JP5602118B2 - 換気機器の制御システム - Google Patents

換気機器の制御システム Download PDF

Info

Publication number
JP5602118B2
JP5602118B2 JP2011225764A JP2011225764A JP5602118B2 JP 5602118 B2 JP5602118 B2 JP 5602118B2 JP 2011225764 A JP2011225764 A JP 2011225764A JP 2011225764 A JP2011225764 A JP 2011225764A JP 5602118 B2 JP5602118 B2 JP 5602118B2
Authority
JP
Japan
Prior art keywords
ventilation
air volume
ventilation device
airflow
ventilator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011225764A
Other languages
English (en)
Other versions
JP2013087969A (ja
Inventor
卓也 佐伯
正史 芦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011225764A priority Critical patent/JP5602118B2/ja
Publication of JP2013087969A publication Critical patent/JP2013087969A/ja
Application granted granted Critical
Publication of JP5602118B2 publication Critical patent/JP5602118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の換気機器を連動運転する換気機器の制御システムに関する。
従来の換気機器の制御システムとして、例えば、「ファンモータを制御する複数のファンモータ制御手段と、電気機器システムを制御するシステム制御手段とを有する電気機器システムであって、システム制御手段と複数のファンモータ制御手段との間でデータ通信を行うことにより複数台のファンモータを制御することを特徴とする電気機器システム用ファンモータ制御方法。」というものがある。このようなものにおいては、「複数のファンモータを個別に、簡単に制御することができ、しかも各ファンモータをきめ細かく制御することができるという特有の効果を奏する。」とされている(特許文献1参照)。
特開2001−286187号公報(請求項1及び段落[0112])
しかしながら、従来の換気機器の制御システム(特許文献1)においては、換気対象が広い室内に対して複数の換気機器を設置させておき、室内の空気中のガス成分量である室内空気質に基づいて個々の換気機器を駆動する三相モータをインバータ駆動する際、複数の換気機器と換気機器の制御装置との間で専用の制御回路を用いてデータ通信を行うことにより、複数の換気機器を連動運転していた。そのため、安価なタップ切替式のACモータで駆動するファンを有する換気機器などの風量を設定する換気機器を複数連動運転させて室内の換気量を細かく制御することができないという問題点があった。
換言すれば、各々の風量を設定可能である換気機器を複数連動運転させて室内の換気量を細かく制御することができないという問題点があった。
本発明は、上記のような問題点を解決するためになされたもので、各々の風量を設定可能である換気機器を複数連動運転させて室内の換気量を細かく制御することができる換気機器の制御システムを提供することを目的とするものである。
本発明の換気機器の制御システムは、同一空間を換気対象として設置され、各々の風量を設定可能である複数の換気機器を制御する換気機器の制御システムであって、前記複数の換気機器の運転を制御する制御部を備え、前記制御部は、前記換気機器の各々に対応して、複数の異なる風量が設定された設定風量値の群である設定風量情報を保持し、前記複数の換気機器を利用した場合における前記設定風量値の組み合わせを作成し、その組み合わせごとに合計換気風量を演算し、その結果を、それぞれ異なった風量範囲を有する風量レベルに割り当てて、換気風量一覧情報を作成し、前記換気風量一覧情報に基づいて、前記複数の換気機器を同時に連動制御するものである。
本発明は、各々の風量を設定可能である換気機器を複数連動運転させて室内の換気量を細かく制御することができる。それにより、低コストでありつつも、消費電力を削減でき、汎用性を向上させることができる換気機器の制御システムを提供することができるという効果を有する。
本発明の実施の形態1における換気機器の制御システムの構成を示すブロック図である。 本発明の実施の形態1における設定風量情報を示す図である。 本発明の実施の形態1における換気風量一覧情報を示す図である。 本発明の実施の形態2における換気機器の制御システムの構成を示すブロック図である。 本発明の実施の形態2における二酸化炭素濃度の変化に対する換気風量の図である。 本発明の実施の形態3における換気機器の制御システムの構成を示すブロック図である。 本発明の実施の形態3における換気機器の制御システムの動作を示すフローチャートである。 本発明の実施の形態4における換気機器の制御システムの構成を示すブロック図である。 本発明の実施の形態4における消費電力を追加した設定風量情報を示す図である。 本発明の実施の形態4における消費電力を追加した換気風量一覧情報を示す図である。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。
実施の形態1.
図1は、本発明の実施の形態1における換気機器の制御システムの構成を示すブロック図である。図1に示すように、換気機器の制御システム1は、コントローラ2、第1換気機器3a、第2換気機器3b、及び第3換気機器3c等を備えている。
なお、第1換気機器3a、第2換気機器3b、及び第3換気機器3cを総称するときは、換気機器3ということとする。
なお、換気機器3は、例えば、安価なタップ切替式のACモータを駆動することにより、図示しないファンを回転させて、換気を行うものとする。
なお、ここでは3台の換気機器の例について以後で説明するが、これに限定されないことはいうまでもない。すなわち、換気機器の台数は限定されるものではなく、コントローラ2が複数台の換気機器を連動運転することであればよい。
なお、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの仕様は同一である必要はない。
なお、換気機器3は、同一空間を換気対象として設置されるものとする。
コントローラ2は、制御部10を備え、制御部10が換気機器3を制御する。具体的には、制御部10は、機器情報設定部21、風量レベル演算部22、及び駆動部23等を備えている。
機器情報設定部21は、換気機器3の風量情報を設定登録する。具体的には、機器情報設定部21は、第1換気機器3aの仕様から予め複数の異なる風量が設定されている設定風量値を第1換気機器3aの制御情報として取得する。機器情報設定部21は、第2換気機器3b及び第3換気機器3cの各設定風量値についても同様の処理を実行する。
ここで、取得した各設定風量値について、図2を用いて説明する。
図2は、本発明の実施の形態1における設定風量情報を示す図である。図2に示すように、換気機器3は、例えば、「Hi」、「Lo」、及び「SLo」の三段階の風量ノッチが設定されている。
具体的には、第1換気機器3aは、「Hi」状態として1時間当たり1000立方メールの風量、「Lo」状態として1時間当たり755立方メートルの風量、「SLo」状態として1時間当たり415立方メートルの風量を換気することが設定されている。すなわち、換気能力が設定されており、例えば、三段階の風量ノッチとして、「Hi」状態、「Lo」状態、及び「SLo」状態の運転状態が設定されていることとなる。
なお、風量ノッチは三段階に限定されるものではない。
なお、運転状態が「OFF」については、いずれの換気機器3も有しているが、ここではその説明については省略し、以後の説明についても同様とする。
また、第2換気機器3bは、「Hi」状態として1時間当たり500立方メールの風量、「Lo」状態として1時間当たり320立方メートルの風量、「SLo」状態として1時間当たり170立方メートルの風量を換気することが設定されている。すなわち、換気能力が設定されており、例えば、三段階の風量ノッチとして、「Hi」状態、「Lo」状態、及び「SLo」状態の運転状態が設定されている。
なお、この場合においても、風量ノッチは三段階に限定されるものではない。
また、第3換気機器3cは、「Hi」状態として1時間当たり250立方メールの風量、「Lo」状態として1時間当たり175立方メートルの風量を換気することが設定されている。すなわち、換気能力が設定されており、例えば、二段階の風量ノッチとして、「Hi」状態及び「Lo」状態の運転状態が設定されていることとなる。
なお、この場合においては、風量ノッチは二段階に限定されるものではない。
このように、設定風量情報は、第1換気機器3aに対応する複数の異なる設定風量値、第2換気機器3bに対応する複数の異なる設定風量値、第3換気機器3cに対応する複数の異なる設定風量値、第1換気機器3aの可能な運転状態、第2換気機器3bの可能な運転状態、及び第3換気機器3cの可能な運転状態を含む。
また、第1換気機器3a単体では、例えば、安価なタップ切替式のACモータで駆動するものを用いているため、風量ノッチの段数は少ない。第2換気機器3b及び第3換気機器3cについても同様である。
なお、換気機器3は安価なタップ切替式のACモータで駆動するものに限定されるものではない。例えば、換気機器3は風量を設定可能なものであればよく、高価なものである必要はない。例えば、換気機器3は、「強」、「中」、及び「弱」等の設定された風量をユーザが適宜変更可能であればよく、インバータ制御等を用いて連続的に風量を制御する必要はない。
なお、機器情報設定部21が取得した設定風量値の群を総称して設定風量情報ということとする。
次に、機器情報設定部21は、設定風量情報を次に説明する風量レベル演算部22に供給する。
風量レベル演算部22は、機器情報設定部21から供給された設定風量情報に基づいて、換気機器の制御システム1全体から設定可能な合計換気風量を演算する。すわなち、第1換気機器3a、第2換気機器3b及び第3換気機器3cの総合風量を演算する。
具体的には、まず、風量レベル演算部22は、換気機器3の可能な組み合わせの範囲内で、運転状態の組み合わせを作成する。
なお、以後の説明において、作成した複数の組み合わせの第1換気機器3a、第2換気機器3b、及び第3換気機器3cの各状態の組み合わせを組み合わせ換気機器と称することとする。例えば、第1換気機器3aを「OFF」状態、第2換気機器3bを「OFF」状態、第3換気機器3cを「OFF」状態とした組み合わせを一つの組み合わせとして、組み合わせ換気機器と称することとする。
次に、風量レベル演算部22は、組み合わせ換気機器を一つのユニットとした組み合わせ換気機器群ごとに合計換気風量を演算する。
次に、風量レベル演算部22は、予め設定された範囲内で異なる風量レベルに基づいて、演算した合計換気風量を組み合わせ換気機器群ごとに順位付けする。すなわち、風量レベル演算部22は、演算した合計換気風量が予め設定された範囲内の風量レベルに属しているか否かを判定していくことで、演算した合計換気風量がどの風量レベルに所属しているかを割り当てる。
次に、風量レベル演算部22は、風量レベルごとの各組み合わせを換気風量一覧情報として作成する。風量レベルとは、風量の下限値と、風量の上限値との間で一つの風量の範囲が設定されるものである。そして、風量の範囲は連続的に異なる範囲で複数存在し、風量の範囲ごとに指標のラベル付けがされているものである。
例えば、風量レベルが0〜5まで想定されていたとする。その場合、例えば、風量レベル0として、換気風量は0〜100、風量レベル1として、換気風量は101〜200、風量レベル2として、換気風量は201〜300、風量レベル3として、換気風量は301〜400、風量レベル4として、換気風量は401〜500、風量レベル5として、換気風量は501〜600と設定する。このようにすることで、ある範囲ごとに連続的に異なる範囲で風量レベルを定めることができる。
ここで、風量レベルごとの各組み合わせについて、図3を用いて説明する。
図3は、本発明の実施の形態1における換気風量一覧情報を示す図である。図3に示すように、風量レベルは0〜17まで18段階設定されている。すなわち、風量ノッチは18段である。
風量レベルが0の場合、第1換気機器3aはOFF状態、第2換気機器3bはOFF状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は0(単位は上記と同じ、1時間当たりの立方メートルであるとし、以後の説明では単位については省略する)である。
風量レベルが1の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は170である。
風量レベルが2の場合、第1換気機器3aはOFF状態、第2換気機器3bはOFF状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は250である。
風量レベルが3の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は345である。
風量レベルが4の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は420である。
風量レベルが5の場合、第1換気機器3aはOFF状態、第2換気機器3bはLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は570である。
風量レベルが6の場合、第1換気機器3aはSLo状態、第2換気機器3bはOFF状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は665である。
風量レベルが7の場合、第1換気機器3aはOFF状態、第2換気機器3bはHi状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は750である。
風量レベルが8の場合、第1換気機器3aはSLo状態、第2換気機器3bはSLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は835である。
風量レベルが9の場合、第1換気機器3aはLo状態、第2換気機器3bはOFF状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は930である。
風量レベルが10の場合、第1換気機器3aはLo状態、第2換気機器3bはLo状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1075である。
風量レベルが11の場合、第1換気機器3aはSLo状態、第2換気機器3bはHi状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1165である。
風量レベルが12の場合、第1換気機器3aはLo状態、第2換気機器3bはLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1250である。
風量レベルが13の場合、第1換気機器3aはHi状態、第2換気機器3bはSLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1345である。
風量レベルが14の場合、第1換気機器3aはLo状態、第2換気機器3bはHi状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1430である。
風量レベルが15の場合、第1換気機器3aはHi状態、第2換気機器3bはLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1570である。
風量レベルが16の場合、第1換気機器3aはHi状態、第2換気機器3bはHi状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1675である。
風量レベルが17の場合、第1換気機器3aはHi状態、第2換気機器3bはHi状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1750である。
このように、換気風量一覧情報は、風量レベル、第1換気機器3a、第2換気機器3b、第3換気機器3c、並びに、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量を含む。また、風量レベルごとに、第1換気機器3a、第2換気機器3b、及び第3換気機器3cには異なる運転状態が設定されていることが示されている。また、風量レベルごとに、設定された運転状態に相当する設定風量値の合計値である合計換気風量が示されている。
また、第1換気機器3a、第2換気機器3b及び第3換気機器3c単体では安価なタップ切替式のACモータで駆動するものを用いているため、風量ノッチの段数は少ないものの、これらを組み合わせることで多段階の風量レベルに風量ノッチの段数を増やすことが可能である。
具体的には、上記で説明した一例においては、18通りの風量ノッチが示されているが、第1換気機器3aの風量ノッチが4通り(Hi、Lo、SLo、OFF)、第2換気機器3bの風量ノッチが4通り(Hi、Lo、SLo、OFF)、第3換気機器3cの風量ノッチが3通り(Hi、Lo、OFF)可能であるため、実際には風量ノッチの段数をさらに増やすことが可能である。すなわち、換気機器3の運転状態を組み合わせることにより、第1換気機器3a、第2換気機器3b及び第3換気機器3c単体では設定できない風量を設定することができる。
なお、換気機器3が安価なタップ切替式のACモータで駆動するファンを有して入る場合で説明しているが、これに限定されないことはいうまでもない。例えば、異なる設定風量値を有している換気機器であれば、その設定風量値の組み合わせを複数作成することができ、換気機器単体では実現できない細かい風量を設定することができる。
さらに、接続する換気機器の台数を増加することにより、より大風量かつより細かい風量設定をすることができる。例えば、各風量ノッチが3通りの換気機器を5台にする場合、その組み合わせは上記で説明した場合よりも多くなり、風量ノッチの段数をさらに増加させることができる。
なお、上記で説明した風量レベルはこれに限定されないことはいうまでもない。例えば、風量レベルを10段階とすることも可能である。このような場合において、例えば、各段階ごとの風量レベルに相当する合計換気風量が複数存在する場合、少ない合計換気風量を選択するようにすれば、10段階の風量レベルの選択肢をユーザに提供できるとともに、低消費電力で多段階の風量を提供することができる。
駆動部23は、上記で説明した換気風量一覧情報に基づいて、第1換気機器3a、第2換気機器3b及び第3換気機器3cの運転を同時に連動制御する。すなわち、駆動部23は、上記で説明した換気風量一覧情報に基づいて、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの動作を制御するリレーを制御することにより、風量レベル0〜17までの風量制御を行う。
この結果、各々の風量を設定可能である換気機器3を複数連動運転させて室内の換気量を細かく制御することができる。
そのため、安価なタップ切替式のACモータで駆動するファンを有する換気機器3を複数連動運転させて室内の換気量を細かく制御することができる。すなわち、各々の風量を設定可能である換気機器を複数連動運転させて室内の換気量を細かく制御することができる。
また、換気機器3と制御部10との間のデータ通信のための専用の通信回路が不要であるため、接続可能な換気機器の選択肢を広げることができる。
それにより、低コストでありつつも、消費電力を削減でき、汎用性を向上させることができる換気機器の制御装置及び換気機器の制御システムを提供することができる。
また、換気機器の接続台数を増加することにより、より大風量かつより細かい風量設定をすることができるので、より消費電力を削減することができる。
なお、上記で説明した構成は一例を示すものであり、これに限定されるものではない。
なお、制御部の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。すなわち、本発明の実施の形態1における各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えてもよい。
なお、上記で説明した風量レベル演算部22による風量レベルの演算は自動的に行われる。そして、風量レベルの選択は、ユーザにより自由に設定されてもよく、所定の条件に応じて制御部10が自動制御により設定してもよい。
以上のように、本実施の形態1においては、同一空間を換気対象として設置され、各々の風量を設定可能である換気機器3を制御する換気機器の制御システムであって、換気機器3の運転を制御する制御部10を備え、制御部10は、換気機器3の各々に対応して、複数の異なる風量が設定された設定風量値の群である設定風量情報を保持し、換気機器3を利用した場合における設定風量値の組み合わせを作成し、その組み合わせごとに合計換気風量を演算し、その結果を、それぞれ異なった風量範囲を有する風量レベルに割り当てて、換気風量一覧情報を作成し、換気風量一覧情報に基づいて、換気機器3を同時に連動制御することにより、各々の風量を設定可能である換気機器3を複数連動運転させて室内の換気量を細かく制御することができる。それにより、低コストでありつつも、消費電力を削減でき、汎用性を向上させることができる。
また、本実施の形態1においては、設定風量情報は、換気機器3、換気機器3ごとの風量、及び風量のそれぞれに対応して設定された異なる換気機器3の運転状態についての情報を有し、換気風量一覧情報は、風量レベル、換気機器3、換気機器3における換気機器3ごとの運転状態、及び合計換気風量情報についての情報を有し、風量レベルは、風量が大きいほど、風量レベルが多くなるように設定され、制御部10は、換気機器3に対して、換気機器3ごとの運転状態及び合計換気風量情報を一群として、運転状態の組み合わせを作成し、一群の合計換気風量情報と風量レベルの風量範囲との対応関係から、換気風量一覧情報を作成するようにしたので、低コストでありつつも、消費電力を削減でき、汎用性を向上させることができる換気機器の制御装置及び換気機器の制御システムを提供することができる。
実施の形態2.
実施の形態1との相違点は、図4に示すように、二酸化炭素濃度を測定する二酸化炭素センサが制御部10に接続されている点にある。
なお、実施の形態1と同一の構成要素についてはその説明を省略する。
なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
図4は、本発明の実施の形態2における換気機器の制御システムの構成を示すブロック図である。図4に示すように、二酸化炭素センサ4が制御部10に接続され、制御部10は、二酸化炭素センサ4の検出値に基づいて、換気機器3を制御することにより最適風量で自動運転を行う。例えば、二酸化炭素センサ4の検出結果が風量レベル演算部22に供給され、風量レベル演算部22で所定の演算を実行後、その結果に基づいて駆動部23が換気機器3を制御する。
なお、上記で説明した構成は一例を示すものであり、これに限定されるものではない。
例えば、二酸化炭素センサ4の出力信号が下限0(V)〜上限5(V)の範囲内であるとする。風量レベルは図3に示すように18段階で設定されているため、例えば、0.28(V)間隔で、二酸化炭素センサ4の出力電圧と風量レベルとの対応関係を作成する。そして、作成した対応関係と二酸化炭素センサ4の出力電圧に基づいて、換気機器3の運転を同時に連動制御する。
具体的には、二酸化炭素センサ4の出力電圧が0(V)以上0.28(V)未満の場合、風量レベルを0と設定する。
また、二酸化炭素センサ4の出力電圧が0.28(V)以上0.56(V)未満の場合、風量レベルを1と設定する。
また、二酸化炭素センサ4の出力電圧が0.56(V)以上0.84(V)未満の場合、風量レベルを2と設定する。
また、二酸化炭素センサ4の出力電圧が0.84(V)以上1.12(V)未満の場合、風量レベルを3と設定する。
また、二酸化炭素センサ4の出力電圧が1.12(V)以上1.4(V)未満の場合、風量レベルを4と設定する。
また、二酸化炭素センサ4の出力電圧が1.4(V)以上1.68(V)未満の場合、風量レベルを5と設定する。
また、二酸化炭素センサ4の出力電圧が1.68(V)以上1.96(V)未満の場合、風量レベルを6と設定する。
また、二酸化炭素センサ4の出力電圧が1.96(V)以上2.24(V)未満の場合、風量レベルを7と設定する。
また、二酸化炭素センサ4の出力電圧が2.24(V)以上2.52(V)未満の場合、風量レベルを8と設定する。
また、二酸化炭素センサ4の出力電圧が2.52(V)以上2.8(V)未満の場合、風量レベルを9と設定する。
また、二酸化炭素センサ4の出力電圧が2.8(V)以上3.08(V)未満の場合、風量レベルを10と設定する
また、二酸化炭素センサ4の出力電圧が3.08(V)以上3.36(V)未満の場合、風量レベルを11と設定する。
また、二酸化炭素センサ4の出力電圧が3.36(V)以上3.64(V)未満の場合、風量レベルを12と設定する。
また、二酸化炭素センサ4の出力電圧が3.64(V)以上3.92(V)未満の場合、風量レベルを13と設定する。
また、二酸化炭素センサ4の出力電圧が3.92(V)以上4.2(V)未満の場合、風量レベルを14と設定する。
また、二酸化炭素センサ4の出力電圧が4.2(V)以上4.48(V)未満の場合、風量レベルを15と設定する。
また、二酸化炭素センサ4の出力電圧が4.48(V)以上4.76(V)未満の場合、風量レベルを16と設定する。
また、二酸化炭素センサ4の出力電圧が4.76(V)以上5.04(V)未満の場合、風量レベルを17と設定する。
このように、対応関係を作成することにより、二酸化炭素センサの検出値に応じて、換気機器3の最適風量の自動運転を行うことができる。すなわち、室内の空気中のガス成分量である室内空気質に基づいて、細かい換気制御をすることができるとともに、消費電力を低減した自動換気を行うことができる。それにより、省エネルギーで換気機器を稼働させ続けることができる。
なお、上記で説明した対応関係の作成方法は一例を示すものであり、これに限定されるものではない。
図5は本発明の実施の形態2における二酸化炭素濃度の変化に対する換気風量の図である。図5に示すように、従来の場合のグラフ52においては、換気風量は三段階のみとなっている。これに対し、本実施形態の場合のグラフ51においては、換気風量は多段階となっている。なお、図5における段数は、上記で説明した段数と異なる一例を示すものである。要するに、運転状態を複数組み合わせることで多段階の換気風量の制御が可能である。
なお、ここでは二酸化炭素センサ4の検出値に基づく換気機器3の制御について説明したがこれに限定されるものではない。例えば、温度センサ、湿度センサ、人感センサ、及びガスセンサ等を用いてもよいことはいうまでもない。
例えば、温度センサ、湿度センサ、及びガスセンサ等であるときには、上記で説明したように、出力電圧を割り当てればよい。
なお、「二酸化炭素センサ4」、「温度センサ」、「湿度センサ」、または「人感センサ」は、本発明における「フロア環境検出手段」に相当する。
また、例えば、人感センサであるときには、人感センサの機能である人の所在の検出機能を利用する。具体的には、人の所在を検出するたびに出力される出力信号の回数をカウントする。次いで、カウントした出力信号の回数を、予め設定された範囲内で異なる変更頻度レベルの何れかに属しているかを割り当てる。次いで、変更頻度レベルと風量レベルとの対応関係を作成し、その対応関係に基づいて換気機器3を制御する。
なお、ここでいう変更頻度レベルとは、人の所在が変更した頻度を区分したものであり、出力信号をこの変更頻度レベルに割り当てることにより、人の所在の変更頻度がどの程度であるかを判定する。
例えば、人の所在の変更頻度が多いとき、人が室内で活発に動いていることが想定される。そのときには、人の呼気が通常よりも多く排出されている状態であるため、合計換気風量が多くなるように制御する。このようにすることで室内空気質の状態を快適に保つことができる。
なお、制御部の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。すなわち、本実施の形態2における各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えてもよい。
以上のように、本実施の形態2においては、同一空間内の温度、湿度、または、二酸化炭素濃度の何れかを検出し、検出結果を電気信号に変換するフロア環境検出手段を備え、制御部10は、電気信号の上限と下限との範囲内で、電気信号と風量レベルとの第1の対応関係を作成し、電気信号と第1の対応関係に基づいて、換気機器3を制御するようにしたので、室内空気質の状態を快適に保つことができる。
実施の形態3.
実施の形態1、2との相違点は、室内の各ゾーンごとに、室内空気質に応じた最適換気を行う点である。具体的には、換気対象である同一空間内を複数のゾーンに分割することとする。そして、各ゾーンごとに、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの何れか一台を割り当てる。
なお、実施の形態1、2と同一の構成要素についてはその説明を省略する。
なお、本実施の形態3において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
図6は、本発明の実施の形態3における換気機器の制御システムの構成を示すブロック図である。図6に示すように、第1二酸化炭素センサ5aは、第1換気機器3aに接続され、第2二酸化炭素センサ5bは、第2換気機器3bに接続され、第3二酸化炭素センサ5cは、第3換気機器3cに接続されている。第1二酸化炭素センサ5aは、第1換気機器3aが主に換気するゾーンに設置され、第2二酸化炭素センサ5bは、第2換気機器3bが主に換気するゾーンに設置され、第3二酸化炭素センサ5cは、第3換気機器3cが主に換気するゾーンに設置され、それぞれ周囲の二酸化炭素濃度を測定し、測定結果は、接続されている換気機器3から制御部10に供給される。
なお、上記で説明した構成は一例を示すものであり、これに限定されるものではない。
なお、第1二酸化炭素センサ5a、第2二酸化炭素センサ5b、及び第3二酸化炭素センサ5cを総称するときは、二酸化炭素センサ5ということとする。
なお、制御部の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。すなわち、本実施の形態3における各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えてもよい。
図7は、本発明の実施の形態3における換気機器の制御システムの動作を示すフローチャートである。
具体的には、制御部10(風量レベル演算部22、駆動部23)は、次の処理を実行する。
(ステップS1)
風量レベル演算部22は、二酸化炭素センサ5の出力値を監視する。このとき、所定のタイミングで、第1二酸化炭素センサ5a、第2二酸化炭素センサ5b、及び第3二酸化炭素センサ5cがそれぞれセンシングを行い、制御部10は、その結果を所定の間隔で取得して、第1二酸化炭素センサ5a、第2二酸化炭素センサ5b、及び第3二酸化炭素センサ5cの3つの検出値について監視し続ける。
(ステップS2)
風量レベル演算部22は、二酸化炭素センサ5の出力値の中で、最小値となる値を基準値とする。このとき、風量レベル演算部22は、基準値となる出力値を検出した二酸化炭素センサ5を基準値二酸化炭素センサと設定し、ステップS3以降の処理で、基準値二酸化炭素センサとそれ以外の二酸化炭素センサとの出力値の比較を実行する。また、このとき、本実施の形態2で説明したような二酸化炭素の出力信号と換気風量一覧情報との対応関係を、基準値二酸化炭素センサについて作成する。
(ステップS3)
風量レベル演算部22は、二酸化炭素センサの出力値と基準値との差異が0.3[V]以下であるか否かを判定する。二酸化炭素センサの出力値と基準値との差異が0.3[V]以下である場合、ステップS4に進む。一方、二酸化炭素センサの出力値と基準値との差異が0.3[V]以下でない場合、ステップS5に進む。
なお、ここでの0.3[V]という値は一例であり、これに限定されるものではない。例えば、その電圧値は、換気機器3が設置される空間や用途、あるいはユーザの要求に応じて適宜決定すればよい。
(ステップS4)
駆動部23は、換気風量一覧情報に基づいて換気機器3を運転する。
(ステップS5)
風量レベル演算部22は、二酸化炭素センサの出力値と基準値との差異が最大となる換気機器をHi運転する。具体的には、二酸化炭素センサの出力値と基準値との差分が最大である結果のときに用いられた二酸化炭素センサを特定する。次に、特定した二酸化炭素センサが接続されている換気機器を特定する。次に、特定した換気機器の風量を、設定風量情報の中で最大となる風量ノッチを選択して、特定した換気機器が出力できる最大風量で運転するように換気風量一覧情報を更新する。
(ステップS6)
風量レベル演算部22は、合計換気風量を確保するように、その他の換気機器を運転する。
具体的には、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの風量の合計値が合計換気風量情報以上となるように、二酸化炭素センサの出力値と基準値との差分が最大ではなかった換気機器の風量を設定風量情報の範囲内で変更し、換気風量一覧情報を更新する。
より具体的には、例えば、ステップS5において、第1換気機器3aに接続されている二酸化炭素センサ5aの出力値と基準値との差分が最大となったとすると、第1換気機器3aの風量を最大風量に更新し、第2換気機器3b及び第3換気機器3cの風量については、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計風量が合計換気風量情報以上となるようにする。要するに、選択されている風量レベルが満たされるようにする。なお、風量レベルは、例えば、ユーザが手動で設定すればよい。
次に、制御部10は、更新した換気風量一覧情報に基づいて、換気機器の運転を同時に連動制御して、処理は終了する。
例えば、図3に示す風量レベル13が設定されていると想定する。このとき、図5に示す第1換気機器3aに接続されている第1二酸化炭素センサ5aで検出される出力値が最小値となり、第1二酸化炭素センサ5aの出力値が基準値であると想定する。
このとき、仮に、第2二酸化炭素センサ5bと基準値との差異が0.4[V]であり、第3二酸化炭素センサ5cと基準値との差異が0.5[V]であった場合、ステップS5において、Hi運転が設定される。すなわち、風量レベル13で設定した運転モードに従わずに、第2換気機器3bと第3換気機器3cとをそれぞれHi運転させ、第1換気機器3aについてはステップS6に基づいてLo運転を行うようにする。
このようにすることで、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
以上のように、本実施の形態3においては、同一空間内を複数のゾーンに区分して、各ゾーンごとに、換気機器3及びフロア環境検出手段が割り当てられており、制御部10は、フロア環境検出手段が測定した測定値の中から、最小値をフロア環境検出手段の基準値として設定し、基準値を測定したフロア環境検出手段を基準値フロア環境検出手段として設定し、基準値フロア環境検出手段の検出結果を変換した電気信号の上限と下限との範囲内で、電気信号と換気風量一覧情報との第1の対応関係を作成するようにしたので、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
また、本実施の形態3においては、同一空間内の人の所在を検出し、検出結果を電気信号に変換するフロア環境検出手段を備え、制御部10は、変更頻度を人の所在の変更回数であるとし、それぞれ異なった変更頻度の範囲を持つ変更頻度レベルを有し、電気信号の出力回数をカウントし、カウントした出力回数を、変更頻度レベルに割り当て、変更頻度レベルと風量レベルとの第2の対応関係を作成し、出力回数と第2の対応関係に基づいて、換気機器3を制御するようにしたので、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
また、本実施の形態3においては、同一空間内を複数のゾーンに区分して、各ゾーンごとに、換気機器3及びフロア環境検出手段が割り当てられており、制御部10は、フロア環境検出手段が測定した測定値の中から、最小値をフロア環境検出手段の基準値として設定し、基準値を測定したフロア環境検出手段を基準値フロア環境検出手段として設定し、基準値フロア環境検出手段の検出結果を変換した電気信号の出力回数をカウントした結果を、変更頻度レベルに割り当て、変更頻度レベルと風量レベルとの第2の対応関係を作成するようにしたので、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
また、本実施の形態3においては、制御部10は、基準値と、フロア環境検出手段が測定した測定値との差分を演算し、差分が、予め設定された判定閾値以下のとき、フロア環境検出手段の検出結果と第1の対応関係、またはフロア環境検出手段の検出結果と第2の対応関係に基づいて、換気機器3の運転を同時に連動制御するようにしたので、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
また、本実施の形態3においては、制御部10は、差分が、予め設定された判定閾値を超えるとき、換気装置3の内、差分が最大である換気機器の風量が設定風量情報の範囲内での最大風量となるように、当該換気機器の運転状態を更新するとともに、換気機器3の内の差分が最大でない換気機器の合計風量と、差分が最大である換気機器の更新後の風量との合計が合計換気風量情報以上となるように、差分が最大でない換気機器の運転状態を更新し、フロア環境検出手段の検出結果と第1の対応関係、またはフロア環境検出手段の検出結果と第2の対応関係に基づいて、換気機器3の運転を同時に連動制御するようにしたので、室内空気質に応じた最適換気を行うことができるので、人間が生活するための空間を快適な状態に保つことができる。
実施の形態4.
実施の形態1〜3との相違点は、換気機器3の消費電力を追加した換気風量一覧情報に基づいて、第1換気機器3a、第2換気機器3b及び第3換気機器3cの運転を同時に連動制御する点にある。
なお、実施の形態1〜3と同一の構成要素についてはその説明を省略する。
なお、本実施の形態4において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
図8は、本発明の実施の形態4における換気機器の制御システムの構成を示すブロック図である。図8に示すように、制御部10は、消費電力入力部31及び合計消費電力演算部32をさらに備えている。消費電力入力部31及び合計消費電力演算部32を用いることにより、組み合わせ換気機器群ごとの合計換気風量情報を求める際、消費電力が最も小さくなるようにする。
消費電力入力部31は、換気機器3の消費電力の情報を取得し、取得した消費電力の情報を機器情報設定部21に供給し、機器情報設定部21は供給された消費電力の情報に基づいて、消費電力の情報と設定風量情報との対応を関連付けることにより、設定風量情報を更新する。機器情報設定部21は更新した設定風量情報を風量レベル演算部22に供給する。
合計消費電力演算部32は、風量レベル演算部22が更新した設定風量情報に基づいて換気機器3の可能な組み合わせの範囲内で換気風量一覧情報を更新する際、消費電力が最小となるようにする。
具体的には、風量レベル演算部22が組み合わせ換気機器群ごとに合計換気風量を演算する際、風量レベル演算部22は合計消費電力演算部32にそのときの組み合わせの合計換気風量情報と消費電力情報とを合計消費電力演算部32に供給する。合計消費電力演算部32は、供給された消費電力情報に基づいて、その組み合わせのときの合計消費電力を演算する。そのとき、合計消費電力演算部32は、同等の風量レベルの組み合わせを複数作成可能な場合、消費電力が最小となる組み合わせを選択し、その結果を風量レベル演算部22に供給する。
そして、風量レベル演算部22は、予め設定された範囲内で異なる風量レベルに基づいて、演算した合計換気風量を組み合わせ換気機器群ごとに順位付けする。すなわち、予め設定された範囲内の風量レベルに属しているか否かを判定していくことで、演算した合計換気風量がどの風量レベルに所属しているかを割り当てる。
次に、風量レベル演算部22は、順位付けした風量レベルごとの各組み合わせを換気風量一覧情報として作成する。
なお、上記で説明した構成は一例を示すものであり、これに限定されるものではない。
図9、10を用いて、より具体的に説明する。
図9は、本発明の実施の形態4における消費電力を追加した設定風量情報を示す図である。図9に示すように、換気機器3は、例えば、「Hi」、「Lo」、及び「SLo」の三段階の風量ノッチと各風量ノッチに対応した定格消費電力が設定されている。
具体的には、第1換気機器3aは、「Hi」状態として1時間当たり1000立方メールの風量かつ100(W)の定格消費電力、「Lo」状態として1時間当たり755立方メートルの風量かつ70(W)の定格消費電力、「SLo」状態として1時間当たり415立方メートルの風量かつ40(W)の定格消費電力、すなわち、換気能力とそれに対応した定格消費電力が設定されている。換言すれば、三段階の風量ノッチとそれに対応した消費電力が設定されている。
なお、ここでは定格消費電力として以後の説明をするがこれに限定されるものではない。例えば、各風量ノッチで稼働中に消費電力を各種センサにより求めた値を取得してもよい。
また、第2換気機器3bは、「Hi」状態として1時間当たり500立方メールの風量かつ50(W)の定格消費電力、「Lo」状態として1時間当たり320立方メートルの風量かつ30(W)の定格消費電力、「SLo」状態として1時間当たり170立方メートルの風量かつ15(W)の定格消費電力、すなわち、換気能力とそれに対応した定格消費電力が設定されている。換言すれば、三段階の風量ノッチとそれに対応した消費電力が設定されている。
また、第3換気機器3cは、「Hi」状態として1時間当たり250立方メートルの風量かつ25(W)の定格消費電力、「Lo」状態として1時間当たり175立方メートルの風量かつ17(W)の定格消費電力、すなわち、換気能力とそれに対応した定格消費電力が設定されている。換言すれば、二段階の風量ノッチとそれに対応した消費電力が設定されている。
このように、第1換気機器3a単体では安価なタップ切替式のACモータで駆動するものを用いているため、風量ノッチの段数は少ないため、消費電力を細かく調整することができない。第2換気機器3b及び第3換気機器3cについても同様である。
図10は、本発明の実施の形態4における消費電力を追加した換気風量一覧情報を示す図である。
風量レベルが0の場合、第1換気機器3aはOFF状態、第2換気機器3bはOFF状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は0、合計消費電力は0(W)である。
風量レベルが1の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は170、合計消費電力は15(W)である。
風量レベルが2の場合、第1換気機器3aはOFF状態、第2換気機器3bはOFF状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は250、合計消費電力は25(W)である。
風量レベルが3の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は345、合計消費電力は32(W)である。
風量レベルが4の場合、第1換気機器3aはOFF状態、第2換気機器3bはSLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は420、合計消費電力は40(W)である。
風量レベルが5の場合、第1換気機器3aはOFF状態、第2換気機器3bはLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は570、合計消費電力は55(W)である。
風量レベルが6の場合、第1換気機器3aはSLo状態、第2換気機器3bはOFF状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は665、合計消費電力は65(W)である。
風量レベルが7の場合、第1換気機器3aはLo状態、第2換気機器3bはOFF状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は755、合計消費電力は70(W)である。
風量レベルが8の場合、第1換気機器3aはSLo状態、第2換気機器3bはSLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は835、合計消費電力は80(W)である。
風量レベルが9の場合、第1換気機器3aはLo状態、第2換気機器3bはOFF状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は930、合計消費電力は87(W)である。
風量レベルが10の場合、第1換気機器3aはLo状態、第2換気機器3bはLo状態、第3換気機器3cはOFF状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1075、合計消費電力は100(W)である。
風量レベルが11の場合、第1換気機器3aはSLo状態、第2換気機器3bはHi状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1165、合計消費電力は115(W)である。
風量レベルが12の場合、第1換気機器3aはLo状態、第2換気機器3bはLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1250、合計消費電力は117(W)である。
風量レベルが13の場合、第1換気機器3aはHi状態、第2換気機器3bはSLo状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1345、合計消費電力は132(W)である。
風量レベルが14の場合、第1換気機器3aはLo状態、第2換気機器3bはHi状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1430、合計消費電力は137(W)である。
風量レベルが15の場合、第1換気機器3aはHi状態、第2換気機器3bはLo状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1570、合計消費電力は155(W)である。
風量レベルが16の場合、第1換気機器3aはHi状態、第2換気機器3bはHi状態、第3換気機器3cはLo状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1675、合計消費電力は167(W)である。
風量レベルが17の場合、第1換気機器3aはHi状態、第2換気機器3bはHi状態、第3換気機器3cはHi状態であり、第1換気機器3a、第2換気機器3b、及び第3換気機器3cの合計換気風量は1750、合計消費電力は175(W)である。
ここで、例えば、風量レベル7に着目する。上記の説明においては、合計消費電力が70(W)となる組み合わせが選択されている。このときは、同等の風量レベル7として、第1換気機器3aをOFF状態、第2換気機器3bをHi状態、第3換気機器3cをHi状態とすることにより合計換気風量を750とすることも可能であった。しかし、そのような組み合わせを選んだ場合、消費電力は75(W)となり、消費電力は可能な組み合わせの中で最小とはならないため、上記の説明での組み合わせが選択されている。
このように、第1換気機器3a、第2換気機器3b及び第3換気機器3c単体では安価なタップ切替式のACモータで駆動するものを用いているため、風量ノッチの段数は少なく、消費電力を細かく調整することができないものの、これらを組み合わせることで風量レベル0〜17まで風量ノッチの段数を増やすとともに消費電力を細かく調整することが可能である。
さらに、同等の風量レベルの組み合わせを実現できる場合、より消費電力の小さい組み合わせを選択することができるため、安価なタップ切替式のACモータを搭載した製品にしてきめ細かな風量制御を低消費電力で実現することができる。
なお、上記で説明した風量レベル演算部22による風量レベルの演算は自動的に行われる。そして、風量レベルの選択は、ユーザにより自由に設定されてもよく、所定の条件に応じて制御部10が自動制御により設定してもよい。
なお、制御部の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。すなわち、本実施の形態4における各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えてもよい。
以上のように、本実施の形態4においては、設定風量情報は、風量ごとの消費電力情報をさらに有し、換気風量一覧情報は、合計換気風量に対応する消費電力情報の合計である合計消費電力情報をさらに有し、制御部10は、風量レベルに属する合計換気風量となる運転状態の組み合わせが複数存在したとき、合計消費電力情報が最小となるように、運転状態の組み合わせを決定するようにしたので、より消費電力の小さい組み合わせを選択することができるため、安価なタップ切替式のACモータを搭載した製品にしてきめ細かな風量制御を低消費電力で実現することができる。
なお、制御部の各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。すなわち、本実施の形態1〜4における各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアによる機能ブロック図と考えてもよい。
1 換気機器の制御システム、2 コントローラ、3 換気機器、3a 第1換気機器、3b 第2換気機器、3c 第3換気機器、4、5 二酸化炭素センサ、5a 第1二酸化炭素センサ、5b 第2二酸化炭素センサ、5c 第3二酸化炭素センサ、10 制御部、21 機器情報設定部、22 風量レベル演算部、23 駆動部、31 消費電力入力部、32 合計消費電力演算部、51 本実施形態の場合のグラフ、52 従来の場合のグラフ。

Claims (11)

  1. 同一空間を換気対象として設置され、各々の風量を設定可能である複数の換気機器を制御する換気機器の制御システムであって、
    前記複数の換気機器の運転を制御する制御部を備え、
    前記制御部は、
    前記換気機器の各々に対応して、複数の異なる風量が設定された設定風量値の群である設定風量情報を保持し、
    前記複数の換気機器を利用した場合における前記設定風量値の組み合わせを作成し、その組み合わせごとに合計換気風量を演算し、その結果を、それぞれ異なった風量範囲を有する風量レベルに割り当てて、換気風量一覧情報を作成し、
    前記換気風量一覧情報に基づいて、前記複数の換気機器を同時に連動制御する
    ことを特徴とする換気機器の制御システム。
  2. 前記設定風量情報は、
    前記複数の換気機器、前記換気機器ごとの前記風量、及び前記風量のそれぞれに対応して設定された異なる前記換気機器の運転状態についての情報を有し、
    前記換気風量一覧情報は、
    前記風量レベル、前記複数の換気機器、前記複数の換気機器における前記換気機器ごとの前記運転状態、及び前記合計換気風量情報についての情報を有し、
    前記風量レベルは、
    前記合計換気風量が大きいほど、前記風量レベルが大きくなるように設定され、
    前記制御部は、
    前記複数の換気機器に対して、
    前記複数の換気機器ごとの前記運転状態及び前記合計換気風量情報を一群として、前記運転状態の組み合わせを作成し、
    前記一群の前記合計換気風量情報と前記風量レベルの前記風量範囲との対応関係から、前記換気風量一覧情報を作成する
    ことを特徴とする請求項1に記載の換気機器の制御システム。
  3. 前記同一空間内の温度、湿度、または、二酸化炭素濃度の何れかを検出し、検出結果を電気信号に変換するフロア環境検出手段を備え、
    前記制御部は、
    前記電気信号の上限と下限との範囲内で、前記電気信号と前記風量レベルとの第1の対応関係を作成し、
    前記電気信号と前記第1の対応関係に基づいて、前記複数の換気機器を制御する
    ことを特徴とする請求項1または2に記載の換気機器の制御システム。
  4. 前記同一空間内を複数のゾーンに区分して、各ゾーンごとに、前記換気機器及び前記フロア環境検出手段が割り当てられており、
    前記制御部は、
    前記フロア環境検出手段が測定した測定値の中から、最小値を前記フロア環境検出手段の基準値として設定し、
    前記基準値を測定した前記フロア環境検出手段を基準値フロア環境検出手段として設定し、
    前記基準値フロア環境検出手段の検出結果を変換した電気信号の上限と下限との範囲内で、当該電気信号と前記風量レベルとの前記第1の対応関係を作成する
    ことを特徴とする請求項3に記載の換気機器の制御システム。
  5. 前記同一空間内の人の所在を検出し、検出結果を電気信号に変換するフロア環境検出手段を備え、
    前記制御部は、
    変更頻度を人の所在の変更回数であるとし、それぞれ異なった前記変更頻度の範囲を持つ変更頻度レベルを有し、
    前記電気信号の出力回数をカウントし、カウントした前記出力回数を、前記変更頻度レベルに割り当て、前記変更頻度レベルと前記風量レベルとの第2の対応関係を作成し、
    前記出力回数と前記第2の対応関係に基づいて、前記複数の換気機器を制御する
    ことを特徴とする請求項1または2に記載の換気機器の制御システム。
  6. 前記同一空間内を複数のゾーンに区分して、各ゾーンごとに、前記換気機器及び前記フロア環境検出手段が割り当てられており、
    前記制御部は、
    前記フロア環境検出手段が測定した測定値の中から、最小値を前記フロア環境検出手段の基準値として設定し、
    前記基準値を測定した前記フロア環境検出手段を基準値フロア環境検出手段として設定し、
    前記基準値フロア環境検出手段の検出結果を変換した電気信号の出力回数をカウントした結果を、前記変更頻度レベルに割り当て、当該変更頻度レベルと前記風量レベルとの前記第2の対応関係を作成する
    ことを特徴とする請求項5に記載の換気機器の制御システム。
  7. 前記制御部は、
    前記基準値と、前記フロア環境検出手段が測定した測定値との差分を演算し、
    前記差分が、予め設定された判定閾値以下のとき、
    前記フロア環境検出手段の検出結果と前記第1の対応関係に基づいて、前記複数の換気機器の運転を同時に連動制御する
    ことを特徴とする請求項に記載の換気機器の制御システム。
  8. 前記制御部は、
    前記基準値と、前記フロア環境検出手段が測定した測定値との差分を演算し、
    前記差分が、予め設定された判定閾値以下のとき、
    前記フロア環境検出手段の検出結果と前記第2の対応関係に基づいて、前記複数の換気機器の運転を同時に連動制御する
    ことを特徴とする請求項6に記載の換気機器の制御システム。
  9. 前記制御部は、
    前記差分が、予め設定された前記判定閾値を超えるとき、
    前記複数の換気機器の内、前記差分が最大である前記換気機器の風量が前記設定風量情報の範囲内での最大風量となるように、当該換気機器の前記運転状態を更新するとともに、
    前記複数の換気機器の内の前記差分が最大でない前記換気機器の合計風量と、前記差分が最大である前記換気機器の更新後の風量との合計が前記合計換気風量情報以上となるように、前記差分が最大でない前記換気機器の前記運転状態を更新し、
    前記フロア環境検出手段の検出結果と前記第1の対応関係に基づいて、前記複数の換気機器の運転を同時に連動制御する
    ことを特徴とする請求項7に記載の換気機器の制御システム。
  10. 前記制御部は、
    前記差分が、予め設定された前記判定閾値を超えるとき、
    前記複数の換気機器の内、前記差分が最大である前記換気機器の風量が前記設定風量情報の範囲内での最大風量となるように、当該換気機器の前記運転状態を更新するとともに、
    前記複数の換気機器の内の前記差分が最大でない前記換気機器の合計風量と、前記差分が最大である前記換気機器の更新後の風量との合計が前記合計換気風量情報以上となるように、前記差分が最大でない前記換気機器の前記運転状態を更新し、
    前記フロア環境検出手段の検出結果と前記第2の対応関係に基づいて、前記複数の換気機器の運転を同時に連動制御する
    ことを特徴とする請求項8に記載の換気機器の制御システム。
  11. 前記設定風量情報は、前記風量ごとの消費電力情報をさらに有し、
    前記換気風量一覧情報は、前記合計換気風量に対応する前記消費電力情報の合計である合計消費電力情報をさらに有し、
    前記制御部は、
    前記風量レベルに属する前記合計換気風量となる前記運転状態の組み合わせが複数存在したとき、前記合計消費電力情報が最小となるように、前記運転状態の組み合わせを決定する
    ことを特徴とする請求項1〜10の何れか一項に記載の換気機器の制御システム。
JP2011225764A 2011-10-13 2011-10-13 換気機器の制御システム Active JP5602118B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225764A JP5602118B2 (ja) 2011-10-13 2011-10-13 換気機器の制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225764A JP5602118B2 (ja) 2011-10-13 2011-10-13 換気機器の制御システム

Publications (2)

Publication Number Publication Date
JP2013087969A JP2013087969A (ja) 2013-05-13
JP5602118B2 true JP5602118B2 (ja) 2014-10-08

Family

ID=48532064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225764A Active JP5602118B2 (ja) 2011-10-13 2011-10-13 換気機器の制御システム

Country Status (1)

Country Link
JP (1) JP5602118B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526210B1 (ko) * 2014-01-24 2015-06-16 (주)에이엠케이 복수개의 플러그 팬 송풍기가 구비되는 공기조화기
CN108291731A (zh) * 2015-12-07 2018-07-17 三菱电机株式会社 换气系统和控制器
JP6414240B2 (ja) * 2017-01-26 2018-10-31 ダイキン工業株式会社 換気システム
JP6687063B2 (ja) 2018-07-11 2020-04-22 ダイキン工業株式会社 換気システム
JP6968043B2 (ja) * 2018-08-09 2021-11-17 三菱電機株式会社 換気システム
JP7335289B2 (ja) * 2021-03-31 2023-08-29 株式会社大気社 換気システムおよび換気方法
JP2024060982A (ja) * 2022-10-20 2024-05-07 パナソニックIpマネジメント株式会社 換気システムの制御方法、及び換気システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549166B2 (ja) * 1994-09-08 2004-08-04 松下電器産業株式会社 換気装置の制御装置
JP4756975B2 (ja) * 2005-09-26 2011-08-24 アイシン・エィ・ダブリュ株式会社 住宅換気システム
KR20080042397A (ko) * 2006-11-09 2008-05-15 삼성전자주식회사 공조시스템의 운전장치 및 그 제어방법

Also Published As

Publication number Publication date
JP2013087969A (ja) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5602118B2 (ja) 換気機器の制御システム
US9303930B2 (en) Air conditioner control device, air conditioner control method, and program
CN105444335B (zh) 空调器的控制方法、空调器的控制装置和空调器
JP5058245B2 (ja) 空気調和システム
EP3521715A1 (en) Ventilation system
CN109323377B (zh) 空调器及其控制方法和控制装置
CN103375876A (zh) 空调器及其控制方法、装置和空调器的除湿控制方法
US20210356159A1 (en) Ventilation adjustment device and ventilation adjustment method
WO2018191635A1 (en) Thermostat with occupancy detection via proxy
JP2009092252A (ja) 空気調和機
CN105318487A (zh) 空调器控制方法及空调器控制系统
EP3388754A1 (en) Ventilation system and controller
JP2005147563A (ja) 排気制御装置
JP5449020B2 (ja) 空調機制御装置
JP6328902B2 (ja) 空調システム
JP2015142403A (ja) 換気装置
US8810163B2 (en) System and method for variable speed motor control with a single control signal
JP2020029970A (ja) 空調システム
JP5606333B2 (ja) 換気装置
JP2012237482A (ja) 空気調和機
JPWO2020065844A1 (ja) 空気調和機
JP2005156138A (ja) 換気制御装置
JP5661013B2 (ja) コントローラ
EP3415831B1 (en) Cooling fan automatic control system and cooling fan automatic control device
JP6452884B2 (ja) 電力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250