JP5589842B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP5589842B2
JP5589842B2 JP2010518988A JP2010518988A JP5589842B2 JP 5589842 B2 JP5589842 B2 JP 5589842B2 JP 2010518988 A JP2010518988 A JP 2010518988A JP 2010518988 A JP2010518988 A JP 2010518988A JP 5589842 B2 JP5589842 B2 JP 5589842B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
pigment
rth
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010518988A
Other languages
English (en)
Other versions
JPWO2010001733A1 (ja
Inventor
美絵 清水
港  浩一
保浩 檜林
総平 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010518988A priority Critical patent/JP5589842B2/ja
Publication of JPWO2010001733A1 publication Critical patent/JPWO2010001733A1/ja
Application granted granted Critical
Publication of JP5589842B2 publication Critical patent/JP5589842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Description

本発明は、斜め方向及び正面の視認性の良好なカラーフィルタ及びそれを備える液晶表示装置に関する。
液晶表示装置は、液晶分子の持つ複屈折性を利用した表示素子であり、液晶セル、偏光素子および光学補償層から構成される。このような液晶表示装置は、光源の種類により、光源を内部に有する構造である透過型と、外部の光源を利用する構造である反射型の2つに大別される。
透過型液晶表示装置は、二枚の偏光素子を液晶セルの両側に配置し、一枚または二枚の光学補償層を液晶セルと偏光素子との間に設けた構成からなる。また、反射型液晶表示装置は、反射板、液晶セル、一枚の光学補償層、及び一枚の偏光素子の順に配置した構成を有する。
液晶セルには、二枚の基板に狭持された棒状液晶性分子が配向して封入されており、二枚の基板の両側もしくは片側に配置された電極層に電圧を加えることにより、棒状液晶性分子の配向状態を変化させて光の透過/遮光をスイッチングするしくみとなっている。
液晶セルは、棒状液晶性分子の配向状態の違いで、TN(Twisted Nematic)、IPS(In-Plane Switching)、FFS(Fringe Field Switching)、FLC(Ferroelectric Liquid Crystal)、OCB(Optically Compensated Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)、HAN(Hybrid Aligned Nematic)のような様々な表示モードのものが提案されている。
偏光素子は、一般に、ポリビニルアルコール(以下、PVAと称する)にヨウ素を拡散して延伸した偏光膜の両側にトリアセチルセルロース(以下、TACと称する)からなる二枚の透明保護膜を貼り付けた構成を有する。
光学補償層としては様々なものが提案されているが、例えば、高視野角な範囲において表示特性が良好なVAモード液晶表示装置では、三次元の主屈折率n,n,nに対し、n≧n>nで表される屈折率楕円体を有する二軸性位相差フィルムが併用されている(例えば、石鍋ら、The Society for Information Display Digest, 1094.(2000)、及び特開2007-328324号公報参照)。
近年、液晶表示装置は、その薄型ゆえの省スペース性や軽量性、また省電力性などが評価され、テレビ視聴機としても急速な広がりを見せるとともに、輝度、コントラストや全方位の視認性などの表示性能をより高めることが強く要求されるようになっている。
具体的には、テレビ用途としては、より高コントラスト、広視野角表示が可能なノーマリーブラックモードのIPSやVAの液晶表示装置が特に好まれて使用されており、上述した光学補償層も、正面から見た時の黒表示時の色付きや、斜めから見たときの色変化が最小となるように設計されたものが使用されている。
しかしながら、上述したVAモード液晶表示装置に用いられる光学補償層は、一般的に二軸方向に延伸して形成される二軸性の位相差フィルムであるか、重合性液晶性及び/又は非重合性液晶性材料を塗布して形成される位相差フィルムであることがほとんどで、三次元の主屈折率n,n,nに対し近時求められる高度な表示品質のレベルで制御して製造することが困難であった。
具体的には、光学補償層は、液晶材料の複屈折性のみならず、カラーフィルタを構成する赤色、緑色および青色の着色画素層が各々有する厚み方向位相差値(以下、Rth(R)、Rth(G)、Rth(B)と称する)まで考慮して光学補償層の三次元の主屈折率を決定して製造する必要があるが、n,nの2つのパラメータで表される面内の位相差値と、n,n,nの3つのパラメータで表される厚み方向の位相差値を同時に精度良く制御することに加えて、液晶材料の複屈折率の波長分散、およびカラーフィルタを構成する赤色・緑色および青色の各着色画素層の、それぞれ赤領域・緑領域・青領域の波長の光に対する厚み方向位相差値の両方を補償する波長分散性を光学補償層に持たせることは困難であり、従来の液晶表示装置では、まだ最適な値に設計されているとは言えなかった。
この結果、表示面に対して正面(垂直方向)からの視認性は良いが、正面(垂直方向)から45度など斜めから観察した視認性(以下、斜め視認性と略称する)において、最適に光学補償されていないため、ある特定の色だけが光漏れすることになり、黒表示時に 赤味や青味など、あるいは緑味などの色付きを生じさせてしまうことになる。
液晶表示装置に用いられる他の部材に比べて、カラーフィルタのリタデーションは比較的小さいものであったために、従来方式の液晶表示装置ではカラーフィルタのリタデーションはほとんど考慮されずに光学補償層の補償能が設計されていたが、高コントラストや広い視野角特性が要求される液晶テレビなどでは無視できないレベルとなってきた。
特に1000、あるいは3000以上の高コントラストの液晶表示装置では、要求される黒表示の画質に高いものが求められ、問題となってきた。
これに対して、着色高分子薄膜に側鎖に平面構造基を有する高分子を含有させるか、又は着色高分子薄膜に高分子と正負逆の複屈折率をもつ複屈折低減粒子を含有させることで、カラーフィルタのもつリタデーション量を低減させる試みがなされている(例えば、特開2000-136253号公報及び特開2000-187114号公報参照)。
また、カラーフィルタの青色領域の面内位相差を緑色領域や赤色領域よりも大きくすることで、青の漏れ光を大きくして全体的に青と補色関係にある黄味付きを相殺し、液晶表示装置を斜めから見た場合に全体が黄色に着色することを改善する方法が開示されている(例えば特開2001-242460号公報参照)。
さらに、カラーフィルタの赤色、緑色、および青色画素の厚み方向位相差値Rth(R)、Rth(G)、Rth(B)を液晶材料や位相差フィルムの波長分散性に合わせてRth(R)>Rth(G)>Rth(B)またはRth(R)<Rth(G)<Rth(B)とすることで、斜め視認性を改善する方法が開示されている(例えば、特開2007-212603号公報参照)。
しかしながら、カラーフィルタのもつ厚み方向位相差値は、用いる顔料種によって大きく異なることや、また該顔料の微細化や分散、あるいはマトリックス樹脂(たとえばアクリル樹脂やカルド樹脂など)によって厚み方向位相差値の程度も大きくなることを本発明者等は見出しており、これら高分子薄膜や複屈折低減粒子を含有させる方法では十分な効果が得られず、上述の問題を解決できなかった。
特に、高コントラスト液晶表示装置向けの、有機顔料の分散性が良いアクリル樹脂に代表される透明樹脂を基材とするカラーフィルタでは、要求される高コントラスト値(1000以上、より好ましくは、3000以上)を維持しながら 斜め視認性を改善することは困難であった。
加えて、従来の技術では、単純に複屈折の小さいカラーフィルタが優れたカラーフィルタであるとされており、斜め視認性を改善する手段については検討されていても、高コントラスト液晶表示装置として、液晶材料および光学補償層の複屈折率の波長分散性を考慮し、黒表示に問題ないレベルまでカラーフィルタの各色の厚み方向位相差を最適な値に調整する手段についてはほとんど検討されていなかった。
本発明は、以上のような事情の下になされ、斜め方向から観察しても着色がなく、かつ正面視認性の良好な液晶表示装置及びそのためのカラーフィルタを提供することを目的とする。
本発明の第1の態様によると、カラーフィルタを備える液晶セルと、この液晶セルの両外面にそれぞれ配置された一対の偏光板と、これら偏光板の内側に設けられた光学補償層とを具備する液晶表示装置であって、該液晶表示装置を黒表示させてCIE1960表色系で表される色度(u、v)を測定し、垂直方向から見たときの色度(u(⊥)、v(⊥))と、表示面の法線方向からθ°傾けた方位から見たときの色度(u(θ)、v(θ))の、下記式(1)で表される色度差Δuvが、0<θ≦60の範囲で0.02以下であって、前記カラーフィルタは、少なくとも赤色画素、緑色画素および青色画素を含む着色画素を備え、前記赤色画素の厚み方向位相差値Rth(R)、緑色画素の厚み方向位相差値Rth(G)、および青色画素の厚み方向位相差値Rth(B)が、下記式(2)及び式(3)を満たすことを特徴とする液晶表示装置が提供される。
Δuv=[{u(⊥)−u(θ)} +{v(⊥)−v(θ)} 1/2 ・・・(1)
Rth(G)≧0・・・(2)
Rth(B)<Rth(G)>Rth(R)・・・(3)
(式中、Rth(R)、Rth(G)、およびRth(B)は、それぞれの画素の面内屈折率の平均から厚み方向屈折率を引いた値と、画素の厚み(nm)の積より得られ、Rth(R)は赤領域を通過する波長610nmの光に対する厚み方向位相差値、Rth(G)は緑領域を通過する波長545nmの光に対する厚み方向位相差値、Rth(B)は青領域を通過する波長450nmの光に対する厚み方向位相差値をそれぞれ表す。)
本発明の一実施形態に係るカラーフィルタを示す概略断面図である。 本発明の一実施形態に係るカラーフィルタを備えた液晶表示装置の一例を示す概略断面図である。 液晶表示装置製造を製造するプロセスを示すフローチャート図である。
以下、本発明の実施の形態につき説明する。
図1は、本発明の第1の実施形態に係る液晶表示装置用カラーフィルタの構成例を示す。図1に示すカラーフィルタでは、ガラス基板1上にブラックマトリクス2が設けられ、このブラックマトリクス2により区画された領域に、赤色画素3R、緑色画素3G、及び青色画素3Bの3色の着色画素が形成されている。
このカラーフィルタでは、赤色画素3Rの厚み方向位相差値Rth(R)、緑色画素3Gの厚み方向位相差値Rth(G)、および青色画素3Bの厚み方向位相差値Rth(B)が、下記式(2)及び式(3)を満たしている。
Rth(G)≧0・・・(2)
Rth(B)< Rth(G) >Rth(R)・・・(3)
式中、Rth(R)、Rth(G)、およびRth(B)は、それぞれの画素の面内屈折率の平均から厚み方向屈折率を引いた値と、画素の厚み(nm)の積より得られ、Rth(R)は赤領域を通過する波長610nmの光に対する厚み方向位相差値、Rth(G)は緑領域を通過する波長545nmの光に対する厚み方向位相差値、Rth(B)は青領域を通過する波長450nmの光に対する厚み方向位相差値をそれぞれ表す。
各着色画素の厚み方向位相差値は、可視域(たとえば、波長380nm〜780nmの範囲)の透過光ピーク域の波長を含む連続波長の光を正面および複数の傾斜した角度から照射し、分光エリプソメータなどの位相差測定装置を用いて3次元屈折率を測定することで得られる。
例えば、赤色画素では610nm、緑色画素では545nm、青色画素では450nmの波長の光を用い、正面と入射角45度の少なくとも2方向からの光で位相差測定を行い、Nx、Ny、Nzの3次元屈折率を得たのち、以下に示す式(4)により厚み方向位相差値(Rth)を算出する。
Rth={(Nx+Ny)/2−Nz}×d ・・・(4)
式中、Nxは、着色画素層の平面内のx方向の屈折率であり、Nyは、着色画素層の平面内のy方向の屈折率であり、Nzは、着色画素層の厚み方向の屈折率であり、NxをNx≧Nyとする遅相軸とする。dは、着色画素層の厚み(nm)である。
この際、測定する対象がカラーフィルタである場合は、R、G、Bの単一着色画素層のみを透過するように加工されたマスクを介して測定することで、単一着色画素層の位相差値を求めることができる。
また、例えば、610nmの波長の光を入射光として使用した場合は、赤色画素のみに起因する位相差値、545nmの場合は、緑色画素のみに起因する位相差値、450nmの場合は、青色画素のみに起因する位相差値としてそれぞれ単一着色画素層のおおよその値を見積もることができる。
なお、測定する対象がR、G、Bのうちいずれかの単一着色画素層(透明基板に単色カラーフィルタ着色組成物の塗膜を形成した構成)である場合は、マスクを介することなく位相差の測定が可能となる。
二軸性位相差フィルムなどのフィルムの厚み方向位相差値も同様の方法で測定できる。
本発明の第2の実施形態に係る液晶表示装置は、液晶セルの両外面にそれぞれ配置された偏光板の内側に設けられた光学補償層を備え、以上説明した、本発明の第1の実施形態に係るカラーフィルタを用いるものである。このような液晶表示装置によると、表示面垂直方向から見たときと斜め方向から見たときの色度差を所定の範囲内とすることが出来、カラーフィルタの各着色画素の表示領域を通過する光の偏光状態のばらつきが低減し、斜め方向および正面の視認性が良好である。
この液晶表示装置を黒表示させてCIE1960表色系で表される色度(u、v)を測定し、垂直方向から見たときの色度(u(⊥)、v(⊥))と、表示面の法線方向からθ°傾けた方位から見たときの色度(u(θ)、v(θ))の、下記式(1)で表される色度差Δuvを、0<θ≦60の範囲で0.02以下とすることが必要である。
Δuv=[{u(⊥)−u(θ)}+{v(⊥)−v(θ)}1/2・・・(1)
色度差Δuvが0.02より大きい場合には、垂直方向から見たときの黒表示の色度と、斜めに傾けた方位から見たときの色度のずれが大きい、すなわち、見る角度によって表示画像の色合いが異なる、表示品位の劣った液晶表示装置となってしまう。液晶表示装置をテレビ視聴機とした場合、画面中央と画面端の視差によっても異なった色が表示されてしまうため、この問題は特に、画面対角が42インチ以上の大画面の液晶テレビにおいて顕著となる。
次に、本発明の第2の実施形態に係る液晶表示装置の原理について説明する。
上述したVAモード等の液晶表示装置に用いられる光学補償層は、一般的に、n≧n>nで表される屈折率楕円体を有する二軸性位相差フィルムであるか、重合性液晶性及び/又は非重合性液晶性材料を塗布して形成された位相差フィルムであることがほとんどであり、これらのフィルムを使用した場合には、厚み方向位相差値Rthも、通常、波長が大きくなるほど値が大きくなるか、波長が小さくなるほど値が大きくなる波長分散(以下、コーシーの分散式に従う、と称する)を有することとなる。
一般的に斜めから見たときに液晶の複屈折性にも波長分散性を有するVAモード液晶表示装置に対しては、これらのフィルムのRthの波長分散が液晶の波長分散性を完全に補償していないと、特に黒表示時に斜めから見た表示特性を悪化させる不具合を生じさせる。すなわち、斜めから見たときに、黒表示が黄色味付き、視認性に悪影響を及ぼしてしまう。
また、液晶の視野角依存性に左右されないため広視野角液晶モードとして知られる前記IPSモードやFFSモードなどの液晶表示装置では、光学補償層は、一般的に、n≧n≧n、またはn≧n>nである二軸性の位相差フィルムであるか、光学補償機能がないTAC(トリアセチルセルロース)などの透明保護膜であることがほとんどで、これらのフィルムを使用した場合には、正の厚み方向位相差Rthを0から100の範囲の値で有することとなる(例えば、石鍋ら、SID Digest、1094.(2000)、石鍋ら、Jpn.J.Appl.Phys.、41、4553.(2002)及び上述した特許文献5参照)。
一般的に厚み方向位相差の生じないIPSモード液晶表示装置に対しては、これらのフィルムの正の厚み方向位相差は光漏れの原因となり、特に黒表示時に斜めから見た表示特性を悪化させる不具合を生じさせることとなる。すなわち、斜めから見たときに、黒表示が黄色味付き、視認性に悪影響を及ぼしていた。
一方、カラーフィルタの複屈折率の絶対値が0.01以下であること、すなわち厚み方向位相差値(Rth)が限りなくRth(R)=Rth(G)=Rth(B)=0に近いことが通常望まれるが、本発明者等は、用いる顔料種、また該顔料の微細化の程度やマトリックス樹脂中における分散性、あるいはマトリックス樹脂(たとえばアクリル樹脂やカルド樹脂など)の種類によって赤色、緑色および青色の各色画素の厚み方向位相差値(Rth)がそれぞれ異なること、一例として赤色は正または負のRthを示し、青色は正のRthを示し、緑色は負のRthを示す性質を有することを見出している。
この結果、表示面に対して正面(垂直方向)からの視認性は良いが、45度など斜めから観察した視認性(以下、斜め視認性と略称する)において、ある特定の色だけが光漏れすることになり、黒表示時に斜めから見た場合に赤味や青味、あるいは緑味などの色付きを生じてしまう。
さらに重要なのは、カラーフィルタの高コントラスト化が進む、すなわちカラーフィルタの消偏性が小さくなるに従って、黒表示時に正面から見たときの色度は、偏光板のクロスニコルでの色度に近づくという点である。
偏光板の二色性も向上しており、近年においては高コントラストの偏光板が使用されるようになっているが、クロスニコルでの色相は青味であるものがほとんどである。すなわち、偏光板からの400nm付近の波長の光漏れが多いために、黒表示時の正面から見た時の色相は青味となっている。
従って、液晶・偏光板・位相差板・配向膜などの液晶表示装置の光学部材の組み合わせにおいて、最適な斜め視認性を得る組み合わせを選定する必要があり、正面から見たときと斜めから見た時の色変化を最小にするには、斜めから見たときの色度も青味にする必要がある。
本発明者らは、これらについて鋭意検討した結果、カラーフィルタの各色厚み方向位相差値Rthが、下記式(2)及び(3)を満たすことで、良好な斜め視認性を有する液晶表示装置が得られることを見出した。
Rth(G)≧0・・・(2)
Rth(B)<Rth(G)>Rth(R)・・・(3)
すなわち、緑色画素の厚み方向位相差値を0以上、青色および赤色画素の厚み方向位相差値を緑色画素の厚み方向位相差値より小さい値とすることにより、正面から見たときにはカラーフィルタの厚み方向位相差値は影響を及ぼさず、斜めから見たときには青領域の光漏れが緑領域の光漏れより多くなり、青味を帯びることで、正面色度との色差を低減することが出来る。
このように、カラーフィルタ以外の構成部材、例えばTACフィルムの波長分散性と組み合わせる場合、Rth(R)=Rth(G)=Rth(B)=0以外にも最適なカラーフィルタの厚み方向位相差に関する値が存在することが見出された。
次に、本発明の第1の実施形態に係る液晶表示装置用カラーフィルタについて、更に詳細に説明する。
図1に示すカラーフィルタは、赤色画素3R、緑色画素3G、および青色画素3Bの3色の着色画素を備えているが、これら3色に限らず、さらに、補色の組み合わせでも良く、あるいは補色や他色を含んだ3色以上の多色のカラーフィルタであっても良い。
なお、良好な正面視認性、特に黒表示において黒輝度の低い引き締まった色を得るには、着色表示画素が顔料分散型の着色組成物を用いて形成されるカラーフィルタの場合、顔料の1次粒子の粒度分布が、個数粒度分布の積算曲線において積算量が全体の50%に相当する粒子径d50が40nm以下であるのが好ましく、d50が30nm以下であるのがより好ましい。顔料の1次粒子の粒子径d50がこのような範囲であることにより、斜め方向からだけでなく、正面方向からの視認性の良い液晶表示装置を得ることができるからである。
赤色画素としては、例えば、C.I.Pigment Red 7、14、41、48:2、48:3、48:4、81:1、81:2、81:3、81:4、146、168、177、178、179、184、185、187、200、202、208、210、246、254、255、264、270、272、279等の赤色顔料を用いることができ、黄色顔料や橙色顔料を併用することもできる。
黄色顔料としては、C.I.Pigment Yellow1、2、3、4、5、6、10、12、13、14、15、16、17、18、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、126、127、128、129、147、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、187、188、193、194、199、198、213、214等が挙げられる。
橙色顔料としては、C.I.Pigment Orange36、43、51、55、59、61、71、73等が挙げられる。
赤色画素が、これら顔料のなかでジケトピロロピロール系赤色顔料、アントラキノン系赤色顔料のうち1種類以上を含む場合には、任意のRthを得ることが容易になるため、好ましい。
なぜなら、これらの赤色顔料は、透過性に優れ、また、顔料の合成方法、及びその微細化処理を工夫することにより、高コントラストで、かつRthを正から負の間である程度制御が可能であり、その絶対値もある程度制御可能であるからである。
Rthの値は、用いる顔料の配合比による加成律が、ほぼ成り立つと言って良い。顔料の使用量は、顔料の合計重量を基準として、ジケトピロロピロール系赤色顔料を0〜100重量%、好ましくは10〜90重量%、アントラキノン系赤色顔料を0〜66重量%、好ましくは5〜70重量%とすることが、画素の色相や明度、膜厚、コントラスト等の点から好ましく、特に、コントラストに着目した場合、ジケトピロロピロール系赤色顔料を25〜75重量%、アントラキノン系赤色顔料を30〜60重量%とすることがより好ましい。
また、赤色画素には色相を調整する目的で黄色顔料や橙色顔料を含有させることができるが、高コントラスト化の点からアゾ金属錯体系黄色顔料を用いることが好ましい。
その使用量は、顔料の合計重量を基準として5〜25重量%であることが好ましく、5重量%未満の場合には、充分な明度向上などの色相調整が困難となり、30重量%を超える場合には、色相が黄味にシフトし過ぎるため、色再現性は悪くなり得る。
上記において、ジケトピロロピロール系赤色顔料としては、C.I.Pigment Red 254、アントラキノン系赤色顔料としては、」C.I.Pigment Red 177、アゾ金属錯体系黄色顔料としてはC.I.Pigment Yellow 150が、優れた耐光性、耐熱性、透明性、および着色力等の点から好適である。
緑色画素には、例えば、C.I.Pigment Green 7、10、36、37、58等の緑色顔料を用いることができ、黄色顔料を併用することもできる。黄色顔料としては、赤色画素のところで挙げた顔料と同様のものを使用可能である。
緑色画素が、これら顔料のなかでハロゲン化金属フタロシアニン系緑色顔料、アゾ系黄色顔料、及びキノフタロン系黄色顔料のうちの少なくとも1種を含むことが、任意のRthを得ることが容易になるため好ましい。なぜなら、ハロゲン化金属フタロシアニン緑色顔料は、中心金属を選択することにより、ある程度Rth(G)を制御することが可能であるからであり、例えば、中心金属が銅の場合、Rthは負の値となるが、中心金属が亜鉛の場合は、Rthの値は銅が中心金属のときよりも0から正の値へ大きくすることができる。そのため、緑色顔料としては、臭素化亜鉛フタロシアニンが好ましく、中でも、1分子中に臭素を平均13個含有する臭素化亜鉛フタロシアニンが望ましい。また、アゾ系黄色顔料は、微細化処理に関わらず0または正のRth(G)が、キノフタロン系黄色顔料は、微細化処理に関わらず負のRth(G)が得られ、これらを併用することで所望のRthを得やすいからである。
緑色画素についても、Rthの値は、用いる顔料の配合比による加成律が、ほぼ成り立つと言って良い。顔料の使用量は、顔料の合計重量を基準として、ハロゲン化金属フタロシアニン系緑色顔料を30〜90重量%、アゾ系黄色顔料及び/又はキノフタロン系黄色顔料を0〜60重量%、好ましくは5〜60重量%とすることが、画素の色相や明度、膜厚等の点から好ましい。さらに、ハロゲン化金属フタロシアニン系緑色顔料を50〜85重量%、アゾ系黄色顔料を5〜45重量%、キノフタロン系黄色顔料を5〜45重量%とすることがより好ましい。
上記において、ハロゲン化金属フタロシアニン系緑色顔料としては、C.I.Pigment Green 7、36、58、アゾ系黄色顔料としてはC.I.Pigment Yellow 150、キノフタロン系黄色顔料としてはC.I.Pigment Yellow138が、優れた耐光性、耐熱性、透明性、および着色力等の点から好適である。
青色画素には、例えば、C.I.Pigment Blue 15、15:1、15:2、15:3、15:4、15:6、16、22、60、64等の青色顔料を用いることができ、紫色顔料を併用することもできる。紫色顔料としては、C.I.Pigment Violet 1、19、23、27、29、30、32、37、40、42、50等が挙げられる。
青色画素が、これら顔料のなかで、金属フタロシアニン系青色顔料と、ジオキサジン系紫色顔料のうち1種類以上を含む場合には、負から0に近いRthを得ることが容易になる。その使用量は、顔料の合計重量を基準として、金属フタロシアニン系青色顔料を40〜100重量%、ジオキサジン系紫色顔料を0〜50重量%、好ましくは1〜50重量%とすることが、画素の色相や明度、膜厚等の点から好ましく、さらに、金属フタロシアニン系青色顔料を50〜98重量%、ジオキサジン系紫色顔料を2〜25重量%とすることがより好ましい。
上記において金属フタロシアニン系青色顔料としてはC.I.Pigment Blue 15:6、ジオキサジン系紫色顔料としてはC.I.Pigment Violet 23が、優れた耐光性、耐熱性、透明性、および着色力等の点から好適である。
また、無機顔料としては、黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑等の金属酸化物粉、金属硫化物粉、金属粉等が挙げられる。
無機顔料は、彩度と明度のバランスを取りつつ良好な塗布性、感度、現像性等を確保するために、有機顔料と組み合わせて用いられる。さらに、調色のため、耐熱性を低下させない範囲内で染料を含有させることができる。
着色画素に含まれる顔料は、カラーフィルタの高輝度化、高コントラスト化を実現させるため、微細化されていることが好ましく、平均一次粒子径が小さいことが好ましい。顔料の平均一次粒子径は、顔料を透過型電子顕微鏡で撮り、その写真の画像解析により算出できる。
顔料の平均一次粒子径は、40nm以下であることが好ましく、より好ましくは30nm以下であり、更に好ましくは20nm以下である。また、平均一次粒子径は5nm以上であることが好ましい。顔料の平均一次粒子径が上限値より大きい場合には、液晶表示装置の黒表示時の視認性が悪い。また、下限値より小さい場合は、顔料分散が難しくなり、着色組成物としての安定性を保ち、流動性を確保することが困難になる。
その結果、カラーフィルタの輝度、色特性が悪化する。 特に、平均一次粒子径が40μmを超える有機顔料は、正面視認性に悪影響を与える。
また、透明基板上に形成された各色画素を2枚の偏光板の間に挟み、一方の偏光板側からバックライトを当てて、他方の偏光板を透過した光を輝度計にて測定し、偏光板が平行状態における光の輝度(Lp)と直交状態における光の輝度(Lc)の比より算出されるコントラストCは、C=Lp/Lcより算出され、CSは着色画素がない基板のみ、CRは赤色画素、CGは緑色画素、CBは青色画素のコントラストを表す場合、CR/CS>0.45、かつ、CG/CS>0.45、かつ、CB/CS>0.45を満たす場合に、下記表6に示すように、液晶表示装置の黒表示時の正面視認性が優れたものとなる。すなわち、光漏れの少ない締まった黒表示を再現できる。
CR/CS>0.45、かつ、CG/CS>0.45、かつ、CB/CS>0.45を満たさない場合、すなわち、CR/CS≦0.45、または、CG/CS≦0.45、または、CB/CS≦0.45の場合には、黒表示時の光漏れが多くなり、優れた正面視認性の液晶表示装置が得られなくなる。
さらに、色毎のリタデーション差を小さくすることにより、斜め視認性と正面視認性がともに 優れた液晶表示装置となる。
なお、CR/CS>0.45かつ、CG/CS>0.45、かつ、CB/CS>0.45を満たしても、色毎のリタデーション差が大きい場合には、斜め視認性が不十分であることがある。
顔料の平均一次粒子径および厚み方向位相差を制御する手段としては、顔料を機械的に粉砕して一次粒子径および粒子形状を制御する方法(磨砕法と呼ぶ)、良溶媒に溶解したものを貧溶媒に投入して所望の一次粒子径および粒子形状の顔料を析出させる方法(析出法と呼ぶ)、および合成時に所望の一次粒子径および粒子形状の顔料を製造する方法(合成析出法と呼ぶ)等がある。使用する顔料の合成法や化学的性質等により、個々の顔料について適当な方法を選択して行うことができる。
以下に、それぞれの方法について説明するが、本発明の一実施形態に係るカラーフィルタを構成する着色画素層に含まれる顔料の一次粒子径および粒子形状の制御方法としては、いずれを用いてもよい。
磨砕法は、顔料をボールミル、サンドミルまたはニーダーなどを用いて、食塩等の水溶性の無機塩などの磨砕剤およびそれを溶解しない水溶性有機溶剤とともに機械的に混練(以下、この処理をソルトミリングと呼ぶ)した後、無機塩と有機溶剤を水洗除去し、乾燥することにより所望の一次粒子径および粒子形状の顔料を得る方法である。
ただし、ソルトミリング処理により、顔料が結晶成長する場合があるため、処理時に上記有機溶剤に少なくとも一部溶解する固形の樹脂や顔料分散剤を加えて、結晶成長を防ぐ方法が有効である。
顔料と無機塩の比率は、無機塩の比率が多くなると顔料の微細化効率は良くなるが、顔料の処理量が少なくなるために生産性が低下する。一般的には、顔料が1重量部に対して無機塩を1〜30重量部、好ましくは2〜20重量部用いるのが良い。また、上記水溶性有機溶剤は、顔料と無機塩とが均一な固まりとなるように加えるもので、顔料と無機塩との配合比にもよるが、通常は顔料1重量部に対して0.5〜30重量部の量で用いられる。
磨砕法について、さらに具体的に説明すると、顔料と水溶性の無機塩の混合物に湿潤剤として少量の水溶性有機溶剤を加え、ニーダー等で強く練り込んだ後、この混合物を水中に投入し、ハイスピードミキサー等で攪拌し、スラリー状とする。次に、このスラリーを濾過、水洗して乾燥することにより、所望の一次粒子径および粒子形状の顔料を得ることができる。
析出法は、顔料を適当な良溶媒に溶解させたのち、貧溶媒と混ぜ合わせて、所望の一次粒子径および粒子形状の顔料を析出させる方法であり、溶媒の種類や量、析出温度、析出速度などにより、一次粒子径の大きさおよび粒子形状を制御することができる。
一般に、顔料は溶媒に溶けにくいため、使用できる溶媒は限られるが、例として濃硫酸、ポリリン酸、クロロスルホン酸などの強酸性溶媒、または液体アンモニア、ナトリウムメチラートのジメチルホルムアミド溶液などの塩基性溶媒などが知られている。
析出法の代表例としては、酸性溶剤に顔料を溶解させた溶液を他の溶媒中に注入し、再析出させて微細粒子を得るアシッドペースティング法がある。工業的にはコストの観点から硫酸溶液を水に注入する方法が一般的である。使用する硫酸の濃度は特に限定されないが、95〜100重量%が好ましい。顔料に対する硫酸の使用量は特に限定されないが、少なすぎると溶液粘度が高くハンドリングが悪くなり、逆に多すぎると顔料の処理効率が低下するため、顔料に対して3〜10倍の重量の硫酸を用いることが好ましい。
なお、顔料は完全溶解している必要はない。溶解時の温度は0〜50℃が好ましく、これ以下では硫酸が凍結する恐れがあり、かつ溶解度も低くなる。高温すぎると副反応が起こりやすくなる。
注入される水の温度は1〜60℃が好ましく、この温度以上で注入を始めると硫酸の溶解熱で沸騰が生じ、作業が危険である。これ以下の温度では凍結してしまう。注入にかける時間は顔料1部に対して0.1〜30分が好ましい。時間が長くなるほど一次粒子径は大きくなる傾向がある。
顔料の一次粒子径および粒子形状の制御は、アシッドペースティング法などの析出法とソルトミリング法などの磨砕法を組み合わせた手法を選択することにより、顔料の整粒度合を考慮しつつ行うことができ、さらにはこのとき分散体としての流動性も確保できることからより好ましい。
ソルトミリング時あるいはアシッドペースティング時には、一次粒子径および粒子形状制御に伴う顔料の凝集を防ぐために、下記に示す色素誘導体や樹脂型顔料分散剤、界面活性剤等の分散助剤を併用することもできる。
また、一次粒子径および粒子形状制御を2種類以上の顔料を共存させた形で行うことにより、単独では分散が困難な顔料であっても安定な分散体として仕上げることができる。
特殊な析出法としてロイコ法がある。フラバントロン系、ペリノン系、ペリレン系、インダントロン系等の建染染料系顔料は、アルカリ性ハイドロサルファイトで還元すると、キノン基がハイドロキノンのナトリウム塩(ロイコ化合物)になって水溶性になる。この水溶液に適当な酸化剤を加えて酸化することにより、水に不溶性の一次粒子径の小さな顔料を析出させることができる。
合成析出法は、顔料を合成すると同時に所望の一次粒子径および粒子形状の顔料を析出させる方法である。しかし、生成した微細顔料を溶媒中から取り出す場合、顔料粒子が凝集して大きな二次粒子になっていないと一般的な分離法である濾過が困難になるため、通常、二次凝集が起きやすい水系で合成されるアゾ系等の顔料に適用されている。
さらに、顔料の一次粒子径および粒子形状を制御する手段として、顔料を高速のサンドミル等で長時間分散すること(顔料を乾式粉砕する、いわゆるドライミリング法)により、顔料の一次粒子径を小さくすると同時に分散することも可能である。
また、本実施形態に係るカラーフィルタには、特に斜め視認性を改善する目的で、1色以上のカラーフィルタ着色組成物にリタデーション調整剤を添加することができる。リタデーション調整剤は、カラーフィルタ着色組成物を透明基板、反射性基板、又は半導体基板上に着色塗膜として形成して得たカラーフィルタの厚み方向の位相差を調整できる添加剤である。
リタデーション調整剤として使用することが出来る化合物は、1000あるいは3000以上の高いコントラストを確保するために、分散性の良好な有機化合物であることが望ましい。具体的には、無機物など粒子形状のものも採用可能であるが、光散乱性や消偏性の観点から避けたほうが望ましい。また、複数色のカラーフィルタを透明基板などの上に形成する場合、全色の画素にリタデーション調整剤を添加しても良いが、1色ないし2色の画素に限定して添加することも可能である。
具体的なリタデーション調整剤としては、一つ以上の架橋性基を有する平面構造基を有する有機化合物であるメラミン樹脂、ポリフィリン化合物、重合性液晶化合物、及び1つ以上の芳香族含有モノマーを70〜90mol%含有するアクリル樹脂から選択された1種以上を選択することが出来る。
通常、顔料や他の樹脂と正負逆の複屈折率をもつ平面構造基を有する粒子を添加するだけで、膜全体のRthを打ち消すことが可能であると考えられる。しかし、単に平面構造基をもつ粒子を添加するだけでは、粒子自体がランダムに配向してしまい、膜全体のRthへの影響は小さいものとなってしまう。
そこで本発明者らは鋭意検討した結果、リタデーション調整剤が有する平面構造基に少なくとも1つ以上の架橋性基を持たせることで、膜全体のRthが大きく変化し、十分な効果が得られることを見出した。また、平面構造基を持つ調整剤の中でも、該平面構造基が芳香族であって、樹脂固形分中に該芳香族を有するモノマーが70〜90mol%含有されているアクリル樹脂である場合に、リタデーション調整剤として十分な効果が得られることを見出した。
すなわち、例えば、リタデーション調整剤がフォトリソ工程での光硬化プロセスもしくは熱硬化プロセス中で架橋する官能基を有することで、平面構造基が自由に回転しないこと、および熱硬化時の収縮の際に平面構造基がより同じ方向に配向して固定されやすいことにより、厚み方向の位相差Rthの値を(正の方向に)大きくすることができる。すなわち位相差調整剤としての機能を発現させることができる。
平面構造基としては、芳香族環を少なくとも1つ以上有するものであり、単環式炭化水素では、フェニル基、クメニル基、メシチル基、トリル基、キシリル基、ベンジル基、フェネチル基、スチリル基、シンナミル基、トリチル基など、多環式炭化水素ではペンタレニル基、インデニル基、ナフチル基、ビフェニレン基、アセナフチレン基、フルオレン基、フェナントリル基、アントラセン基、トリフェニレン基、ピレン基、ナフタセン基、ペンタフェン基、ペンタセン基、テトラフェニレン基、トリナフチレン基などを有する公知の化合物を使用することができる。ヘテロ単環化合物では、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、トリアジン基など、ヘテロ多環化合物では、インドリジニル基、イソインドリル基、インドリル基、プリニル基、キノリル基、イソキノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、シノリニル基、カルバゾリル基、カルボリニル基、アクリジニル基、ポルフィリン基などを有する公知の化合物が例示でき、これらは、炭化水素基、ハロゲン基などの置換基を有するものであってもよい。
該平面構造基に付属する少なくとも1つ以上の架橋性基としては、下記式により表される不飽和重合性基(A、B、C、D、E、F)または官能基(I、J、K、L、M、N、O)または熱重合性基(G、H、P、Q、R、S、T、U)であることが好ましく、エポキシ基(G、H)がさらに好ましく用いられ、P〜Uが最も好ましく用いられる。
また、不飽和重合性基では、エチレン性不飽和重合性基(A、B、C、D)であることがさらに好ましく、また、−CHNHCOCH=CH、−CHNHCO(CH) 7CH=CH(CHCH、−OCO(C)O(CHCH=CHなども好適に用いられる。
これらの架橋性基は、該平面構造基に少なくとも1つ以上の水酸基等の反応性官能基を有する場合に、グリシジル(メタ)アクリレート、2−(メタ)アクリロイルオキシイソシアネート、トリレン−2、4−ジイソシアネート等の上記反応性官能基と反応する官能基およびエチレン性不飽和基を有する化合物を公知の方法で反応させることによって、容易に得られる。
Figure 0005589842
メラミン化合物としては、下記一般式(1)で表される市販のものを好ましく用いることができるが、上述の平面構造基を有する化合物であれば何でもよく、公知のものを使用できる。以下にメラミン化合物を例示する。
Figure 0005589842
式中、R、R、Rはそれぞれ水素原子、メチロール基、アルコキシメチル基、アルコキシn−ブチル基、R、R、Rはそれぞれメチロール基、アルコキシメチル基、アルコキシn−ブチル基である。二種類以上の繰り返し単位を組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマーまたはコポリマーを併用してもよい。
また、上記以外に1,3,5−トリアジン環を有する化合物で、例えば特開2001−166144号公報に記載のものを使用することができる。また下記一般式(2)に示す化合物も好ましく用いられる。
Figure 0005589842
〜R14はそれぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基または複素環基であり、水素原子であることが特に好ましい。
または下記一般式(3)で表されるポルフィリン骨格を有する化合物を好ましく用いることができる。nは1〜20の整数であり、2であるものが好ましく用いられる。
Figure 0005589842
式中、R15〜R22はそれぞれ独立に水素原子、ハロゲン原子、アルコキシ基、アルキルチオ基、置換もしくは未置換のフェノキシ基、置換もしくは未置換のナフトキシ基、置換もしくは未置換のフェニルチオ基、または置換もしくは未置換のナフチルチオ基を表す。
15〜R22におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などがあげられる。アルコキシ基およびチオアルキル基としては、特に限定されるものではないが、置換基中のアルキル基が炭素数1〜12の直鎖、分岐或いは環状のアルキル基が好ましく、炭素数1〜8の直鎖、分岐或いは環状のアルキル基が特に好ましい。−Zは−CH−、−N−を表す。
アルコキシ基中およびチオアルキル基中のアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、iso−ペンチル基、2−メチルブチル基、1−メチルブチル基、neo−ペンチル基、1,2−ジメチルプロピル基、1,1ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、4−メチルペンチル基、3メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,3−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、1,2−ジメチルブチル基、1,1−ジメチルブチル基、3−エチルブチル基、2−エチルブチル基、1−エチルブチル基、1,2,2−トリメチルブチル基、1,1,2−トリメチルブチル基、1−エチル−2−メチルプロピル基、シクロヘキシル基、n−ヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、4−メチルヘキシル基、5メチルヘキシル基、2,4−ジメチルペンチル基、n−オクチル基、2−エチルヘキシル基、2,5−ジメチルヘキシル基、2,5,5−トリメチルペンチル基、2,4−ジメチルヘキシル基、2,2,4−トリメチルペンチル基、n−オクチル基、3,5,5−トリメチルヘキシル基、n−ノニル基、n−デシル基、4−エチルオクチル基、4−エチル4,5−ジメチルヘキシル基、n−ウンデシル基、n−ドデシル基、1,3,5,7−テトラエチルオクチル基、4−ブチルオクチル基、6,6−ジエチルオクチル基、n−トリデシル基、6−メチル−4−ブチルオクチル基、n−テトラデシル基、n−ペンタデシル基、3,5−ジメチルヘプチル基、2,6−ジメチルヘプチル基、2,4−ジメチルヘプチル基、2,2,5,5−テトラメチルヘキシル基、1−シクロペンチル−2,2−ジメチルプロピル基、1−シクロヘキシル−2,2−ジメチルプロピル基等が挙げられる。
置換もしく未置換のフェノキシ基の具体例としては、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2−エチルフェノキシ基、3−エチルフェノキシ基、4−エチルフェノキシ基、2,4−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、4−t−ブチルフェノキシ基、4−アミノフェノキシ基、4−ジメチルアミノフェノキシ基、4−ジエチルアミノフェノキシ基等が挙げられる。
置換もしく未置換のナフトキシ基の具体例としては、1−ナフトキシ基、2−ナフトキシ基、ニトロナフトキシ基、シアノナフトキシ基、ヒドロキシナフトキシ基、メチルナフトキシ基、トリフルオロメチルナフトキシ基等が挙げられる。
置換もしく未置換のフェニルチオ基の具体例としては、フェニルチオ基、2−メチルフェニルチオ基、3−メチルフェニルチオ基、4−メチルフェニルチオ基、2−エチルフェニルチオ基、3−エチルフェニルチオ基、4−エチルフェニルチオ基、2,4−ジメチルフェニルチオ基、3,4−ジメチルフェニルチオ基、4−t−ブチルフェニルチオ基、4−アミノフェニルチオ基、4−ジメチルアミノフェニルチオ基、4−ジエチルアミノフェニルチオ基等が挙げられる。
置換もしく未置換のナフチルチオ基の具体例としては、1−ナフチルチオ基、2−ナフチルチオ基、ニトロナフチルチオ基、シアノナフチルチオ基、ヒドロキシナフチルチオ基、メチルナフチルチオ基、トリフルオロメチルナフチルチオ基等が挙げられる。
Xは二種類以上の化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物と)を併用してもよい。
含平面構造基エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、水添ビスフェノールA型エポキシ化合物等のビスフェノール型エポキシ化合物;例えば、フェノールノボラック型エポシキ化合物、クレゾールノボラック型エポシキ化合物等のノボラック型エポシキ化合物;例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、テトラグリシジル-mキシレンジアミン等のグリシジルアミン系エポキシ化合物;例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート等のグリシジルエステル系エポキシ化合物;例えば、トリグリシジルイソシアヌレート、グリシジルグリシドオキシアルヒダントイン等の複素還式エポキシ化合物などが例示できる。下記一般式(4)にその例を示す。
Figure 0005589842
重合性液晶化合物としては、棒状液晶性分子またはディスコティック液晶性分子を適用することが可能であるが、特に ディスコティック液晶性分子が好ましい。棒状液晶性分子としては、特開2006-16599公報に記載の液晶性分子が採用可能であり、他に、例えばアゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類なども用いられる。ディスコティック液晶性分子としては、例えば特開平8−27284号公報に記載のものを使用できる。以下にその例を示す。
Figure 0005589842
上記式において、Yは、アルキレン基、アルケニレン基、アリーレン基、−CO−、−NH−、−O−、−S−およびそれらの組み合わせからなる群より選ばれる二価の連結基、および該二価の基を少なくとも二つ組み合わせた基であることが最も好ましい。
アルキレン基の炭素原子数は、1〜12であることが好ましく、アルケニレン基の炭素原子数は、2〜12であることが好ましく、アリーレン基の炭素原子数は、6〜10であることが好ましい。アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基、ハロゲン原子、シアノ、アルコキシ基、アシルオキシ基)を有していてもよい。
Rは、上述した式(A)〜(U)における、不飽和重合性基(A、B、C、D、E、F)、官能基(I、J、K、L、M、N、O)及び熱重合性基(G、H、P、Q、R、S、T、U)から選ばれる少なくとも一つ以上の架橋性基、もしくは該架橋性基で置換されたアルキル基、アルケニル基、アリール基または複素環基である。
不飽和重合性基では、エチレン性不飽和重合性基(A、B、C、D)であることがさらに好ましく、また、−CHNHCOCH=CH、−CHNHCO(CHCH=CH(CHCH3、−OCO(C)O(CHCH=CHなども好適に用いられる。
1つ以上の芳香族含有モノマーを70〜90mol%含有するアクリル樹脂としては、メラミン(メタ)アクリレート、ベンジル(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、スチレン、及び下記一般式(5)に示す芳香族含有モノマーと、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(イソ)プロピル(メタ)アクリレート、(イソ)ブチル(メタ)アクリレート、(イソ)ペンチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、イソボニル(メタ)アクリレート、アシッドホスホオキシエチル(メタ)アクリレート、アシッドホスホオキシプロピル(メタ)アクリレート、3−クロロ−2−アシッドホスホオキシエチル(メタ)アクリレート、アシッドホスホオキシポリエチレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸エステルを重合させて成るアクリル樹脂が挙げられる。これらの化合物は、1種を単独で、または2種以上を混合して用いることができる。
Figure 0005589842
式中、R23はHまたはCH、R24は炭素数2または3のアルキレン基、R25は水素、またはベンゼン環を含んでいてもよい炭素数1〜20のアルキル基、nは1〜15の整数を表す。
上記一般式(5)において、R25のアルキル基の炭素数は1〜20であるが、より好ましくは1〜10である。R25のアルキル基の炭素数が1〜10のときはアルキル基が障害となり樹脂同士の接近を抑制し、顔料への吸着/配向を促進する効果が得られ感光性着色組成物の安定性が向上するが、炭素数が10を超えると、アルキル基の立体障害効果が高くなり、ベンゼン環の顔料への吸着/配向までをも妨げる傾向を示すため、感光性着色組成物の安定性が低下する。この傾向は、R25のアルキル基の炭素鎖長が長くなるに従い顕著となり、炭素数が20を超えると、ベンゼン環の吸着/配向が極端に低下する。R25で表されるベンゼン環を含むアルキル基としては、ベンジル基、2−フェニル(イソ)プロピル基等を挙げることができる。
上記一般式(5)で表される化合物としては、フェノールのエチレンオキサイド(EO)変性(メタ)アクリレート、パラクミルフェノールのEOまたはプロピレンオキサイド(PO)変性(メタ)アクリレート、ノニルフェノールのEO変性(メタ)アクリレート、ノニルフェノールのPO変性(メタ)アクリレート等が挙げられる。これら化合物のうち、パラクミルフェノールのEOまたはPO変性(メタ)アクリレートは、上記ベンゼン環のπ電子の効果ばかりでなく、その立体的な効果も加わり、良好な吸着/配向面を形成し厚み方向位相差値Rthを発現することができるので、より効果が高い。
また前記アクリル樹脂は、70mol%以上90mol%以下の芳香族含有モノマーを含有するので、このアクリル樹脂を配合して感光性樹脂組成物を調製すると、負の複屈折性を発現することが可能となり、アルカリ現像型感光性のカラーフィルタで生じていた不具合、すなわち顔料や分散剤、及び他のバインダー樹脂の影響によって生じていた2〜+30nm程度の不要な正の厚み方向位相差値Rthを打ち消し、さらには負の値へ低減させることが可能となる。これにより、本来所望された3〜−30nmの厚み方向位相差値を有することができ、斜めからみても表示特性良好な液晶表示装置を提供可能となる。
以下に、本実施形態に係るカラーフィルタの各色画素を形成するために用いられる着色組成物について説明する。
各色画素を形成するために用いられる着色組成物に含まれる顔料担体は、顔料を分散させるものであり、透明樹脂、その前駆体、またはそれらの混合物により構成される。
透明樹脂は、前記アクリル樹脂以外に、可視光領域の400〜700nmの全波長領域において透過率が好ましくは80%以上、より好ましくは95%以上の樹脂を併用することができる。透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれ、その前駆体には、放射線照射により硬化して透明樹脂を生成するモノマーもしくはオリゴマーが含まれ、これらを単独でまたは2種以上混合して用いることができる。
顔料担体は、着色組成物中の顔料100重量部に対して、30〜700重量部、好ましくは60〜450重量部の量で用いることができる。
また、透明樹脂とその前駆体との混合物を顔料担体として用いる場合には、透明樹脂は、着色組成物中の顔料100重量部に対して、20〜400重量部、好ましくは50〜250重量部の量で用いることができる。
また、透明樹脂の前駆体は、着色組成物中の顔料100重量部に対して、10〜300重量部、好ましくは10〜200重量部の量で用いることができる。
熱可塑性樹脂としては、例えば、ブチラール樹脂、スチレンーマレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、アクリル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリブタジエン、ポリエチレン、ポリプロピレン、ポリイミド樹脂等が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾグアナミン樹脂、ロジン変性マレイン酸樹脂、ロジン変性フマル酸樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂等が挙げられる。
感光性樹脂としては、水酸基、カルボキシル基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等の反応性置換基を有する(メタ)アクリル化合物やケイヒ酸を反応させて、(メタ)アクリロイル基、スチリル基等の光架橋性基を該線状高分子に導入した樹脂が用いられる。
また、スチレン−無水マレイン酸共重合物やα−オレフィン−無水マレイン酸共重合物等の酸無水物を含む線状高分子をヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。
透明樹脂の前駆体であるモノマーおよびオリゴマーとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、メラミン(メタ)アクリレート、エポキシ(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、アクリロニトリル等が挙げられる。これらは、単独でまたは2種類以上混合して用いることができる。
着色組成物には、該組成物を紫外線照射により硬化する場合には、光重合開始剤等が添加される。
光重合開始剤としては、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、ジエトキシアセトフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタン−1−オン等のアセトフェノン系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系光重合開始剤、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤、チオキサントン、2−クロロチオキサントン、2−メチルチオキサントン、イソプロピルチオキサントン、2,4−ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤、2,4,6−トリクロロ−s−トリアジン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−トリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−ピペロニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−ビス(トリクロロメチル)−6−スチリルs−トリアジン、2−(ナフト−1−イル)−4,6−ビス(トリクロロメチル)−sトリアジン、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−トリクロロメチル−(ピペロニル)−6−トリアジン、2,4−トリクロロメチル(4’−メトキシスチリル)−6−トリアジン等のトリアジン系光重合開始剤、ボレート系光重合開始剤、カルバゾール系光重合開始剤、イミダゾール系光重合開始剤等が用いられる。
光重合開始剤は、着色組成物中の顔料100重量部に対して、5〜200重量部、好ましくは10〜150重量部の量で用いることができる。
上記光重合開始剤は、単独あるいは2種以上混合して用いるが、増感剤として、α−アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’−ジエチルイソフタロフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等の化合物を併用することもできる。
増感剤は、光重合開始剤100重量部に対して、0.1〜60重量部の量で含有させることができる。
さらに、着色組成物には、連鎖移動剤としての働きをする多官能チオールを含有させることができる。多官能チオールは、チオール基を2個以上有する化合物であればよく、例えば、ヘキサンジチオール 、デカンジチオール 、1,4−ブタンジオールビスチオプロピオネート、1,4−ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3−メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2−ヒドロキシエチル)イソシアヌレート、1,4−ジメチルメルカプトベンゼン、2、4、6−トリメルカプト−s−トリアジン、2−(N,N−ジブチルアミノ)−4,6−ジメルカプト−s−トリアジン等が挙げられる。これらの多官能チオールは、1種または2種以上混合して用いることができる。
多官能チオールは、着色組成物中の顔料100重量部に対して、0.2〜150重量部、好ましくは0.2〜100重量部の量で用いることができる。
さらに、顔料を充分に顔料担体中に分散させ、ガラス基板等の透明基板上に乾燥膜厚が0.2〜5μmとなるように塗布してフィルタセグメントを形成することを容易にするために溶剤を含有させることができる。溶剤としては、例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、1−メトキシ−2−プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル−nアミルケトン、プロピレングリコールモノメチルエーテル、トルエン、メチルエチルケトン、酢酸エチル、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルケトン、石油系溶剤等が挙げられ、これらを単独でもしくは混合して用いる。
溶剤は、着色組成物中の顔料100重量部に対して、800〜4000重量部、好ましくは1000〜2500重量部の量で用いることができる。
着色組成物は、1種または2種以上の顔料を、必要に応じて上記光重合開始剤と共に、顔料担体および有機溶剤中に三本ロールミル、二本ロールミル、サンドミル、ニーダー、アトライター等の各種分散手段を用いて製造することができる。
また、2種以上の顔料を含む着色組成物は、各顔料を別々に顔料担体および有機溶剤中に微細に分散したものを混合して製造することもできる。
顔料を顔料担体および有機溶剤中に分散する際には、適宜、樹脂型顔料分散剤、界面活性剤、顔料誘導体等の分散助剤を含有させることができる。
分散助剤は、顔料の分散に優れ、分散後の顔料の再凝集を防止する効果が大きいので、分散助剤を用いて顔料を顔料担体および有機溶剤中に分散してなる着色組成物を用いた場合には、透明性に優れたカラーフィルタが得られる。分散助剤は、着色組成物中の顔料100重量部に対して、0.1〜40重量部、好ましくは0.1〜30重量部の量で用いることができる。
樹脂型顔料分散剤としては、顔料に吸着する性質を有する顔料親和性部位と、顔料担体と相溶性のある部位とを有し、顔料に吸着して顔料の顔料担体への分散を安定化する働きをするものである。
樹脂型顔料分散剤として具体的には、ポリウレタン、ポリアクリレートなどのポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩などの油性分散剤、(メタ)アクリル酸−スチレン共重合体、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、スチレン−マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドンなどの水溶性樹脂や水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、燐酸エステル系等が用いられ、これらは単独でまたは2種以上を混合して用いることができる。
界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン−アクリル酸共重合体のアルカリ塩、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン−アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステルなどのアニオン性界面活性剤;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどのノニオン性界面活性剤;アルキル4級アンモニウム塩やそれらのエチレンオキサイド付加物などのカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどの両性界面活性剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。
色素誘導体は、有機色素に置換基を導入した化合物であり、用いる顔料の色相に近いものが好ましいが、添加量が少なければ色相の異なるものを用いても良い。
有機色素には、一般に色素とは呼ばれていないナフタレン系、アントラキノン系等の淡黄色の芳香族多環化合物も含まれる。
色素誘導体としては、特開昭63−305173号公報、特公昭57−15620号公報、特公昭59−40172号公報、特公昭63−17102号公報、特公平5−9469号公報等に記載されているものを使用できる。特に、塩基性基を有する色素誘導体は、顔料の分散効果が大きいため、好適に用いられる。これらは単独でまたは2種類以上を混合して用いることができる。
着色組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t−ブチルピロカテコール、テトラエチルホスフィン、テトラフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、着色組成物中の顔料100重量部に対して、0.1〜10重量部の量で含有させることができる。
また、着色組成物には、基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることもできる。シランカップリング剤としては、ビニルトリス(β−メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ−メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジエトキシシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン等のアミノシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等のチオシラン類等が挙げられる。シランカップリング剤は、着色組成物中の顔料100重量部に対して、0.01〜100重量部の量で含有させることができる。
着色組成物は、グラビアオフセット用印刷インキ、水無しオフセット印刷インキ、インクジェット用インキ、シルクスクリーン印刷用インキ、溶剤現像型あるいはアルカリ現像型着色レジストの形態で調製することができる。着色レジストは、熱可塑性樹脂、熱硬化性樹脂または感光性樹脂と、モノマーと、光重合開始剤と、有機溶剤とを含有する組成物中に色素を分散させたものである。
顔料は、着色組成物の全固形分量を基準(100重量%)として5〜70重量%の割合で含有されることが好ましい。より好ましくは、20〜50重量%の割合で含有され、その残部は、顔料担体により提供される樹脂質バインダーから実質的になる。
着色組成物は、遠心分離、焼結フィルタ、メンブレンフィルタ等の手段にて、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子および混入した塵の除去を行うことが好ましい。
前記カラーフィルタ中の赤色画素、緑色画素、および青色画素は、透明基板上に、印刷法またはフォトリソグラフィー法により、上記の各色着色組成物を用いて形成される。
透明基板としては、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板が用いられる。また、ガラス板や樹脂板の表面には、液晶パネル化後の液晶駆動のために、酸化インジウム、酸化錫、酸化亜鉛、酸化アンチモンなどの金属酸化物の組み合わせからなる透明電極が形成されていてもよい。
印刷法による各色フィルタセグメントの形成は、上記各種の印刷インキとして調製した着色組成物の印刷と乾燥を繰り返すだけでパターン化ができるため、カラーフィルタの製造法としては、低コストで量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性の制御も重要であり、分散剤や体質顔料によるインキ粘度の調整を行うこともできる。
インクジェット法は、微細な複数の吐出口(インクジェットヘッド)を各色ごとに揃えたインクジェット装置にて、透明基板もしくはTFTなどアクティブ素子を形成した基板に直接印刷形成する方法である。
フォトリソグラフィー法により各色画素を形成する場合は、上記溶剤現像型あるいはアルカリ現像型着色レジストとして調製した着色組成物を、透明基板上に、スプレーコートやスピンコート、スリットコート、ロールコート等の塗布方法により、乾燥膜厚が0.2〜10μmとなるように塗布する。
塗布膜を乾燥させる際には、減圧乾燥機、コンベクションオーブン、IRオーブン、ホットプレート等を使用してもよい。必要により乾燥された膜には、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して紫外線露光を行う。
その後、溶剤またはアルカリ現像液に浸漬するかもしくはスプレーなどにより現像液を噴霧して未硬化部を除去して所望のパターンを形成したのち、同様の操作を他色について繰り返してカラーフィルタを製造することができる。
さらに、着色レジストの重合を促進するため、必要に応じて加熱を施すこともできる。
フォトリソグラフィー法によれば、上記印刷法より精度の高いカラーフィルタが製造できる。
現像に際しては、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。現像処理方法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。
なお、紫外線露光感度を上げるために、上記着色レジストを塗布乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールや水溶性アクリル樹脂等を塗布乾燥し酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。
本発明の液晶表示装置に好適に用いられるカラーフィルタは、上記方法の他に電着法、
転写法、インクジェット法などにより製造することができる。
電着法は、透明基板上に形成した透明導電膜を利用して、コロイド粒子の電気泳動により各色フィルタセグメントを透明導電膜の上に電着形成することでカラーフィルタを製造する方法である。転写法は剥離性の転写ベースシートの表面に、あらかじめカラーフィルタ層を形成しておき、このカラーフィルタ層を所望の透明基板に転写させる方法である。
次に、以上説明した本発明の第1の実施形態に係るカラーフィルタを備えた、本発明の第2の実施形態に係る液晶表示装置について説明する。
図2は、本実施形態に係る液晶表示装置の概略断面図である。図2に示す液晶表示装置4は、液晶TV用のTFT駆動型液晶表示装置の典型例であって、離間対向して配置された一対の透明基板5および6を備え、それらの間には液晶(LC)が封入されている。
液晶(LC)は、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In-Plane switching)、VA(Vertical Alignment)、OCB(Optically Compensated Birefringence)等の液晶配向モードに応じて配向される。
第1の透明基板5の内面には、TFT(薄膜トランジスタ)アレイ7が形成されており、その上には例えばITOからなる透明電極層8が形成されている。透明電極層8の上には、配向層9が設けられている。また、透明基板5の外面には、位相差フィルムを構成に含む偏光板10が形成されている。
他方、第2の透明基板6の内面には、本発明のカラーフィルタ11が形成されている。
カラーフィルタ11を構成する赤色、緑色および青色のフィルタセグメントは、ブラックマトリックス(図示せず)により分離されている。
カラーフィルタ11を覆って、必要に応じて透明保護膜(図示せず)が形成され、さらにその上に、例えばITOからなる透明電極層12が形成され、透明電極層12を覆って配向層13が設けられている。また、透明基板6の外面には、偏光板14が形成されている。なお、偏光板10の下方には、三波長ランプ15を備えたバックライトユニット16が設けられている。
次に、以上説明した液晶表示装置を製造する方法について説明する。
図3は、本発明の第1の実施形態に係るカラーフィルタ基板を用いて、本発明の第2の実施形態に係る液晶表示装置製造を製造するフローチャート図である。液晶表示装置の製造に際しては、図3に示すように、まずカラーフィルタ基板及びアレイ基板に配向処理を行う必要がある。配向処理は、配向膜を液晶表示装置用基板の液晶に接する面の側に形成し、必要に応じて、液晶表示装置用基板の液晶界面での液晶の方向を一様に揃える処理を実施する。
配向膜9,13は、液晶を所定の方向に配向させる性質をもつので、所定の液晶モードに合せて配向膜を選定する必要がある。配向膜の材料としては、ポリイミド系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂などの感光性または非感光性のものが好ましく用いられるが、これらに限られるものではない。ただし、配向膜の耐熱性・信頼性の点からポリイミド系樹脂が好ましい。
ポリイミド系樹脂を用いた配向膜は、可溶性ポリイミド溶液やポリアミック酸溶液を液晶表示装置用基板上に形成した後に、必要に応じて乾燥、焼成や光照射して得られる。配向膜材料は基板上に、フレキソ印刷、スピンコート、ロールコート、スリットダイコート、シルク印刷、インクジェット印刷等により液晶表示装置用基板上に形成される。配向膜として好ましく用いられるポリイミド系樹脂としては、特に限定されるものではないが、ポリアミック酸を加熱または適当な触媒によってイミド化したものが好適に用いられる。
本実施形態に係る液晶表示装置の構成を実現するために、市販されている配向膜を用いてもよい。例えば、ジェイエスアール社製のAL1000、AL1068、AL1072、AL1077、AL1F00、AL3000、AL4000、AL5000、AL6000、AL7000、AL8000、AL1H659、AL60101、AL60601、JALS−146、JALS−212、JALS−246、JALS−406、JALS−445、JALS−469、JALS−550、JALS−552、JALS−553、JALS−555、JALS−556、JALS−566、JALS−725、JALS−1082、JALS−1085、JALS−1216、チッソ社製のPIA−5140、PIA−5150、PIA−5310、PIA−X322、PIA−2024、PIA−2700、PIA−2800、PIA−2900、日産化学社製のSE−130、SE−150、SE−2110、SE−410、SE−610、SE−1180、SE−2170、SE−1211、SE−1410、SE−3140、SE−3210、SE−3310、SE−3510、SE−5291、SE−5300、SE−6210、SE−7492、SE−7992、SE−7511L、SE−8192L、RN−1322、RN−1332、RN−1349、RN−1358、RN−1386、RN−1417、RN−1436、RN−1450、RN−1477、RN−1486などを単独で用いても良いし、これらの内の2種以上を混合して用いても良いし、また適宜他のポリマー成分を添加しても良いし、これらの製品に含まれる樹脂成分を適宜選択して用いてもよい。
配向膜の溶液に使用される溶剤としては、水、エタノール、メタノール、イソブタノール、3−メチル−3−メトキシブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテルなどのエーテル類、酢酸エチル、酢酸n−ブチル、3−メトキシ−3−メチルブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトンなどのエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類、2−ピロリドン、N−メチルピロリドンなどのピロリドン類、ブチルセロソルブなどを使用することができる。
液晶界面での液晶の方向を一様に揃える処理は、液晶のダイレクターを液晶表示装置用基板の水平近くまで配向させる必要のあるTNやIPS等といった液晶表示モードで用いられるものであり、レーヨンやコットンといった布で配向膜を擦るラビング処理や偏光を制御した光を照射する光配向処理等が用いられる。
液晶表示装置の液晶層厚みは、柱状スペーサ(図示せず)を用いて保持される。柱状スペーサは、カラーフィルタ基板に感光性樹脂をフォトリソグラフィ法などを用いて形成する。
柱状スペーサの高さ測定には、触針式膜厚計のような接触式膜厚計から光干渉計やレーザー顕微鏡といった非接触膜厚測定機を用いることが可能であるが、基板への汚染性や測定精度を考慮すると非接触式膜厚計を用いることが望ましい。
液晶表示装置の製造において、一対の液晶表示装置用基板とで液晶を固定化する封止剤には、アクリル系樹脂などの光硬化樹脂やエポキシ系樹脂などの熱硬化樹脂を用いることができ、もしくは光硬化樹脂と熱硬化樹脂の両方の樹脂混合物を用いることが出来る。
液晶表示装置に使用される液晶材料としては、表示モード、駆動方式に応じて適宜選択することができ特に制限されない。本発明に使用するネマティック液晶としては、表示方式に応じて例えば、誘電異方性△εが正のもの、負のものを適宜用いることができる。
本実施形態に係る液晶表示装置の構成を実現するために、市販されている液晶を用いてもよい。例えば、メルク社製MLC−6601、MLC−6614、MLC−6686、MLC−6692、MLC−6608、MLC−6609、MLC−6610、MLC−6222、MLC−6252、MLC−6256、MLC−6625、MLC−6628などを使用することが出来る。
液晶表示装置用基板への液晶材料の滴下には、プランジャポンプ方式のディスペンサが用いられる。液晶材料滴下用ディスペンサは、円筒状の筐体に液晶材料を導入し、細長い棒状のプランジャを鉛直方向に移動させることによって液晶をノズルから滴下する。液晶材料の滴下量の調整は、ポンプコントローラを用いてのプランジャの移動量によって行う。
一対のカラーフィルタ基板とアレイ基板を貼り合せる際に行う減圧は、1Pa以下で0あることが好ましい。1Paを越える圧力で貼り合せを行うと、液晶材料が十分に拡がらなかったり、貼り合せ後にカラーフィルタ材料や液晶材料等から揮発性ガスが発生して液晶セル内に残存することにより気泡が発生することがある。
封止剤を硬化させる工程には、紫外線(UV)照射を用いる。UV照射を行う際には、表示画素部分に光を当てないようにする必要がある。封止剤にUV照射を行った後、通常100〜150℃で30〜90分の加熱処理が行われる。この加熱処理により、封止剤を熱硬化させるとともに、液晶材料の相転移温度以上の熱をかけることによって、液晶材料の再配向を促すことができる。こうして得られた液晶表示用基板を断裁後、IC、偏光板及びバックライトユニットを装着することによって液晶表示装置として完成する。
本実施形態に係る液晶表示装置は、視野角を拡大するために、光学補償層として位相差フィルムを備えることができる。位相差フィルムとしては、延伸複屈折ポリマーフィルムが従来から使用されているが、延伸複屈折フィルムからなる光学補償シートに代えて透明支持体上に低分子あるいは高分子液晶性化合物から形成された光学異方性層を有する光学補償層を使用すること、又は延伸複屈折フィルムからなる光学補償層に加えて低分子あるいは高分子液晶性化合物から形成された光学異方性層を有する光学補償層を使用してもよい。また本光学補償層を液晶セルの内部に形成してもよい。
位相差フィルムの光学的性質は、液晶セルの光学的性質、具体的には上記のような表示モードの違いに応じて決定され、例えばIPSモード用位相差フィルムは、偏光板の視野角依存性を補償して全方位で黒表示の輝度を低くしコントラストの視角特性を向上させることができる。さらに位相差フィルムの光学的性質は、光の波長毎に最適な値に設計することで、色変化の少ない広視野特性を有する液晶表示装置を提供する。特にマルチギャップやマルチドメインと組合せると有効である。また視野角を拡大するのではなく、特定方向のみから表示が観察できるような狭視野角化も可能である。
本実施形態に係る液晶表示装置に利用可能な位相差フィルムとして、シクロオレフィンポリマー(以下、COPと称する)等の管状オレフィン系樹脂やTAC等のセルロース系樹脂を延伸処理したポリマー、やポリマーフィルム等からなる支持体上に、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類等の棒状液晶性分子(季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章及び第11章、及び液晶デバイスハンドブック日本学術振興会第142委員会編の第3章などを参照)、ディスコティック液晶性化合物(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(17)(1994);B.Kohne et al.,Angew. Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc., vol.116,page 2655(1994))等などを参照)等の液晶性化合物を含有する組成物から形成された光学異方性層を有するフィルム、または、nx≧ny>nzである二軸性の位相差フィルムなどが挙げられる。耐熱性、耐薬品性、透明性に優れ、剛性にも富むことから非液晶性ポリマーが好適に用いられる。
前記ポリマーとして、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミド、ポリエステルイミド等のポリマーが例示でき、高配向性、高透明性の点からポリイミドが特に好ましい。
また、位相差フィルムとして市販のものを用いることもできる。例えば、日本ゼオン(株)社製(商品名「Zeonor」)、JSR(株)社製(商品名「Arton」)、コニカミノルタ(株)社製N−TACシリーズ、富士写真フィルム(株)社製フジタックシリーズなどが挙げられる。
本発明の第1の実施形態によれば、より高コントラストなカラーフィルタを得るために、用いる顔料種を特定することや、該顔料を微細化することで、緑色画素層の厚み方向位相差値が負になる可能性があっても、正の厚み方向位相差と成り得る顔料を選択することや、正になるような微細化処理を行うこと、さらには正の厚み方向位相差に調整可能な微粒子を添加することで、該厚み方向位相差値が正の値でかつ式(3)を満たすように最適な値に調整したカラーフィルタを提供することが可能となる。
また、本発明の第2の実施形態によれば、光学補償層および他の構成部材の光学的特徴、特にリタデーションの波長分散の特徴に適するように、本発明の第1の実施形態に係るカラーフィルタを用いて液晶ディスプレイを作製した場合、各着色画素の表示領域を通過する光の偏光状態にばらつきが生じないため、斜め方向からの視野角表示に優れた液晶表示装置を得ることができる。
さらにいうと、斜め方向からの視野角補償を施された黒表示となるため、斜め方向から見た場合、カラーシフトを低減し、かつニュートラルな黒色が再現でき、非常に優れた表示特性を呈することができる。
以下、本発明の具体的な実施例を示すが、本発明はこれら実施例に限定されるものではない。また、本実施例で用いる材料は光に対して極めて敏感なものがあるため、自然光などの不要な光による感光を防ぐ必要があり、全ての作業を黄色、または赤色灯下で行うことは言うまでもない。なお、実施例および比較例中、「部」とは「重量部」を意味する。
また、顔料の記号はカラーインデックスナンバーを示し、例えば、「PR254」は「C.I.Pigment Red 254」を、「PY150」は「C.I.Pigment Yellow 150」を表す。
以下の実施例にて使用した色素誘導体を下記表1に示す。
Figure 0005589842
a)微細化顔料の製造
実施例および比較例で用いた微細化顔料を以下の方法により製造した。そして、得られた顔料の平均一次粒子径を、電子顕微鏡写真から一次粒子の大きさを直接計測する一般的な方法で測定した。
具体的には、透過型電子顕微鏡JEM−2010(日本電子(株)製)で視野内の粒子を撮影し、二次元画像上の凝集体を構成する個々の顔料の一次粒子の短軸径と長軸径を計測し、平均をその顔料粒子の粒径とした。
次に、100個以上の顔料粒子について、それぞれの粒子の体積(重量)を、求めた粒径の直方体と近似して求め、体積平均粒径を平均一次粒子径とした。この際、試料である前記着色組成物は、これを溶媒に超音波分散させてから前記顕微鏡で粒子を撮影する。なお、電子顕微鏡は透過型(TEM)または走査型(SEM)のいずれを用いても同じ結果が得られる。ここで言う一次粒子径は、個数粒度分布の積算曲線において積算量が全体の50%に相当する粒子径(円相当径)を表す。
[製造例1]
スルホン化フラスコにtert−アミルアルコール170部を窒素雰囲気下において装填した。次いで、ナトリウム11.04部を添加し、そしてこの混合物を92〜102℃に加熱した。次に、溶融したナトリウムを激しく撹拌しながら100〜107℃に一晩保持した。
得られた溶液に、4−クロロベンゾニトリルの44.2部およびジイソプロピルスクシナートの37.2部を80℃でtert−アミルアルコールの50部中に溶解した溶液を、80〜98℃で2時間かけて導入した。導入後、この反応混合物を80℃で3時間撹拌し、そして同時にジイソプロピルスクシナートの4.88部を滴下添加した。
この反応混合物を室温に冷却し、メタノール270部、水200部、および濃硫酸48.1部の20℃の混合物へ添加し、20℃で攪拌を6時間続けた。得られた赤色混合物を濾過し、残留物をメタノールと水とで洗浄した後、80℃で乾燥して、46.7部のジケトピロロピロールの赤色顔料(R−1)を得た。
[製造例2]
ジケトピロロピロール系赤色顔料PR254(チバスペシャリティケミカルズ社製「イ
ルガフォアレッドB-CF」;R−1)100部、色素誘導体(D−1)18部、粉砕し
た食塩1000部、およびジエチレングリコール120部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、60℃で10時間混練した。
この混合物を温水2000部に投入し、約80℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、115部のソルトミリング処理顔料(R−2)を得た。得られた顔料の一次粒子径を下記表2に示す。
[製造例3]
アントラキノン系赤色顔料PR177(チバスペシャリティケミカルズ社製「クロモフタルレッドA2B」)100部、色素誘導体(D−2)8部、粉砕した食塩700部、およびジエチレングリコール180部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、70℃で4時間混練した。
この混合物を温水4000部に投入し、約80℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、102部のソルトミリング処理顔料(R−3)を得た。得られた顔料の一次粒子径を下記表2に示す。
[製造例4]
ハロゲン化銅フタロシアニン系緑色顔料PG36(東洋インキ製造社製「リオノールグリーン6YK」)120部、粉砕した食塩1600部、およびジエチレングリコール270部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、70℃で12時間混練した。
この混合物を温水5000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、117部のソルトミリング処理顔料(G−1)を得た。得られた顔料の一次粒子径を下記表2に示す。
[製造例5]
塩化アルミニウム356部および塩化ナトリウム6部の200℃の溶融塩に、亜鉛フタロシアニン46部を溶解し、130℃まで冷却し、1時間攪拌した。反応温度を180℃に昇温し、臭素を1時間あたり10部で10時間滴下した。その後、塩素を1時間あたり0.8部で5時間導入した。
この反応液を水3200部に徐々に注入したのち、濾過、水洗して107.8部の粗製ハロゲン化亜鉛フタロシアニン顔料を得た。粗製ハロゲン化亜鉛フタロシアニン顔料の1分子内に含まれる平均臭素数は14.1個、平均塩素数は1.9個であった。
得られた粗製ハロゲン化亜鉛フタロシアニン顔料120部、粉砕した食塩1600部、およびジエチレングリコール270部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、70℃で12時間混練した。
この混合物を温水5000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、117部のソルトミリング処理顔料(G−2)を得た。得られた顔料の一次粒子径を下記表2に示す。
[製造例6]
セパラブルフラスコに水150部を仕込み、さらに攪拌しながら35%塩酸63部を仕込み、塩酸溶液を調製した。発泡に注意しながらベンゼンスルホニルヒドラジド38.7部を仕込み、液温が0℃以下になるまで氷を追加した。冷却後、30分かけて亜硝酸ナトリウム19部を仕込み、0〜15℃の間で30分撹拌した後、ヨウ化カリウムでんぷん紙で着色が認められなくなるまでスルファミン酸を仕込んだ。
次に、バルビツール酸25.6部を添加後、55℃まで昇温し、2時間そのまま撹拌した。次いで、バルビツール酸25.6部を投入し、80℃まで昇温したのちpHが5になるまで水酸化ナトリウムを投入した。さらに80℃で3時間撹拌した後、70℃まで下げ、濾過及び温水洗浄を行った。
得られたプレスケーキを1200部の温水に加え、リスラリー化した後、80℃で2時間攪拌した。その後、そのままの温度で濾過を行い、80℃の水2000部で温水洗浄を行い、ベンゼンホンアミドが濾液側へ移行していることを確認した。得られたプレスケーキを80℃で乾燥し、アゾバルビツール酸ジナトリウム塩61.0部を得た。
次いで、セパラブルフラスコに水200部を仕込み、さらに撹拌しながら、得られたアゾバルビツール酸ジナトリウム塩の粉末8.1部を投入して分散させた。均一に分散させた後、溶液を95℃まで昇温し、メラミン5.7部、ジアリルアミノメラミン1.0部を添加した。
さらに、塩化コバルト(II)6水和物6.3部を水30部に溶解した緑色溶液を30分かけて滴下した。滴下終了後、90℃で1.5時間錯体化を行った。
その後、pHを5.5に調整し、さらにキシレン4部、オレイン酸ナトリウム0.4部、水16部をあらかじめ攪拌してエマルジョン状態とした溶液20.4部を添加し、さらに4時間加温撹拌した。70℃まで冷却した後、速やかに濾過し、無機塩が洗浄できるまで70℃の温水洗を繰り返した。
その後、乾燥、粉砕の工程を経て、14部のアゾ系黄色顔料(Y−2)を得た。得られた顔料の一次粒子径を下記表2に示す。
[製造例7]
黄色顔料(C.I. Pigment Yellow 138、BASF社製「PALIOTOL YELLOW K0961HD」)160部、塩化ナトリウム1600部、およびジエチレングリコール(東京化成社製)270部をステンレス製1ガロンニーダー(井上製作所社製)に仕込み、60℃で15時間混練した。
次に、この混合物を約5リットルの温水に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間撹拌してスラリー状とした後、濾過、水洗して塩化ナトリウム及びジエチレングリコールを除き、80℃で24時間乾燥し、157部のソルトミリング処理顔料(Y−3)を得た。
[製造例8]
銅フタロシアニン系青色顔料PB15:6(東洋インキ製造社製「リオノールブルーES」)100部、粉砕した食塩800部、およびジエチレングリコール100部をステンレス製1ガロンニーダー(井上製作所製)に仕込み、70℃で12時間混練した。
次に、この混合物を温水3000部に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とし、濾過、水洗をくりかえして食塩および溶剤を除いた後、80℃で24時間乾燥し、98部のソルトミリング処理顔料(B−1)を得た。得られた顔料の一次粒子径を下記表2に示す。
Figure 0005589842
BAYER社製「FANCHON FAST YELLOW Y-5688」(C.I. Pigment Yellow 150)を黄色顔料1とする。
b)アクリル樹脂溶液の調製
反応容器にシクロヘキサノン800部を入れ、容器に窒素ガスを注入しながら100℃に加熱して、同温度で下記のモノマーおよび熱重合開始剤の混合物を1時間かけて滴下して重合反応を行った。
スチレン 70.0部
メタクリル酸 10.0部
メタクリル酸メチル 65.0部
メタクリル酸ブチル 65.0部
アゾビスイソブチロニトリル 10.0部
滴下後、さらに100℃で3時間反応させた後、アゾビスイソブチロニトリル2.0部をシクロヘキサノン50部で溶解させたものを添加し、さらに100℃で1時間反応を続けて樹脂溶液を合成した。
室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20%となるようにシクロヘキサノンを添加してアクリル樹脂溶液を調製した。
c)顔料分散体の調製
下記表3に示す組成(重量比)の混合物を均一に撹拌混合した後、直径1mmのジルコニアビーズを用いて、サンドミルで5時間分散した後、5μmのフィルタで濾過して各色顔料分散体を得た。
Figure 0005589842
d)リタデーション調整剤
メラミン化合物(商品名ニカラックMX−750;日本カーバイド工業製)およびスチレン樹脂をリタデーション調整剤として使用した。スチレン樹脂は以下のようにして調製した。
内容量が1リットルの5つ口反応容器内に、プロピレングリコールモノメチルエーテルアセテート432g、アゾビスイソブチロニトリル13gを加え、窒素ガスを吹き込みながら、80℃に加熱し、スチレン86.3gおよびアクリル酸11.8g、パラクミルフェノールのEO変性(メタ)アクリレート10.0gからなる混合液を2時間かけて滴下した。滴下終了から30分後にアゾイソブチロニトリル6.5gを加え、さらに5時間加熱し、スチレン−アクリル酸共重合体を得た。得られたスチレン−アクリル酸共重合体の重量平均分子量は3000であった。
e)着色組成物(以下、レジストという)の調製
下記表4に示す組成(重量比)の混合物を均一に撹拌混合した後、1μmのフィルタで濾過して各色レジストを得た。
Figure 0005589842
f)各色塗膜の作製
上記表4に示した各色レジストをスピンコート法によりガラス基板に塗工した後、クリーンオーブン中で、70℃で20分間プリベークした。次いで、この基板を室温に冷却後、超高圧水銀ランプを用い、紫外線を露光した。
次に、この基板を23℃の炭酸ナトリウム水溶液を用いてスプレー現像した後、イオン交換水で洗浄し、風乾した。その後、クリーンオーブン中で、230℃で30分間ポストベークを行い、各色塗膜を得た。乾燥塗膜の膜厚は、いずれも2.0μmであった。
g)各色塗膜の色度、分光透過率、厚み方向位相差値、およびコントラストの測定
[色度、分光透過率]
XYZ表色系色度図における色度は、分光光度計(オリンパス社製「OSP−2000」)を用いて測定した。
上記表4に示した各色レジストより作製された各色塗膜の色度を下記表5に示す。
[厚み方向位相差値Rth]
厚み方向位相差値は以下のように求めることが出来る。透過型分光エリプソメータ(日本分光社製「M−220」)を用いて、塗膜を形成した基板の法線方向から45°傾けた方位より、400nmから700nmの範囲で5nmおきの波長で測定し、エリプソパラメータであるδを得た。
各波長における位相差値△(λ)は△=δ/360×λから求めることができ、この値を用いて3次元屈折率を算出し、下記式(4)より厚み方向位相差値(Rth)を求めた。
以上の測定より各波長のRthを求めることが可能であるが、今回の評価では赤色画素を610nm、緑色画素を545nm、青色画素を450nmの波長で各々測定して算出した。
Rth={(Nx+Ny)/2-Nz}×d・・・(4)
式中、Nxは着色画素層の平面内のx方向の屈折率であり、Nyは着色画素層の平面内のy方向の屈折率であり、Nzは着色画素層の厚み方向の屈折率であり、NxをNx≧Nyとする遅相軸とする。dは着色画素層の厚み(nm)である。
上記表4に示した各色レジストより作製された各色塗膜の厚み方向位相差値Rthを下記表5に示す。
[コントラスト]
塗膜を形成した基板の両側に偏光板を重ね、偏光板が平行時の輝度(Lp)と直交時の輝度(Lc)との比、Lp/Lcをコントラスト(C)として算出した。
また着色画素がない基板のみのコントラスト=Lp/LcをCSとし、CRを赤色画素、CGを緑色画素、CBを青色画素のコントラストとした。
なお、輝度は、色彩輝度計(トプコン社製「BM−5A」)を用い、2°視野の条件で測定し、偏光板は、日東電工社製「NPF−SEG1224DU」を用いた。
h)カラーフィルタの作製
上記表4に示した各色レジストを組み合わせて、下記に示す方法により、カラーフィルタを作製した。
[実施例1]
まず、赤色レジスト(RR−2)をスピンコート法により、予めブラックマトリックスが形成されてあるガラス基板に塗工した後、クリーンオーブン中で、70℃で20分間プリベークした。次いで、この基板を室温に冷却した後、超高圧水銀ランプを用い、フォトマスクを介して紫外線を露光した。
その後、この基板を23℃の炭酸ナトリウム水溶液を用いてスプレー現像した後、イオン交換水で洗浄し、風乾した。更に、クリーンオーブン中で、230℃で30分間ポストベークを行い、基板上にストライプ状の赤色画素を形成した。
次に、緑色レジスト(GR−3)を使用し、同様にして緑色画素を形成し、さらに、青色レジスト(BR−2)を使用し、同様にして青色画素を形成し、カラーフィルタを得た。各色画素の形成膜厚は、いずれも2.0μmであった。
i)液晶表示装置の作製
得られたカラーフィルタ上に、オーバーコート層を形成し、その上にJSR(株)社製オプトマーAL60101を用いてポリイミド配向層を形成した。
他方、別の(第2の)ガラス基板の一方の表面にTFTアレイおよび画素電極を形成し、その上にJSR(株)社製オプトマーAL60101を用いてポリイミド配向層を形成した。
このようにして準備された2つのガラス基板を電極層同士が対面するよう対向させ、スペーサビーズを用いて両基板の間隔を一定に保ちながら位置合わせし、液晶組成物注入用開口部を残すように周囲を封止剤で封止した。次いで、開口部からVA用液晶組成物(メルク(株)社製MLC−6610)を注入し、開口部を封止した。
更に、市販の液晶テレビであるAQUOSシリーズ(商品名 LC42-RX1W)よりガラス付きのまま採取した位相差板付き偏光板(A)を、作製した液晶表示装置に取り付けた。
このとき、これら採取した位相差板の光学パラメータは以下のとおりであった。
(単位:nm)
(CF側)
Re 450nm:55.2、545nm:54.7、610nm:54.5
Rth 450nm:108.6、545nm:109.4、610nm:109.8
(TFT側)
Re 450nm:54.5、545nm:55.0、610nm:55.2
Rth 450nm:98.0、545nm:105.7、610nm:109.4
このようにして作製した液晶表示装置に前記市販液晶テレビより採取したバックライトユニットを組み合わせてVA表示モード液晶パネルを得た。
[実施例2]
赤色レジストを(RR−2)から(RR−1)に、緑色レジストを(GR−3)から(GR−2)、青色レジストを(BR−2)から(BR−1)に、偏光板/位相差板(A)を下記(B)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
位相差板付き偏光板(B)(Samsung製Aシリーズ 商品名 LN52A610)
(CF側)
Re 450nm:46.4、545nm:48.6、610nm:49.5
Rth 450nm:103.1、545nm:106.4、610nm:107.7
(TFT側)
Re 450nm:46.1、545nm:48.6、610nm:49.8
Rth 450nm:93.9、545nm:102.5、610nm:106.7
[実施例3]
赤色レジストを(RR−2)から(RR−5)に、緑色レジストを(GR−3)から(GR−2)、青色レジストを(BR−2)から(BR−5)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
[実施例4]
赤色レジストを(RR−2)から(RR−6)に、緑色レジストを(GR−3)から(GR−2)、青色レジストを(BR−2)から(BR−5)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
[実施例5]
赤色レジストを(RR−2)から(RR−4)に、緑色レジストを(GR−3)から(GR−4)、青色レジストを(BR−2)から(BR−3)に、偏光板/位相差板(A)を下記(B)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
[実施例6]
赤色レジストを(RR−2)から(RR−7)に、緑色レジストを(GR−3)から(GR−2)、青色レジストを(BR−2)から(BR−4)に、偏光板/位相差板(A)を下記(B)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
[比較例1]
緑色レジストを(GR−2)から(GR−1)に代えた以外は、実施例2と同様にして、液晶表示装置を得た。
[比較例2]
赤色レジストを(RR−1)から(RR−3)に代えた以外は、実施例2と同様にして、液晶表示装置を得た。
[比較例3]
赤色レジストを(RR−2)から(RR−6)に、緑色レジストを(GR−3)から(GR−6)、青色レジストを(BR−2)から(BR−5)に、偏光板/位相差板(A)を下記(B)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
[比較例4]
赤色レジストを(RR−2)から(RR−6)に、緑色レジストを(GR−3)から(GR−5)、青色レジストを(BR−2)から(BR−5)に、偏光板/位相差板(A)を下記(B)に代えた以外は、実施例1と同様にして、液晶表示装置を得た。
j)液晶表示装置の黒表示時の視認性評価
作製した液晶表示装置を黒表示させ、液晶パネルの法線方向(略垂直方向)および法線方向から45°傾けた方位(斜め)より漏れてくる光(直交透過光;漏れ光)の量を目視観察した。また黒表示時の略垂直方向から見たときの色度(u(⊥)、v(⊥))と表示面の法線方向から最大60°まで傾けた方位よりから見たときの色度(u(45)、v(45))をトプコン社製BM−5Aにて測定し、色差Δu‘v’を算出し、0≦θ≦60°でのΔu’v’の最大値を求めた。評価ランクは次の通りであり、その結果を下記表5に示す。
下記表5中、正面視認性及び斜め視認性の評価基準は、次の通りである。
正面視認性
○:暗い画像でもはっきり見える(=コントラスト高い)
×:暗い画像がはっきり見えない(=コントラスト低い)
斜め視認性
○:Δu'v'≦0.02
×:Δu'v>0.02
Figure 0005589842
上記表5から、実施例1〜実施例6に係るカラーフィルタは、赤色画素、緑色画素、および青色画素層の厚み方向位相差値が、上述の式(2)及び式(3)を満たすように形成されているので、これらカラーフィルタを液晶表示装置に用いることで、表示面の法線方向と斜め方向の色度差が上述の式(1)を満たし、斜め方向の視認性が良好な液晶表示装置が得られることがわかる。
また、実施例1〜6に係るカラーフィルタを備えた液晶表示装置では、正面での高コントラスト化が図られているため、正面方向においても視認性が良好な液晶表示装置が得られることがわかる。
これに対し、比較例1〜4に係るカラーフィルタを備えた液晶表示装置では、赤色画素、緑色画素、および青色画素層の厚み方向位相差値が上述の式(2)式(3)の双方を満たすように形成されていないので、赤色画素、緑色画素、および青色画素の厚み方向の位相差のバランスが良くないため、斜め方向において色ずれが生じ、視認性が不良となる。

Claims (7)

  1. カラーフィルタを備える液晶セルと、
    この液晶セルの両外面にそれぞれ配置された一対の偏光板と、
    これら偏光板の内側に設けられた光学補償層とを具備する液晶表示装置であって
    該液晶表示装置を黒表示させてCIE1960表色系で表される色度(u、v)を測定し、垂直方向から見たときの色度(u(⊥)、v(⊥))と、表示面の法線方向からθ°傾けた方位から見たときの色度(u(θ)、v(θ))の、下記式(1)で表される色度差Δuvが、0<θ≦60の範囲で0.02以下であり、
    前記カラーフィルタは、少なくとも赤色画素、緑色画素および青色画素を含む着色画素を備え、前記赤色画素の厚み方向位相差値Rth(R)、緑色画素の厚み方向位相差値Rth(G)、および青色画素の厚み方向位相差値Rth(B)が、下記式(2)及び式(3)を満たすことを特徴とする液晶表示装置
    Δuv=[{u(⊥)−u(θ)} +{v(⊥)−v(θ)} 1/2 ・・・(1)
    Rth(G)≧0・・・(2)
    Rth(B)<Rth(G)>Rth(R)・・・(3)
    (式中、Rth(R)、Rth(G)、およびRth(B)は、それぞれの画素の面内屈折率の平均から厚み方向屈折率を引いた値と、画素の厚み(nm)の積より得られ、Rth(R)は赤領域を通過する波長610nmの光に対する厚み方向位相差値、Rth(G)は緑領域を通過する波長545nmの光に対する厚み方向位相差値、Rth(B)は青領域を通過する波長450nmの光に対する厚み方向位相差値をそれぞれ表す。)
  2. 前記カラーフィルタの前記着色画素がリタデーション調整剤を含む感光性着色組成物からなることを特徴とする請求項1に記載の液晶表示装置
  3. 前記カラーフィルタの前記緑色画素が、亜鉛フタロシアニン顔料を含有することを特徴とする請求項1に記載の液晶表示装置
  4. 前記リタデーション調整剤が、少なくとも1つ以上の平面構造基と、該平面構造基に少なくとも1つ以上の架橋性基を有するものであることを特徴とする請求項2に記載の液晶表示装置
  5. 前記リタデーション調整剤が少なくとも1つ以上の芳香族含有モノマーを70〜90mol%含有するアクリル樹脂であることを特徴とする請求項2に記載の液晶表示装置
  6. VA方式であることを特徴とする請求項1に記載の液晶表示装置
  7. IPS方式であることを特徴とする請求項1に記載の液晶表示装置
JP2010518988A 2008-07-04 2009-06-18 液晶表示装置 Active JP5589842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518988A JP5589842B2 (ja) 2008-07-04 2009-06-18 液晶表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008175606 2008-07-04
JP2008175606 2008-07-04
PCT/JP2009/061116 WO2010001733A1 (ja) 2008-07-04 2009-06-18 カラーフィルタ及び液晶表示装置
JP2010518988A JP5589842B2 (ja) 2008-07-04 2009-06-18 液晶表示装置

Publications (2)

Publication Number Publication Date
JPWO2010001733A1 JPWO2010001733A1 (ja) 2011-12-15
JP5589842B2 true JP5589842B2 (ja) 2014-09-17

Family

ID=41465834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010518988A Active JP5589842B2 (ja) 2008-07-04 2009-06-18 液晶表示装置

Country Status (6)

Country Link
US (1) US8467018B2 (ja)
JP (1) JP5589842B2 (ja)
KR (1) KR101196592B1 (ja)
CN (1) CN102084274B (ja)
TW (1) TWI475289B (ja)
WO (1) WO2010001733A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158655A (ja) 2010-01-29 2011-08-18 Fujifilm Corp 重合性組成物、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子
JP2012098627A (ja) * 2010-11-04 2012-05-24 Dainippon Printing Co Ltd カラーフィルタの製造方法
US8816211B2 (en) * 2011-02-14 2014-08-26 Eastman Kodak Company Articles with photocurable and photocured compositions
CN110612475B (zh) 2017-05-08 2022-04-08 富士胶片株式会社 液晶显示装置
CN110582722B (zh) * 2017-05-08 2022-07-05 富士胶片株式会社 液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070342A (ja) * 2002-07-24 2004-03-04 Dainippon Printing Co Ltd カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
JP2006078647A (ja) * 2004-09-08 2006-03-23 Dainippon Printing Co Ltd 位相差層付カラーフィルタおよび液晶表示素子
JP2006126419A (ja) * 2004-10-28 2006-05-18 Quanta Display Japan Inc 液晶表示装置
JP2007183600A (ja) * 2005-12-06 2007-07-19 Toppan Printing Co Ltd カラーフィルタ、その製造方法、及び液晶ディスプレイ
JP2007212603A (ja) * 2006-02-08 2007-08-23 Nitto Denko Corp カラーフィルター付き液晶セル基板、及び液晶セル、及び液晶表示装置
JP2009181070A (ja) * 2008-01-31 2009-08-13 Toppan Printing Co Ltd 液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187114A (ja) 1998-12-22 2000-07-04 Toray Ind Inc カラーフィルターおよび液晶表示装置
JP4482969B2 (ja) 1998-08-28 2010-06-16 東レ株式会社 液晶表示装置用カラーフィルターおよび液晶表示装置
JP2001242460A (ja) 2000-02-29 2001-09-07 Toshiba Corp 液晶表示装置
CN100347596C (zh) 2001-10-04 2007-11-07 富士胶片株式会社 透射型液晶显示器
WO2004010172A1 (ja) 2002-07-24 2004-01-29 Dai Nippon Printing Co., Ltd. カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
JP4329983B2 (ja) * 2003-02-05 2009-09-09 大日本印刷株式会社 液晶ディスプレイ
JP2007328324A (ja) 2006-05-11 2007-12-20 Nitto Denko Corp 液晶パネルおよび液晶表示装置
JP4967644B2 (ja) * 2006-12-19 2012-07-04 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
JP5428198B2 (ja) * 2008-05-12 2014-02-26 凸版印刷株式会社 カラーフィルタおよび液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070342A (ja) * 2002-07-24 2004-03-04 Dainippon Printing Co Ltd カラーフィルター用緑色顔料、緑色顔料分散体、感光性着色組成物、カラーフィルター、及び、液晶パネル
JP2006078647A (ja) * 2004-09-08 2006-03-23 Dainippon Printing Co Ltd 位相差層付カラーフィルタおよび液晶表示素子
JP2006126419A (ja) * 2004-10-28 2006-05-18 Quanta Display Japan Inc 液晶表示装置
JP2007183600A (ja) * 2005-12-06 2007-07-19 Toppan Printing Co Ltd カラーフィルタ、その製造方法、及び液晶ディスプレイ
JP2007212603A (ja) * 2006-02-08 2007-08-23 Nitto Denko Corp カラーフィルター付き液晶セル基板、及び液晶セル、及び液晶表示装置
JP2009181070A (ja) * 2008-01-31 2009-08-13 Toppan Printing Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
US8467018B2 (en) 2013-06-18
CN102084274B (zh) 2012-09-26
US20110096274A1 (en) 2011-04-28
WO2010001733A1 (ja) 2010-01-07
TWI475289B (zh) 2015-03-01
KR20110025689A (ko) 2011-03-10
JPWO2010001733A1 (ja) 2011-12-15
TW201007273A (en) 2010-02-16
CN102084274A (zh) 2011-06-01
KR101196592B1 (ko) 2012-11-02

Similar Documents

Publication Publication Date Title
JP5446415B2 (ja) 液晶表示装置
JP4306736B2 (ja) カラーフィルタ、カラーフィルタ用着色組成物、および液晶表示装置
JP4967644B2 (ja) カラーフィルタおよび液晶表示装置
JP5428198B2 (ja) カラーフィルタおよび液晶表示装置
JP5045126B2 (ja) カラーフィルタおよび液晶表示装置
JP4930394B2 (ja) 液晶表示装置
JP5589842B2 (ja) 液晶表示装置
JP4848262B2 (ja) カラーフィルタの評価方法、カラーフィルタおよび液晶表示装置
JP2008185986A (ja) カラーフィルタおよび液晶表示装置
JP5082761B2 (ja) カラーフィルタおよび液晶表示装置
JP2010032870A (ja) カラーフィルタおよび液晶表示装置
JP5223465B2 (ja) カラーフィルタおよび液晶表示装置
JP4905532B2 (ja) 液晶表示装置用カラーフィルタ基板及び液晶表示装置
JP2013105010A (ja) カラーフィルタ用感光性着色組成物、液晶表示装置用カラーフィルタ及び液晶表示装置
JP2012088475A (ja) カラーフィルタおよび液晶表示装置
JP2009180783A (ja) 液晶表示装置及びそれに用いるカラーフィルタ
JP5003669B2 (ja) 赤色着色組成物、赤色着色塗膜、それを用いたカラーフィルタ、及び液晶表示装置
JP5174212B2 (ja) カラーフィルタおよび液晶表示装置
JP2011013274A (ja) 液晶表示装置用カラ−フィルタ及びカラーフィルタ用赤色着色組成物
JP2012177843A (ja) カラーフィルタおよび液晶表示装置
JP2011118033A (ja) カラーフィルタおよび液晶表示装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250