JP5604543B2 - 冷蔵庫 - Google Patents
冷蔵庫 Download PDFInfo
- Publication number
- JP5604543B2 JP5604543B2 JP2013039343A JP2013039343A JP5604543B2 JP 5604543 B2 JP5604543 B2 JP 5604543B2 JP 2013039343 A JP2013039343 A JP 2013039343A JP 2013039343 A JP2013039343 A JP 2013039343A JP 5604543 B2 JP5604543 B2 JP 5604543B2
- Authority
- JP
- Japan
- Prior art keywords
- defrosting
- temperature
- cooler
- refrigerator
- compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010257 thawing Methods 0.000 claims description 480
- 238000001816 cooling Methods 0.000 claims description 98
- 238000007710 freezing Methods 0.000 claims description 56
- 230000008014 freezing Effects 0.000 claims description 56
- 238000005057 refrigeration Methods 0.000 claims description 55
- 238000009423 ventilation Methods 0.000 claims description 8
- 230000003796 beauty Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 94
- 230000008569 process Effects 0.000 description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical class O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 230000000694 effects Effects 0.000 description 31
- 235000013311 vegetables Nutrition 0.000 description 23
- 230000008859 change Effects 0.000 description 17
- 235000013305 food Nutrition 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 8
- 235000013611 frozen food Nutrition 0.000 description 7
- 238000007664 blowing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Defrosting Systems (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Description
特許文献2にはまた、圧縮機の運転時間の積算値が所定値に達したときに、除霜ヒータに通電すると同時に、冷蔵室ダンパを開状態、冷凍室ダンパを閉状態とし、庫内送風機を稼動させ加湿運転(兼除霜運転)を行う技術が記載されている。
更に、特許文献4には、除霜運転時に除霜ヒータ通電前に圧縮機停止状態で、冷蔵室ダンパを開状態にして、比較的温度の高い冷蔵室内の冷気を、庫内送風機を稼動することにより冷気吐出ダクト内に呼び戻すようにして冷却器の温度を上昇させ、冷却器の温度が所定温度より高くなった場合に、庫内送風機を停止し、冷蔵室ダンパを閉状態にして除霜ヒータに通電し除霜する技術が記載されている。
まず、省エネルギ性能に関する従来の技術の問題点について説明する。冷蔵室と冷凍室を共通に冷却する冷却器を備えた冷蔵庫において、この冷却器の霜を解かすための第一の方式は、特許文献1に記載されている、圧縮機停止状態、全ダンパ閉状態及び庫内送風機停止状態で、除霜ヒータ通電状態として霜を加熱して解かす方式である。この方式の省エネルギ性能は、〔1〕除霜ヒータと霜の間の熱伝達効率、〔2〕霜の冷熱の扱いを考えることで説明できる。まず、〔1〕除霜ヒータと霜の間の熱伝達効率についてであるが、特許文献1に記載の除霜ヒータによって霜を加熱する方式では、基本的に除霜ヒータから霜への伝熱は自然対流によることになるため(輻射もあるが一般に自然対流が支配的)、除霜ヒータと霜と間の熱伝達効率は低い。したがって、必要な熱量を霜に与えるためには、除霜ヒータへより多くの入力が必要になり省エネルギ性能は低い。次に、〔2〕霜の冷熱の扱いについて説明する。冷蔵室は通常3〜5℃程度に維持される室であるため、0℃で相変化(融解)する霜は、冷蔵室から見れば、冷蔵室を冷却し得る冷熱源として考えることができる。このことを考えると、特許文献1に記載の除霜ヒータによって霜を加熱して解かす方式(第一の方式)は、利用可能な霜の冷熱を冷蔵室の冷却に再利用せずに捨てていることになり、省エネルギ性能を十分高くすることができていない。
なお、霜の相変化(融解)のために、霜融解開始から霜融解完了までは冷却器温度はほぼ0℃に保たれる。
特許文献2に記載の技術、若しくは、特許文献3に記載の技術では、冷蔵室からの戻り冷気が形成する冷却器室の冷気の流れの状態を示す流れ場と、冷凍室からの戻り冷気が形成する冷却器室の冷気の流れの状態を示す流れ場が異なるために、庫内送風機によって冷蔵室に送風を行い、除霜を行った場合に、霜が解け難い箇所が存在することに対する配慮がなされていない。その結果、使用者に特別な落ち度、例えば、冷蔵庫の扉を開放した状態で長時間放置する等がなくとも、省エネルギ性能の悪化や、冷蔵庫内の食品を所定温度範囲に維持できなくなるといった問題が生じていた。
また、逆向きの流れを形成するために別途、第2の庫内送風機を設けた場合は、冷蔵庫容積の減少や、コストの増加を招いていた。
このことから、除霜時に、特に霜が比較的多く存在する場合には、0℃一定の時間が長くなる。言い換えると、霜は、0℃一定の相変化時に非常に多くの熱を吸熱しうる冷熱源であるといえる。また、省エネルギ性能を考えると、除霜ヒータが非通電状態で、庫内送風機によって冷蔵室に送風を行う除霜方式は、霜の冷熱を利用して、冷蔵室を冷却しているつまり、冷蔵室の熱負荷で霜を解かしている効果と、送風により強制対流を起こすことで冷却器と送風との熱伝達効率が高まるために、省エネルギ性能が高い。
以上を考慮した場合、特許文献4に記載の技術における、庫内送風機を停止するための冷却器温度の設定値を、0℃以下に設定した場合、霜の有する冷熱の内、顕熱変化の部分の冷熱しか冷蔵室の冷却に利用できないことになる。したがって、冷蔵室の冷却のためにより多くの利用可能な冷熱が取り出せる潜熱変化の部分については、庫内送風機を停止した状態で行われる除霜ヒータによる除霜によって捨てられてしまうことになる。これにより省エネルギ効果が小さくなっていた。
冷凍温度帯室と、冷蔵温度帯室と、圧縮機と、前記冷凍温度帯室と前記冷蔵温度帯室を冷却する冷却器と、前記冷却器で冷却された冷気を、前記冷凍温度帯室と前記冷蔵温度帯室に循環させる送風機と、前記冷却器から前記冷凍温度帯室への送風を制御する冷凍室ダンパと、前記冷却器から前記冷蔵温度帯室への送風を制御する冷蔵室ダンパと、制御装置とを備える冷蔵庫において、
前記圧縮機の停止時に、前記冷凍室ダンパを閉状態とし、前記冷蔵室ダンパを開状態とし、前記送風機を稼動させて除霜を行う第1の除霜手段を備え、
前記制御装置は、前記冷却器通過後の空気の温度が前記冷蔵温度帯室を所定温度範囲に維持して冷却が可能な範囲で前記第1の除霜手段を制御して、前記冷蔵温度帯室が所定の下限温度より低くなった場合、前記第1の除霜手段を停止することを特徴とする。
図1は、本実施形態の冷蔵庫の正面外形図であり、図2は、冷蔵庫の庫内の構成を表す図1におけるX−X縦断面図である。図3は、冷蔵庫の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図である。
図1に示すように、本実施形態の冷蔵庫1は、上方から、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6から構成されている。
ここで、本実施形態における冷蔵室2と野菜室6は、請求項に記載の冷蔵温度帯室に対応し、製氷室3、上段冷凍室4、下段冷凍室5は請求項に記載の冷凍温度帯室に対応する。
また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2の温度設定や上段冷凍室4や下段冷凍室5の温度設定をする図示しない温度設定器等を備えている。
庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。
扉2a,2b(図1参照、図2では冷蔵室扉2bは図示せず)の庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。
ちなみに、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5及び野菜室6への各送風ダクトは、図3に破線で示すように冷蔵庫1の各室の背面側に設けられている。
なお、冷蔵室2を冷却した冷気は、例えば、冷蔵室2の下面に設けられた戻り口2dから冷蔵室戻りダクト16を経て、冷却器収納室8(図5参照)の正面から見て、例えば、右側下部に戻る。また、野菜室6からの戻り空気は、戻り口6dを経て、冷却器収納室8の下部に戻る。
上段冷凍室4、下段冷凍室5、製氷室3を冷却した冷気は、下段冷凍室5の奥下方に設けられた冷凍室戻り口17を介して、冷却器収納室8に戻る。
なお、除霜ヒータ22は、後記する制御基板31によるデューティ制御により出力を可変できる。
冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜によって融解することで生じた除霜水は冷却器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後記する機械室19に配された蒸発皿21に達し、後記する凝縮器の熱により蒸発させられる。
ここで、本実施形態における冷蔵室温度が請求項に記載の冷蔵温度帯室の温度に、冷凍室温度が請求項に記載の冷凍温度帯室の温度に対応する。
更に、冷蔵庫1は、庫外の温湿度環境(外気温度、外気湿度)を検知する図示しない外気温度センサと外気湿度センサを備えている。
なお、野菜室6にも野菜室温度センサ33Aを配置しても良い。
ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。
図4は、冷却器周辺部分の部分側面図であり、図5は、冷却器周辺部分の部分正面図である。
冷蔵室ダンパ20が閉状態で、且つ冷凍室ダンパ50が開状態で、冷凍温度帯室(製氷室3、上段冷凍室4及び下段冷凍室5)のみの冷却が行われている状態では、製氷室3に製氷室送風ダクトを介して送風された冷気及び上段冷凍室4に上段冷凍室送風ダクト12(図2参照)を介して送風された冷気は、下段冷凍室5に下降し、下段段冷凍室5に下段冷凍室送風ダクト13(図2参照)を介して送風された冷気とともに、図4中に矢印Cで示す冷凍室戻り空気ように、下段冷凍室5の奥壁下部に配された冷凍室戻り口17を経由して冷却器収納室8の下部前方から冷却器収納室8に流入し、冷却器配管7aに多数のフィンが取り付けられて構成された冷却器7と熱交換する。
ちなみに、冷凍室戻り口17の横幅寸法は、図5に示す冷却器7の幅寸法(冷却器幅寸法L)とほぼ等しい横幅である。
なお、野菜室6を冷却した冷気は、図4及び図5中に図示しない、野菜室戻り口6d(図2参照)を介して、冷却器収納室8の下部に流入するが、風量が冷凍温度帯室を循環する風量や冷蔵室2を循環する風量に比べて少なく、冷却器収納室8内の冷気の流れの状態を示す流れ場(以下、冷却器収納室8内の冷気の流れの状態を示す流れ場を単に「流れ場」と称する)に与える影響が比較的小さいのでここでは説明を省略する。
例えば、冷凍温度帯室に大量に常温の魚や肉を入れて冷凍保存を試みる場合、若しくは、冷凍温度帯室の扉3a,4a,5aと断熱箱体10の間に微小な隙間が生じているにも関わらず、扉3a,4a,5aの開放状態を前記扉センサが検知できず、アラームによる報知がなされなくて使用者がその状況を気付かない場合等に生じる。後者の例としては、冷凍温度帯室の扉3a,4a,5aと、断熱箱体10の開口部の縁の前面との間に細かな食品かす等が挟まった状態で扉3a,4a,5aが閉められた場合が考えられる。この場合、扉3a,4a,5aは基本的に閉まっているので、アラーム機能は作動せず、使用者は扉に隙間が生じていることを知りえないため、次回の扉3a,4a,5aの開閉が行われるまでは、隙間が生じている状態で冷蔵庫1の運転が継続されることになる。
一方で、圧縮機24停止時に、冷凍温度帯室への冷気循環を遮断した状態で、庫内送風機9によって冷蔵温度帯室に送風を行い、除霜を行う場合、除霜が効果的に行われる領域は前記のとおり、冷蔵温度帯室からの戻り冷気が流れやすい図5中に示す領域Bとなるため、冷蔵温度帯室からの戻り冷気の流れの影響が及び難い図5中に示す領域A付近の霜は解け難い。
したがって、領域A付近の霜がなかなか解けないために除霜時間が延びてしまい、除霜の間、庫外からの熱侵入を受け続けている冷凍温度帯室の温度が著しく上昇し、例えば、冷凍食品が解けるといった可能性が生じていた。
Qrad ∝(T1 4−T2 4) ・・・・・・・・・・・・・・(1)
一方、発熱量Qが一定の物体表面の温度Tsurfは、次式(2)に示すように、空気の温度Tairと伝熱面積SAが同じであれば物体表面の熱伝達率hが大きいほど低くなる。
Tsurf=Tair+(Q/(h・SA)) ・・・・・・・・・・(2)
また、一般に、熱伝達率hは物体表面を流れる風の風速が大きいほど高くなる。したがって、送風状態であれば送風しない状態に比べて熱伝達率hは高くなる。以上から、除霜ヒータ22の発熱量が同じ場合であっても、送風状態とした場合は、式(2)から、除霜ヒータ22表面の温度は送風しない場合に比べて低下する。除霜ヒータ22表面温度が低下すれば、式(1)から、低温面温度(ここでは霜表面温度)が同じ場合、輻射による伝熱量が減少するために輻射による除霜効果が小さくなる。
以上の理由により、例えば、特許文献2や特許文献3に記載されている、圧縮機24停止時に、冷凍温度帯室への冷気循環を遮断した状態で、除霜ヒータ22に通電し、庫内送風機9によって冷蔵温度帯室に送風を行う方式を採用した場合、図5中の領域A付近は、輻射による除霜が十分行われず、また、[発明が解決しようとする課題]に前記したとおり、冷蔵温度帯室を循環する空気流によっても十分除霜されない場合があり、省エネルギ性能が悪化する。ひいては、冷却能力が不足し、庫内温度を所定値に維持できないといった不具合を生じる可能性があった。
図6は除霜モードを説明する図であり、図7から図10は除霜の制御の流れを示すフローチャートであり、図11は除霜中の除霜ヒータ、庫内送風機、冷蔵室ダンパ、冷凍室ダンパ、圧縮機の動作状態を示すタイムチャートと冷蔵室温度、冷凍室温度、冷却器温度の推移を説明する図である。
ここで、通常冷却運転とは、冷蔵室温度センサ、冷凍室温度センサ及び外気温度センサが検知する温度にもとづき、圧縮機24と、庫内送風機9と、庫外送風機の制御(オン/オフ制御や回転速度制御)と、冷蔵室ダンパ20、冷凍室ダンパ50の開閉状態の制御によって、各室を所定温度(例えば、冷蔵室は3℃程度、野菜室は5℃程度、冷凍室は−18℃程度)に維持する運転である。
なお、以下の除霜方法の説明においては、野菜室6は、冷蔵室2の一部として扱い、野菜室6に関する説明は省略する。
このように本実施形態の冷蔵庫1における除霜運転のモードは第1から第3の除霜手段の全て、または一部を組み合わせて除霜モードとしている。
本実施形態における除霜モード4が請求項の第1の除霜モードに対応し、除霜モード4,5が請求項に記載の第2の除霜モードに対応する。
ここで、図6の表の「除霜完了判定条件」欄に示す冷却器温度の条件が請求項に記載の除霜完了判定温度に対応する。
除霜前条件及び除霜完了判定条件の詳細については、後記するフローチャートの説明の中で説明する。
次に図7から図11を参照しながら除霜運転の制御の流れについて説明する。この制御は、制御基板31(図2参照)のCPUがROMに格納されたプログラムを実行することによって行われる。
図7に示すように、冷蔵庫は電源投入により運転が開始され(スタート)、初期条件としてFLAGi=0,FLAGj=0となされる(ステップS100)。
ここで、FLAGiは、後記するように除霜モード4が選択されたことを示すフラグであり、除霜モード4における除霜運転の途中で冷凍室温度が上昇し過ぎて、除霜運転を中断し冷凍室冷却運転等を一時的に行って、他の除霜モードに移行したことを示すフラグでもある。また、FLAGjは、後記するように冷却器除霜を優先する条件が満足されたことを示すフラグであり、その除霜運転における除霜モードの切替のためのフラグでもある。
例えば、使用者が冷蔵室2に温度の比較的高い食品を入れる等があった場合、「冷凍室冷却運転」モードから「冷蔵室冷却運転」モードに切り替わり、冷蔵室2を素早く所定温度まで冷却した後に再び「冷凍室冷却運転」モードに移行する。
ここで、「冷却器除霜を優先する」条件とは、庫内の温度変動が若干大きくなっても、冷却器に付着した霜を取り除くことを優先させる除霜が必要である条件である。この条件は、例えば、外気温度が35℃より高く、且つ、外気湿度が85%より高い場合とする。
ステップS104において、冷却器除霜を優先する条件が満足された場合(Yes)は、ステップS501へ進み、冷却器除霜を優先する条件が満足されない場合(No)は、自動的に除霜モード1が選択される(ステップS105)。
ここで、冷却器除霜を優先するか条件を満足とは、外気温度センサが検知する温度が35℃より高く、且つ、外気湿度センサが検知する湿度(相対湿度)が85%より高い場合に、冷却器除霜を優先する条件が満足されたと判定する。
続いて、第1の除霜手段(「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」)による除霜運転が行なわれる(ステップS106)。ステップS106の除霜運転状態は、ステップS107における冷凍室温度−17℃より高、ステップS108における冷蔵室温度5℃より高、ステップS109における冷蔵室温度0℃より低、または、ステップS110における冷却器温度0.5℃より高の何れかの除霜完了判定条件が満足されるまで継続され、ステップS107〜ステップS110の何れかの除霜完了判定条件が満足される(Yes)と除霜モード1による除霜運転は終了し(ステップS111)、通常冷却運転(ステップS101)が再開される。ステップS107〜ステップS109のそれぞれの除霜完了判定条件が満足されない場合(No)は、次のステップS108〜ステップS110のそれぞれ除霜完了判定条件のチェックに進む。
ここで、ステップS107における冷凍室温度の−17℃は、請求項に記載の冷凍温度帯室上限温度に対応する。
ステップS110の除霜完了判定条件(冷却器温度>0.5℃)は、冷却器7の霜がほぼ完全に解けて、冷却器7の温度が上昇しはじめた場合に満足される。
なお、着霜量が比較的多い場合は、霜が解けるより先に冷凍室温度が上昇する傾向が強くなり、ステップS107の除霜完了判定条件が満足されることで除霜モード1が終了する場合が多い。一方、着霜量が比較的少ない場合は、ステップS110の除霜完了判定条件が満足されることで除霜モード1が終了する確率が高くなる。
次に、除霜モード1の効果について説明する。除霜モード1は、第1の除霜手段による除霜運転(庫内送風機による除霜)のみを用いた除霜のため、除霜のために外部から投入するエネルギは、庫内送風機9の動力(消費電力1〜2W程度)のみであり、霜の持つ冷熱を利用して冷蔵室2を冷却する、言い換えると、庫内の熱負荷を利用して霜を解かしていることから、非常に省エネルギ性能が高い除霜方式である。また、省エネルギ性能を高めるためには、除霜モード1を実施した際に、なるべく多くの霜を解かすことが効果的であり、冷却器7の霜がほぼ解けたといえる冷却器温度が0.5℃より高の除霜完了判定条件が満足されるまで除霜することが望ましい。
これらのステップにより、所定温度範囲維持という基本機能が損なわれない範囲で、最大限の省エネルギ性能を得ることができる、信頼性(所定温度範囲維持)と省エネルギ性能を両立できる冷蔵庫となっている。
次に、ステップS103において、信頼性確保除霜を行う条件が満足された場合(Yes)について説明する。
図7ステップS103において、信頼性確保除霜を行う条件が満足された場合(Yes)は、符号(1)にしたがって図8のステップS201に進みFLAGi=1と記憶させる。
図6に示すとおり、除霜モード4は、「冷凍室冷却運転」のモード中に冷蔵室温度が5℃より高となった場合に開始されるものなので、ステップS103の時点で「冷凍室冷却運転」が実施されていることから、ステップS202において除霜モード4が選択されても、冷蔵室温度が5℃より高となるまで「冷凍室冷却運転」の通常冷却運転のモードが継続する。
ここで、ステップS206における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応する。
そして、ステップS209において冷凍室温度が−10℃より高か否かをチェックする。冷凍室温度が−10℃より高の場合(Yes)は、符号(4)に従い、図9のステップS301に進み、冷凍室温度が−10℃以下の場合(No)はステップS210に進む。
ステップS210では、冷蔵室温度が冷却器温度より低いか否かをチェックし、冷蔵室温度が冷却器温度より低い場合(Yes)には、ステップS211へ進み、冷蔵室温度が冷却器温度以上の場合(No)は、再びステップS209に戻り、第2の除霜手段による除霜運転を継続し、ステップS209、S210のチェックを繰り返す。
ここで、ステップS209における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応し、ステップS210における冷蔵室温度が冷却器温度より低い(冷蔵室温度<冷却器温度)が請求項に記載の「前記冷却器温度が0℃以上の所定の第1の冷却器温度」に対応する。
ここで、ステップS212における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応し、ステップS213における冷却器温度が8℃より高(冷却器温度>8℃)が請求項に記載の「所定の第2の冷却器温度まで上昇したとき」に対応する。
ステップS217では、圧縮機24をオン後2分が経過したか否かをチェックする。経過しない場合(No)は、ステップS217を繰り返し、2分経過した場合(Yes)はステップS101(図7参照)に戻り、再び通常冷却運転に戻る(圧縮機ON後2分が経過?)。
以上説明したステップS201からステップS217の流れが、信頼性確保除霜を行う条件が満足され、除霜モード4による除霜運転が実施された場合の説明である。
以下で、その効果を、図8、図9のフローチャートと、図11の除霜モード4による除霜運転におけるタイムチャートを参照しながら説明する。図11には、除霜モード4が選択されてからの、「冷凍室冷却運転」の区間、「第1の除霜手段」による除霜運転の区間TA、「第2の除霜手段」による除霜運転の区間TB、「第3の除霜手段」による除霜運転の区間TC、除霜運転完了後の経過の区間TD,TE、「通常冷却運転」の区間に分けられ、その間の冷蔵室温度、冷凍室温度及び冷却器温度の推移、除霜ヒータ22のオン状態(ON 160W)/オン状態(ON 80W)/オフ(OFF)状態、庫内送風機9のオン(ON)/オフ(OFF)状態、冷蔵室ダンパ20の開状態/閉状態、庫内送風機9のオン(ON)/オフ(OFF)状態、冷凍室ダンパ50の開状態/閉状態、圧縮機24のオン(ON)状態/オフ(OFF)状態が示されている。
このように、第1の除霜手段による除霜運転の後に第2の除霜手段による除霜運転を組み合わせることにより、除霜時間を短くしながらも除霜運転時の省エネルギ効果を得ることができる。
冷蔵室温度が冷却器温度以下になると冷却器7が持つ冷熱では、冷蔵室2を冷却する能力はなく、それ以上送風を継続すると冷蔵室2を暖めてしまうことになるために、送風を停止、「除霜ヒータによる除霜」を行うことで冷蔵室2を暖めてしまうことを防ぐとともに、冷却器7に霜の解け残りがないようにする。
また、第3の除霜手段による除霜運転は、送風状態での除霜に比べて冷却器収納室8内の空気と霜との自然対流による熱伝達効率が悪く、省エネルギ性能が低い除霜手段ではある。しかし、本実施形態では、プラス温度に保たれる冷蔵室温度よりも冷却器温度の方が高いという、ほぼ全ての霜が解けたといえる状態から第3の除霜手段による除霜運転が実施されるので、除霜手段3による除霜運転を行うことによる省エネルギ性能の低下の影響は比較的小さい。
このように、除霜モード4では、第1から第3の除霜手段による除霜運転を組み合わせることにより、柔軟で省エネルギ効果のある、確実な除霜を行え、除霜時間の短縮化も図ってその間に冷凍室温度が上昇するのを抑制している。
また、ステップS213において冷却器温度が8℃を超えたときに第3の除霜手段による除霜運転を終了するように、図6に示す第3の除霜手段による除霜運転を含まない他の除霜モードの除霜完了判定温度(冷却器温度>0.5℃)よりも比較的高い温度に設定しているので略完全な除霜ができる。
、その後、通常冷却運転を再開する。この2分間の待ち時間は、除霜モード4による除霜運転が終了した時点で温度が高くなっている冷却器7とその周辺の空気が、そのまま庫内各室に送られて、庫内各室を暖めてしまうという問題が生じ難くするためのものであり、通常冷却運転再開前に、冷却器収納室8内を冷却するために設けられている。
再び、図9のフローチャートに戻って、除霜モード4による除霜運転の途中において、ステップS206、ステップS209、または、ステップS212において、冷凍室温度が−10℃より高となり、ステップS301へ進み、除霜モード4から除霜モード5による除霜に移行する場合について説明する。
ステップS302では、「庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータOFF」の状態とし、更に「圧縮機ON」とする(ステップS303)。そして、ステップS304では、圧縮機オン(ON)後2分が経過したか否かをチェックし、2分経過した場合(Yes)はステップS305に進み、経過していない場合(No)は、ステップS304を繰り返す。ステップS305では、FLAGi=1か否かをチェックする。FLAGi=1の場合(Yes)は、ステップS306へ進み、そうでない場合(No)は、ステップS401へ進む。
ここでは、ステップS201でFLAGi=1と記憶させてあるの、Yesとなり、除霜モード5が選択される(ステップS306)。
除霜モード4の除霜運転の途中において、ステップS206、または、ステップS209、または、ステップS212の何れかで、冷凍室温度が著しく上昇する原因としては、使用者が偶々製氷室3や、上段冷凍室4や、下段冷凍室5の開閉を行い、比較的温度の高い食品を収納した場合も考えられるが、他に、霜の量が多く、除霜に時間がかかり過ぎた、若しくは、下段冷凍室5からの戻り冷気が多くの水分を冷却器収納室8に運んでくる状況となっており、庫内送風機9が稼動している状態での除霜運転では除霜され難い箇所に霜が多く存在し、その霜の影響で除霜時間が延び、冷凍室温度が−10度より高になる場合と考えられる。
なお、第1の除霜手段による除霜運転のステップを省略しても、第2の除霜手段による除霜運転を実施することによる省エネルギ効果は得られるため、除霜モード5に移行することによって省エネルギ性能が大幅に悪化することはない。
次に、ステップS305でFLAGi=1でなく(No)、ステップS401に進んで除霜モード6が選択される場合について説明する。
除霜モード6による除霜は、図6に示すとおり通常冷却運転(冷凍室冷却運転、冷蔵室冷却運転、または冷凍室・冷蔵室同時冷却運転)中に、冷凍室温度が−25℃より低で、且つ、冷蔵室温度が2℃より低となった場合に開始させるものであり、ステップS402において一旦通常冷却運転が開始され、ステップS403において、冷却運転モードのいずれかのモードであって、冷凍室温度が−25℃より低、且つ、冷蔵室温度が2℃より低が満足されているかをチェックし、満足されていない場合(No)は、ステップS402を継続し、満足された場合(Yes)は、ステップS404へ進む。
なお、除霜モード6の過程において、再びステップS212で冷凍室温度が−10℃より高の場合(YES)は、ステップS309において、FLAGi=2と記憶されたままなので、再度除霜モード6が実施されることになる。
次に除霜モード5から、再び冷凍室温度の上昇が著しい場合に、除霜モード6に移行させることによる作用効果を説明する。
信頼性確保除霜は、除霜モード4がまず実施され、その過程において、冷凍室温度の上昇が著しい場合に除霜モード5に移行させ、除霜モード5の過程において、再び冷凍室温度の上昇が著しい場合に除霜モード6に移行させる。すなわち、除霜モード6は、信頼性確保除霜の過程で2回冷凍室温度上昇が著しいと判定された場合に実施されるものであり、このようなケースは、偶々冷凍温度帯室の扉3a,4a,5a,5bの開閉のタイミングが合致して起こることもありえるが、庫内送風機9の稼動状態での除霜運転(第1の除霜手段または第2の除霜手段による除霜運転)では、除霜が困難な箇所に多くの着霜が生じている可能性も高い。
以上でステップS103において信頼性確保除霜を行う条件が満足された場合について説明したが、次に、ステップS104で冷却器除霜を優先する条件が満足された場合について説明する。
ステップS104においてYesの場合、続いて、FLAGj=2か否かをチェックする(ステップS501)。FLAGj=2の場合(Yes)は、ステップS508へ進み、FLAGj≠2の場合(No)は、ステップS502へ進む。ここでは、ステップS100の初期値設定においてFLAGj=0が記憶されているので、FLAGj=2は満足されず、ステップS502,S503へと進み、除霜モード2が選択される。除霜モード2による除霜運転は、図6に示すとおり冷凍室冷却運転中に、冷蔵室温度が5℃より高となった場合に開始されるものなので、冷凍室冷却運転(ステップS104時点では冷凍室冷却運転が実施されている)が行われ、ステップS505において冷蔵室温度が5℃より高か否かをチェックし、冷蔵室温度が5℃より高の場合(Yes)はステップS504へ進み、冷蔵室温度が5℃以下の場合(No)は、冷蔵室温度が5℃より高になるまで冷凍室冷却運転が継続される。
ステップS512では、冷却器温度が0.5℃より高か否かをチェックし、冷却器温度が0.5℃より高の場合(Yes)は、ステップS514へ進み、そうでない場合(No)は、ステップS513へ進む。ステップS513では、冷凍室温度が−14℃より高か否かをチェックし、冷凍室温度が−14℃より高の場合(Yes)は、ステップS514へ進み、そうでない場合(No)はステップS512へ戻り、第2の除霜手段による除霜運転を継続し、ステップS512、または、ステップS513のどちらかでYesとるまステップS512、または、ステップS513のチェックを繰り返す。
ここで、ステップS506,S512における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応する。
ステップS510では、「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉」の状態とされ、ステップS511に進み、第2の除霜手段による除霜運転を行う。
以下に冷却器除霜を優先する場合の作用効果を説明する。
まず、「冷却器除霜を優先する」ことが望ましい状況について説明する。本実施形態のフローチャートのステップS104における判断基準としているような環境条件(外気温度35℃より高く、且つ、湿度(相対湿度)が85%より高い条件)では、熱負荷が非常に大きく、また、着霜が進み易い非常に厳しい条件である。「冷蔵庫が所定温度に冷えない」という不良の多くはこのような高温多湿環境下において発生している。その原因として多いのが、霜の成長によって冷却能力不足に陥り、庫内を所定温度範囲に維持することができなくなるというものである。このような不良を減少させるためには、霜の成長が進まないようにして、冷却器の熱交換性能を高い状態で維持することが望ましい。
なお、冷凍室温度が上昇し過ぎとする判定基準の温度-14℃は、除霜モード1による除霜の際の判定基準の温度−17℃より高くしている。これにより、庫内温度変動幅が若干大きくなる傾向になることがあるが、冷却器7の除霜がほぼ完了したといえる冷却器温度が0.5℃より高という条件によって除霜モード2が終了する確率が高くなり、霜が成長することによって庫内各室を所定温度まで冷やすことができなくなるといった不具合は発生し難くなる。
次に、除霜モード2が、冷凍室温度の上昇(冷凍室温度が−14℃より高)のために終了(ステップS509、ステップS513)した場合に実施される除霜モード3について説明する。除霜モード2が、冷凍室温度の上昇(ステップS506、または、ステップS513がYesとなって終了した場合は、ステップS515においてFLAGj=2と記憶させてあるため、再びステップS104において、冷却器除霜を優先する条件が満足され、ステップS501においてYesとなり、除霜モード3が選択される(ステップS508)。除霜モード3による除霜は、図6に示すとおり冷凍室冷却運転中に冷凍室温度が−25℃より低となった場合に開始されるものとしており、冷凍室冷却運転(ステップS104時点では冷凍室冷却運転が実施されている)は、冷凍室温度が−25℃より低となるまで継続される(ステップS509)。続いて、「圧縮機OFF、庫内送風機ON、冷凍室ダンパ閉、冷蔵室ダンパ開」の状態となり(ステップS510)、続いてステップS511で「除霜ヒータON(出力80W)」となる。これによりだい2の除霜手段による除霜運転が実施される。以下は既に説明したステップを経て通常冷却運転に戻る(ステップS101)。
次に本実施形態の変形例について説明する。
前記した実施形態の冷蔵庫1では、通常冷却運転時に対して第2の除霜手段による除霜運転中は庫内送風機9の回転速度を減少させているが、それは冷蔵室2の冷却が可能な0〜4℃程度の空気温度を得られるように調節するためであるので、第1の変形例では、冷蔵室2の冷却が可能な0〜4℃程度の空気温度を得ることを確実にするために、冷蔵室送風ダクト11内または吹き出し口2cを流れる空気温度を検出するための追加の温度センサを少なくとも一つ設けて、その信号を制御基板31(図3参照)に入力する構成とする。そして、制御基板31は、第2の除霜手段による除霜運転中、前記追加の温度センサからの信号にもとづき前記0〜4℃程度の空気温度となるように、除霜ヒータ22の出力を調整する構成とする。
また、第2の変形例では、更に、このとき除霜ヒータ22の出力の調整に加えて、庫内送風機9の回転速度の調整もする構成とする。
また、第2の除霜手段による除霜運転を開始してからの冷蔵室送風ダクト11内を流れる空気温度の変化に応じて、柔軟に除霜ヒータ22の出力や庫内送風機9の回転速度を変えることができるので、冷却器7の除霜の進行に応じた霜と空気との熱交換の度合いの変化に柔軟に対応できる。
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器
8 冷却器収納室
9 庫内送風機(送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 下段冷凍室送風ダクト
16 冷蔵室戻りダクト
17 冷凍室戻り口
20 冷蔵室ダンパ
22 除霜ヒータ
24 圧縮機
50 冷凍室ダンパ
53 上部カバー
Claims (3)
- 冷凍温度帯室と、冷蔵温度帯室と、圧縮機と、前記冷凍温度帯室と前記冷蔵温度帯室を冷却する冷却器と、前記冷却器で冷却された冷気を、前記冷凍温度帯室と前記冷蔵温度帯室に循環させる送風機と、前記冷却器から前記冷凍温度帯室への送風を制御する冷凍室ダンパと、前記冷却器から前記冷蔵温度帯室への送風を制御する冷蔵室ダンパと、制御装置とを備える冷蔵庫において、
前記圧縮機の停止時に、前記冷凍室ダンパを閉状態とし、前記冷蔵室ダンパを開状態とし、前記送風機を稼動させて除霜を行う第1の除霜手段を備え、
前記制御装置は、前記冷却器通過後の空気の温度が前記冷蔵温度帯室を所定温度範囲に維持して冷却が可能な範囲で前記第1の除霜手段を制御して、前記冷蔵温度帯室が所定の下限温度より低くなった場合、前記第1の除霜手段を停止することを特徴とする冷蔵庫。 - 前記圧縮機の稼動時に、前記冷蔵室ダンパを閉状態とし、前記冷凍室ダンパを開状態とし、前記送風機を稼動させる前記冷凍温度帯室の冷却運転の後に、前記第1の除霜手段による除霜を行うことを特徴とする、請求項1記載の冷蔵庫。
- 前記冷凍温度帯室が第一の所定温度より高い場合、前記冷蔵温度帯室が所定の上限温度より高い場合、及び前記冷却器温度が第二の所定温度より高い場合の少なくともいずれかの条件を満たすと、前記第1の除霜手段を停止することを特徴とする、請求項1又は2記載の冷蔵庫。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013039343A JP5604543B2 (ja) | 2013-02-28 | 2013-02-28 | 冷蔵庫 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013039343A JP5604543B2 (ja) | 2013-02-28 | 2013-02-28 | 冷蔵庫 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010224904A Division JP5215367B2 (ja) | 2010-10-04 | 2010-10-04 | 冷蔵庫 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013137190A JP2013137190A (ja) | 2013-07-11 |
JP5604543B2 true JP5604543B2 (ja) | 2014-10-08 |
Family
ID=48913039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013039343A Expired - Fee Related JP5604543B2 (ja) | 2013-02-28 | 2013-02-28 | 冷蔵庫 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5604543B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123445B (zh) * | 2016-08-04 | 2017-11-14 | 上海索伊电器有限公司 | 一种节能风冷冰箱 |
WO2020161804A1 (ja) * | 2019-02-05 | 2020-08-13 | 三菱電機株式会社 | 冷凍装置 |
CN113758121B (zh) * | 2020-06-05 | 2023-04-18 | 青岛海尔电冰箱有限公司 | 冰箱的化霜控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3350188B2 (ja) * | 1993-12-20 | 2002-11-25 | 松下冷機株式会社 | 冷凍冷蔵庫 |
JP3583570B2 (ja) * | 1996-11-26 | 2004-11-04 | シャープ株式会社 | 冷蔵庫 |
JP3738169B2 (ja) * | 2000-03-30 | 2006-01-25 | 三洋電機株式会社 | 湿度調節式冷蔵庫 |
JP2002031466A (ja) * | 2000-07-19 | 2002-01-31 | Mitsubishi Electric Corp | 冷蔵庫 |
JP4310947B2 (ja) * | 2001-09-06 | 2009-08-12 | 三菱電機株式会社 | 冷凍冷蔵庫の制御装置 |
JP3912233B2 (ja) * | 2002-09-06 | 2007-05-09 | 三菱電機株式会社 | 冷蔵庫、冷蔵庫の運転方法 |
-
2013
- 2013-02-28 JP JP2013039343A patent/JP5604543B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013137190A (ja) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4644271B2 (ja) | 冷蔵庫 | |
JP5260416B2 (ja) | 冷蔵庫 | |
KR101179371B1 (ko) | 냉장고 | |
JP5178642B2 (ja) | 冷蔵庫 | |
JP5017340B2 (ja) | 冷蔵庫 | |
JP5393283B2 (ja) | 冷蔵庫 | |
JP6752107B2 (ja) | 冷蔵庫 | |
JP5215367B2 (ja) | 冷蔵庫 | |
CN105452785A (zh) | 冰箱 | |
JP5386243B2 (ja) | 冷蔵庫 | |
JP2006226615A (ja) | 冷蔵庫 | |
JP5604543B2 (ja) | 冷蔵庫 | |
JP6709363B2 (ja) | 冷蔵庫 | |
JP4872558B2 (ja) | 冷蔵庫 | |
JP6890502B2 (ja) | 冷蔵庫 | |
JP5033258B2 (ja) | 冷蔵庫 | |
JP2007132571A (ja) | 冷蔵庫 | |
JP6837423B2 (ja) | 冷蔵庫 | |
JP2012063026A (ja) | 冷蔵庫 | |
JPH09236369A (ja) | 冷蔵庫 | |
JP2006220359A (ja) | パン生地発酵,解凍庫の冷却器除霜装置 | |
JP6322809B2 (ja) | 自動販売機とその運転方法 | |
JP2010281491A (ja) | 冷蔵庫 | |
JP2023007618A (ja) | 冷蔵庫 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140825 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5604543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |