JP5605024B2 - キャンバ制御装置 - Google Patents

キャンバ制御装置 Download PDF

Info

Publication number
JP5605024B2
JP5605024B2 JP2010150111A JP2010150111A JP5605024B2 JP 5605024 B2 JP5605024 B2 JP 5605024B2 JP 2010150111 A JP2010150111 A JP 2010150111A JP 2010150111 A JP2010150111 A JP 2010150111A JP 5605024 B2 JP5605024 B2 JP 5605024B2
Authority
JP
Japan
Prior art keywords
camber
processing means
angle
imparting
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010150111A
Other languages
English (en)
Other versions
JP2012011889A5 (ja
JP2012011889A (ja
Inventor
宗久 堀口
斉 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2010150111A priority Critical patent/JP5605024B2/ja
Priority to PCT/JP2011/064777 priority patent/WO2012002371A1/ja
Priority to CN201180037551XA priority patent/CN103038075A/zh
Publication of JP2012011889A publication Critical patent/JP2012011889A/ja
Publication of JP2012011889A5 publication Critical patent/JP2012011889A5/ja
Application granted granted Critical
Publication of JP5605024B2 publication Critical patent/JP5605024B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • B60G2202/422Linear motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/33Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/34Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/52Pressure in tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load

Description

本発明は、キャンバ制御装置に関するものである。
従来、後方の各車輪に負のキャンバ(ネガティブキャンバ)を付与することができるようにした車両が提供されている。
この種の車両においては、車両を直進させて走行させるとき、すなわち、車両の直進走行時に、左後方及び右後方の車輪のタイヤにおいて互いに対向する方向にキャンバスラストを発生させることができるので、車両の直進走行時の安定性(以下「走行安定性」という。)を高くすることができる。
ところが、前記各車輪に負のキャンバが付与された状態で長時間車両を走行させると、タイヤに偏摩耗が発生してしまう。そこで、タイヤに偏摩耗が発生するのを抑制するために、車両を高速で走行させている間だけ、後方の各車輪に負のキャンバを付与するようにしている(例えば、特許文献1参照。)。
この場合、後方の各車輪にアクチュエータが配設され、各アクチュエータを作動させることによって、前記キャンバを付与したり、キャンバの付与を解除したりすることができる。
特開昭60−193781号公報
しかしながら、前記従来の車両においては、後方の各車輪にキャンバを付与する際に、各車輪に互いに異なる大きさの負荷が加わることがあり、その場合、各アクチュエータの作動にずれが生じ、キャンバの付与状態が左後方の車輪と右後方の車輪とで異なることがある。その結果、運転者に違和感を与えてしまう。
本発明は、前記従来の車両の問題点を解決して、車輪にキャンバを付与する際に運転者に違和感を与えることがないキャンバ制御装置を提供することを目的とする。
そのために、本発明のキャンバ制御装置においては、車両のボディと、該ボディに対して回転自在に配設された複数の車輪と、該各車輪のうちの所定の左側及び右側の各車輪に配設され、該所定の左側及び右側の各車輪にキャンバを付与するための第1、第2のキャンバ可変機構と、所定のキャンバ付与条件が成立したかどうかを判断するキャンバ付与条件成立判断処理手段と、該キャンバ付与条件成立判断処理手段によって、前記所定のキャンバ付与条件が成立したと判断された場合に、前記第1、第2のキャンバ可変機構を作動させ、前記所定の左側及び右側の各車輪のキャンバ角を変更することによって前記各車輪にキャンバを付与するキャンバ付与処理手段とを有する。
そして、前記第1、第2のキャンバ可変機構は、前記所定の左側及び右側の各車輪にキャンバを付与するために揺動させられる揺動部材、該揺動部材を揺動させるための軸部材、並びに該軸部材を回転させるための駆動部をそれぞれ備える。
また、前記キャンバ付与処理手段は、前記第1、第2のキャンバ可変機構の作動中において、第1、第2のキャンバ可変機構による前記所定の左側及び右側の各車輪へのキャンバの付与状態を等しくするキャンバ付与状態調整処理手段を備える。
そして、該キャンバ付与状態調整処理手段は、前記第1、第2のキャンバ可変機構を作動させて、前記各車輪にキャンバを付与した後のキャンバ角が等しくなるように、かつ、前記各車輪へのキャンバの付与が同時に完了するように、前記駆動部の駆動速度を制御することによって、前記所定の左側及び右側の各車輪のうちの、キャンバの付与が進んでいる側の車輪のキャンバ可変機構における駆動部の駆動速度を低くして前記各軸部材の軸角度を調整する。
本発明によれば、キャンバ制御装置においては、車両のボディと、該ボディに対して回転自在に配設された複数の車輪と、該各車輪のうちの所定の左側及び右側の各車輪に配設され、該所定の左側及び右側の各車輪にキャンバを付与するための第1、第2のキャンバ可変機構と、所定のキャンバ付与条件が成立したかどうかを判断するキャンバ付与条件成立判断処理手段と、該キャンバ付与条件成立判断処理手段によって、前記所定のキャンバ付与条件が成立したと判断された場合に、前記第1、第2のキャンバ可変機構を作動させ、前記所定の左側及び右側の各車輪のキャンバ角を変更することによって前記各車輪にキャンバを付与するキャンバ付与処理手段とを有する。
そして、前記第1、第2のキャンバ可変機構は、前記所定の左側及び右側の各車輪にキャンバを付与するために揺動させられる揺動部材、該揺動部材を揺動させるための軸部材、並びに該軸部材を回転させるための駆動部をそれぞれ備える。
また、前記キャンバ付与処理手段は、前記第1、第2のキャンバ可変機構の作動中において、第1、第2のキャンバ可変機構による前記所定の左側及び右側の各車輪へのキャンバの付与状態を等しくするキャンバ付与状態調整処理手段を備える。
そして、該キャンバ付与状態調整処理手段は、前記第1、第2のキャンバ可変機構を作動させて、前記各車輪にキャンバを付与した後のキャンバ角が等しくなるように、かつ、前記各車輪へのキャンバの付与が同時に完了するように、前記駆動部の駆動速度を制御することによって、前記所定の左側及び右側の各車輪のうちの、キャンバの付与が進んでいる側の車輪のキャンバ可変機構における駆動部の駆動速度を低くして前記各軸部材の軸角度を調整する。
この場合、キャンバ付与処理手段が、前記第1、第2のキャンバ可変機構の作動中において、第1、第2のキャンバ可変機構による前記所定の左側及び右側の各車輪へのキャンバの付与状態を等しくするキャンバ付与状態調整処理手段を備えるので、左側及び右側の車輪に互いに異なる大きさの負荷が加わり、第1、第2のキャンバ可変機構の作動にずれが生じても、キャンバの付与状態が左側の車輪と右側の車輪とで異なるのを抑制することができる。その結果、車輪にキャンバを付与する際に運転者に違和感を与えることがない。
本発明の第1の実施の形態における車両の制御ブロック図である。 本発明の第1の実施の形態における車両の概念図である。 本発明の第1の実施の形態における車輪の断面図である。 本発明の第1の実施の形態における制御部の動作を示す第1のメインフローチャートである。 本発明の第1の実施の形態における制御部の動作を示す第2のメインフローチャートである。 本発明の第1の実施の形態における操縦安定キャンバ要否判断処理のサブルーチンを示す図である。 本発明の第1の実施の形態における直進安定キャンバ要否判断処理のサブルーチンを示す図である。 本発明の第1の実施の形態における時間の経過に伴って変化するクランク軸の軸角度の推移の例を示す図である。 本発明の第1の実施の形態におけるキャンバ付与処理のサブルーチンを示す図である。 本発明の第1の実施の形態におけるモータの速度制御を説明するための図である。 本発明の第1の実施の形態における接地荷重判断処理のサブルーチンを示す図である。 本発明の第2の実施の形態における速度制御処理のサブルーチンを示す図である。 本発明の第2の実施の形態における時間の経過に伴って変化するクランク軸の軸角度の推移を示す概念図である。 本発明の第2の実施の形態におけるモータの速度制御を説明するための図である。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図2は本発明の第1の実施の形態における車両の概念図である。
図において、11は車両の本体であるボディ、12は駆動源としてのエンジン、WLF、WRF、WLB、WRBは、前記ボディ11に対して回転自在に配設された左前方、右前方、左後方及び右後方の車輪である。なお、車輪WLF、WRFによって前輪及び従動輪が、車輪WLB、WRBによって後輪及び駆動輪が構成される。また、車輪WLF、WLBによって左側の車輪が、車輪WRF、WRBによって右側の車輪が構成される。
本実施の形態において、車両は後輪駆動方式の構造を有し、前記車輪WLB、WRBが駆動輪として機能する。そして、エンジン12と各車輪WLB、WRBとが、第1の伝動軸としてのプロペラシャフト17、差動装置18及び第2の伝動軸としてのドライブシャフト46を介して連結され、エンジン12を駆動することによって発生させられた回転が車輪WLB、WRBに伝達される。本実施の形態において、前記車両は、後輪駆動方式の構造を有するようになっているが、前輪駆動方式の構造を有するようにしたり、四輪駆動方式の構造を有するようにしたりすることもできる。さらに、エンジン12に代えて、第1の駆動源としてのエンジン、及び第2の駆動源としての発電機/モータから成る駆動ユニットを配設してハイブリッド型車両を構成するようにしたり、第1の駆動源としてのエンジン、第2の駆動源としての発電機及び第3の駆動源としてのモータから成る駆動ユニットを配設してハイブリッド型車両を構成するようにしたり、駆動源としてのモータを配設して電気自動車を構成するようにしたりすることもできる。
そして、13は車両の操舵を行うための操作部としての、かつ、操舵部材としてのステアリングホイール、14は車両を加速するための操作部としての、かつ、加速操作部材としてのアクセルペダル、15は車両を制動するための操作部としての、かつ、制動操作部材としてのブレーキペダルである。
また、31、32は、それぞれ、ボディ11と各車輪WLB、WRBとの間に配設され、車輪WLB、WRBにキャンバを付与したり、キャンバの付与を解除したりするための第1、第2のキャンバ可変機構としてのアクチュエータである。なお、本実施の形態においては、ボディ11と車輪WLB、WRBとの間にそれぞれアクチュエータ31、32が配設されるようになっているが、ボディ11と車輪WLF、WRFとの間にアクチュエータを配設したり、ボディ11と車輪WLF、WRF、WLB、WRBとの間にアクチュエータを配設したりすることができる。
ところで、前記車輪WLF、WRF、WLB、WRBは、アルミニウム合金等によって形成された図示されないホイール、及び該ホイールの外周に嵌(かん)合させて配設されたタイヤ36を備える。そして、該タイヤ36として、幅方向の全体にわたって損失正接を小さくすることにより、トレッドの変形によって発生する転がり抵抗が小さくされた低転がり抵抗タイヤが使用される。この場合、低転がり抵抗タイヤが使用されるので、燃費を良くすることができる。
本実施の形態においては、転がり抵抗を小さくするためにタイヤ36の幅が通常のタイヤより小さくされるが、トレッドの溝のパターンであるトレッドパターンを、転がり抵抗が小さくなるような形状にしたり、少なくともトレッドの部分の材料を、転がり抵抗が小さいものにしたりすることができる。
なお、前記損失正接は、トレッドが変形する際のエネルギーの吸収の度合いを表し、貯蔵剪(せん)断弾性率に対する損失剪断弾性率の比で表すことができる。損失正接が小さいほどトレッドによるエネルギーの吸収が少なくなるので、タイヤ36に発生する転がり抵抗が小さくなり、タイヤ36に発生する摩耗が少なくなる。これに対して、損失正接が大きいほどトレッドによるエネルギーの吸収が多くなるので、タイヤ36に発生する転がり抵抗が大きくなり、タイヤ36に発生する摩耗が多くなる。
次に、車輪WLB、WRBにキャンバを付与したり、キャンバの付与を解除したりするためのアクチュエータ31、32について説明する。この場合、各アクチュエータ31、32の構造は同じであるので、車輪WLB及びアクチュエータ31についてだけ説明する。
図3は本発明の第1の実施の形態における車輪の断面図である。
図において、WLBは車輪、21はホイール、31はアクチュエータ、36はタイヤである。
前記アクチュエータ31は、ベース部材としての図示されないナックルに固定されたキャンバ制御用の第1の駆動部としてのモータ41L、前記ナックルに対して揺動自在に配設された揺動部材としての可動プレート43、前記モータ41Lの回転運動を可動プレート43の揺動運動に変換する運動方向変換機構としてのクランク機構45、前記エンジン12(図2)において発生させられた回転をホイール21に伝達する前記ドライブシャフト46等を備える。前記ホイール21は、可動プレート43に対して回転自在に支持され、ドライブシャフト46と連結される。
また、前記クランク機構45は、前記モータ41Lの出力軸に取り付けられた第1の変換要素としてのウォームギヤ51、前記ナックルに対して回転自在に配設され、前記ウォームギヤ51と噛(し)合させられる第2の変換要素としてのウォームホイール52、該ウォームホイール52と同一軸上に配設され、ウォームホイール52と一体的に回転させられる第3の変換要素としての、かつ、軸部材としての図示されないクランク軸、及び該クランク軸の偏心軸部に対して揺動自在に連結された第4の変換要素としての、かつ、連結要素としてのアーム53を有する。該アーム53は、一端において、ウォームホイール52の回転軸に対して偏心した位置で、第1の連結部を介して前記偏心軸部と連結され、他端において、可動プレート43の上端で、第2の連結部を介して可動プレート43と連結される。この場合、前記可動プレート43によって第5の変換要素が構成される。
そして、前記ウォームギヤ51及びウォームホイール52によって、ウォームギヤ51及びウォームホイール52の回転運動の軸心の向きが変換され、ウォームホイール52、クランク軸及びアーム53によって、ウォームホイール52の回転運動がアーム53の直進運動に変換され、アーム53及び可動プレート43によって、アーム53の直進運動が可動プレート43の揺動運動に変換される。
したがって、モータ41Lを正方向に駆動すると、ウォームギヤ51及びウォームホイール52が正方向に回転させられ、クランク軸が正方向に回転させられて、アーム53が後退させられ、可動プレート43が回動させられる。その結果、可動プレート43が路面上の垂線に対して傾けられた角度と等しいキャンバが車輪WLBに付与される。
また、前記モータ41Lを逆方向に駆動すると、ウォームギヤ51及びウォームホイール52が逆方向に回転させられ、クランク軸が逆方向に回転させられて、アーム53が前進させられ、可動プレート43が回動させられる。その結果、車輪WLBへのキャンバの付与が解除される。
次に、前記構成の車両の制御装置について説明する。
図1は本発明の第1の実施の形態における車両の制御ブロック図である。
図において、16はキャンバの付与及び付与の解除について制御を行う第1の制御装置としての制御部、19は車両の全体の制御を行う第2の制御装置としての車両制御部、61は第1の記憶部としてのROM、62は第2の記憶部としてのRAMである。前記制御部16及び車両制御部19は、コンピュータとして機能し、各種のデータに基づいて各種の演算及び処理を行う。
また、63は車速vを検出する車速検出部としての車速センサ、64は操作者である運転者による前記ステアリングホイール13(図2)の操作量を表す操舵量としてのステアリング角度γ(本実施の形態において、ステアリング角度γは、ステアリングホイール13を中立点位置(零点位置)から左方向又は右方向に回転させたときの回転角度を絶対値で表したものである。)を検出する操舵量検出部としての、かつ、ステアリング操作量検出部としてのステアリングセンサ、65は車両のヨーレートを検出するヨーレート検出部としてのヨーレートセンサ、66は第1の加速度としての横加速度を検出する第1の加速度検出部としての横加速度センサ、67は第2の加速度としての前後加速度を検出する第2の加速度検出部としての前後加速度センサ、68は車輪WLB、WRBに付与されたキャンバθを検出するキャンバ検出部としてのキャンバセンサ、71は運転者による前記アクセルペダル14の操作量を表す踏込量(アクセル開度)を検出する加速操作量検出部としてのアクセルセンサ、72は運転者による前記ブレーキペダル15の操作量を表す踏込量(ブレーキストローク)を検出する制動操作量検出部としてのブレーキセンサ、73は車輪WLB、WRBの図示されないサスペンション装置のストローク、すなわち、サスストロークを検出する懸架検出部としてのサスストロークセンサ、75は車輪WLB、WRBに加わる荷重を検出する荷重検出部としての荷重センサ、76は車輪WLB、WRBのタイヤ36の変形量である潰れ代、すなわち、タイヤ潰れ代を検出するタイヤ潰れ代検出部としてのタイヤ潰れ代センサ、41Lはアクチュエータ31に配設された前記モータ、41Rはアクチュエータ32に配設されたキャンバ制御用の第2の駆動部としてのモータ、74Lはアクチュエータ31におけるクランク軸の回転角度を表す軸角度θLを検出する第1の軸角度検出部としてのセンサ、74Rはアクチュエータ32におけるクランク軸の回転角度を表す軸角度θRを検出する第2の軸角度検出部としてのセンサである。本実施の形態において、前記センサ74L、74Rは、クランク軸を包囲する非接触式の回転角度センサであり、検出した回転角度に応じた出力電圧を発生させる。この場合、キャンバθは軸角度σL、σRの関数で表すことができる。
なお、ステアリングセンサ64に代えて、車両の縦方向(前後方向)に延びる軸に対する車輪WLF、WRFの傾きを表す舵角を検出する舵角センサを配設することもできる。その場合、舵角が操舵量とされ、舵角センサによって操舵量検出部が構成される。
そして、前記サスストロークセンサ73は、ハイトセンサ、磁気センサ等によって構成され、荷重センサ75は、前記サスペンション装置に配設されたロードセル(歪みセンサ)によって構成され、タイヤ潰れ代センサ76は、タイヤ36に配設されたロードセル(歪みセンサ)によって構成される。
なお、前記ボディ11、アクチュエータ31、32、制御部16、車輪WLB、WRB等によってキャンバ制御装置が構成される。
ところで、本実施の形態においては、タイヤ36に低転がり抵抗タイヤが使用されるが、その場合、タイヤ36の剛性が低いので、走行安定性、及び車両を制動させるとき、すなわち、車両の制動時における安定性(以下「制動安定性」という。)だけでなく、車両を旋回させるとき、すなわち、車両の旋回時における安定性(以下「旋回安定性」という。)がその分低下してしまう。
そこで、本実施の形態においては、タイヤ36が低転がり抵抗タイヤであっても、走行安定性、制動安定性及び旋回安定性を高くすることができるように、車両の直進走行時、旋回時及び制動時に、アクチュエータ31、32を作動させて、車輪WLF、WRF、WLB、WRBのうちの所定の車輪、本実施の形態においては、車輪WLB、WRBに所定の負のキャンバθを付与することができるようになっている。
例えば、車両の旋回時に、車輪WLB、WRBにキャンバを付与すると、直進走行時と同様に、互いに対向する方向にキャンバスラストが発生させられるが、車両に遠心力が発生するので、旋回中心に対して径方向外方側、すなわち、外周側の車輪(車両を左方に旋回させる場合は車輪WRBであり、車両を右方に旋回させる場合は車輪WLBである。)のタイヤ36の接地荷重が、旋回中心に対して径方向内方側、すなわち、内周側の車輪(車両を左方に旋回させる場合は車輪WLBであり、車両を右方に旋回させる場合は車輪WRBである。)のタイヤ36の接地荷重より大きくなるので、外周側の車輪のタイヤ36に発生するキャンバスラストが内周側の車輪のタイヤ36に発生するキャンバスラストより大きくなる。その結果、車両に求心力を発生させることができるので、旋回安定性を高くすることができる。
そのために、本実施の形態においては、車両の直進走行時、旋回時等において、所定のキャンバ付与条件が成立したかどうかが判断され、キャンバ付与条件が成立したと判断された場合に、前記各アクチュエータ31、32が作動させられ、各車輪WLB、WRBに所定の負のキャンバθが付与される。
なお、車輪WLB、WRBには、アクチュエータ31、32を作動させない通常の状態、すなわち、初期状態において、車両の仕様で規定された所定の角度のキャンバ、すなわち、基準キャンバαが必要に応じて付与される。したがって、本実施の形態においては、前記キャンバ付与条件が成立した場合に、前記基準キャンバαに所定のキャンバが付与されて前記キャンバθが、
−5〔°〕≦θ<0〔°〕
にされる。
ところで、車輪WLB、WRBにキャンバθが付与された状態で車両を走行させるのに伴ってタイヤ36に偏摩耗が発生すると、タイヤ36の寿命が短くなってしまうが、本実施の形態においては、車輪WLB、WRBにキャンバθが付与された状態で車両を走行させるのに伴ってタイヤ36に偏摩耗が発生するのを抑制するために、所定のキャンバ付与解除条件が成立したかどうかが判断され、キャンバ付与解除条件が成立した場合に、アクチュエータ31、32が作動させられ、車輪WLB、WRBへのキャンバθの付与が解除され、車輪WLB、WRBが初期状態に置かれる。
次に、車輪WLB、WRBにキャンバθを付与したり、キャンバθの付与を解除したりするための制御部16の動作について説明する。
図4は本発明の第1の実施の形態における制御部の動作を示す第1のメインフローチャート、図5は本発明の第1の実施の形態における制御部の動作を示す第2のメインフローチャート、図6は本発明の第1の実施の形態における操縦安定キャンバ要否判断処理のサブルーチンを示す図、図7は本発明の第1の実施の形態における直進安定キャンバ要否判断処理のサブルーチンを示す図、図8は本発明の第1の実施の形態における時間の経過に伴って変化するクランク軸の軸角度の推移の例を示す図、図9は本発明の第1の実施の形態におけるキャンバ付与処理のサブルーチンを示す図、図10は本発明の第1の実施の形態におけるモータの速度制御を説明するための図、図11は本発明の第1の実施の形態における接地荷重判断処理のサブルーチンを示す図である。なお、図8において、横軸に軸角度θL、θRを、縦軸に時間tを、図10において、横軸に時間tを、縦軸に軸角度θL、θRを採ってある。
まず、制御部16の図示されない判断指標取得処理手段は、判断指標取得処理を行い、キャンバ付与条件が成立したかどうかを判断したり、キャンバ付与解除条件が成立したかどうかを判断したりするために必要な判断指標、本実施の形態においては、車両の状態を表す車両状態、及び運転者によるステアリングホイール13、アクセルペダル14、ブレーキペダル15等の各操作部の操作の状態を表す操作状態を取得する(ステップS1、S2)。
そのために、前記判断指標取得処理手段は、前記車速センサ63、ヨーレートセンサ65、横加速度センサ66、前後加速度センサ67、キャンバセンサ68、サスストロークセンサ73、荷重センサ75、タイヤ潰れ代センサ76等の各センサのセンサ出力を読み込むことによって、車速v、ヨーレート、横加速度、前後加速度、キャンバθ、サスストローク、荷重、タイヤ潰れ代等を車両状態として取得する。
なお、ロール角検出部としてロール角センサを配設し、前記判断指標取得処理手段によってロール角センサのセンサ出力を読み込むことにより、ロール角を車両状態として取得することができる。また、前記判断指標取得処理手段は、前記サスストロークに基づいてロール角を算出し、該ロール角を車両状態として取得することもできる。
次に、前記判断指標取得処理手段は、ステアリングセンサ64、アクセルセンサ71、ブレーキセンサ72等の各センサのセンサ出力を読み込むことによって、ステアリング角度γ、アクセルペダル14の踏込量、ブレーキペダル15の踏込量等を操作状態として取得する。
なお、前記判断指標取得処理手段は、ステアリング角度γに基づいて、ステアリング角度γの変化率を表すステアリング角速度、該ステアリング角速度の変化率を表すステアリング角加速度を操舵量として算出し、ステアリング角速度、ステアリング角加速度等を操作状態として取得することができるだけでなく、ステアリング角度γに代えて、前記舵角を操作状態として取得したり、舵角の変化率を表す舵角速度、該舵角速度の変化率を表す舵角加速度等を操舵量として算出し、舵角速度、舵角加速度等を操作状態として取得したりすることができる。さらに、前記判断指標取得処理手段は、アクセルペダル14の踏込量に代えて、アクセルペダル14の踏込量の変化率である踏込速度、該踏込速度の変化率である踏込加速度等を算出し、操作状態として取得したり、ブレーキペダル15の踏込量に代えて、ブレーキペダル15の踏込量の変化率である踏込速度、該踏込速度の変化率である踏込加速度等を算出し、操作状態として取得したりすることができる。
次に、制御部16の図示されない第1のキャンバ付与条件成立判断処理手段としての操縦安定キャンバ要否判断処理手段は、第1のキャンバ付与条件成立判断処理としての操縦安定キャンバ要否判断処理を行い、車両の旋回時に、車両状態及び操作状態のうちの少なくとも一方、本実施の形態においては、操作状態に基づいて、旋回用のキャンバ付与条件が成立したかどうかを判断する(ステップS3、S4)。
そのために、前記操縦安定キャンバ要否判断処理手段は、ステアリング角度γを読み込み、該ステアリング角度γが閾(しきい)値γth以上であるかどうかを判断し(ステップS3−1)、ステアリング角度γが閾値γth以上であると判断された場合に、旋回用のキャンバ付与条件が成立したと判断する(ステップS3−2)。
なお、本実施の形態においては、操作状態に基づいて旋回用のキャンバ付与条件が成立したかどうかが判断されるようになっているが、車両状態及び操作状態に基づいて、旋回用のキャンバ付与条件が成立したかどうかを判断することができる。その場合、前記操縦安定キャンバ要否判断処理手段は、例えば、前記ステアリング角度γ、横加速度及びヨーレートを読み込み、ステアリング角度γが閾値γth以上であるかどうかによって第1の旋回付与条件が成立したかどうかを、横加速度が閾値以上であるかどうかによって第2の旋回付与条件が成立したかどうかを、ヨーレートが閾値以上であるかどうかによって第3の旋回付与条件が成立したかどうかを判断し、第1〜第3の旋回付与条件のうちの少なくとも一つの旋回付与条件が成立した場合に、旋回用のキャンバ付与条件が成立したと判断する。
そして、旋回用のキャンバ付与条件が成立したと判断された場合、制御部16の図示されないキャンバ付与状態判断処理手段は、キャンバ付与状態判断処理を行い、前記キャンバセンサ68によって検出されたキャンバθpを読み込み、該キャンバθpが、
−5〔°〕≦θp<0〔°〕
であるかどうかによって、車輪WLB、WRBにキャンバθが付与されているかどうかを判断する(ステップS5)。
車輪WLB、WRBにキャンバθが付与されている場合、制御部16は処理を終了し、車輪WLB、WRBにキャンバθが付与されていない場合、制御部16の図示されない第1のキャンバ制御処理手段としてのキャンバ付与処理手段は、第1のキャンバ制御処理としてのキャンバ付与処理を行い、前記アクチュエータ31、32(図2)を作動させて車輪WLB、WRBにキャンバθを付与する(ステップS6)。
一方、前記操縦安定キャンバ要否判断処理において、旋回用のキャンバ付与条件が成立しないと判断された場合、制御部16の図示されない第2のキャンバ付与条件成立判断処理手段としての直進安定キャンバ要否判断処理手段は、第2のキャンバ付与条件成立判断処理としての直進安定キャンバ要否判断処理を行い、車両の直進走行時に、車両状態及び操作状態のうちの少なくとも一方、本実施の形態においては、車両状態及び操作状態に基づいて、直進走行用のキャンバ付与条件が成立したかどうかを判断する(ステップS7、S8)。
そのために、前記直進安定キャンバ要否判断処理手段は、車速vを読み込み、該車速vを読み込む直前の所定の時間、本実施の形態においては、過去X〔秒〕間の車速vに基づいて車速算出値、本実施の形態においては、平均車速avを算出するとともに、ステアリング角度γを読み込み、該ステアリング角度γを読み込む直前の所定の時間、本実施の形態においては、過去Y〔秒〕間のステアリング角度γに基づいて操舵量算出値、本実施の形態においては、平均ステアリング角度aγを算出し、過去X〔秒〕間の平均車速avが閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度aγが閾値γth1より小さいかどうかを判断する(ステップS7−1)。過去X〔秒〕間の平均車速avが閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度aγが閾値γth1より小さいと判断された場合に、直進安定キャンバ要否判断処理手段は、直進走行用のキャンバ付与条件が成立したと判断する(ステップS7−2)。なお、閾値γth1は閾値γthより小さくされる。
そして、直進走行用のキャンバ付与条件が成立した場合、前記キャンバ付与状態判断処理手段は、前記キャンバθpを読み込み、該キャンバθpが、
−5〔°〕≦θp<0〔°〕
であるかどうかによって、車輪WLB、WRBにキャンバθが付与されているかどうかを判断する(ステップS9)。
車輪WLB、WRBにキャンバθが付与されている場合、制御部16の図示されないキャンバ付与解除判断処理手段としての接地荷重判断処理手段は、キャンバ付与解除判断処理としての接地荷重判断処理を行い、車輪WLB、WRBにキャンバθが付与されていない場合、制御部16の前記キャンバ付与処理手段は、アクチュエータ31、32を作動させて車輪WLB、WRBにキャンバθを付与する(ステップS10)。なお、前記アクチュエータ31、32は、各車輪WLB、WRBのキャンバ角を変更することによって車輪WLB、WRBにキャンバθを付与する。
ところで、車輪WLB、WRBにキャンバθを付与する際に、車輪WLB、WRBに互いに異なる大きさの負荷が加わることがあるが、その場合、各アクチュエータ31、32の作動にずれが生じると、キャンバθの付与状態、例えば、付与過程における時間の経過に対するキャンバの値、付与が終了したときのキャンバの値等が、車輪WLBと車輪WRBとで異なることがあり、運転者に違和感を与えてしまう。
図8において、L1は、前記モータ41L、41R(図1)を駆動し、アクチュエータ31、32を作動させたときの、車輪WLB、WRBに付与されるキャンバがθに達するまでの時間tにおける軸角度θL、θRの理想的な値である理想角度θs(t)を表す線、L2は前記時間tにおける軸角度θL、θRの実際の値である実角度θL(t)、θR(t)を表す線である。なお、実角度θL(t)、θR(t)はセンサ74L、74Rによって検出される。
また、θsgはキャンバがθに達したときの軸角度θL、θRを表す目標達成角度、tgはキャンバがθに達したときの時刻を表す目標達成時刻である。
この場合、理想角度θs(t)における単位時間当たりの変化量をΔθsとすると、該変化量Δθsは、目標達成角度θsg及び目標達成時刻tgによって算出することができ、
Δθs=θsg/tg
である。したがって、時間tにおける理想角度θs(t)は、
θs(t)=Δθs・t
で表すことができる。
ところで、各アクチュエータ31、32の作動中において、各アクチュエータ31、32の作動にずれが生じると、キャンバがθに達するまでの実角度θL(t)、θR(t)にばらつきが生じる。
そこで、本実施の形態において、前記キャンバ付与処理手段は、キャンバ付与状態調整処理手段を備え、該キャンバ付与状態調整処理手段は、キャンバ付与状態調整処理を行い、各アクチュエータ31、32の作動中において、モータ41L、41Rを駆動し、軸角度θL、θRを調整することによって、車輪WLB、WRBにキャンバθを付与した後のキャンバ角が等しくなるように、かつ、前記各車輪WLB、WRBへのキャンバθの付与が同時に完了するように、アクチュエータ31、32の作動による前記車輪WLB、WRBへのキャンバθの付与状態を等しくする。なお、直進安定キャンバ要否判断処理におけるキャンバ付与処理は、操縦安定キャンバ要否判断処理におけるキャンバ付与処理と同様に行われる。
この場合、前記キャンバ付与状態調整処理手段の角度取得処理手段は、角度取得処理を行い、センサ74L、74Rによって検出された軸角度θL、θRを実角度θL(t)、θR(t)として読み込み(ステップS6−1)、前記RAM62に記録し、前記キャンバ付与状態調整処理手段の駆動部制御処理手段としての速度制御処理手段は、駆動部制御処理としての速度制御処理を行い、実角度θL(t)、θR(t)及び理想角度θs(t)に基づいて、モータ41L、41Rのフィードバック制御を行う(ステップS6−2)。
図10において、L1は理想角度θs(t)を表す線、LHは実角度θL(t)、θR(t)のうちの理想角度θs(t)に近い値を有する実角度を表す線、LLは実角度θL(t)、θR(t)のうちの理想角度θs(t)から離れた(遠い)値を有する実角度を表す線である。
また、tpは現在の時刻、すなわち、現時刻、tqは、制御部16における制御周期をdtとしたときの、現時刻tpから制御周期dtだけ前の(遡(さかのぼ)った)時刻、すなわち、制御周期前時刻である。
この場合、前記速度制御処理手段の偏差算出処理手段は、偏差算出処理を行い、制御周期dtが経過するたびに、モータ41L、41Rの駆動が開始されてから現時刻tpまでの経過時間を読み込み、現時刻tpにおける理想角度θs(tp)を算出するとともに、実角度θL(tp)、θR(tp)を読み込む。そして、偏差算出処理手段は、理想角度θs(tp)と実角度θL(tp)、θR(tp)とを比較し、実角度θL(tp)、θR(tp)のうちの理想角度θs(tp)に近い値を有する実角度をpHとし、実角度θL(tp)、θR(tp)のうちの理想角度θs(tp)から離れた値を有する実角度をpLとして、実角度pH、pLに基づいて偏差δaを、理想角度θs(tp)及び実角度をpLに基づいて偏差δbを算出する。
この場合、理想角度θs(tp)は、モータ41L、41Rの駆動が開始されてから現時刻tpまでの経過時間がtpであるので、
θs(tp)=Δθs・tp
で表すことができる。したがって、現時刻tpにおける偏差δa、δbは、
δa=pH−pL
δb=θs(tp)−pL
=Δθs・tp−pL
になる。
そして、前記速度制御処理手段の駆動部駆動処理手段は、駆動部駆動処理を行い、モータ41L、41Rのうちの理想角度θs(t)に近い値を有する実角度でクランク軸を回転させているモータをMaとし、理想角度θs(t)から離れた値を有する実角度でクランク軸を回転させているモータをMbとし、モータMaを偏差δaが小さくなるように、本実施の形態においては、0(零)になるように駆動し、モータMbを偏差δbが小さくなるように、本実施の形態においては、0になるように駆動する。
また、制御周期前時刻tqにおける理想角度θs(tq)に近い値を有する実角度をqHとし、制御周期前時刻tqにおける理想角度θs(tq)から離れた値を有する実角度をqLとすると、制御周期前前時刻tqにおける偏差δa’、δb’は、
δa’=qH−qL
δb’=θs(tq)−qL
=Δθs・tq−qL
になる。
そして、モータMa、Mbのフィードバック制御を行う際の比例成分をPa、Pbとし、積分成分をIa、Ibとし、微分成分をDa、Dbとすると、比例成分Pa、Pb、積分成分Ia、Ib及び微分成分Da、Dbは、
Pa=δa
Pb=δb
Ia=Σδa
Ib=Σδb
Da=δa−δa’
Db=δb−δb’
になる。
したがって、モータMa、Mbを駆動する際のモータMa、Mbへの出力であるPWM値をGa、Gbとし、比例ゲインをKpとし、積分ゲインをKiとし、微分ゲインをKdとすると、PWM値Ga、Gbは、
Ga=Kp・Pa+Ki・Ia+Kd・Da/dt
Gb=Kp・Pb+Ki・Ib+Kd・Db/dt
になる。また、積分時間をTiとし、微分時間をTdとすると、積分ゲインKi及び微分ゲインKdは、
Ki=Kp/Ti
Kd=Kp・Td
になるので、PWM値Ga、Gbは、
Ga=Kp(Pa+Ia/Ti+Td・Da/dt) Gb=Kp(Pb+Ib/Ti+Td・Db/dt) になる。この場合、PWM値Ga、Gbは、パルス幅変調信号の電圧を表す。
なお、本実施の形態においては、フィードバック制御において、比例成分Pa、Pb、積分成分Ia、Ib及び微分成分をDa、DbによるPID制御が行われるようになっているが、比例成分Pa、PbによるP制御、比例成分Pa、Pb及び積分成分Ia、IbによるPI制御、又は比例成分Pa、Pb及び微分成分Da、DbによるPD制御を行うことができる。
ところで、前述されたように、各車輪WLB、WRBにキャンバθが付与された状態で車両を走行させるのに伴ってタイヤ36に偏摩耗が発生すると、タイヤ36の寿命が短くなってしまう。
そこで、制御部16の前記接地荷重判断処理手段は、接地荷重判断処理を行い、前記キャンバ付与解除条件が成立したかどうかを判断する(ステップS11、S12)。そのために、前記接地荷重判断処理手段は、タイヤ36に加わる接地荷重を表す接地荷重指標として、前記タイヤ潰れ代、サスストローク、前後G、ヨーレート、ロール角、荷重、ブレーキストローク、アクセル開度、ステアリング角度、ステアリング角速度、ステアリング角加速度等を読み込み、各接地荷重指標が、それぞれの閾値以上であるかどうかを判断し(ステップS11−1〜S11−11)、各接地荷重指標のうちのいずれか一つ、本実施の形態においては、少なくともタイヤ潰れ代が閾値以上であると判断された場合に、接地荷重がタイヤ36に偏摩耗を発生させると判断し、キャンバ付与解除条件が成立したと判断する(ステップS11−12)。
そして、前記接地荷重判断処理において、キャンバ付与解除条件が成立すると、前記制御部16の図示されない第2のキャンバ制御処理手段としてのキャンバ付与解除処理手段は、第2のキャンバ制御処理としてのキャンバ付与解除処理を行い、アクチュエータ31、32を作動させて各車輪WLB、WRBへのキャンバθの付与を解除する(ステップS13)。
したがって、各車輪WLB、WRBにキャンバθが付与された状態で車両を走行させるのに伴ってタイヤ36に偏摩耗が発生するのを抑制することができるので、タイヤ36の寿命を長くすることができる。
一方、前記直進安定キャンバ要否判断処理において、直進走行用のキャンバ付与条件が成立しないと判断された場合に、前記キャンバ付与状態判断処理手段は、前記キャンバθpを読み込み、該キャンバθpが、
−5〔°〕≦θp<0〔°〕
であるかどうかによって、車輪WLB、WRBにキャンバθが付与されているかどうかを判断する(ステップS14)。
そして、車輪WLB、WRBにキャンバθが付与されていると判断された場合に、前記キャンバ付与解除処理手段は、制御部16に内蔵された計時処理部としての図示されないタイマによる計時を開始し、計時を開始してから所定の時間が経過すると(ステップS15)、アクチュエータ31、32を作動させて車輪WLB、WRBへのキャンバθの付与を解除する(ステップS16)。
本実施の形態においては、キャンバ付与処理において、モータ41L、41Rのうちの理想角度θs(t)に近い値を有する実角度でクランク軸を回転させているモータMaが、偏差δaが0になるように駆動されるので、実角度pHが理想角度θs(t)に近い値を有し、キャンバθの付与が進んでいる側のモータMaの駆動速度としての回転速度が低くされ、実角度pLが理想角度θs(t)から離れた値を有し、キャンバの付与が遅れている側のモータMbの回転速度と等しくされる。
したがって、車輪WLB、WRBに互いに異なる大きさの負荷が加わり、各アクチュエータ31、32の作動にずれが生じても、キャンバθの付与状態が車輪WLBと車輪WRBとで異なるのを抑制することができる。その結果、キャンバθを付与するに当たり、運転者に違和感を与えることがない。
ところで、本実施の形態においては、前述されたように、現時刻tpにおける実角度pH、pLの差を表す偏差δa、及び理想角度θs(t)と実角度pLとの差を表す偏差δbが0になるようにモータMa、Mbが駆動されるようになっていて、そのために、センサ74H、74Rが軸角度θL、θRを検出してセンサ出力を発生させると、前記角度取得処理手段は、軸角度θL、θRを現時刻tpにおける実角度θL(t)、θR(t)として読み込み、前記速度制御処理手段は、実角度θL(t)、θR(t)及び理想角度θs(t)に基づいて偏差δa、δbを算出し、該偏差δa、δbが0になるようにPWM値Ga、Gbを出力し、モータMa、Mbを駆動する。なお、前記PWM値Ga、Gbが出力されると、前記モータMa、Mbは前記PWM値Ga、Gbに対応する回転速度で駆動される。
この場合、前記角度取得処理手段が現時刻tpにおける実角度θL(t)、θR(t)を読み込んでから、前記速度制御処理手段がPWM値Ga、Gbを出力してモータMa、Mbを駆動するまでに所定の時間、すなわち、制御遅れ時間としての反応時間τが経過する。したがって、モータMa、Mbは、実際に駆動される時刻より反応時間τだけ前の時刻、すなわち、反応時間前時刻tmにおける実角度θL(t)、θR(t)に基づいて駆動されることになるが、その間(反応時間τが経過する間)、モータMa、Mbは駆動され続けていて、実角度θL(t)、θR(t)は変化し続けている。なお、反応時間τは、センサ74L、74Rと制御部16との距離、制御部16における処理能力等によって異なるが、本実施の形態においては、例えば、20〔ms〕に設定され、あらかじめROM61、RAM62等に記録される。その結果、PWM値Ga、Gbを、モータMa、Mbを駆動するときの実角度θL(t)、θR(t)に基づいて算出することができないので、モータMa、Mbを十分に精度良く駆動することができない。
そこで、モータMa、Mbを十分に精度良く駆動することができるようにした本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与し、同じ構造を有することによる発明の効果については同実施の形態の効果を援用する。
図12は本発明の第2の実施の形態における速度制御処理のサブルーチンを示す図、図13は本発明の第2の実施の形態における時間の経過に伴って変化するクランク軸の軸角度の推移を示す概念図、図14は本発明の第2の実施の形態におけるモータの速度制御を説明するための図である。なお、図13及び14において、横軸に時間tを、縦軸に軸角度θL、θRを採ってある。
この場合、前記角度取得処理手段は、第1、第2の軸角度検出部としてのセンサ74L、74Rによって検出された軸角度θL、θRを実角度θL(t)、θR(t)として読み込み(ステップS6−11)、前記キャンバ付与状態調整処理手段の制御遅れ時間取得処理手段は、制御遅れ時間取得処理を行い、前記反応時間τを読み込む(ステップS6−12)。
続いて、前記駆動部制御処理手段の速度制御処理手段は、速度制御処理を行い、実角度θL(t)、θR(t)、理想角度θs(t)及び反応時間τに基づいて、キャンバ制御用の第1、第2の駆動部としてのモータ41L、41Rのフィードバック制御を行う(ステップS6−13)。
そのために、前記速度制御処理手段の軸角度予測処理手段は、軸角度予測処理を行い、現時刻tpにおける実角度θL(tp)、θR(tp)、及び反応時間前時刻tmにおける実角度θL(tm)、θR(tm)を読み込み、反応時間τが経過する間に実角度θL(t)、θR(t)が変化する量、すなわち、軸角度変化量dθi(i=L、R)
dθL=θL(tp)−θL(tm)
dθR=θR(tp)−θR(tm)
を軸角度予測指標として算出する。
続いて、前記軸角度予測処理手段は、現時刻tpにおける実角度θL(tp)、θR(tp)にそれぞれ軸角度変化量dθiを加算することによって、現時刻tpから反応時間τが経過した後の時刻、すなわち、反応時間後時刻trにおける実角度θL(tr)、θR(tr)
θL(tr)=θL(tp)+dθL
θR(tr)=θR(tp)+dθR
を算出し、予測する。
なお、本実施の形態においては、軸角度変化量dθiが、現時刻tpにおける実角度θL(tp)、θR(tp)から反応時間前時刻tmにおける実角度θL(tm)、θR(tm)を減算することによって算出されるようになっているが、現時刻tpより前の反応時間前時刻tmとは別の反応時間前時刻tnにおける実角度θL(tn)、θR(tn)を読み込み、現時刻tpにおける実角度θL(tp)、θR(tp)から反応時間前時刻tnにおける実角度θL(tn)、θR(tn)を減算することによって算出することができる。また、現時刻tpより前の、反応時間τごとの複数の反応時間前時刻tn、tn’、tn”、…における実角度θL(tn)、θR(tn)、θL(tn’)、θR(tn’)、θL(tn”)、θR(tn”)、…を読み込むことによって、反応時間τごとの実角度θL(tn)、θR(tn)、θL(tn’)、θR(tn’)、θL(tn”)、θR(tn”)、…の変化量を算出し、該変化量の平均値を軸角度変化量dθiとすることができる。さらに、現時刻tpより前の反応時間τにおいて、各制御周期ごとに各実角度θL(t)、θR(t)を読み込み、各実角度θL(t)、θR(t)を所定の関数に入力することによって軸角度変化量dθiを算出することができる。
図13において、L21は時間tにおける実角度θL(t)、θR(t)を表す線、dθiは軸角度変化量、pθi(i=L、R)は現時刻tpにおける実角度θL(tP)、θR(tP)、mθi(i=L、R)は反応時間前時刻tmにおける実角度θL(tm)、θR(tm)、rθi(i=L、R)は反応時間後時刻trにおける実角度θL(tr)、θR(tr)である。
このようにして、反応時間後時刻trにおける実角度θL(tr)、θR(tr)が予測されると、前記速度制御処理手段の偏差算出処理手段は、制御周期dtが経過するたびに、現時刻tpまでの経過時間を読み込むとともに、反応時間後時刻trまでの経過時間を算出し、反応時間後時刻trにおける理想角度θs(tr)を算出する。そして、前記偏差算出処理手段は、実角度θL(tr)、θR(tr)を読み込み、理想角度θs(tr)と実角度θL(tr)、θR(tr)とを比較し、実角度θL(tr)、θR(tr)のうちの理想角度θs(tr)に近い値を有する実角度をrHとし、実角度θL(tr)、θR(tr)のうちの理想角度θs(t)から離れた値を有する実角度をrLとして、実角度rH、rLに基づいて偏差δcを、理想角度θs(tr)及び実角度rLに基づいて偏差δdを算出する。
この場合、反応時間後時刻trにおける理想角度θs(tr)は、モータ41L、41Rの駆動が開始されてから反応時間後時刻trまでの経過時間が、
tr=tp+τ
であるので、
θs(tr)=Δθs・(tp+τ)
で表すことができる。したがって、反応時間後時刻trにおける偏差δc、δdは、
δc=rH−rL
δb=θs(tr)−pL
=Δθs・(tp+τ)−pL
になる。
そして、前記速度制御処理手段の駆動部駆動処理手段は、モータ41L、41Rのうちの理想角度θs(t)に近い値を有する実角度でクランク軸を回転させているモータをMaとし、理想角度θs(t)から離れた値を有する実角度でクランク軸を回転させているモータをMbとし、モータMaを偏差δcが小さくなるように、本実施の形態においては、0になるように駆動し、モータMbを偏差δdが小さくなるように、本実施の形態においては、0になるように駆動する。なお、本実施の形態においては、偏差δaが負の値を採っても、駆動部駆動処理手段がモータMaを逆方向に駆動することはない。
また、現時刻tpにおける理想角度θs(tp)に近い値を有する実角度をpHとし、現時刻tpにおける理想角度θs(tp)から離れた値を有する実角度をpLとすると、現時刻tpにおける偏差δc’、δd’は、
δc’=pH−pL
δd’=θs(tp)−pL
=Δθs・tp−qL
になる。
そして、モータMa、Mbのフィードバック制御を行う際の、比例成分をPa、Pbとし、積分成分をIa、Ibとし、微分成分をDa、Dbとすると、比例成分Pa、Pb、積分成分Ia、Ib及び微分成分Da、Dbは、
Pa=δc
Pb=δd
Ia=Σδc
Ib=Σδd
Da=δc−δc’
Db=δd−δd’
になる。
したがって、モータMa、Mbを駆動する際のモータMa、Mbへの出力であるPWM値をGa、Gbとし、比例ゲインをKpとし、積分ゲインをKiとし、微分ゲインをKdとすると、PWM値Ga、Gbは、
Ga=Kp・Pa+Ki・Ia+Kd・Da/dt
Gb=Kp・Pb+Ki・Ib+Kd・Db/dt
になる。そして、積分時間をTiとし、微分時間をTdとすると、積分ゲインKi及び微分ゲインKdは、
Ki=Kp/Ti
Kd=Kp・Td
になるので、PWM値Ga、Gbは、
Ga=Kp(Pa+Ia/Ti+Td・Da/dt) Gb=Kp(Pb+Ib/Ti+Td・Db/dt) になる。
前記各実施の形態においては、車輪WLF、WRF、WLB、WRBのうちの所定の左側及び右側の各車輪に負のキャンバθが付与される場合について説明しているが、車輪WLF、WRF、WLB、WRBのうちの所定の左側及び右側の各車輪に正のキャンバを付与する場合に、本発明を適用し、前記キャンバ付与状態調整処理手段によって、前記所定の各車輪へのキャンバの付与状態を等しくするようにすることができる。
また、前記各実施の形態においては、軸部材としてのクランク軸の軸角度θL、θRが検出され、該軸角度θL、θRが調整されるようになっているが、モータ41L、41Rの出力軸を軸部材とすることができる。その場合、第1の軸角度検出部として、センサ74Lに代えて、モータ41Lの出力軸の軸角度σLを検出するセンサが、第2の軸角度検出部として、センサ74Rに代えて、モータ41Rの出力軸の軸角度σRを検出するセンサが使用される。
さらに、クランク軸及びモータ41L、41Rの出力軸を軸部材としたり、モータ41L、41Rと可動プレート43との間の回転の伝達系において、モータ41L、41Rの駆動に伴って回動させられる部材を軸部材としたりすることができる。
なお、本発明は前記各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
11 ボディ
16 制御部
31、32 アクチュエータ
WLF、WRF、WLB、WRB 車輪

Claims (6)

  1. 車両のボディと、
    該ボディに対して回転自在に配設された複数の車輪と、
    該各車輪のうちの所定の左側及び右側の各車輪に配設され、該所定の左側及び右側の各車輪にキャンバを付与するための第1、第2のキャンバ可変機構と、
    所定のキャンバ付与条件が成立したかどうかを判断するキャンバ付与条件成立判断処理手段と、
    該キャンバ付与条件成立判断処理手段によって、前記所定のキャンバ付与条件が成立したと判断された場合に、前記第1、第2のキャンバ可変機構を作動させ、前記所定の左側及び右側の各車輪のキャンバ角を変更することによって前記各車輪にキャンバを付与するキャンバ付与処理手段とを有するとともに、
    前記第1、第2のキャンバ可変機構は、前記所定の左側及び右側の各車輪にキャンバを付与するために揺動させられる揺動部材、該揺動部材を揺動させるための軸部材、並びに該軸部材を回転させるための駆動部をそれぞれ備え、
    前記キャンバ付与処理手段は、前記第1、第2のキャンバ可変機構の作動中において、第1、第2のキャンバ可変機構による前記所定の左側及び右側の各車輪へのキャンバの付与状態を等しくするキャンバ付与状態調整処理手段を備え、
    該キャンバ付与状態調整処理手段は、前記第1、第2のキャンバ可変機構を作動させて、前記各車輪にキャンバを付与した後のキャンバ角が等しくなるように、かつ、前記各車輪へのキャンバの付与が同時に完了するように、前記駆動部の駆動速度を制御することによって、前記所定の左側及び右側の各車輪のうちの、キャンバの付与が進んでいる側の車輪のキャンバ可変機構における駆動部の駆動速度を低くして前記各軸部材の軸角度を調整することを特徴とするキャンバ制御装置
  2. 記キャンバ付与状態調整処理手段は、前記第1、第2のキャンバ可変機構を作動させたときの各軸部材の軸角度間の偏差に基づいて前記各駆動部を駆動する請求項1に記載のキャンバ制御装置。
  3. 前記キャンバ付与状態調整処理手段は、現時刻より所定の時間だけ後の時刻における各軸部材の軸角度を予測する軸角度予測処理手段を備えるとともに、該軸角度予測処理手段によって予測された各軸角度間の偏差に基づいて各駆動部を駆動する請求項に記載のキャンバ制御装置。
  4. 前記軸角度予測処理手段は、前記各駆動部の反応時間に基づいて各軸部材の軸角度を予測する請求項に記載のキャンバ制御装置。
  5. 前記キャンバ付与状態調整処理手段は、現時刻における各軸部材の軸角度間の偏差に基づいて各駆動部を駆動する請求項に記載のキャンバ制御装置。
  6. 前記キャンバ付与条件成立判断処理手段は、車両状態及び操作状態のうちの少なくとも一方に基づいて、前記所定のキャンバ付与条件が成立したかどうかを判断する請求項1〜のいずれか1項に記載のキャンバ制御装置。
JP2010150111A 2010-06-30 2010-06-30 キャンバ制御装置 Expired - Fee Related JP5605024B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010150111A JP5605024B2 (ja) 2010-06-30 2010-06-30 キャンバ制御装置
PCT/JP2011/064777 WO2012002371A1 (ja) 2010-06-30 2011-06-28 キャンバ制御装置
CN201180037551XA CN103038075A (zh) 2010-06-30 2011-06-28 外倾控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150111A JP5605024B2 (ja) 2010-06-30 2010-06-30 キャンバ制御装置

Publications (3)

Publication Number Publication Date
JP2012011889A JP2012011889A (ja) 2012-01-19
JP2012011889A5 JP2012011889A5 (ja) 2013-05-16
JP5605024B2 true JP5605024B2 (ja) 2014-10-15

Family

ID=45402078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150111A Expired - Fee Related JP5605024B2 (ja) 2010-06-30 2010-06-30 キャンバ制御装置

Country Status (3)

Country Link
JP (1) JP5605024B2 (ja)
CN (1) CN103038075A (ja)
WO (1) WO2012002371A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174160A (ja) * 2004-12-16 2006-06-29 Tdk Corp 非可逆回路素子
JP4867460B2 (ja) * 2005-04-27 2012-02-01 株式会社エクォス・リサーチ 制御装置
KR20070063882A (ko) * 2005-12-15 2007-06-20 현대자동차주식회사 자동차의 캠버 제어 시스템
JP4848994B2 (ja) * 2006-12-22 2011-12-28 株式会社エクォス・リサーチ 車両用制御装置
JP2008174160A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 車両操舵装置
JP2009090971A (ja) * 2007-09-21 2009-04-30 Equos Research Co Ltd キャンバ角制御装置
JP2010030577A (ja) * 2008-07-04 2010-02-12 Equos Research Co Ltd キャンバ角可変機構

Also Published As

Publication number Publication date
WO2012002371A1 (ja) 2012-01-05
CN103038075A (zh) 2013-04-10
JP2012011889A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
JP6476235B2 (ja) 三輪自動車のための操舵および制御システム
CN109515512B (zh) 用于轮式独立驱动车辆的线控差动转向系统的控制方法
CN106915385A (zh) 一种用于分布式驱动电动汽车的线控差动转向系统及方法
CN106553711A (zh) 用于控制主动空气动力学元件的车辆、系统和方法
CN110466602A (zh) 轮毂电机驱动电动汽车的分时四轮转向系统及其控制方法
CN107600171B (zh) 轮边/轮毂驱动多轴车辆的转向方法
CN102971201B (zh) 用于测定车辆中转向装置的齿条力的方法
JP5911482B2 (ja) 操舵角を電気機械的に調整するための方法および電気機械式ステアリングを備えた自動車
JPWO2018181750A1 (ja) 車両
JP5720187B2 (ja) 車両用制御装置
JP5605024B2 (ja) キャンバ制御装置
WO2019189095A1 (ja) ステアリングシステムおよびこれを備えた車両
JP4349204B2 (ja) 左右独立駆動式車両
JP6833666B2 (ja) 車両
KR20210064634A (ko) 인휠모터 차량의 스티어링 부하 축소를 위한 제어 방법
JP5321529B2 (ja) キャンバ制御装置
JP2008092682A (ja) 電動カート
WO2019189104A1 (ja) ステアリングシステムおよびこれを備えた車両
JP2008086159A (ja) 電動カート
JP2006182050A (ja) 4輪独立駆動車の制駆動力制御装置
WO2018030407A1 (ja) 車両
JP2013006577A (ja) キャンバ制御装置
JP2019171914A (ja) ステアリングシステムおよびこれを備えた車両
JP5273018B2 (ja) キャンバ制御装置
JP2008109833A (ja) 電動カート

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5605024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees