JP5597780B1 - Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same - Google Patents

Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same Download PDF

Info

Publication number
JP5597780B1
JP5597780B1 JP2014035465A JP2014035465A JP5597780B1 JP 5597780 B1 JP5597780 B1 JP 5597780B1 JP 2014035465 A JP2014035465 A JP 2014035465A JP 2014035465 A JP2014035465 A JP 2014035465A JP 5597780 B1 JP5597780 B1 JP 5597780B1
Authority
JP
Japan
Prior art keywords
resin substrate
transparent resin
multilayer film
infrared
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014035465A
Other languages
Japanese (ja)
Other versions
JP2015161731A (en
Inventor
隆 西野入
明 平林
栄 中川
広樹 神澤
洋平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Unison Co Ltd
Original Assignee
Nomura Unison Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Unison Co Ltd filed Critical Nomura Unison Co Ltd
Priority to JP2014035465A priority Critical patent/JP5597780B1/en
Application granted granted Critical
Publication of JP5597780B1 publication Critical patent/JP5597780B1/en
Publication of JP2015161731A publication Critical patent/JP2015161731A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】透明樹脂基板に成膜する際の樹脂基板に作用する応力集中を緩和し特に短波長領域の近赤外線を遮断することで安定した光学特性が得られかつ生産性も向上させることが可能な近赤外線カットフィルタを提供する。
【解決手段】透明樹脂基板10の一方の面に形成された第一多層膜Xでは短波長域の近赤外線を遮光し、他方の面に形成された第二多層膜Yでは短波長域以外の長波長域の近赤外線を遮光することで、透明樹脂基板10両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットする。
【選択図】図2
[PROBLEMS] To reduce the concentration of stress acting on a resin substrate when forming a film on a transparent resin substrate and cut off near-infrared light in the short wavelength region, thereby obtaining stable optical characteristics and improving productivity. Provide a near-infrared cut filter.
A first multilayer film X formed on one surface of a transparent resin substrate 10 blocks near-infrared rays in a short wavelength region, and a second multilayer film Y formed on the other surface has a short wavelength region. By cutting off near-infrared rays in the long-wavelength region other than, the average transmittance of near-infrared rays is cut to 15% or less for the cumulative amount of sunlight with a wavelength region of 770 nm to 1800 nm on both sides of the transparent resin substrate 10. To do.
[Selection] Figure 2

Description

本発明は、太陽光(自然光)のうち、可視光(波長域420nm〜740nm)は透過させ、近赤外線(波長域770nm〜1800nm)をカットする近赤外線カットフィルタ及びの製造方法並びにそれを備えた眼鏡に関する。   The present invention includes a near-infrared cut filter that transmits visible light (wavelength range: 420 nm to 740 nm) out of sunlight (natural light) and cuts near infrared rays (wavelength range: 770 nm to 1800 nm), and a manufacturing method thereof, and the same Regarding glasses.

太陽光(自然光)に含まれる紫外線が人体に及ぼす悪影響として日焼けやシミ、ソバカス等は広く認知され、数々の研究論文の発表や特許出願もあり、かつ、紫外線をカットする眼鏡やクリーム等の紫外線関連製品は数多く商品化されている。   Sunburn, stains, buckwheat, etc. are widely recognized as the adverse effects of sunlight contained in sunlight (natural light) on the human body. Numerous research papers have been published and patent applications have been made. Many related products have been commercialized.

一方、自然光に含まれている近赤外線が人体に及ぼす悪影響に関しては、近年まで、あまり研究が行われず、人体に及ぼす影響のメカニズムも解明されてこなかったため、近赤外線を防止するための製品の開発も進められてこなかった。
そのような中、特許文献1は、近年、近赤外線が生体組織に及ぼす影響に関する研究成果を特許出願したものであり、近赤外線の生体組織への侵入を防止することの意義が記載されている。
On the other hand, until recently, there has been little research on the adverse effects of near-infrared rays contained in natural light on the human body, and the mechanism of the effects on the human body has not been elucidated. It has not been advanced.
Under such circumstances, Patent Document 1 has recently filed a patent application for research results on the influence of near infrared rays on living tissue, and describes the significance of preventing the penetration of near infrared rays into living tissue. .

上述した近赤外線の生体組織への侵入防止とは全く目的が異なるものの、CCDイメージセンサーの画像補正の目的で、近赤外線をカットする近赤外線カットフィルタに関する特許出願は数多くあり、多くが製品化されている。
動画撮影に用いられるビデオムービーカメラや静止画撮影に用いられる電子スチルカメラなどのカラーCCDイメージセンサーを含む撮像装置では、カラーCCDイメージセンサーの前面に画像補正のため赤外線カットフィルタが配置されている。これは、700nmより長い波長の光を感じない人間の目の感度と異なり、カラーCCDイメージセンサーの感度が赤外線の波長域内の近赤外線領域である1100nm付近まであるため、黒色を撮影した場合にはその黒色が赤色を帯びるといったように人が見る世界と異なって画像化されてしまうのを防止するためである。
Although the purpose is completely different from the above-mentioned prevention of near-infrared invasion of living tissue, there are many patent applications related to near-infrared cut filters that cut near-infrared for the purpose of image correction of CCD image sensors, and many are commercialized. ing.
In an image pickup apparatus including a color CCD image sensor such as a video movie camera used for moving image shooting and an electronic still camera used for still image shooting, an infrared cut filter is disposed in front of the color CCD image sensor for image correction. This is different from the sensitivity of the human eye that does not sense light with a wavelength longer than 700 nm, and the sensitivity of the color CCD image sensor is close to 1100 nm, which is the near infrared region within the infrared wavelength range. This is to prevent the black image from being imaged differently from the world seen by people, such as reddish.

上述した赤外線若しくは近赤外線カットフィルタの構成は、樹脂若しくはガラスなどの透明樹脂基板上に高屈折率の誘電体膜と低屈折率の誘電体膜を交互に形成した多層膜により形成されている。先行技術例としては、例えば透明樹脂基板の片面に多層膜を形成するもの(特許文献2参照)や基板の両面に多層膜を形成するもの(特許文献3参照)などが提案されている。これらの赤外線若しくは近赤外線カットフィルタは、カラーCCDイメージセンサーの画像補正のため、カットする赤外線の上限波長域が全て1000nm〜1100nmまでとなっている。   The configuration of the infrared or near-infrared cut filter described above is formed by a multilayer film in which a high refractive index dielectric film and a low refractive index dielectric film are alternately formed on a transparent resin substrate such as resin or glass. As prior art examples, for example, there are proposed one in which a multilayer film is formed on one side of a transparent resin substrate (see Patent Document 2) and one in which a multilayer film is formed on both surfaces of a substrate (see Patent Document 3). These infrared or near-infrared cut filters all have an upper limit wavelength range of infrared rays to be cut from 1000 nm to 1100 nm for image correction of a color CCD image sensor.

また、近赤外線の眼球への侵入を防ぐ目的としては、透明樹脂基板の片面に多層膜を形成して、750nm〜1800nmの波長域の近赤外線をカットする光学フィルタ及びそれを備えた眼鏡も提案されている(特許文献4参照)。   In order to prevent near-infrared rays from entering the eyeball, we also proposed an optical filter that cuts near-infrared rays in the wavelength range of 750 nm to 1800 nm by forming a multilayer film on one side of a transparent resin substrate and glasses equipped with the same. (See Patent Document 4).

WO2009/017104号公報WO2009 / 017104 特開2000−31408号公報JP 2000-31408 A 特開2003−29027号公報JP 2003-29027 A 特開2012−208282号公報JP 2012-208282 A

上述した特許文献2及び3に示す赤外線若しくは近赤外線カットフィルタは、主としてカラーCCDイメージセンサーやCMOSなどの固体撮像素子用の画像補正用フィルタとして用いられているため、カットする赤外線の上限波長域が1000nm〜1100nmまでとなっている。よって、生体組織に影響が懸念される波長域が1100nm〜1800nmまでの近赤外線をカットすることまでは想定されていない。   The infrared or near-infrared cut filter shown in Patent Documents 2 and 3 described above is mainly used as an image correction filter for a solid-state imaging device such as a color CCD image sensor or CMOS. It is from 1000nm to 1100nm. Therefore, it is not assumed that near-infrared rays having a wavelength range of 1100 nm to 1800 nm that are likely to affect living tissue are cut off.

また、特許文献4の光学フィルタは、透明樹脂基板の片面に誘電体による多層膜が形成されている。このため、誘電体多層膜を形成する際の応力が透明樹脂基板の片面に集中し、熱膨張率の差により透明樹脂基板に反りや割れが発生したり誘電体多層膜の剥離が発生したりするおそれがある。
また、透明樹脂基板として樹脂基板(例えばポリカーボネイト基板)を用いる場合には、樹脂基板の耐熱温度(例えば120℃)の観点から低温成膜でも密着性の高い膜を形成するイオンアシスト蒸着法が用いられるが、多層膜を成膜し続けると、設定温度が例えば60℃以下など樹脂基板の耐熱温度よりかなり低い温度であっても基板温度は輻射熱により徐々に上昇して樹脂の耐熱温度を超えるおそれがある。このため、多層膜を形成する過程で樹脂基板の温度管理をしながら作業を行い、基板温度が耐熱温度を超えそうになると成膜作業を一時中断する必要が生じ生産性が著しく低下するおそれがある。
In the optical filter disclosed in Patent Document 4, a multilayer film made of a dielectric is formed on one surface of a transparent resin substrate. For this reason, the stress when forming the dielectric multilayer film is concentrated on one side of the transparent resin substrate, and the transparent resin substrate may be warped or cracked due to the difference in thermal expansion coefficient, or the dielectric multilayer film may be peeled off. There is a risk.
In addition, when a resin substrate (for example, a polycarbonate substrate) is used as the transparent resin substrate, an ion-assisted vapor deposition method that forms a film with high adhesion even at low temperature film formation is used from the viewpoint of the heat resistance temperature (for example, 120 ° C.) of the resin substrate. However, if the multilayer film is continuously formed, the substrate temperature may gradually rise due to radiant heat and exceed the heat resistant temperature of the resin even if the set temperature is much lower than the heat resistant temperature of the resin substrate, such as 60 ° C. or less. There is. For this reason, work is performed while controlling the temperature of the resin substrate in the process of forming the multilayer film, and if the substrate temperature is likely to exceed the heat resistance temperature, it is necessary to temporarily stop the film forming operation, which may significantly reduce the productivity. is there.

このように、透明樹脂基板の片面に多層膜が形成された赤外線カットフィルタを用いて所期の光学特性を実現するためには、相当数の多層膜を形成する必要があるが、成膜と冷却のためのインターバルをとる必要性があり生産性が低下するうえに、透明樹脂基板が変形したり割れが生じたりし易く誘電体膜も剥離するなどの不具合が伴うため光学特性がばらつくおそれもあった。また、多層膜の積層数が増えると光学特性が向上することは想定できるが、製造工程が嵩むうえに製品コストも上昇する。   Thus, in order to achieve the desired optical characteristics using an infrared cut filter having a multilayer film formed on one side of a transparent resin substrate, it is necessary to form a considerable number of multilayer films. There is a need to take an interval for cooling, and the productivity is reduced. In addition, the transparent resin substrate is likely to be deformed or cracked, and the dielectric film also peels off. there were. Further, it can be assumed that the optical characteristics are improved when the number of multilayer films is increased, but the manufacturing process is increased and the product cost is also increased.

本願発明者らは、図6に示す地表に降り注ぐ太陽光の放射照度(Radiation at Sea Level)において、近赤外線波長域770nm〜1800nmに注目すると、近赤外線が大気中の水蒸気により吸収されて地上に届かない波長域が複数箇所に存在すること及び近赤外線の波長域が770nm〜1400nmの短波長光と波長域が1400nm〜1800nmの長波長光とでは、積算照度は前者が後者より大きいこと、に着目して以下に述べる近赤外線カットフィルタを提案するに至った。   The inventors of the present application pay attention to the near-infrared wavelength region of 770 nm to 1800 nm in the irradiance of sunlight falling on the surface of the earth shown in FIG. 6. There are multiple wavelength ranges that cannot be reached, and the short-wavelength light with a near infrared wavelength range of 770 nm to 1400 nm and the long wavelength light with a wavelength range of 1400 nm to 1800 nm have a higher integrated illuminance than the former. We focused on and proposed the near-infrared cut filter described below.

本発明の目的とするところは、透明樹脂基板に成膜する際の樹脂基板に作用する応力集中を緩和し特に短波長領域の近赤外線を遮断することで安定した光学特性が得られかつ生産性も向上させることが可能な近赤外線カットフィルタ及びその製造方法並びにこれを用いた目に優しい眼鏡を提供することにある。   The purpose of the present invention is to reduce the stress concentration acting on the resin substrate when forming a film on the transparent resin substrate, and in particular, by blocking near infrared rays in the short wavelength region, stable optical characteristics can be obtained and productivity can be obtained. Another object of the present invention is to provide a near-infrared cut filter that can improve the quality of the filter, a method for manufacturing the same, and eyeglasses that are gentle to the eyes.

本発明は上記目的を達成するため、次の構成を備える。透明樹脂基板の両面に高屈折率の誘電体膜と低屈折率の誘電体膜を交互に積層された多層膜が各々形成され、波長域が420nm以上740nm以下の可視光を90%以上透過させ、波長域が770nm以上1800nm以下の近赤外線をカットする眼鏡レンズ用近赤外線フィルタであって、前記透明樹脂基板の一方の面に形成された第一多層膜では短波長域770nm以上1400nm以下の近赤外線を遮光し、他方の面に形成された第二多層膜では前記短波長域以外の長波長域1400nm以上1800nm以下の近赤外線を遮光し、前記第一多層膜を形成する誘電体膜の積層数は、前記第二多層膜を形成する誘電体膜の積層数より多くなるように前記透明樹脂基板の両面に成膜されて当該透明樹脂基板両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットすることを特徴とする。 In order to achieve the above object, the present invention comprises the following arrangement. A multilayer film in which high-refractive index dielectric films and low-refractive index dielectric films are alternately laminated is formed on both sides of the transparent resin substrate, and allows 90% or more transmission of visible light with a wavelength range of 420 nm to 740 nm. A near-infrared filter for spectacle lenses that cuts near-infrared light having a wavelength range of 770 nm to 1800 nm, and the first multilayer film formed on one surface of the transparent resin substrate has a short wavelength range of 770 nm to 1400 nm The second multilayer film formed on the other surface shields near infrared rays, and shields near infrared rays in a long wavelength region other than the short wavelength region of 1400 nm to 1800 nm to form the first multilayer film The number of laminated films is formed on both surfaces of the transparent resin substrate so as to be larger than the number of dielectric films forming the second multilayer film, and the wavelength region on both surfaces of the transparent resin substrate is 770 nm or more and 1800 nm or less. Near-infrared transmittance of 15% or less of the total amount of sunlight irradiated It cuts so that it may become.

上記近赤外線カットフィルタを用いれば、透明樹脂基板に入射する波長域が770nm〜1800nmの近赤外線のうち一方の面に形成された第一多層膜で短波長域の近赤外線を遮光し、他方の面に形成された第二多層膜で長波長域の近赤外線を遮光する。これにより、波長域が420nm〜740nmの可視光を透過させ、透明樹脂基板両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットするので、視界を妨げることなく近赤外線が人体や生態系に与える影響を可及的に減らすことができる。
特に、透明樹脂基板の両面に多層膜が各々形成されるので、熱により影響を受けやすい透明樹脂基板に誘電体膜を形成する際の応力集中が起こり難く、透明樹脂基板の変形や割れの発生が抑えられ、かつ片面に積層する誘電体膜の層数も抑えられるので、透明樹脂基板の温度管理も不要となり生産性も向上させることができる。
If the near-infrared cut filter is used, the near-infrared light in the short wavelength region is shielded by the first multilayer film formed on one surface of the near-infrared light having a wavelength range of 770 nm to 1800 nm incident on the transparent resin substrate, and the other side. The near-infrared ray in the long wavelength region is shielded by the second multilayer film formed on the surface. As a result, visible light having a wavelength range of 420 nm to 740 nm is transmitted, and the average transmittance of near infrared rays with respect to the integrated irradiation amount of sunlight having a wavelength range of 770 nm to 1800 nm on both surfaces of the transparent resin substrate is 15% or less. Because it cuts, the influence of near infrared rays on the human body and ecosystem can be reduced as much as possible without obstructing the field of view.
In particular, since multilayer films are formed on both sides of the transparent resin substrate, stress concentration is less likely to occur when forming a dielectric film on a transparent resin substrate that is susceptible to heat, and deformation and cracking of the transparent resin substrate occur. In addition, since the number of dielectric films laminated on one side can be reduced, temperature management of the transparent resin substrate is not required, and productivity can be improved.

た、地上に届く太陽光のうちよりエネルギーレベルの高い短波長域770nm以上1400nm以下の近赤外線を誘電体膜の積層数が多い第一多層膜により有効に遮光し、それよりエネルギーレベルの低い長波長域1400nm以上1800nm以下の近赤外線を誘電体膜の積層数が少ない第二多層膜により効率よく遮断することができ、しかも、透明樹脂基板の両面に成膜される誘電体膜の積層数を全体として減らして製造コストを削減することができる。 Also, a high short wavelength region 770nm or 1400nm or less in the near-infrared energy level than out of sunlight that reaches on the earth effectively shielded by the first multilayer film is large number of dielectric films, it than the energy level Dielectric film that can be efficiently blocked by the second multilayer film with a small number of laminated dielectric films, and near infrared light with a low long wavelength range of 1400 nm to 1800 nm can be efficiently formed. The manufacturing cost can be reduced by reducing the number of stacked layers as a whole.

また、前記透明樹脂基板の両面にガラス転移点温度より低い所定成膜温度で高屈折率の誘電体膜と低屈折率の誘電体膜とが交互に成膜されていることが望ましい。
これにより、透明樹脂基板に第一多層膜と第二多層膜を各々に成膜する際に、成膜と冷却のためのインターバルを短くして生産性を向上することできるうえに、透明樹脂基板が変形したり割れが生じたりすることがなくなり誘電体膜が剥離することを防ぐことができる。
Moreover, it is desirable that a high refractive index dielectric film and a low refractive index dielectric film are alternately formed on both surfaces of the transparent resin substrate at a predetermined film formation temperature lower than the glass transition temperature.
As a result, when the first multilayer film and the second multilayer film are each formed on the transparent resin substrate, the interval between the film formation and the cooling can be shortened, and the productivity can be improved. The resin substrate is not deformed or cracked, and the dielectric film can be prevented from peeling off.

また、前記透明樹脂基板に色素を添加することにより、無添加の前記透明樹脂基板に比べて前記第一多層膜及び第二多層膜の誘電体膜の積層数を全体として減少させて成膜してもよい。この場合には、近赤外線の透過率が第一多層膜及び第二多層膜のほかに色素の吸収によっても低下するため、第一多層膜及び第二多層膜を形成する誘電体膜の積層数を更に低減させて、フィルタ構成を簡素化して安価に効率よく製造することができる。尚、誘電体膜の積層数を減少させるのは第一多層膜及び第二多層膜のいずれか一方であっても双方であってもいずれでもよい。   Further, by adding a pigment to the transparent resin substrate, the number of laminated dielectric films of the first multilayer film and the second multilayer film is reduced as a whole compared to the transparent resin substrate without addition. A film may be formed. In this case, since the transmittance of near infrared rays is reduced by absorption of the dye in addition to the first multilayer film and the second multilayer film, the dielectric forming the first multilayer film and the second multilayer film By further reducing the number of laminated layers, the filter configuration can be simplified and the filter can be efficiently manufactured at low cost. Note that the number of laminated dielectric films may be reduced by either one or both of the first multilayer film and the second multilayer film.

また、前記透明樹脂基板に替えて、波長域が420nm以上740nm以下の可視光の透過を90%より低く抑制する色素付光透過性樹脂基板を用いてもよい。この場合、サングラス用のレンズの両面に第一多層膜と第二多層膜を各々に成膜することで、太陽光の眩しさを低減するほかに波長域770nm以上1800nm以下の近赤外線の透過率を低減して眼球に優しいフィルタを提供することができる。   Further, instead of the transparent resin substrate, a dyed light-transmitting resin substrate that suppresses transmission of visible light having a wavelength range of 420 nm or more and 740 nm or less to less than 90% may be used. In this case, by forming the first multilayer film and the second multilayer film on both surfaces of the sunglasses lens, respectively, in addition to reducing the glare of sunlight, near infrared light with a wavelength range of 770 nm to 1800 nm It is possible to provide a filter that is gentle to the eyeball with reduced transmittance.

透明樹脂基板の両面に高屈折率薄膜と低屈折率薄膜を交互に積層された多層膜を真空蒸着法により成膜する上述した近赤外線カットフィルタの製造方法にあっては、真空容器内で治具に保持された前記透明樹脂基板を回転させる工程と、真空状態でかつ前記透明樹脂基板のガラス転移点温度より低い所定成膜温度で、前記透明樹脂基板の一方の面に高屈折率薄膜と低屈折率薄膜とを交互に成膜して複数積層する第一蒸着工程と、前記治具に保持する前記透明樹脂基板を反転させて、真空状態でかつ前記透明樹脂基板のガラス転移点温度より低い所定成膜温度で当該透明樹脂基板の他方の面に高屈折率薄膜と低屈折率薄膜とを交互に成膜して複数積層する第二蒸着工程と、を含み、前記透明樹脂基板の一方の面に形成された第一多層膜では主として短波長域770nm以上1400nm以下の近赤外線光を遮光し、前記透明樹脂基板の他方の面に形成された第二多層膜では主として長波長域1400nm以上1800nm以下の近赤外線光を遮光することで、前記透明樹脂基板両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットする近赤外線カットフィルタを製造することを特徴とする。   In the above-described near-infrared cut filter manufacturing method in which a multilayer film in which high-refractive index thin films and low-refractive index thin films are alternately laminated on both surfaces of a transparent resin substrate is formed by a vacuum deposition method, A step of rotating the transparent resin substrate held by a tool, and a high refractive index thin film on one surface of the transparent resin substrate at a predetermined film formation temperature lower than a glass transition temperature of the transparent resin substrate in a vacuum state. First vapor deposition step of alternately depositing a plurality of low refractive index thin films and laminating a plurality of layers, and reversing the transparent resin substrate held by the jig, in a vacuum state and from the glass transition temperature of the transparent resin substrate A second vapor deposition step of alternately depositing a plurality of high refractive index thin films and low refractive index thin films on the other surface of the transparent resin substrate at a low predetermined film forming temperature, and laminating a plurality of layers. In the first multilayer film formed on the surface of The second multilayer film formed on the other surface of the transparent resin substrate mainly shields near-infrared light in the long wavelength range of 1400 nm to 1800 nm. And manufacturing a near-infrared cut filter that cuts so that the average transmittance of near-infrared with respect to the cumulative irradiation amount of sunlight having a wavelength range of 770 nm to 1800 nm on both surfaces of the transparent resin substrate is 15% or less. To do.

上記近赤外線カットフィルタの製造方法を用いれば、透明樹脂基板両面に第一多層膜と第二多層膜を各々成膜するので、基板片面に多層膜を成膜する場合に比べて積層数が減り、膜厚のばらつきが減り、基板に応力集中が生じることもないので、基板の変形や割れ、多層膜の剥離などの不具合を生じることもなくなるので安定した光学特性が得られる近赤外線カットフィルタを提供することができる。
特に地上に届く太陽光のうちよりエネルギーレベルの高い短波長域770nm以上1400nm以下の近赤外線を第一多層膜により有効に遮光し、それよりエネルギーレベルの低い長波長域1400nm以上1800nm以下の近赤外線を少ない層数の第二多層膜により効率よく遮断することで誘電体膜の構成を簡素化することができる。
また、誘電体膜の成膜作業において、透明樹脂基板の温度管理が不要になりしかも誘電体膜の積層数を減らして生産性も向上させることが可能な近赤外線カットフィルタの製造方法を提供することができる。
If the above-mentioned near infrared cut filter manufacturing method is used, the first multilayer film and the second multilayer film are formed on both sides of the transparent resin substrate, so the number of laminated layers is larger than when the multilayer film is formed on one side of the substrate. Near-infrared cut that provides stable optical characteristics because there is no occurrence of defects such as deformation and cracking of the substrate and peeling of the multilayer film. A filter can be provided.
In particular, near-infrared rays with a higher energy level in the short wavelength range of 770 nm to 1400 nm are effectively shielded by the first multilayer film, and the long wavelength range with a lower energy level of 1400 nm to 1800 nm. The structure of the dielectric film can be simplified by efficiently blocking infrared rays with the second multilayer film having a small number of layers.
Also provided is a method for manufacturing a near-infrared cut filter that eliminates the need for temperature control of a transparent resin substrate in a dielectric film deposition operation, and that can improve productivity by reducing the number of laminated dielectric films. be able to.

また、眼鏡においては、上述した近赤外線カットフィルタをレンズ部に備えるか上述した近赤外線カットフィルタの製造方法を用いて製造した近赤外線カットフィルタをレンズ部に備えたことを特徴とする。
これによれば、波長域が420nm〜740nmの可視光を90%以上透過させるので、視界が暗くなり視認性が低下することもなくしかもレンズ部の一方の面に設けられた第一多層膜で短波長域の遮光を分担し、他方の面に設けられた第二多層膜で長波長域の遮光を分担して、レンズ部を透過する波長域770nm〜1800nmの近赤外線の平均透過率が太陽光の積算照射量に対して15%以下となるようにカットするようにしたので、近赤外線の眼球への侵入を可及的に防いで目に優しい眼鏡を提供することができる。
Further, the spectacles are characterized in that the lens unit is provided with the above-described near-infrared cut filter or a near-infrared cut filter manufactured using the above-described method for manufacturing a near-infrared cut filter.
According to this, since visible light having a wavelength range of 420 nm to 740 nm is transmitted by 90% or more, the first multilayer film provided on one surface of the lens portion without darkening the visibility and reducing the visibility. In the short wavelength region, the second multi-layer film provided on the other side shares the light in the long wavelength region. Is cut so as to be 15% or less with respect to the integrated irradiation amount of sunlight, so that it is possible to provide glasses that are easy on the eyes while preventing near-infrared rays from entering the eyeball as much as possible.

上述した近赤外線カットフィルタ及びその製造方法を用いれば、透明樹脂基板に成膜する際の基板に作用する応力集中を緩和し近赤外線波長領域の近赤外線を遮断する安定した光学特性が得られかつ生産性も向上させることが可能な近赤外線カットフィルタ及びその製造方法を提供することができる。また、上述した近赤外線カットフィルタをレンズ部に備えることで近赤外線の眼球への侵入を可及的に防いで温度上昇を防止し目に優しい眼鏡を提供することができる。   By using the above-described near-infrared cut filter and its manufacturing method, stable optical characteristics that reduce stress concentration acting on the substrate during film formation on the transparent resin substrate and block near-infrared light in the near-infrared wavelength region can be obtained and It is possible to provide a near-infrared cut filter capable of improving productivity and a method for manufacturing the same. Further, by providing the above-described near infrared cut filter in the lens unit, it is possible to provide glasses that are gentle to the eyes by preventing the near infrared rays from entering the eyeball as much as possible to prevent the temperature from rising.

イオンアシスト蒸着装置の概略構成図である。It is a schematic block diagram of an ion assist vapor deposition apparatus. 近赤外線カットフィルタの模式図及び透明樹脂基板に形成される第一,第二多層膜の層構成の一例を示す説明図である。It is a schematic diagram of a near-infrared cut filter and an explanatory view showing an example of a layer configuration of first and second multilayer films formed on a transparent resin substrate. 図2の近赤外線カットフィルタを透過する光の波長と両面透過率を示すグラフ図、第一多層膜を透過する透過率を示すグラフ図、第二多層膜を透過する透過率を示すグラフ図である。FIG. 2 is a graph showing the wavelength of light transmitted through the near-infrared cut filter and the double-sided transmittance, a graph showing the transmittance through the first multilayer film, and a graph showing the transmittance through the second multilayer film. FIG. 図3の透明樹脂基板を透過する光の波長と両面透過率を示す拡大グラフ図である。FIG. 4 is an enlarged graph showing the wavelength of light passing through the transparent resin substrate of FIG. 3 and the double-sided transmittance. 近赤外線カットフィルタを透過する光の波長と積算照度の関係を示すグラフ図である。It is a graph which shows the relationship between the wavelength of the light which permeate | transmits a near-infrared cut off filter, and integrated illumination intensity. 地表に届く太陽光の近赤外線の波長と積算照度の関係を示すグラフ図である。It is a graph which shows the relationship between the wavelength of the near infrared rays of the sunlight which reaches | attains the ground surface, and integrated illumination intensity. 他例に係る近赤外線カットフィルタの模式図及び透明樹脂基板に形成される第一,第二多層膜の層構成の一例を示す説明図である。It is explanatory drawing which shows the schematic diagram of the near-infrared cut filter which concerns on another example, and an example of the layer structure of the 1st, 2nd multilayer film formed in a transparent resin substrate. 図7の近赤外線カットフィルタを透過する光の波長と両面透過率を示すグラフ図、第一多層膜を透過する透過率を示すグラフ図、第二多層膜を透過する透過率を示すグラフ図である。FIG. 7 is a graph showing the wavelength of light passing through the near-infrared cut filter and the double-sided transmittance, a graph showing the transmittance through the first multilayer film, and a graph showing the transmittance through the second multilayer film. FIG. 図8の近赤外線カットフィルタを透過する光の波長と両面透過率を示す拡大グラフ図である。It is an enlarged graph which shows the wavelength of the light which permeate | transmits the near-infrared cut filter of FIG. 8, and double-sided transmittance | permeability. 近赤外線カットフィルタがコーティングされた眼鏡レンズとコーティングされない眼鏡レンズの直下におかれたガラス板の時間経過に伴う温度上昇試験結果を示すグラフ図である。It is a graph which shows the temperature rise test result with the passage of time of the glass plate directly under the spectacle lens with which the near-infrared cut filter was coated, and the uncoated spectacle lens. 近赤外線カットフィルタがコーティングされた眼鏡レンズとコーティングされない眼鏡レンズのレンズ上面と下面との温度上昇試験結果を示すグラフ図である。It is a graph which shows the temperature rise test result of the lens upper surface and lower surface of the spectacle lens with which the near-infrared cut filter was coated, and an uncoated spectacle lens.

以下、本発明に係る近赤外線カットフィルタ及びその製造方法並びにそれを備えた眼鏡の一実施形態について、添付図面を参照しながら説明する。   Hereinafter, an embodiment of a near-infrared cut filter according to the present invention, a method for manufacturing the same, and eyeglasses including the same will be described with reference to the accompanying drawings.

前述したように太陽光は大気中の水分等で吸収されるため、地表に降り注ぐ太陽光の放射照度(Radiation at Sea Level)は図6に示すようになることが知られている。放射照度の単位はW/m2で表現され、近赤外線波長域770nm〜1800nmに注目すると、波長域1350nm〜1450nm近辺で放射照度がほぼゼロの部分がある。また、積算照度が高い(エネルギーレベルが高い)波長域が770nm〜1400nmの短波長光とそれより積算照度が低い(エネルギーレベルが低い)波長域が1400nm〜1800nmの長波長光の2つのグループに分かれている。 As described above, since sunlight is absorbed by moisture in the atmosphere, it is known that the irradiance (Radiation at Sea Level) of sunlight falling on the ground surface is as shown in FIG. The unit of irradiance is expressed in W / m 2. When attention is paid to the near infrared wavelength range of 770 nm to 1800 nm, there is a portion where the irradiance is almost zero in the vicinity of the wavelength range of 1350 nm to 1450 nm. In addition, there are two groups: short wavelength light with a high integrated illuminance (high energy level) of 770 nm to 1400 nm and long wavelength light with a low integrated illuminance (low energy level) of 1400 nm to 1800 nm. I know.

本願発明に係る近赤外線カットフィルタは、この太陽光放射スペクトル(Solar Radiation Spectrum)の内、地表に注ぐ近赤外線の放射照度(Radiation at Sea Level)の形状に合わせて、開発設計されたものであり、近赤外線のうちの短波長光に相当する波長域770nm〜1400nmの遮光を基板の一方の面に形成される第一多層膜Xが分担し(図3(B)参照)、近赤外線のうちの長波長光に相当する波長域1400nm〜1800nmの遮光を基板の他方の面に形成される第二多層膜Yで分担(図3(C)参照)するようにしたものである。
波長域1350nm〜1450nm近辺で放射照度がほぼゼロのため、第一多層膜Xにおける波長域1350nm〜1400nmの範囲、及び第二多層膜Yにおける波長域1400nm〜1450nmの範囲の透過率を低く抑える必要はない。
また、近赤外線の波長域770nm〜1800nm全てを基板の片面のみで遮光することは、基板の性能、品質、コスト等の面から課題が大きいと考えられ、近赤外線を2つのグループに分けて、基板の両面でそれぞれ遮光を分担することが望ましいと思われる。
The near-infrared cut filter according to the present invention is developed and designed in accordance with the shape of the near-infrared irradiance (Radiation at Sea Level) poured into the surface of the solar radiation spectrum. The first multilayer film X formed on one surface of the substrate shares light shielding in a wavelength range of 770 nm to 1400 nm corresponding to short-wavelength light in the near infrared (see FIG. 3B). The light shielding in the wavelength range of 1400 nm to 1800 nm corresponding to the long wavelength light is shared by the second multilayer film Y formed on the other surface of the substrate (see FIG. 3C).
Since the irradiance is almost zero in the wavelength range of 1350 nm to 1450 nm, the transmittance in the wavelength range of 1350 nm to 1400 nm in the first multilayer film X and the wavelength range of 1400 nm to 1450 nm in the second multilayer film Y is low. There is no need to suppress it.
In addition, it is considered that shielding all of the near-infrared wavelength region 770 nm to 1800 nm with only one side of the substrate is a big problem in terms of the performance, quality, cost, etc. of the substrate, and the near infrared is divided into two groups. It would be desirable to share the shading on both sides of the substrate.

以上説明したように地表に降り注ぐ近赤外線は、波長1400nm近辺の放射照度が0W/m2となっているため、本願発明の近赤外線カットフィルタの場合も、近赤外線の波長1400nmを境界として基板の両面で遮光を分担することとした。
また、図6において二点鎖線で示すように、目標とする近赤外線の平均透過率は、地上に届く直射光がないため眼球に対する負荷が少なくしかも視界を妨げることがない雨の日の放射照度が、晴れの日の太陽光の放射照度に対して15%以下であることからこの数値を近赤外線の平均透過率目標値として定めた。
As described above, the near-infrared rays falling on the ground surface have an irradiance of 0 W / m 2 near the wavelength of 1400 nm. Therefore, even in the case of the near-infrared cut filter of the present invention, the near-infrared wavelength of 1400 nm is used as the boundary. It was decided to share the shading on both sides.
In addition, as shown by a two-dot chain line in FIG. 6, the target near-infrared transmittance is the irradiance on a rainy day when there is no direct light reaching the ground and the load on the eyeball is small and the view is not hindered. However, since it was 15% or less with respect to the irradiance of sunlight on a sunny day, this numerical value was determined as the average transmittance target value of near infrared rays.

近赤外線が生態系に与える影響については未知数の部分も多いが、疑似太陽光を眼鏡レンズに照射してレンズ下に設置したガラス板の温度上昇試験からある程度推認することができる。即ち、図10は太陽光シミュレータ内に近赤外線カットコーティング有の眼鏡レンズと近赤外線カットコーティング無の眼鏡レンズをおいて、各レンズ下20mmの位置においたガラス板の温度上昇を時間の経過とともに計測(例えば連続30分計測)して各々表示したグラフ図である。図10において、実線は近赤外線カットコーティング有、破線は近赤外線カットコーティング無の場合の温度変化を示す。図11は、図10の試験における近赤外線カットコーティング有の眼鏡レンズと近赤外線カットコーティング無の眼鏡レンズ表面(上面)と裏面(下面)の温度を時間の経過とともに計測して表示したグラフ図である。図11において破線はレンズ上面の温度変化を、実線はレンズ下面の温度変化を示す。   Although there are many unknowns about the effects of near infrared radiation on ecosystems, it can be inferred to some extent from the temperature rise test of a glass plate placed under the lens by irradiating the spectacle lens with artificial sunlight. That is, FIG. 10 shows a spectacle lens with near-infrared cut coating and a spectacle lens without near-infrared cut coating in a solar simulator, and the temperature rise of the glass plate at a position 20 mm below each lens is measured over time. It is the graph which each displayed (for example, measurement for 30 minutes continuously). In FIG. 10, the solid line indicates the temperature change when the near infrared cut coating is present, and the broken line indicates the temperature change when the near infrared cut coating is not present. FIG. 11 is a graph showing the temperature measured on the surface (upper surface) and back surface (lower surface) of the spectacle lens with near infrared cut coating and the spectacle lens without near infrared cut coating in the test of FIG. is there. In FIG. 11, a broken line indicates a temperature change on the upper surface of the lens, and a solid line indicates a temperature change on the lower surface of the lens.

図11において、眼鏡レンズの表面と裏面とではレンズ自体の温度が上昇してしまうため、太陽光の照射時間内で徐々に上昇していくが、図11(A)の近赤外線カットコーティング有の眼鏡レンズではレンズ上面とレンズ下面との温度差が約4.5℃と拡大して推移しており、近赤外線をレンズ上面でカットすることによる効果と考えられる。
一方、図11(B)の近赤外線カットコーティング有の眼鏡レンズではレンズ上面とレンズ下面との温度差が約1.6℃とほとんど差がなく推移しており、近赤外線が透過していることによるものと考えられる。
In FIG. 11, since the temperature of the lens itself increases on the front and back surfaces of the spectacle lens, it gradually increases within the irradiation time of sunlight, but with the near infrared cut coating of FIG. In the spectacle lens, the temperature difference between the lens upper surface and the lens lower surface has increased to about 4.5 ° C., which is considered to be an effect of cutting near infrared rays on the lens upper surface.
On the other hand, in the spectacle lens with near-infrared cut coating shown in FIG. 11B, the temperature difference between the upper surface of the lens and the lower surface of the lens is almost 1.6 ° C., and the near-infrared light is transmitted. it is conceivable that.

また、実際の眼鏡ではレンズと眼球までの距離が20mm〜30mm程度であるため、眼鏡レンズより離れた位置に設置したガラス板の温度変化を計測した。結果を図10のグラフ図に示す。いずれも場合も時間の経過とともにガラス板の温度は周囲の雰囲気温度より上昇したが、近赤外線カットコーティング無の場合、近赤外線カットコーティング有の場合に比べて温度上昇の度合いが高く、約10℃の温度差が生じることが近赤外線を受けたガラス板の温度上昇が高く、近赤外線をカットしたガラス板の温度上昇が抑えられることがわかる。
以上より、生態系が近赤外線を受け続けた場合、その積算照度に応じて温度上昇を伴うことから、例えば、眼鏡用レンズの場合、近赤外線カットコーティングすることが目に優しいレンズを提供することができるといえる。
Moreover, since the distance between the lens and the eyeball is about 20 mm to 30 mm in actual spectacles, the temperature change of the glass plate installed at a position away from the spectacle lens was measured. The results are shown in the graph of FIG. In both cases, the temperature of the glass plate increased from the ambient temperature with the passage of time. However, in the case without the near infrared cut coating, the temperature increase was higher than that with the near infrared cut coating, which was about 10 ° C. It can be seen that the temperature difference between the glass plate receiving the near infrared ray is high and the temperature increase of the glass plate cut from the near infrared ray is suppressed.
From the above, when the ecosystem continues to receive near-infrared rays, the temperature rises according to the accumulated illuminance. For example, in the case of eyeglass lenses, providing a lens that is easy on the eyes for near-infrared cut coating Can be said.

以下に述べる本実施形態では、近赤外線カットフィルタの一例として眼鏡のレンズを製造する場合を想定して説明するものとする。
図1を参照して、透明樹脂基板に多層膜を形成するイオンアシスト蒸着装置の概略構成について説明する。多層膜は温度や湿度の変化に対する光学特性の変化が少ない、安定な薄膜形成が求められる。このため、透明樹脂基板の両面に形成される多層膜はイオンアシスト蒸着(IAD:Ion Assisted Deposition)を用いて薄膜を形成している。これは、透明樹脂基板を高温に過熱することなく低温でも密着力の高い成膜を実現するためにイオンアシスト蒸着が好適に用いられる。イオンアシスト蒸着装置1は図1に示すような構成により、均一で安定した光学特性が得られる多層膜が形成される。
In the present embodiment described below, it is assumed that a spectacle lens is manufactured as an example of a near-infrared cut filter.
With reference to FIG. 1, a schematic configuration of an ion-assisted vapor deposition apparatus that forms a multilayer film on a transparent resin substrate will be described. A multilayer film is required to form a stable thin film with little change in optical characteristics with respect to changes in temperature and humidity. For this reason, the multilayer film formed on both surfaces of the transparent resin substrate forms a thin film by using ion assisted deposition (IAD). For this purpose, ion-assisted vapor deposition is suitably used in order to achieve film formation with high adhesion even at low temperatures without overheating the transparent resin substrate to high temperatures. The ion-assisted deposition apparatus 1 has a configuration as shown in FIG. 1 to form a multilayer film that can obtain uniform and stable optical characteristics.

図1で示すように、イオンアシスト蒸着装置1は真空チャンバ2の密閉容器に囲まれ、イオンアシストするためのイオン源3を備えている。イオン源3は蒸発物質にイオン4が運動エネルギーを与え、堆積する膜の結晶構造をアモルファス化する。アモルファス化することは薄膜の密度を向上させ、外気中においても波長シフトの起こりにくい特性を得ることができる。   As shown in FIG. 1, the ion-assisted vapor deposition apparatus 1 is surrounded by a sealed container of a vacuum chamber 2 and includes an ion source 3 for performing ion assist. In the ion source 3, the ions 4 give kinetic energy to the evaporated substance, and the crystal structure of the deposited film is made amorphous. Amorphization improves the density of the thin film, and it is possible to obtain characteristics in which a wavelength shift hardly occurs even in the outside air.

また、イオンアシスト蒸着装置1はイオン源3から照射されたイオン4(+)で薄膜に電荷が蓄積するため、中和器5(ニュートライザー)で電子6(−)を照射し、電荷の蓄積を防止している。   In addition, since the ion-assisted deposition apparatus 1 accumulates charges on the thin film by the ions 4 (+) irradiated from the ion source 3, the electrons 6 (-) are irradiated by the neutralizer 5 (Neutrizer) to accumulate the charges. Is preventing.

また、イオンアシスト蒸着装置1は真空チャンバ2内で高い屈折率の蒸発物質を飛散させる第一蒸発源7と、低い屈折率の蒸発物質を飛散させる第二蒸発源8とを備えている。各蒸発源7,8の上部には開閉可能なシャッター7a,8aが設けられており、蒸発物質の飛散を促したり遮断したりする。各シャッター7a,8aの上方にはドーム形状の基板ドーム9(治具)が回転可能に設けられている。基板ドーム9の内側には複数の透明樹脂基板10が保持されるようになっている。透明樹脂基板10としては、樹脂基板(例えばポリカーボネイト樹脂基板)等が用いられる。第一,第二蒸発源7,8の近傍には、電子銃11が各々設けられており、第一,第二蒸発源7,8に向って電子ビームを照射するようになっている。後述するように、電子ビームを照射することにより第一,第二蒸発源7,8から蒸発した蒸発物質12を、基板ドーム9を回転させながら透明樹脂基板10に対して均一に堆積させることができる。   The ion-assisted vapor deposition apparatus 1 also includes a first evaporation source 7 that scatters evaporation material having a high refractive index in the vacuum chamber 2 and a second evaporation source 8 that scatters evaporation material having a low refractive index. Openable and closable shutters 7a and 8a are provided above the respective evaporation sources 7 and 8 to promote and block the scattering of the evaporated substance. A dome-shaped substrate dome 9 (jig) is rotatably provided above the shutters 7a and 8a. A plurality of transparent resin substrates 10 are held inside the substrate dome 9. As the transparent resin substrate 10, a resin substrate (for example, a polycarbonate resin substrate) or the like is used. Electron guns 11 are provided in the vicinity of the first and second evaporation sources 7 and 8, respectively, and irradiate an electron beam toward the first and second evaporation sources 7 and 8. As will be described later, the evaporated substance 12 evaporated from the first and second evaporation sources 7 and 8 by irradiating the electron beam can be uniformly deposited on the transparent resin substrate 10 while rotating the substrate dome 9. it can.

イオンアシスト蒸着装置1の第一蒸着工程では第一蒸発源7と第二蒸発源8とに電子銃11で電子ビームを照射することで、各蒸発源7,8の物質を蒸発させ、上部のシャッター7a,8aを交互に、また所定の時間開けることで、第一蒸発源7と第二蒸発源8からの蒸発物質を所定の厚みに積層することができる。例えば第一蒸発源7には二酸化チタン(TiO2)が供給され、第二蒸発源8に二酸化ケイ素(SiO2)が供給される。なお、二酸化チタン(TiO2)の成膜時には酸素ガスを供給しながら蒸着させる。 In the first vapor deposition step of the ion-assisted vapor deposition apparatus 1, the material of each of the evaporation sources 7 and 8 is evaporated by irradiating the first evaporation source 7 and the second evaporation source 8 with an electron beam 11, thereby By alternately opening the shutters 7a and 8a for a predetermined time, the evaporation substances from the first evaporation source 7 and the second evaporation source 8 can be stacked in a predetermined thickness. For example, titanium dioxide (TiO 2 ) is supplied to the first evaporation source 7, and silicon dioxide (SiO 2 ) is supplied to the second evaporation source 8. Incidentally, at the time of deposition of the titanium dioxide (TiO 2) is deposited while supplying oxygen gas.

イオンアシスト蒸着装置1の真空チャンバ2は第一蒸着工程で常に真空引きし続け、二酸化チタン(TiO2)と二酸化ケイ素(SiO2)とを交互に積層する。第一蒸着工程の終了後にイオンアシスト蒸着装置1は真空チャンバ2を一旦大気開放し、基板ドーム9に保持された透明樹脂基板10を反転保持させて同様の第二蒸着工程を開始する。 The vacuum chamber 2 of the ion-assisted vapor deposition apparatus 1 is continuously evacuated in the first vapor deposition step, and titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) are alternately laminated. After completion of the first vapor deposition process, the ion assist vapor deposition apparatus 1 once opens the vacuum chamber 2 to the atmosphere, reversely holds the transparent resin substrate 10 held by the substrate dome 9, and starts a similar second vapor deposition process.

ここで、真空蒸着法のなかでイオンアシスト蒸着を用いた近赤外線カットフィルタの製造方法の一例について説明する。尚、透明樹脂基板10には樹脂基板(ポリカーボネイト樹脂基板)を用いるものとする。
透明樹脂基板10を真空チャンバ2内に設けられた基板ドーム9に取り付ける。また、第一蒸発源7,8にペレット状(固体状)の二酸化チタン(TiO2)が供給され、第二蒸発源8にペレット状(固体状)の二酸化ケイ素(SiO2)が供給され、真空チャンバ2内を真空引きして真空状態にする。
Here, an example of the manufacturing method of the near-infrared cut filter using ion-assisted vapor deposition in the vacuum vapor deposition method will be described. The transparent resin substrate 10 is a resin substrate (polycarbonate resin substrate).
A transparent resin substrate 10 is attached to a substrate dome 9 provided in the vacuum chamber 2. Further, pellets of titanium dioxide (solid) (TiO 2) is supplied to the first evaporation source 7,8, silicon dioxide pellets (solid) (SiO 2) is fed to the second evaporation source 8, The vacuum chamber 2 is evacuated to a vacuum state.

真空引きされた真空チャンバ2内の圧力が1×10−3Pa以下になったら、各電子銃11より第一蒸発源7及び第二蒸発源8に電子銃11から電子ビームを各々照射して、二酸化チタン(TiO2)と二酸化ケイ素(SiO2)をそれぞれ加熱して蒸発させる。また、真空チャンバ2内で基板ドーム9に保持された透明樹脂基板10を回転させる。 When the pressure in the evacuated vacuum chamber 2 becomes 1 × 10 −3 Pa or less, each electron gun 11 irradiates the first evaporation source 7 and the second evaporation source 8 with an electron beam from the electron gun 11. Each of titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) is heated and evaporated. Further, the transparent resin substrate 10 held by the substrate dome 9 is rotated in the vacuum chamber 2.

先ず透明樹脂基板10の一方の面に、二酸化チタン(TiO2)を成膜する。即ち、シャッター7aを開放してシャッター8aを閉じたまま二酸化チタン(TiO2)の高屈折率薄膜を成膜する。次いで、二酸化ケイ素(SiO2)の成膜時にはシャッター8aを開放してシャッター7aを閉じたまま透明樹脂基板10に二酸化ケイ素(SiO2)の低屈折率薄膜を成膜する。成膜温度は、透明樹脂基板10(ポリカーボネイト樹脂)のガラス転移点温度(例えば145℃)より低い所定成膜温度(例えば140℃)で成膜する。各薄膜の膜厚は、膜厚モニターで測定された膜厚が所定の厚さになったらシャッターを閉じて膜厚を制御する。この高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)とを交互に複数積層する。第一多層膜が所定数に到達したら電子銃11の照射を停止し、真空チャンバ2内の真空引きを停止して大気圧に戻す(第一蒸着工程)。 First, titanium dioxide (TiO 2 ) is formed on one surface of the transparent resin substrate 10. That is, a high refractive index thin film of titanium dioxide (TiO 2 ) is formed with the shutter 7a opened and the shutter 8a closed. Then, depositing a low-refractive-index film of silicon dioxide, silicon dioxide (SiO 2) remained transparent resin substrate 10 closing the shutter 7a to open the shutter 8a during deposition of (SiO 2). The film formation temperature is a predetermined film formation temperature (for example, 140 ° C.) lower than the glass transition temperature (for example, 145 ° C.) of the transparent resin substrate 10 (polycarbonate resin). The film thickness of each thin film is controlled by closing the shutter when the film thickness measured by the film thickness monitor reaches a predetermined thickness. A plurality of high refractive index thin films (TiO 2 ) and low refractive index thin films (SiO 2 ) are alternately stacked. When the first multilayer film reaches a predetermined number, the irradiation of the electron gun 11 is stopped, the evacuation in the vacuum chamber 2 is stopped, and the pressure is returned to the atmospheric pressure (first vapor deposition step).

次に、基板ドーム9に保持されていた透明樹脂基板10を反転して保持させ、真空チャンバ2内を真空引きして圧力が1×10−3Pa以下の真空状態とする。そして第一蒸発源7及び第二蒸発源8に各電子銃11より電子ビームを照射して、二酸化チタン(TiO2)と二酸化ケイ素(SiO2)をそれぞれ加熱して蒸発させる。また、真空チャンバ2内で基板ドーム9に保持された透明樹脂基板10を回転させる。 Next, the transparent resin substrate 10 held on the substrate dome 9 is inverted and held, and the vacuum chamber 2 is evacuated to a vacuum state where the pressure is 1 × 10 −3 Pa or less. The first evaporation source 7 and the second evaporation source 8 are irradiated with an electron beam from each electron gun 11 to heat and evaporate titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ), respectively. Further, the transparent resin substrate 10 held by the substrate dome 9 is rotated in the vacuum chamber 2.

先ず透明樹脂基板10の他方の面に、二酸化チタン(TiO2)を成膜する。即ち、シャッター7aを開放してシャッター8aを閉じたまま二酸化チタン(TiO2)の高屈折率薄膜を成膜する。次いで、二酸化ケイ素(SiO2)の成膜時にはシャッター8aを開放してシャッター7aを閉じたまま透明樹脂基板10に二酸化ケイ素(SiO2)の低屈折率薄膜を成膜する。成膜温度は、透明樹脂基板10(ポリカーボネイト樹脂)のガラス転移点温度(例えば145℃)より低い所定成膜温度(例えば140℃)で成膜する。各薄膜の膜厚は、膜厚モニターで測定された膜厚が所定の厚さになったらシャッターを閉じて膜厚を制御する。この高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)とを交互に複数積層する。第二多層膜が所定数に到達したら電子銃11の照射を停止し、真空チャンバ2内の真空引きを停止して大気圧に戻す(第二蒸着工程)。 First, titanium dioxide (TiO 2 ) is formed on the other surface of the transparent resin substrate 10. That is, a high refractive index thin film of titanium dioxide (TiO 2 ) is formed with the shutter 7a opened and the shutter 8a closed. Then, depositing a low-refractive-index film of silicon dioxide, silicon dioxide (SiO 2) remained transparent resin substrate 10 closing the shutter 7a to open the shutter 8a during deposition of (SiO 2). The film formation temperature is a predetermined film formation temperature (for example, 140 ° C.) lower than the glass transition temperature (for example, 145 ° C.) of the transparent resin substrate 10 (polycarbonate resin). The film thickness of each thin film is controlled by closing the shutter when the film thickness measured by the film thickness monitor reaches a predetermined thickness. A plurality of high refractive index thin films (TiO 2 ) and low refractive index thin films (SiO 2 ) are alternately stacked. When the second multilayer film reaches a predetermined number, irradiation of the electron gun 11 is stopped, evacuation in the vacuum chamber 2 is stopped, and the pressure is returned to atmospheric pressure (second vapor deposition step).

以上の工程を経て、透明樹脂基板10の一方の面に形成された第一多層膜Xでは短波長域770nm〜1400nmの近赤外線を遮光し、他方の面に形成された第二多層膜Yでは長波長域1450nm〜1800nmの近赤外線を遮光する近赤外線カットフィルタが形成される。   Through the above steps, the first multilayer film X formed on one surface of the transparent resin substrate 10 shields near infrared rays in the short wavelength region 770 nm to 1400 nm, and the second multilayer film formed on the other surface. In Y, a near-infrared cut filter that blocks near-infrared rays in the long wavelength region of 1450 nm to 1800 nm is formed.

尚、透明樹脂基板10として樹脂基板を用いた場合には第一層目の成膜は二酸化チタン(TiO2)を用いた方が基板密着性を考慮すると好ましい。また、透明樹脂基板10としてガラス基板を用いた場合には、第一層目の成膜は二酸化ケイ素(SiO2)を用いた方が基板密着性を考慮すると好ましい。しかしながら、透明樹脂基板10との間に密着性を改善する緩衝材を介在させればこの態様に限定されるものではない。
また、高屈折率薄膜として二酸化チタン(TiO2)を用いたが、五酸化ニオブ(Nb2O5)、五酸化タンタル(TaO5)、二酸化ジルコニウム(ZrO2)、二酸化ハフニウム(HfO2)などであってもよい。
また、低屈折率薄膜として二酸化ケイ素(SiO2)を用いたが、フッ化マグネシウム(MgF2)などを用いてもよい。
更には、真空蒸着法のなかでイオンアシスト蒸着を用いて形成する近赤外線カットフィルタを例示したが、スパッタリング法、イオンプレーティング法、プラズマアシスト法など他の方法を用いてもよい。
When a resin substrate is used as the transparent resin substrate 10, it is preferable to use titanium dioxide (TiO 2 ) for film formation of the first layer in consideration of substrate adhesion. Further, when a glass substrate is used as the transparent resin substrate 10, it is preferable to use silicon dioxide (SiO 2 ) for the film formation of the first layer in consideration of substrate adhesion. However, the present invention is not limited to this mode as long as a cushioning material for improving adhesion is interposed between the transparent resin substrate 10 and the transparent resin substrate 10.
Titanium dioxide (TiO 2 ) was used as the high refractive index thin film, but niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (TaO 5 ), zirconium dioxide (ZrO 2 ), hafnium dioxide (HfO 2 ), etc. It may be.
Further, although silicon dioxide (SiO 2 ) is used as the low refractive index thin film, magnesium fluoride (MgF 2 ) or the like may be used.
Furthermore, although the near-infrared cut filter formed using ion assist vapor deposition was illustrated in the vacuum vapor deposition method, you may use other methods, such as sputtering method, an ion plating method, a plasma assist method.

ここで、図2を参照して近赤外線カットフィルタの構成例について説明する。
図2(A)は、透明樹脂基板10の模式断面図である。透明樹脂基板10をレンズと見た場合、入射面側に第一多層膜Xが成膜され、透過面側に第二多層膜Yが成膜されている。第一多層膜X及び第二多層膜Yはいずれも透明樹脂基板10(ポリカーボネイト樹脂基板)との密着性を考慮して第一層目を高屈折率薄膜である二酸化チタン(TiO2)とし、第二層目を低屈折率薄膜である二酸化ケイ素(SiO2)とし、交互に積層されている。
Here, a configuration example of the near-infrared cut filter will be described with reference to FIG.
FIG. 2A is a schematic cross-sectional view of the transparent resin substrate 10. When the transparent resin substrate 10 is viewed as a lens, the first multilayer film X is formed on the incident surface side, and the second multilayer film Y is formed on the transmission surface side. The first multilayer film X and the second multilayer film Y are both titanium dioxide (TiO 2 ), which is a high refractive index thin film as the first layer in consideration of adhesion to the transparent resin substrate 10 (polycarbonate resin substrate). The second layer is made of silicon dioxide (SiO 2 ), which is a low refractive index thin film, and is laminated alternately.

図2(B)に第一多層膜X及び第二多層膜Yの積層数を例示している。第一多層膜Xは、高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)が交互に積層されトータルで26層積層されている。また、第二多層膜Yは高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)が交互に積層されトータルで19層積層されている。近赤外線カットフィルタの光透過率は透明薄膜の屈折率と膜厚の積で決まるため、所望する近赤外線の透過率を実現するように屈折率と膜厚と積層数が設計される。一般的に膜厚は波長の反射率もしくは透過率が最大になるように波長の1/4前後に設計される。 FIG. 2B illustrates the number of stacked first multilayer film X and second multilayer film Y. In the first multilayer film X, a high refractive index thin film (TiO 2 ) and a low refractive index thin film (SiO 2 ) are alternately laminated to form a total of 26 layers. In addition, the second multilayer film Y is formed by alternately laminating high refractive index thin films (TiO 2 ) and low refractive index thin films (SiO 2 ), for a total of 19 layers. Since the light transmittance of the near-infrared cut filter is determined by the product of the refractive index and the film thickness of the transparent thin film, the refractive index, the film thickness, and the number of layers are designed so as to realize the desired near-infrared transmittance. Generally, the film thickness is designed around ¼ of the wavelength so that the reflectance or transmittance of the wavelength is maximized.

本実施例では短波長域770nm〜1400nmの近赤外線をカットする第一多層膜X及び長波長域1450nm〜1800nmの近赤外線をカットする第二多層膜Y形成するにあたって、第一多層膜Xを形成する誘電体膜の積層数は、第二多層膜Yを形成する誘電体膜の積層数より多くなるように透明樹脂基板10の両面に成膜されている。これは、図6に示す地表に降り注ぐ太陽光の放射照度(Radiation at Sea Level)の近赤外線波長域770nm〜1800nmにおいて、近赤外線が大気中の水蒸気により吸収されて地上に届かない波長域が複数箇所に存在すること、近赤外線の積算照度は波長域が770nm〜1400nmの短波長光より波長域が1400nm〜1800nmの長波長光より大きいことが理由としてあげられる。   In this embodiment, in forming the first multilayer film X that cuts near infrared rays in the short wavelength range 770 nm to 1400 nm and the second multilayer film Y that cuts near infrared rays in the long wavelength range 1450 nm to 1800 nm, The number of laminated dielectric films forming X is formed on both surfaces of the transparent resin substrate 10 so as to be larger than the number of laminated dielectric films forming the second multilayer film Y. This is because in the near-infrared wavelength range of 770 nm to 1800 nm of the irradiance of sunlight falling on the ground surface shown in FIG. 6, there are multiple wavelength ranges where the near-infrared light is absorbed by water vapor in the atmosphere and does not reach the ground. The reason is that the near-infrared integrated illuminance is larger than the long wavelength light in the wavelength range of 1400 nm to 1800 nm than the short wavelength light in the wavelength range of 770 nm to 1400 nm.

これにより、地上に届く太陽光のうちよりエネルギーレベルの高い短波長域770nm以上1400nm以下の近赤外線を誘電体膜の積層数が多い第一多層膜Xにより有効に遮光し、それよりエネルギーレベルの低い長波長域1400nm以上1800nm以下の近赤外線を誘電体膜の積層数が少ない第二多層膜Yにより効率よく遮断することができ、しかも、透明樹脂基板10の両面に成膜される誘電体膜の積層数を全体として減らして製造コストを削減することができる。   This effectively shields near-infrared rays in the short wavelength range of 770 nm to 1400 nm, which has a higher energy level, from sunlight reaching the ground by the first multilayer film X having a large number of dielectric films, and further reduces the energy level. Can be efficiently blocked by the second multilayer film Y having a small number of laminated dielectric films, and the dielectric film formed on both surfaces of the transparent resin substrate 10 can be efficiently blocked. Manufacturing cost can be reduced by reducing the number of laminated body films as a whole.

図3には図2(A)(B)に示す第一多層膜X及び第二多層膜Yを有する近赤外線カットフィルタを用いた光の波長に対する両面透過率と、第一多層膜Xの光の波長に対する透過率、及び第二多層膜Yの光の波長に対する透過率を例示する。また図4には近赤外線の波長に対する両面透過率の拡大したグラフ図を示す。   3 shows the double-sided transmittance with respect to the wavelength of light using the near-infrared cut filter having the first multilayer film X and the second multilayer film Y shown in FIGS. 2A and 2B, and the first multilayer film. The transmittance with respect to the wavelength of light of X and the transmittance with respect to the wavelength of light of the second multilayer film Y are illustrated. FIG. 4 is an enlarged graph showing the double-sided transmittance with respect to the near infrared wavelength.

先ず、図2(A)の入射側に成膜された第一多層膜Xを自然光が透過した場合の透過率を図3の太い破線で示している。図3によれば、第一多層膜Xは短波長域770nm〜1400nmの近赤外線を概ね15%以下に遮光していることがわかる。また、図2(A)の出射側に成膜された第二多層膜Yを自然光が透過した場合の透過率を図3の細い破線で示している。図3によれば、第二多層膜Yは長波長域1400nm〜1800nm の近赤外線を概ね30%以下に遮光していることが分かる。
即ち、第一多層膜Xと第二多層膜Yとで異なる波長域の近赤外線を各々分担して遮光することにより、図4に示すように両面透過率で、波長域が770nm〜1800nmの近赤外線を概ね30%以下にカットする近赤外線カットフィルタを形成している。
First, the transmittance when natural light is transmitted through the first multilayer film X formed on the incident side in FIG. 2A is indicated by a thick broken line in FIG. As can be seen from FIG. 3, the first multilayer film X shields near-infrared rays in the short wavelength region of 770 nm to 1400 nm to approximately 15% or less. Further, the transmittance when natural light is transmitted through the second multilayer film Y formed on the emission side in FIG. 2A is indicated by a thin broken line in FIG. According to FIG. 3, it can be seen that the second multilayer film Y shields near infrared rays in the long wavelength region of 1400 nm to 1800 nm to approximately 30% or less.
That is, the first multilayer film X and the second multilayer film Y share near-infrared rays in different wavelength ranges and shield them, thereby providing a double-sided transmittance and a wavelength range of 770 nm to 1800 nm as shown in FIG. The near-infrared cut filter that cuts the near-infrared rays to approximately 30% or less is formed.

この結果、図5の近赤外線カットフィルタを透過する光の波長と積算照度の関係を示す実線で示すグラフ図に示すように、透明樹脂基板10の両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットすることができた。近赤外線の平均透過率が15%以下とした理由は、図6で説明したように、地上に届く直射光がないため眼球に対する負荷が少なくしかも視界を妨げることがない雨の日の放射照度が、晴れの日の太陽光の放射照度に対して15%以下であることからこの数値を近赤外線の平均透過率として定めた。これにより、視界を妨げることなく近赤外線が人体や生態系に与える影響を可及的に減らすことができる。   As a result, as shown in a graph showing the relationship between the wavelength of light transmitted through the near-infrared cut filter of FIG. 5 and the integrated illuminance, sunlight having a wavelength range of 770 nm to 1800 nm on both surfaces of the transparent resin substrate 10 is shown. It was possible to cut so that the average transmittance of near-infrared with respect to the integrated irradiation amount of 15% or less. The reason why the average near-infrared transmittance is set to 15% or less is that, as explained in FIG. 6, there is no direct light reaching the ground, so there is less irradiance on a rainy day when the load on the eyeball is small and the view is not obstructed. Since it is 15% or less with respect to the irradiance of sunlight on a sunny day, this numerical value was determined as the average transmittance of near infrared rays. Thereby, the influence which near infrared rays have on a human body and an ecosystem can be reduced as much as possible, without disturbing a visual field.

CCDやCMOSなどの固体撮像素子の感度補正用の赤外線カットフィルタでは、片面30層程度の多層膜を形成することで上限波長域が1000nm〜1100nmの近赤外線をカットすることができるが、波長域が770nm〜1800nmと広範囲の近赤外線をカットするためには、片面のみで多層膜を形成した場合には、80層を超える多層膜が必要となる。このため、成膜時の膜厚のばらつきが光学特性に与える影響が大きくなる。
これに対して、本実施例に示すように透明樹脂基板10の両面に第一多層膜Xと第二多層膜Yを各々成膜して異なる波長域の近赤外線を遮光することで、トータルの積層数も減らせるうえに膜厚のばらつきも減るため光学特性が安定する。
Infrared cut filters for sensitivity correction of solid-state image sensors such as CCD and CMOS can cut near infrared rays with an upper limit wavelength range of 1000 nm to 1100 nm by forming a multilayer film of about 30 layers on one side. However, in order to cut a wide range of near infrared rays of 770 nm to 1800 nm, when a multilayer film is formed only on one side, a multilayer film exceeding 80 layers is required. For this reason, the influence which the dispersion | variation in film thickness at the time of film-forming has on an optical characteristic becomes large.
On the other hand, as shown in the present embodiment, the first multilayer film X and the second multilayer film Y are formed on both surfaces of the transparent resin substrate 10 to shield near infrared rays in different wavelength ranges, The total number of layers can be reduced and the variation in film thickness is reduced, so that the optical characteristics are stabilized.

次に、図7を参照して他例に係る近赤外線カットフィルタの構成例について説明する。本実施例は、透明樹脂基板10に色素(例えば青色着色剤;ブルーイング剤)を添加することにより、無添加の透明樹脂基板10に比べて第一多層膜X及び第二多層膜Y´の誘電体膜の積層数を各々減少させて成膜した実施例を示す。図7(A)は、透明樹脂基板10の模式断面図である。透明樹脂基板10をレンズと見た場合、入射面側に第一多層膜Xが成膜され、透過面側に第二多層膜Y´が成膜されている。第一多層膜X及び第二多層膜Y´はいずれも透明樹脂基板10(ポリカーボネイト樹脂基板)との密着性を考慮して第一層目を高屈折率薄膜である二酸化チタン(TiO2)とし、第二層目を低屈折率薄膜である二酸化ケイ素(SiO2)とし、交互に積層されている。   Next, a configuration example of a near-infrared cut filter according to another example will be described with reference to FIG. In this embodiment, the first multilayer film X and the second multilayer film Y are added to the transparent resin substrate 10 by adding a pigment (for example, a blue colorant; a bluing agent) as compared with the additive-free transparent resin substrate 10. An example in which the number of stacked 'dielectric films is reduced is shown. FIG. 7A is a schematic cross-sectional view of the transparent resin substrate 10. When the transparent resin substrate 10 is viewed as a lens, the first multilayer film X is formed on the incident surface side, and the second multilayer film Y ′ is formed on the transmission surface side. The first multilayer film X and the second multilayer film Y ′ are both titanium dioxide (TiO2), which is a high refractive index thin film as the first layer in consideration of adhesion to the transparent resin substrate 10 (polycarbonate resin substrate). The second layer is made of silicon dioxide (SiO2), which is a low refractive index thin film, and is laminated alternately.

図7(B)に第一多層膜X及び第二多層膜Y´の積層数を例示している。第一多層膜Xは、高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)が交互に積層されトータルで26層積層されている。また、第二多層膜Y´は高屈折率薄膜(TiO2)と低屈折率薄膜(SiO2)が交互に積層されトータルで13層積層されている。尚、第一多層膜Xは、図2(B)と積層数が変わっていないが、これより減らすことができることは言うまでもない。   FIG. 7B illustrates the number of stacked first multilayer film X and second multilayer film Y ′. In the first multilayer film X, a high refractive index thin film (TiO 2) and a low refractive index thin film (SiO 2) are alternately laminated to form a total of 26 layers. In addition, the second multilayer film Y ′ has a high refractive index thin film (TiO 2) and a low refractive index thin film (SiO 2) alternately stacked to form a total of 13 layers. The first multilayer film X has the same number of layers as that in FIG. 2B, but it is needless to say that the number can be reduced.

図8には図7(A)(B)に示す第一多層膜X及び第二多層膜Y´並びに色素入り透明樹脂基板10を有する近赤外線カットフィルタの光の波長に対する両面透過率と、第一多層膜Xの光の波長に対する透過率、第二多層膜Y´の光の波長に対する透過率及び透明樹脂基板10の光の波長に対する透過率を例示する。また図9には近赤外線カットフィルタの光の波長に対する両面透過率の拡大したグラフ図を示す。   FIG. 8 shows the double-sided transmittance with respect to the wavelength of light of the near-infrared cut filter having the first multilayer film X and the second multilayer film Y ′ and the dye-containing transparent resin substrate 10 shown in FIGS. The transmittance of the first multilayer film X with respect to the wavelength of light, the transmittance of the second multilayer film Y ′ with respect to the wavelength of light, and the transmittance of the transparent resin substrate 10 with respect to the wavelength of light are illustrated. FIG. 9 shows an enlarged graph of the double-sided transmittance with respect to the light wavelength of the near-infrared cut filter.

先ず、図7(A)の入射側に成膜された第一多層膜Xを自然光が透過した場合の透過率を図8の一点鎖線で示している。図8によれば、第一多層膜Xは短波長域770nm〜1400nmの近赤外線を概ね15%以下に遮光していることがわかる。また、図7(A)の出射側に成膜された第二多層膜Yを自然光が透過した場合の透過率を図8の破線で示している。図8によれば、第二多層膜Yは多層膜の積層数が減ったことにより長波長域1400nm〜1800nm の近赤外線が30%を超えるが35%を超えない程度に遮光していることが分かる。また、図8によれば、色素入り樹脂基板は、短波長域770nm〜1400nmの近赤外線は60%以上透過してしまうが、長波長域1400nm〜1800nm の近赤外線を30%以下にカットする波長域が存在することがわかる。また、第一多層膜Xも長波長域1400nm〜1800nm の近赤外線は60%以上透過してしまうが部分的に60%に近い比較的低い領域も存在する。
即ち、第一多層膜Xで短波長域の近赤外線を第二多層膜Yで長波長域の近赤外線を各々分担して遮光する他に、色素入り透明樹脂基板10によっても所定の波長域の近赤外線を遮光することを組み合わせることにより、図9に示すように両面透過率で、波長域が770nm〜1800nmの近赤外線を概ね30%以下にカットする近赤外線カットフィルタを形成している。
First, the transmittance when natural light is transmitted through the first multilayer film X formed on the incident side in FIG. 7A is indicated by a one-dot chain line in FIG. According to FIG. 8, it can be seen that the first multilayer film X shields near infrared rays in the short wavelength region of 770 nm to 1400 nm to approximately 15% or less. Further, the transmittance when natural light is transmitted through the second multilayer film Y formed on the emission side in FIG. 7A is indicated by a broken line in FIG. According to FIG. 8, the second multilayer film Y shields the near-infrared rays in the long wavelength range of 1400 nm to 1800 nm from 30% but does not exceed 35% due to the decrease in the number of laminated multilayer films. I understand. Further, according to FIG. 8, the dye-containing resin substrate transmits 60% or more of near infrared light in the short wavelength region 770 nm to 1400 nm, but the wavelength that cuts near infrared light in the long wavelength region 1400 nm to 1800 nm to 30% or less. It can be seen that there is an area. Further, the first multilayer film X also transmits near infrared rays in the long wavelength region of 1400 nm to 1800 nm by 60% or more, but there is a relatively low region that is partially close to 60%.
That is, the first multilayer film X shields the near-infrared light in the short wavelength region and the second multilayer film Y shares the near-infrared light in the long wavelength region. By combining the shielding of near-infrared light in the region, a near-infrared cut filter that cuts near-infrared light in the wavelength range of 770 nm to 1800 nm to approximately 30% or less with double-sided transmittance as shown in FIG. 9 is formed. .

この結果、図5の近赤外線カットフィルタを透過する光の波長と積算照度の関係を示す実線で示すグラフ図に示すように、透明樹脂基板10の両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットすることができた。
このように、透明樹脂基板10に色素を添加することにより、無添加の透明樹脂基板に比べて第一多層膜X及び第二多層膜Y´の誘電体膜の積層数を全体として減少させて成膜しても同等の光学特性を実現することができる。即ち、近赤外線の透過率が第一多層膜X及び第二多層膜Y´のほかに色素の吸収によっても低下するため、第一多層膜X及び第二多層膜Y´を形成する誘電体膜の積層数を更に低減させて、フィルタ構成を簡素化して安価に効率よく製造することができる。
As a result, as shown in a graph showing the relationship between the wavelength of light transmitted through the near-infrared cut filter of FIG. 5 and the integrated illuminance, sunlight having a wavelength range of 770 nm to 1800 nm on both surfaces of the transparent resin substrate 10 is shown. It was possible to cut so that the average transmittance of near-infrared with respect to the integrated irradiation amount of 15% or less.
Thus, by adding the pigment to the transparent resin substrate 10, the total number of the dielectric films of the first multilayer film X and the second multilayer film Y ′ is reduced as a whole compared with the additive-free transparent resin substrate. Even if the film is formed, the same optical characteristics can be realized. That is, the near-infrared transmittance decreases due to the absorption of the dye in addition to the first multilayer film X and the second multilayer film Y ′, so the first multilayer film X and the second multilayer film Y ′ are formed. Further, the number of laminated dielectric films can be further reduced, the filter configuration can be simplified, and the filter can be efficiently manufactured at low cost.

以上の実施例では近赤外線カットフィルタを構成する透明樹脂基板10(ポリカーボネイト樹脂基板)を用いていたが、これに替えて、波長域が420nm以上740nm以下の可視光の透過を90%より低く抑制する着色された光透過性樹脂基板を用いて上述した近赤外線カットフィルタを両面に形成してもよい。この場合、着色されたカラーレンズの両面に第一多層膜Xと第二多層膜Yを各々成膜することで、可視光の透過を抑えて太陽光の眩しさを低減するほかに、波長域770nm以上1800nm以下の近赤外線の平均透過率が15%以下となるようにカットすることで眼球に優しいフィルタを提供することができる。   In the above embodiment, the transparent resin substrate 10 (polycarbonate resin substrate) constituting the near-infrared cut filter is used. Instead, transmission of visible light having a wavelength range of 420 nm to 740 nm is suppressed to less than 90%. You may form the near-infrared cut filter mentioned above on both surfaces using the colored transparent resin substrate which carries out. In this case, by forming the first multilayer film X and the second multilayer film Y on both surfaces of the colored color lens, respectively, in addition to suppressing the transmission of visible light and reducing the glare of sunlight, A filter that is gentle to the eyeball can be provided by cutting so that the average transmittance of near-infrared rays in the wavelength range of 770 nm to 1800 nm is 15% or less.

上記近赤外線カットフィルタを用いれば、透明樹脂基板10に入射する波長域が770nm〜1800nmの近赤外線のうち一方の面に形成された第一多層膜Xで短波長域の近赤外線を遮光し、他方の面に形成された第二多層膜Yで長波長域の近赤外線を遮光する。これにより、波長域が420nm〜740nmの可視光を透過させ、波長域が770nm〜1800nmの近赤外線を太陽光の積算照射量に対して平均透過率が15%以下となるようにカットするので、近赤外線が人体や生態系に与える影響を可及的に減らすことができる。   If the near-infrared cut filter is used, the near-infrared light in the short wavelength region is shielded by the first multilayer film X formed on one surface of the near-infrared light having a wavelength range of 770 nm to 1800 nm incident on the transparent resin substrate 10. The second multilayer film Y formed on the other surface shields near infrared rays in the long wavelength region. As a result, visible light having a wavelength range of 420 nm to 740 nm is transmitted, and near infrared light having a wavelength range of 770 nm to 1800 nm is cut so that the average transmittance is 15% or less with respect to the integrated irradiation amount of sunlight. The effects of near infrared rays on human bodies and ecosystems can be reduced as much as possible.

また、第一多層膜Xを形成する誘電体膜の積層数は、第二多層膜Yを形成する誘電体膜の積層数より多くなるように透明樹脂基板10の両面に成膜されていることが望ましい。これにより、地上に届く太陽光のうちよりエネルギーレベルの高い短波長域770nm以上1400nm以下の近赤外線を誘電体膜の積層数が多い第一多層膜Xにより有効に遮光し、それよりエネルギーレベルの低い長波長域1400nm以上1800nm以下の近赤外線を誘電体膜の積層数が少ない第二多層膜Yにより効率よく遮断することができ、しかも、透明樹脂基板10の両面に成膜される誘電体膜の積層数を全体として減らして製造コストを削減することができる。   In addition, the dielectric film forming the first multilayer film X is formed on both surfaces of the transparent resin substrate 10 so as to be larger than the number of dielectric films forming the second multilayer film Y. It is desirable. This effectively shields near-infrared rays in the short wavelength range of 770 nm to 1400 nm, which has a higher energy level, from sunlight reaching the ground by the first multilayer film X having a large number of dielectric films, and further reduces the energy level. Can be efficiently blocked by the second multilayer film Y having a small number of laminated dielectric films, and the dielectric film formed on both surfaces of the transparent resin substrate 10 can be efficiently blocked. Manufacturing cost can be reduced by reducing the number of laminated body films as a whole.

特に、透明樹脂基板10の両面に多層膜X,Yがそれぞれ形成されるので、透明樹脂基板10に誘電体膜を形成する際の応力集中が起こり難く、基板の変形や割れの発生が抑えられ、かつ片面に積層する誘電体膜の層数も抑えられるので、透明樹脂基板10の温度管理も不要となり生産性も向上させることができる。
また、入射面側の第一多層膜Xを近赤外線の短波長光770nm〜1400nmに対する反射ミラーとして機能させ、透過面側の第二多層膜Yを近赤外線の長波長光1400nm〜1800nmに対する反射ミラーとして機能させ、近赤外線を遮光しつつ波長域が420nm〜740nmの可視光の高い透過性を確保することができる。基板の両面にミラーを設けたことにより透明樹脂基板10自体の温度上昇を抑えることができ、基板の変形や多層膜の剥離を抑制することができる。
また、それとは逆に、入射面側の第一多層膜Xで近赤外線の長波長光1400nm〜1800nmを遮光し、透過面側の第二多層膜で近赤外線の短波長光770nm〜1400nmを遮光することもできる。
In particular, since the multilayer films X and Y are respectively formed on both surfaces of the transparent resin substrate 10, stress concentration is difficult to occur when forming a dielectric film on the transparent resin substrate 10, and deformation and cracking of the substrate can be suppressed. In addition, since the number of dielectric films laminated on one side can be reduced, temperature management of the transparent resin substrate 10 is not required, and productivity can be improved.
Also, the first multilayer film X on the incident surface side functions as a reflection mirror for near-infrared short wavelength light 770 nm to 1400 nm, and the second multilayer film Y on the transmission surface side for near-infrared long wavelength light 1400 nm to 1800 nm. It can function as a reflection mirror, and can secure high transparency of visible light having a wavelength range of 420 nm to 740 nm while shielding near infrared rays. By providing mirrors on both sides of the substrate, the temperature rise of the transparent resin substrate 10 itself can be suppressed, and deformation of the substrate and peeling of the multilayer film can be suppressed.
Conversely, near-infrared long-wavelength light 1400 nm to 1800 nm is shielded by the first multilayer film X on the incident surface side, and near-infrared short-wavelength light 770 nm to 1400 nm is transmitted by the second multilayer film on the transmission surface side. Can also be shielded from light.

また、図3のグラフ図によれば、透明樹脂基板10に入射する波長域が770nm〜1800nmの近赤外線を有効にカットするほかに、波長域が200nm〜400nmのUV光(紫外線)も有効に遮断することができる。
よって、近赤外線カットフィルタを適用した透明樹脂基板10を眼鏡用のレンズ部に使用すれば極めて目に優しい眼鏡を提供することができる。或いは近赤外線カットフィルタを遮光シートとして用いれば、人体のみならず幅広く生態系(動植物)への保護に役立てることができる。
Further, according to the graph of FIG. 3, in addition to effectively cutting near infrared rays having a wavelength range of 770 nm to 1800 nm incident on the transparent resin substrate 10, UV light (ultraviolet rays) having a wavelength range of 200 nm to 400 nm is also effective. Can be blocked.
Therefore, if the transparent resin substrate 10 to which the near-infrared cut filter is applied is used for the lens portion for spectacles, it is possible to provide spectacles that are extremely eye-friendly. Or if a near-infrared cut filter is used as a light-shielding sheet, it can be used to protect not only human bodies but also ecosystems (animals and plants).

1 イオンアシスト蒸着装置 2 真空チャンバ 3 イオン源 4 イオン 5 中和器(ニュートライザー) 6 電子 7 第一蒸発源 7a,8a シャッター 8 第二蒸発源 9 基板ドーム 10 透明樹脂基板 11 電子銃 12 蒸発物質 X 第一多層膜 Y,Y´ 第二多層膜   DESCRIPTION OF SYMBOLS 1 Ion-assisted vapor deposition apparatus 2 Vacuum chamber 3 Ion source 4 Ion 5 Neutralizer 6 Electron 7 First evaporation source 7a, 8a Shutter 8 Second evaporation source 9 Substrate dome 10 Transparent resin substrate 11 Electron gun 12 Evaporating substance X first multilayer film Y, Y ′ second multilayer film

Claims (5)

透明樹脂基板の両面に高屈折率の誘電体膜と低屈折率の誘電体膜を交互に積層された多層膜が各々形成され、波長域が420nm以上740nm以下の可視光を90%以上透過させ、波長域が770nm以上1800nm以下の近赤外線をカットする眼鏡レンズ用近赤外線フィルタであって、
前記透明樹脂基板の一方の面に形成された第一多層膜では短波長域770nm以上1400nm以下の近赤外線を遮光し、他方の面に形成された第二多層膜では前記短波長域以外の長波長域1400nm以上1800nm以下の近赤外線を遮光し、前記第一多層膜を形成する誘電体膜の積層数は、前記第二多層膜を形成する誘電体膜の積層数より多くなるように前記透明樹脂基板の両面に成膜されて当該透明樹脂基板両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットすることを特徴とする近赤外線カットフィルタ。
A multilayer film in which high-refractive index dielectric films and low-refractive index dielectric films are alternately laminated is formed on both sides of the transparent resin substrate, and allows 90% or more transmission of visible light with a wavelength range of 420 nm to 740 nm. A near-infrared filter for spectacle lenses that cuts near-infrared light in the wavelength range of 770 nm to 1800 nm,
The first multilayer film formed on one surface of the transparent resin substrate blocks near infrared rays in the short wavelength region of 770 nm to 1400 nm , and the second multilayer film formed on the other surface other than the short wavelength region. The number of dielectric films that form the first multilayer film is greater than the number of dielectric films that form the second multilayer film by shielding near infrared rays in the long wavelength region of 1400 nm to 1800 nm. In this way, the film is formed on both surfaces of the transparent resin substrate, and the both sides of the transparent resin substrate are cut so that the near-infrared average transmittance with respect to the integrated irradiation amount of sunlight having a wavelength range of 770 nm to 1800 nm is 15% or less. A near-infrared cut filter characterized by that.
前記透明樹脂基板に色素を添加することにより、無添加の前記透明樹脂基板に比べて前記第一多層膜及び第二多層膜の誘電体膜の積層数を全体として減少させて成膜した請求項1記載の近赤外線カットフィルタ。 By adding a pigment to the transparent resin substrate, the number of laminated dielectric films of the first multilayer film and the second multilayer film was reduced as a whole compared to the transparent resin substrate without addition. The near-infrared cut filter according to claim 1. 前記透明樹脂基板に替えて、波長域が420nm以上740nm以下の可視光の透過を90%より低く抑制する着色された光透過性樹脂基板を用いた請求項1又は請求項2記載の近赤外線カットフィルタ。 Instead of the transparent resin substrate,請 Motomeko 1 or claim 2 NIR described using an optically transparent resin substrate wavelength region is colored to suppress the transmission of the following visible light 420nm or 740nm lower than 90% Cut filter. 透明樹脂基板の両面に高屈折率薄膜と低屈折率薄膜を交互に積層された多層膜を真空蒸着法により成膜する上述した近赤外線カットフィルタの製造方法であって、A method for producing a near-infrared cut filter as described above, wherein a multilayer film in which a high refractive index thin film and a low refractive index thin film are alternately laminated on both sides of a transparent resin substrate is formed by vacuum deposition,
真空容器内で治具に保持された前記透明樹脂基板を回転させる工程と、A step of rotating the transparent resin substrate held by a jig in a vacuum vessel;
真空状態でかつ前記透明樹脂基板のガラス転移点温度より低い所定成膜温度で、前記透明樹脂基板の一方の面に高屈折率薄膜と低屈折率薄膜とを交互に成膜して複数積層する第一蒸着工程と、A plurality of high refractive index thin films and low refractive index thin films are alternately deposited on one surface of the transparent resin substrate at a predetermined film formation temperature lower than the glass transition temperature of the transparent resin substrate in a vacuum state. A first vapor deposition step;
前記治具に保持する前記透明樹脂基板を反転させて、真空状態でかつ前記透明樹脂基板のガラス転移点温度より低い所定成膜温度で当該透明樹脂基板の他方の面に高屈折率薄膜と低屈折率薄膜とを交互に成膜して複数積層する第二蒸着工程と、を含み、The transparent resin substrate held by the jig is inverted, and a high refractive index thin film and a low refractive index film are placed on the other surface of the transparent resin substrate at a predetermined film formation temperature lower than the glass transition temperature of the transparent resin substrate in a vacuum state. A second vapor deposition step of alternately stacking a plurality of refractive index thin films, and
前記透明樹脂基板の一方の面に形成された第一多層膜では主として短波長域770nm以上1400nm以下の近赤外線光を遮光し、前記透明樹脂基板の他方の面に形成された第二多層膜では主として長波長域1400nm以上1800nm以下の近赤外線光を遮光することで、前記透明樹脂基板両面で波長域が770nm以上1800nm以下の太陽光の積算照射量に対する近赤外線の平均透過率が15%以下となるようにカットする近赤外線カットフィルタを製造することを特徴とする近赤外線カットフィルタの製造方法。The first multilayer film formed on one surface of the transparent resin substrate mainly shields near-infrared light in the short wavelength region of 770 nm to 1400 nm and is formed on the other surface of the transparent resin substrate. The film mainly shields near-infrared light in the long wavelength range from 1400 nm to 1800 nm, so that the average transmittance of near-infrared relative to the cumulative irradiation amount of sunlight with wavelength range from 770 nm to 1800 nm on both sides of the transparent resin substrate is 15%. The manufacturing method of the near-infrared cut filter characterized by manufacturing the near-infrared cut filter cut so that it may become the following.
請求項1乃至請求項3記載の近赤外線カットフィルタ又は請求項4に記載の製造方法を用いて製造した近赤外線カットフィルタをレンズ部に備えたことを特徴とする眼鏡。A near-infrared cut filter manufactured by using the near-infrared cut filter according to claim 1 or the manufacturing method according to claim 4 in a lens part.
JP2014035465A 2014-02-26 2014-02-26 Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same Expired - Fee Related JP5597780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035465A JP5597780B1 (en) 2014-02-26 2014-02-26 Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035465A JP5597780B1 (en) 2014-02-26 2014-02-26 Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same

Publications (2)

Publication Number Publication Date
JP5597780B1 true JP5597780B1 (en) 2014-10-01
JP2015161731A JP2015161731A (en) 2015-09-07

Family

ID=51840279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035465A Expired - Fee Related JP5597780B1 (en) 2014-02-26 2014-02-26 Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same

Country Status (1)

Country Link
JP (1) JP5597780B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181927A (en) * 2016-03-31 2017-10-05 株式会社大真空 Infrared-cut filter
CN111868579B (en) 2018-03-26 2022-08-09 Jsr株式会社 Optical filter and use thereof
KR102420769B1 (en) 2018-09-20 2022-07-14 후지필름 가부시키가이샤 Curable composition, cured film, infrared transmission filter, laminated body, solid-state image sensor, sensor, and pattern formation method
JP7136909B2 (en) * 2018-09-28 2022-09-13 ホヤ レンズ タイランド リミテッド spectacle lenses
JP7251099B2 (en) * 2018-10-31 2023-04-04 日本電気硝子株式会社 Bandpass filter and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329719A (en) * 1995-05-30 1996-12-13 Iwasaki Electric Co Ltd Heat ray cutting filter
JPH10291839A (en) * 1997-04-18 1998-11-04 Nippon Sheet Glass Co Ltd Ultraviolet ray and heat ray reflecting glass article
JP2004125822A (en) * 2002-09-30 2004-04-22 Toto Ltd Film-forming matter
JP2010055058A (en) * 2008-07-28 2010-03-11 Nippon Electric Glass Co Ltd Broadband reflecting mirror
JP2010078714A (en) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Wide area heat ray cut filter
JP2011253093A (en) * 2010-06-03 2011-12-15 Fujifilm Corp Heat ray shield
JP2013011711A (en) * 2011-06-29 2013-01-17 Ito Kogaku Kogyo Kk Optical element
JP2013080178A (en) * 2011-10-05 2013-05-02 Konica Minolta Advanced Layers Inc Light-shielding film and infrared shield using the same
JP2013088762A (en) * 2011-10-21 2013-05-13 Three M Innovative Properties Co Heat-shielding laminate, and laminated film used in manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329719A (en) * 1995-05-30 1996-12-13 Iwasaki Electric Co Ltd Heat ray cutting filter
JPH10291839A (en) * 1997-04-18 1998-11-04 Nippon Sheet Glass Co Ltd Ultraviolet ray and heat ray reflecting glass article
JP2004125822A (en) * 2002-09-30 2004-04-22 Toto Ltd Film-forming matter
JP2010055058A (en) * 2008-07-28 2010-03-11 Nippon Electric Glass Co Ltd Broadband reflecting mirror
JP2010078714A (en) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Wide area heat ray cut filter
JP2011253093A (en) * 2010-06-03 2011-12-15 Fujifilm Corp Heat ray shield
JP2013011711A (en) * 2011-06-29 2013-01-17 Ito Kogaku Kogyo Kk Optical element
JP2013080178A (en) * 2011-10-05 2013-05-02 Konica Minolta Advanced Layers Inc Light-shielding film and infrared shield using the same
JP2013088762A (en) * 2011-10-21 2013-05-13 Three M Innovative Properties Co Heat-shielding laminate, and laminated film used in manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Also Published As

Publication number Publication date
JP2015161731A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5597780B1 (en) Near-infrared cut filter, method for manufacturing the same, and glasses equipped with the same
US8233219B2 (en) Optical multilayer thin-film filters and methods for manufacturing same
JP6510412B2 (en) Photochromic spectacle lens
JP5489824B2 (en) Antireflection film and infrared optical element
US8861088B2 (en) Optical filter
US8693089B2 (en) IR cut filter
US8559094B2 (en) Thermochromic smart window and method of manufacturing the same
JP5759717B2 (en) Imaging optical system for surveillance cameras
JP2006301489A (en) Near-infrared ray cut filter
JP6269665B2 (en) Optical filter and optical filter manufacturing method
TW201245836A (en) Optical filter module and optical filter system
CN201917731U (en) Anti-infrared spectacle glass
TWM548796U (en) Near-infrared absorbing filter and image sensor
JP2004354735A (en) Light ray cut filter
JP2014203063A (en) Near infrared cut filter and spectacles having the same
US8075947B2 (en) Optical thin-film-forming methods and optical elements formed using same
KR102009974B1 (en) Near infrared ray blocking lens
JP2016218335A (en) Glass member with optical multi-layer film
JP2009162852A (en) Optical element
JP2000314808A (en) Infrared ray shielding filter
JP6136661B2 (en) Near-infrared cut filter
US7719748B2 (en) Method and apparatus for switching optical filters
CN104309196A (en) Visible light and near infrared light two-waveband antireflection film glass and manufacturing method thereof
KR102130995B1 (en) Strength improving method of glass substrate for optical filter and optical filter thereby
JP5287362B2 (en) Optical filter and imaging system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees