Anal. Calcd for C22H32N2O13: C, 49.62; H, 6.06; N, 5.26, Found: C, 49.36; H, 5.84; N, 5.01.
1,2,3,4−テトラ−O−アセチル−L−フコピラノース(22)
Figure 0005605541

L−フコース(21)(10g,61mmol)をピリジン(80mL)に溶解し、0℃ に冷却し、無水酢酸(70mL)を滴下した。滴下終了後、室温で一晩攪拌した。反応溶液をトルエンで共沸させ、残渣に氷水を加えた。水層をクロロホルムで抽出し、続いて有機層を1M 塩化水素水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濃縮することにより化合物(22)(20.2g,100%)を定量的に得た。
Rf 0.55{ 1:1 (v/v) toluene-EtOAc};
1H NMR (200 MHz, CDCl3): δ6.35 (d, 1H, J1,2 = 1.8 Hz, H-1α), 5.71 (d, 1H, J3,4 = 8.1 Hz, H-1β).
ドデシル −l,2,3,4−トリ−O−アセチル−1−チオ−L−フコピラノシド(23)
Figure 0005605541

化合物(22)(22g)を1,2−ジクロロエタン(120mL)に溶解し、1−ドデカンチオール(29mL)を加え、窒素雰囲気下、氷冷下で三フッ化ホウ素ジエチルエーテル錯体(12mL)を滴下した。TLCにて反応終了を確認後、クロロホルムに希釈させ、氷水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[8:1(v/v)ヘキサン−酢酸エチル、シリカゲル1L]で精製し濃縮することにより化合物(23)(24g,85%)を得た。
Rf 0.40{6:1 (v/v) Hexane-EtOAc};
1H NMR (400 MHz, CDCl3): δ5.28 (d, 1H, J4,5 = 3.2 Hz, H-4), 5.24 (t, 1H, J1,2 = J2,3 = 10.0 Hz, H-2), 5.06 (dd, 1H, J2,3 = 10.0 Hz, J3,4 = 3.2 Hz, H-3), 4.45 (d, 1H, J1,2 = 10.0 Hz, H-1β), 3.61 (q, 1H, J5,6 = 6.4 Hz, H-5), 2.74 (m, 2H, SCH2CH2(CH2)9CH3), 2.18, 2.07 and 1.99 (each s, 9H, OAc), 1.67 (m, 2H, CH2CH2(CH2)9CH3), 1.45-1.26 (m, 18H, SCH2CH2(CH2)9CH3), 1.23 (d, 3H, J5,6 = 6.4 Hz, H-6), 0.90 (t, 3H, Jvic = 6.8 Hz SCH2CH2(CH2)9CH3).
ドデシル −1−チオ−β−L−フコピラノシド(24)
Figure 0005605541

化合物(23)(30.2g,63.6mmol)をメタノール(120mL)に溶解し、ナトリウムメトキシド(1.03g,19.1mmol)加え、窒素雰囲気下、室温で一晩攪拌した後、陽イオン交換樹脂を用いて、pH調整を行い、濾過、濃縮することにより、化合物(24)(22.2g,100%)を定量的に得た。
ドデシル 2,3,4−トリ−O−ベンジル−1−チオ−β−L−フコピラノシド(25)
Figure 0005605541

55% 水素化ナトリウム(1.24g)をヘキサンで数回洗浄した後、ヘキサンを減圧留去しアルゴン置換した後、DMF(10mL)を加えた。窒素雰囲気下、氷冷し、DMF(15mL)に溶解した化合物(24)(0.94g,2.70mmol)を滴下した。臭素化ベンジル(2.04mL,17.2mmol)をゆっくり滴下した後、室温に戻して3時間半攪拌した。その後、氷冷下でメタノール(10mL)をゆっくり滴下し、反応を停止させた。反応溶液をトルエンで共沸させ、酢酸エチルで希釈させ、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、シリカゲルカラムクロマトグラフィ[10:1(v/v)ヘキサン−酢酸エチル、シリカゲル100mL]で精製し、濃縮後、エタノールにて結晶化することにより化合物(25)(1.34g,81%)を得た。
Rf 0.40{6:1 (v/v) Hexane-EtOAc};
1H NMR (400 MHz, CDCl3): δ7.41-7.26 (m, 15H, aromatic), 5.01 (d, 1H, Jgem = 12.0 Hz, one of CH2Ph), 4.91 (d, 1H, Jgem = 10.4 Hz, one of CH2Ph), 4.81 (d, 1H, Jgem = 10.0 Hz, one of CH2Ph), 4.76 (s, 1H, one of CH2Ph), 4.75 (s, 1H, one of CH2Ph), 4.71 (d, 1H, Jgem = 11.6 Hz, one of CH2Ph), 4.37 (d, 1H, J1,2 = 9.6 Hz, H-1β), 3.83 (t, 1H, J2,3 = 9.4 Hz, H-2), 3.61 (d, 1H, J3,4 = 2.4 Hz, H-4), 3.57 (dd, 1H, J2,3 = 9.2 Hz, J3,4 = 2.4 Hz, H-3), 3.49 (q, 1H, J5,6 = 6.4 Hz, H-5), 2.78-2.65 (m, 2H, SCH2CH2(CH2)9CH3), 1.67-1.54 (m, 2H, SCH2CH2(CH2)9CH3), 1.38-1.22 (m, 18H, SCH2CH2(CH2)9CH3), 1.21 (d, 3H, J5,6 = 6.4 Hz, H-6), 0.90 (t, 3H, Jvic = 6.6 Hz, SCH2CH2(CH2)9CH3).
O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−ベンジル−α−L−フコピラノシル)−(1→3)]−2−アセトアミド−1,6−アンヒドロ−2−デオキシ−β−D−グルコピラノース(26)
Figure 0005605541

化合物(20)(100mg,0.19mmol)と化合物(25)(232g,0.38mmol)を塩化メチレン(4.5mL)に溶解し、活性化したモレキュラーシーブス 4A(0.35mg)を加え、アルゴン雰囲気下、氷冷下で攪拌した。−15℃に冷却し、NIS(128mg,0.57mmol)とTMSOTf(0.01mL,0.06mmol)を加え、2.5時間攪拌した後、トリエチルアミン(0.01mL)を加えて反応を止め、セライト濾過を行った。濾液をクロロホルムに希釈させ、10% チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[5:1 (v/v)トルエン−酢酸エチル、シリカゲル110mL]で精製し、濃縮することにより化合物(26)(110mg,62%)を得た。
Rf 0.55{5:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
1H NMR (400 MHz, CDCl3): δ7.41-7.27 (m, 15H, 3×phenyl), 6.66(d, 1H, J 9.87 Hz, NH), 5.80 (d, 1H, J2,NH 8.79 Hz, NH’’), 5.30 (s, 1H, H-1), 5.14-5.06 (m, 3H, H-1’, H-4’’, H-3’’), 4.98-4.60 (m, 6H, 3×PhCH2), 4.52 (d, 1H, J 8.23 Hz, H-1’’), 4.44 (d, 1H, J 5.13 Hz, H-5’), 4.28-4.042 (m, 6H, H-2, H-6a, H-3’, H-6b’, H-2’,H-2’’), 3.83-3.58(m, 6H, H-5’’, H-5, H-3, H-6a’, H-6b, H-4, H-4’’), 2.11-1.97(m, 15H, 5×Ac), 1.11(d, 3H, Me).
13C NMR (100 MHz, CDCl3): δ101(C-1), 100(C-1’’), 96(C-1’).
FAB-MS calcd for C49H33N2O17 [M+H]+ :949.4. Found: 949.6.
3.フコシルキトビオース誘導体の変換1
O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−アセチル−α−L−フコピラノシル)−(1→3)]−2−アセトアミド−1,6−アンヒドロ−2−デオキシ−β−D−グルコピラノース(28)
Figure 0005605541

化合物(26)(300mg,0.32mmol)を酢酸エチル(10mL)に溶解し、パラジウム/炭素(1.0g)を加え、水素雰囲気下室温で一晩攪拌し活性炭濾過を行った。濾液を濃縮することで化合物(27)を得た。
続けて、残渣をピリジン(5.0mL)に溶解し、無水酢酸(0.8mL)を加え一晩攪拌した。系中に氷水、クロロホルムを加え、水層をクロロホルムで抽出した後、有機層を1M 塩化水素水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。乾燥後、セライト濾過を行い、反応溶液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[5:4:1 (v/v/v) クロロホルム−酢酸エチル−メタノール、シリカゲル 40mL]で精製し、濃縮することで化合物(28)(238mg,94%)を得た。
Rf 0.79{5:1 (v/v) CHCl3-MeOH};
1H NMR (400 MHz, CDCl3): δ 6.75(d, 1H, J2,NH = 10.4 Hz, NH), 6.03 (d, 1H, J2’’,NH’’ = 9.2 Hz, NH’’), 5.38 (d, 1H, J1,2, = 3.6 Hz, H-1’a)), 5.26-5.23 (m, 3H, H-1, H-4’’, H-3’’), 5.13-5.05 (m, 3H, H-2’, ), 4.54 (d, 1H, J 1’’,2’’ = 8.0 Hz, H-1’’b), 4.50 (d, 1H, J = 5.6 Hz, H-5’) 4.29 (dd, 1H, J = 4.8 Hz, J = 12.4 Hz, H-6a’’), 4.23 (d, 1H, J = 5.6 Hz, H-2), 4.19 (d, 1H, J = 10.0 Hz, H-2’’), 4.14 (dd, 1H, J = 2.4 Hz, J = 12.4 Hz, H-6b’’), 4.06-4.02 (m, 2H, ,), 3.77-3.72 (m, 3H, H-5, H-3, H-6b, H-4’), 3.68-3.64 (m, 1H, H-5’’), 2.17, 2.16, 2.13, 2.09, 2.08, 2.06, 2.05, 2.00 (each s, 24H, 5×Ac), 1.13 (d, 3H, J = 6.4 Hz, H-6).
13C NMR (100 MHz, CDCl3): δ101.07 (C-1), 99.79 (C-1’’), 93.39 (C-1’).
MALDI-TOF-MS calcd for C49H48N2O20 [M+H]+ :805.3. Found: 805.2.
O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−アセチル−α−L−フコピラノシル)−(1→3)]−2−アセトアミド−2−デオキシ−D−グルコピラノース(29)
Figure 0005605541

化合物(28)(50mg,0.062mmol)を無水酢酸(2.0mL)に溶解し、氷冷下、トリフルオロ酢酸(0.14mL,0.18mmol)を加え一晩攪拌した。反応溶液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[5:4:1(v/v/v) クロロホルム−酢酸エチル−メタノール、シリカゲル30mL]で精製し、濃縮することで化合物(29)(36mg,64%)を得た。
Rf 0.52{2:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
FAB-MS calcd for C38H54N2O23 [M+H]+ :907.3. Found: 907.5.
4.フコシルキトビオース誘導体の変換2
O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−ベンジルα−L−フコピラノシル)−(1→3)]−2−アセトアミド−2−デオキシ−D−グルコピラノース(30)
Figure 0005605541

化合物(26)(75mg,0.079mmol)を無水酢酸(1.0mL)に溶解し、0℃でトリフルオロ酢酸(0.18mL)を加え、5時間攪拌した。トリエチルアミン(0.32mL)を加え反応を止め、トルエン共沸により濃縮し、残渣をシリカゲルカラムクロマトグラフィ[15:14:1(v/v/v)クロロホルム−酢酸エチル−メタノール、 シリカゲル30mL]で精製し、濃縮することにより化合物(30)(47mg,57%)を得た。
Rf 0.46{5:4:1 (v/v/v) CHCl3-EtOAc-MeOH};
FAB-MS calcd for C53H66N2O20 [M+H]+ :1051.4. Found: 1051.8.
O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−アセチル−α−L−フコピラノシル)−(1→3)]−2−アセトアミド−2−デオキシ−D−グルコピラノース(29)
Figure 0005605541

化合物(30)(40mg,0.038mmol)を酢酸エチル(1mL)に溶解し、パラジウム/炭素(30mg)を加え、水素雰囲気下室温で3日攪拌し活性炭濾過を行った。濾液を濃縮することにより化合物(31)を得た。
続けて、残渣をピリジン(1mL)に溶解し、無水酢酸(0.2mL)を加え攪拌した。反応溶液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[5:4:1(v/v/v) クロロホルム−酢酸エチル−メタノール、シリカゲル10mL]で精製し、濃縮することにより化合物(29)(26mg,75%)を得た。
FAB-MS calcd for C38H54N2O23 [M+H]+ :907.3. Found: 907.5.
5.フコシルキトビオースポリマーの合成
w−[(1−オキソ―2−プロペニル)アミノ]ヘキシル O−(3,4,6−トリ−O−アセチル−2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(2,3,4−トリ−O−アセチル−α−L−フコピラノシル)−(1→3)]−2−アセトアミド−2−デオキシ−β−D−グルコピラノシド(32)
フコシルキトビオース完全アセチル体(30)(150mg,165μmol)を1,2-ジクロロエタン(1.0mL)に溶解させ、アルゴン置換し、0℃でトリフルオロメタンスルホン酸トリメチルシリル(33μL,182μmol)を加え50℃で2.5時間撹拌した。TLCで反応を確認したところあまり進んでいなかったのでトリフルオロメタンスルホン酸トリメチルシリル(15μL,82.5μmol)を加え、50℃で2時間撹拌した。ここで更に、トリフルオロメタンスルホン酸トリメチルシリル(10μL,55μmol)を加え、50℃で30分撹拌した。氷冷下、トリメチルアミン(4.84mL,34.7mmol)を加え、反応を停止させ、反応液を濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(シリカゲル 15g、クロロホルム:酢酸エチル:メタノール:トリメチルアミン=1000:400:100:5)で精製することにより、目的のオキサゾリン体(31)(136mg,97.1%)を得た。
Rf 0.21 [2:4:1 (v/v/v) chloroform-ethyl acetate-methanol];
1H NMR (400 MHz, CDCl3): δ6.00 (d, 1 H, JNH’,2 = 9.5 Hz, NH’), 5.93 (d, 1 H, J1,2 = 6.4 Hz, H-1), 5.41 (d, 1 H, J1’’,2’’ = 4.0 Hz, H-1’’a), 5.31-5.26 (m, 2 H, H-4’’, H-3’’), 5.23 (t, 1 H, H-3’), 5.11 (dd, 1 H, J2’,3’ = 2.0 Hz, H-2’), 4.32-4.08 (m, 6 H, H-6b’, H-6b, H-5’’, H-6a’, H-6a, H-2), 3.92-3.85 (m, 1 H, H-2’), 3.69-3.64 (m, 2 H, H-4, H-5’), 3.71-3.33 (m, 1 H, H-5), 2.17, 2.15, 2.06, 2.03, 1.98 and 1.92 (each s, 18 H, 6×OAc), 2.08 (d, 3 H, CH3), 1.98 and 1.92 (each s, 6H, 2×NHAc), 1.18 (d, 3 H, J5’’,6’’ = 6.8 Hz, H-6’’);
Figure 0005605541

オキサゾリン体(31)(67.9mg,0.08mmol)とアクリルアミドアルコール(34mg,0.20mmol)を1,2-ジクロロエタン(1.0mL)に溶解させ、室温でp-トルエンスルホン酸ピリジン塩(2.0mg,8.0μmol)を加え90℃で加熱還流させながら2時間撹拌した。氷冷し、トリエチルアミン(0.2mL)を加え中和し、トルエンを加えて溶媒を減圧留去した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(40g、クロロホルム:酢酸エチル:メタノール=10:9:1.5)で精製し、更にフラッシュシリカゲルカラムクロマトグラフィー(40g、クロロホルム:メタノール=11:1)で精製することによりフコシルキトビオース保護体モノマー(32)(55.4mg,67.9%)を白色泡状粉末として得た。
Rf 0.37 [2:4:1 (v/v/v) chloroform-ethyl acetate-methanol]; IR (neat) 2926 (nC-H) 1748 (nC=O) 1661 (nNHC=O) 1626 (nC=C) 1537 (δN-H) 1233 (nC-N) 1045 (nC-O-C) cm-1;
1H NMR (400 MHz, CDCl3): δ6.72 (dd, 1 H, JNH,2 = 9.5 Hz, NH), 6.33 (dd, 1 H, Jvic(trans) = 17.0 Hz, Jgem = 1.4 Hz, one of -CH=CH2), 6.22 (br t, 1 H, J = 5.4 Hz, -NHCOCH=CH2), 6.18 (dd, 1 H, Jvic(trans) = 17.0 Hz, Jvic(cis) = 10.2 Hz, -CH=CH2), 5.66 (dd, 1 H, Jvic(cis) = 10.2 Hz, Jgem = 1.4 Hz, one of -CH=CH2), 5.42 (d, 1 H, J1’’,2’’ = 3.8 Hz, H-1’’a), 5.31-5.28 (m, 2 H, H-4’’, H-3’’), 5.13 (m, 3 H, H-2’’, H-3’, H-4’), 4.53-4.37 (m, 5 H, H-5’’, H-6a, H-1’’b, -OCH2), 4.36 (d, 1 H, J1,2 = 8.4 Hz, H-1b), 4.17 (dd, 1 H, Jgem = 1.6 Hz, J5,6b = 12.4 Hz, H-6b), 4.11-4.06 (m, 2 H, H-2’, H-2), 3.96 (t, 1H, J3,4 = 5.7 Hz, H-4), 3.84 (t, 1 H, J3,4 = 5.7 Hz, H-3), 3.80-3.71 (m, 2 H, H-6’b, H-5), 3.67-3.64 (m, 1 H, H-5’), 3.44-3.27 (m, 3 H, H-6’a, -CH2NHCO-), 2.18, 2.16, 2.14, 2.11, 2.09, 2.05, 2.04 and 2.03 (each s, 21 H, 7×OAc), 1.96 (s, 6H, 2×NHAc), 1.58-1.49 (m, 4 H, -OCH2CH2CH2CH2CH2CH2NHCO-), 1.42-1.30 (m, 4 H, -OCH2CH2CH2CH2CH2CH2NHCO-), 1.20 (d, 3 H, J5’’,6’’ = 6.8 Hz, H-6’’);
13C NMR (100 MHz, CDCl3): δd 171.40, 170.77, 170.65, 170.64, 170.61, 170.49, 169.87 and 169.19 (-C=O of ester), 165.71 (-C=O of amide), 130.99 (-CH=CH2), 126.28 (-CH=CH2), 100.98 (C-1), 100.09 (C-1’), 95.15 (C-1’’), 73.75 (C-4), 73.57 (C-3), 72.82 (C-5), 72.49 (C-5’), 72.25 (C-4’), 71.36 (C-4’’), 68.91 (C-6’), 67.92 (C-3’), 67.86 (C-3’’), 67.82 (C-2’’), 65.02 (C-5’’), 63.69 (-OCH2-), 61.61 (C-6), 53.97 (C-2’), 51.31 (C-2), 38.99 (-CH2NH-), 29.12 and 28.80 (-OCH2CH2-, -CH2CH2NH-), 26.08 and 25.34 (-OCH2CH2CH2-, -CH2CH2CH2NH-), 23.27 and 23.13 (-NHCOCH3), 20.97, 20.82, 20.66, 20.64 and 20.55 (-COOCH3), 15.84 (C-6’’) ;
MALDI-TOF-MS calcd for C45H67N3O23 [M+Na]+: 1040.406.269. Found: 1040.384.
w−[(1−オキソ―2−プロペニル)アミノ]ヘキシル O−(2−アセトアミド−2−デオキシ−β−D−グルコピラノシル)−(1→4)−[O−(α−L−フコピラノシル)−(1→3)]−2−アセトアミド−2−デオキシ−β−D−グルコピラノシド(33)
Figure 0005605541

フコシルキトビオースモノマー保護体(32)(66mg,64μmol)をメタノール(2.5mL)に溶解させ、0.1Mナトリウムメトキシド/メタノール溶液(0.45mL)を加え、室温で4時間撹拌した。強酸性陽イオン交換樹脂を加え、中和を行い、綿ろ過によってイオン交換樹脂を取り除き、ろ液を濃縮した。残渣を分取型リサイクルHPLC(カラム JAIGEL-W525; 溶媒 メタノール)で精製し、濃縮することによりフコシルキトビオース脱保護モノマー(33)(45mg,95.5%)を得た。
Rf 0.47 [3:3:1 (v/v/v) chloroform-methanol-water]; IR (KBr) 3414 (nO-H) 2937 (nC-H) 1657 (nNHC=O) 1628 (nC=C) 1557 (δN-H) 1047 (nC-O-C) cm-1;
1H NMR (400 MHz, D2O): δ6.21 6.18 (dd, 1 H, Jvic(trans) = 17.1 Hz, Jvic(cis) = 10.0 Hz, -CH=CH2), 6.14 (d, 1 H, Jvic(trans) = 17.0 Hz, one of -CH=CH2), 5.71 (d, 1 H, Jvic(cis) = 10.0 Hz, one of -CH=CH2), 5.09 (d, 1 H, J1’’,2’’ = 3.6 Hz, H-1’’a), 4.73-4.68 (m, 1 H, H-5’’), 4.49 (d, 1H, J1,2 = 8.0 Hz, H-1b), 4.44 (d, 1 H, J1’,2’ = 7.6 Hz, H-1’b), 3.96-3.35 (several m, 16 H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-3', H-4', H-5', H-6'a, H-6'b, H-2", H-3", H-4", OCH2-), 3.25-3.16 (m, 3 H, H-2', -CH2ND-), 2.00 and 1.97 (each s, 6 H, NDAc), 1.55-1.44 (m, 4 H, OCH2CH2-, -CH2CH2ND-), 1.34-1.25 (m, 4 H, -OCH2CH2CH2CH2CH2CH2NHCO-), 1.24 (d, 3 H, J5'',6'' = 6.4 Hz);
13C NMR (100 MHz, D2O): δ 174.55, 174.06 and 168.36 (-C=O of amide), 129.99 (-CH=CH2), 126.87 (-CH=CH2), 100.89 (C-1), 100.35 (C-1’), 98.45 (C-1’’), 75.91, 75.26, 74.79, 73.55, 71.96, 70.62, 70.43, 69.12, 67.62, 66.61, 61.51, 59.87, 55.72, 55.61, 39.28 (-CH2ND-), 28.40 and 28.19 (-CH2CH2ND-, -OCH2CH2-), 25.60 and 24.66 (-CH2CH2CH2ND-, -OCH2CH2CH2-), 22.19 and 22.01 (-NDCOCH3), 15.41 (C-6’’);
MALDI-TOF-MS calcd for C31H53N3O16 [M+Na]+: 746.332. Found: 746.286.
フコシルキトビオースポリマー(34)
Figure 0005605541
フコシルキトビオースホモポリマー(34a)(x:y:z=1:0:29)
フコシルキトビオース脱保護体モノマー(33)(28.0mg,38.7μmol)を脱気した脱イオン水−エタノール(v/v=1:1,0.3mL)に溶解させ、約30分間脱気した。アルゴン雰囲気下、室温でN,N,N’,N’,−テトラエチルメチレンジアミン(1.15μL,7.73μmol)と過硫酸アンモニウム(0.88mg,3.87μmol)を加え、50℃に昇温し6時間撹拌した。0.02Mピリジン/酢酸緩衝液(0.1mL)を加え反応を停止させ、ゲルろ過(Sephadex G-50,溶媒 脱イオン水)で低分子量域を除き、凍結乾燥することによりフコシルキトビオースポリマー(34a)(24.0mg,85.7%)を白色凍結乾燥粉として得た。
Mn 13 kDa, Mw 21 kDa, Mw/Mn 1.57;
1H NMR (400 MHz, D2O): δ5.11 (br s, 1 H, H-1’’a), 4.90-4.70 (m, 1 H, H-5’’), 4.52-4.48 (br d, 2 H, H-1, H-1’), 3.95-3.38 (several m, 16 H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-3’, H-4’, H-5’, H-6’a, H-6’b, H-2’’, H-3’’, H-4’’, OCH2-), 3.25-3.06 (m, 3 H, H-2', -CH2ND-), 2.13-2.00 (m, 1 H, -CH-(sugar)-CH2-), 2.04 and 2.01 (each s, 6 H, NDAc), 1.58-1.40 (m, 6 H, OCH2CH2-, -CH2CH2ND-, -CH-(sugar)-CH2-), 1.34-1.23 (m, 7 H, -OCH2CH2CH2CH2CH2CH2NDCO-, H-6’’);
13C NMR (100 MHz, D2O): δ174.40 and 173.77 (-C=O of amide), 100.87, 100.35, 98.48, 75.93, 75.31, 74.84, 73.58, 71.99, 70.64, 70.36, 69.16, 67.68, 66.61, 61.53, 59.93, 55.74, 55.61, 39.52, 28.63, 26.06, 24.85, 22.43, 22.20, 15.55;
フコシルキトビオースポリマー(34b)(x:y:z=1:5:214)
フコシルキトビオース脱保護体モノマー(33)(20.0mg,27.6μmol)とアクリルアミド(9.8mg,138μmol)を脱気した脱イオン水−エタノール(v/v=1:1,0.2mL)に溶解させ、約30分間脱気した。アルゴン雰囲気下、室温でN,N,N’,N’,−テトラエチルメチレンジアミン(0.89μL,5.52μmol)と過硫酸アンモニウム(1.26mg,2.76μmol)を加え、室温で6時間撹拌した。0.02Mピリジン/酢酸緩衝液(0.2mL)を加え反応を停止させ、ゲルろ過(Sephadex G-50,溶媒 脱イオン水)で低分子量域を除き、凍結乾燥することによりフコシルキトビオースポリマー(34b)(20.6mg,95.8%)を白色凍結乾燥粉として得た。
Mn 157 kDa, Mw 214 kDa, Mw/Mn 1.38;
1H NMR (400 MHz, D2O): δ5.09 (d, 1 H, J1’’,2’’ = 3.6 Hz, H-1’’a), 4.90-4.68 (m, 1 H, H-5’’), 4.50 (d, 1 H, J1,2 = 8.4 Hz, H-1b), 4.45 (d, 1 H, J1’,2’ = 7.6 Hz, H-1’b), 3.96-3.35 (several m, 16 H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-3’, H-4’, H-5’, H-6’a, H-6’b, H-2’’, H-3’’, H-4’’, OCH2-), 3.25-3.16 (m, 3 H, H-2’, -CH2ND-), 2.35-2.05 (m, 6 H, -CH-(sugar)-CH2-, -CH-(ND2)-CH2-), 2.01 and 1.98 (each s, 6 H, NDAc), 1.76-1.40 (m, 16 H, -OCH2CH2-, -CH2CH2ND-, -CH-(sugar)-CH2-, -CH-(ND2)-CH2-), 1.33-1.25 (m, 4 H, -OCH2CH2CH2CH2CH2CH2NDCO-), 1.24 (d, 3 H, J5'',6'' = 6.8 Hz);
13C NMR (100 MHz, D2O): δ 180.10 175.23 and 174.73 (-C=O of amide), 101.63, 101.07, 99.19, 76.63, 75.99, 75.54, 74.27, 72.70, 71.34, 71.21, 69.85, 68.35, 67.32, 62.23, 60.61, 56.44, 56.32, 42.78, 42.40, 40.05, 36.65, 35.49, 29.21, 29.00, 26.55, 22.99, 22.77, 16.16;
フコシルキトビオースポリマー(34c)(x:y:z=1:10:141)
フコシルキトビオース脱保護体モノマー(33)(15.0mg,20.7μmol)とアクリルアミド(14.7mg,207μmol)を脱気した脱イオン水-エタノール(v/v=1:1,0.4mL)に溶解させ、約15分間脱気した。アルゴン雰囲気下、室温でN,N,N’,N’,−テトラエチルメチレンジアミン(0.62μL,4.14μmol)と過硫酸アンモニウム(0.47mg,2.07μmol)を加え、室温で6時間撹拌した。0.02Mピリジン/酢酸緩衝液(0.2mL)を加え反応を停止させ、ゲルろ過(Sephadex G-50,溶媒 脱イオン水)で低分子量域を除き、凍結乾燥することによりフコシルキトビオースポリマー(34c)(25.1mg,84.5%)を白色凍結乾燥粉として得た。
Mn 136 kDa, Mw 207 kDa, Mw/Mn 1.52;
1H NMR (400 MHz, D2O): δ 5.11 (d, 1 H, J1’’,2’’ = 3.6 Hz, H-1’’a), 4.72-4.65 (m, 1 H, H-5’’), 4.51 (d, 1 H, J1,2 = 8.0 Hz, H-1b), 4.47 (d, 1 H, J1’,2’ = 8.0 Hz, H-1’b), 3.95-3.37 (several m, 16 H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-3’, H-4’, H-5’, H-6’a, H-6’b, H-2’’, H-3’’, H-4’’, OCH2-), 3.24-3.16 (m, 3 H, H-2’, -CH2ND-), 2.35-2.08 (m, 11 H, -CH-(sugar)-CH2-, -CH-(ND2)-CH2-), 2.02 and 2.00 (each s, 6 H, NDAc), 1.78-1.43 (m, 30 H, -OCH2CH2-, -CH2CH2ND-, -CH-(sugar)-CH2-, -CH-(ND2)-CH2-), 1.33-1.25 (m, 4 H, -OCH2CH2CH2CH2CH2CH2NDCO-), 1.25 (d, 3 H, J5'',6'' = 6.4 Hz);
13C NMR (100 MHz, D2O): δ 180.09 175.21 and 174.72 (-C=O of amide), 101.62, 101.06, 99.18, 76.62, 75.98, 75.53, 74.27, 72.69, 71.33, 71.19, 69.84, 68.34, 67.31, 62.22, 60.59, 56.43, 56.31, 42.79, 42.39, 40.05, 36.52, 35.53, 29.20, 28.98, 26.53, 25.39, 22.98, 22.76, 16.14.
Figure 0005605541
6.フコシルキトビオースポリマーとWGAレクチンとの結合評価
フコシルα(1→3)キトビオースの三糖構造は、植物に特徴的な構造であるが、これを担持するポリマーが植物由来のレクチンであるWGAと結合するかどうか、及びフコシルα(1→3)キトビオースのモノマーと比較した結合親和性について検討した。
WGAと糖鎖が結合すると、WGA側に存在する結合部位付近の芳香族アミノ酸(Tyr,Trp)の環境が変化し、発する蛍光の強度が変化する。この現象を利用して、WGAと糖鎖との結合親和性を測定することができる。測定の結果、フコシルα(1→3)キトビオースポリマーとWGAとの結合が確認され、その結合親和性は、フコシルα(1→3)キトビオースモノマーより約30倍程度高くなることが分かった(表2)。
Figure 0005605541
本発明は、植物アレルゲンとして重要なフコシルα(1→3)キトビオース誘導体を効率的かつ大量に製造する方法を提供するもので、花粉症などに代表される植物アレルギーの治療法及び治療剤の開発に大きく貢献することが期待される。

Claims (5)

  1. 下記の式(IV)の化合物中の1,6−無水環を、トリフルオロ酢酸で処理するアセトリシス反応により開環する過程を含む、下記の式(V)のフコシルα(1→3)キトビオース誘導体を製造する方法。
    Figure 0005605541
    Figure 0005605541
    [式中、R、R、R、R、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表し、Rは、水素原子、低級アルキル基を表す。]
  2. 下記の式( I )、式( II )及び式( III )の化合物から式( IV )の化合物を合成し、式( IV )の化合物中の1,6−無水環を開環することにより、式( V )のフコシルα(1→3)キトビオース誘導体を製造する方法。
    Figure 0005605541
    Figure 0005605541
    Figure 0005605541
    Figure 0005605541
    Figure 0005605541

    [式中、R、R、R、R、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表し、Rは、水素原子、低級アルキル基を表し、Lauは(CH11CHであり、TrocはCOOCHCClである。]
  3. 式( I )の化合物と式( II )の化合物から下記の式( VI )の化合物を合成し、式( VI )の化合物と式( III )の化合物から式( IV )の化合物を合成し、式( IV )の化合物中の1,6−無水環を開環することにより、式( V )のフコシルα(1→3)キトビオース誘導体を製造する請求項2に記載の方法。
    Figure 0005605541
    [式中、R、R、R及びRは同一又は異なる置換基で、水素原子、アセチル基、ベンジル基、パラメトキシベンジル基、オルトニトロベンジル基を表す。]
  4. 、R、R、R、R、R、R及びRが、アセチル基又はベンジル基、Rがメチル基である請求項1乃至3のいずれかに記載の方法。
  5. 請求項2に記載の式( I )で表されるアセチルグルコサミン誘導体もしくはその塩、又はそれらの溶媒和物もしくは水和物。
JP2010034229A 2009-03-06 2010-02-19 フコシルキトビオース誘導体の製造方法 Expired - Fee Related JP5605541B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034229A JP5605541B2 (ja) 2009-03-06 2010-02-19 フコシルキトビオース誘導体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009053492 2009-03-06
JP2009053492 2009-03-06
JP2010034229A JP5605541B2 (ja) 2009-03-06 2010-02-19 フコシルキトビオース誘導体の製造方法

Publications (2)

Publication Number Publication Date
JP2010229126A JP2010229126A (ja) 2010-10-14
JP5605541B2 true JP5605541B2 (ja) 2014-10-15

Family

ID=43045277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034229A Expired - Fee Related JP5605541B2 (ja) 2009-03-06 2010-02-19 フコシルキトビオース誘導体の製造方法

Country Status (1)

Country Link
JP (1) JP5605541B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281901B2 (ja) * 2014-01-22 2018-02-21 国立大学法人埼玉大学 水溶性ポルフィリン誘導体とそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI19992070A (fi) * 1999-09-28 2001-03-28 Jari Natunen Uudet fukosyloidut oligosakkaridit ja menetelmä niiden valmistamiseksi
CA2434668A1 (en) * 2003-07-04 2005-01-04 Laurence Mulard Novel approach to design glycopeptides based on o-specific polysaccharide of shigella flexneri serotype 2a
EP1710319A1 (en) * 2005-04-08 2006-10-11 Academisch Ziekenhuis Leiden Production of unconjugated oligosaccharides by pathogens

Also Published As

Publication number Publication date
JP2010229126A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
AU2012204336C1 (en) Methods for preparation of glycosphingolipids and uses thereof
AU683653B2 (en) Novel sphingoglycolipid and use thereof
DE69635730T2 (de) Synthese des durch den monoklonalen antikörper mbr1 definierten brusttumorassoziierten antigens und seine verwendung
JP2018522029A (ja) 薬物送達のためのマルチリガンド剤
JP2002515081A (ja) ロタウイルス感染治療用多価ポリマー
JP2000516224A (ja) 修飾オリゴサッカライド
JPS6399091A (ja) O−α−グリコシドおよびその製法
JP2016530212A (ja) ストレプトコッカス ニューモニエ3型に対するタンパク質およびペプチドフリーの合成ワクチン
JPS61246195A (ja) リピドa型の新規な二糖及び三糖誘導体
EP0041896B1 (en) Immunologically active dipeptidyl 2-amino-1,2-dideoxy-d-glucose derivatives and methods of preparation
WO2013190103A1 (de) Sialinsäurederivate
DE60027905T2 (de) Glycokonjugate, glycoaminosäure, deren zwischenprodukte, und ihre verwendung
JP5605541B2 (ja) フコシルキトビオース誘導体の製造方法
EP2414371A2 (en) Heparan sulfate synthesis
EP0039637A1 (en) Immunologically active dipeptidyl 5-0,6-0-acyl-2-amino-2-deoxy-D-glucofuranose derivatives and methods of preparation
JP2716657B2 (ja) 接着分子elam‐1に特異的結合能を有する化合物
JP7144643B2 (ja) ポリエチレングリコール鎖を有する糖化合物、及び抗体薬物複合体の前駆体
KR101529061B1 (ko) 당류 구조물, 그리고 이러한 구조물의 제조 및 사용 방법
CN1224626C (zh) β-D-5-硫代木糖衍生物、其制备方法及医疗用途
JP2001512737A (ja) 置換されたテトラヒドロピラン誘導体、それらの製造方法、医薬または診断剤としてのそれらの使用およびそれらを含有する医薬
CN1590394A (zh) 新型三糖和五糖寡糖抗原,它们的合成方法以及在制备抑制排斥反应的药物中的用途
JP5004950B2 (ja) L−イズロナート含有多糖類の生成
JP3989808B2 (ja) ゲラニル−糖誘導体
JP2001509777A (ja) グルコサミニルムラミン酸誘導体の調製
JP2008266194A (ja) 分子プローブの原料として有用な新規有機化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5605541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees