JP5582406B2 - High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same - Google Patents

High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same Download PDF

Info

Publication number
JP5582406B2
JP5582406B2 JP2010540491A JP2010540491A JP5582406B2 JP 5582406 B2 JP5582406 B2 JP 5582406B2 JP 2010540491 A JP2010540491 A JP 2010540491A JP 2010540491 A JP2010540491 A JP 2010540491A JP 5582406 B2 JP5582406 B2 JP 5582406B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
high frequency
frequency
dielectric
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010540491A
Other languages
Japanese (ja)
Other versions
JPWO2010061842A1 (en
Inventor
孝史 河野
正孝 山永
敦 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2010540491A priority Critical patent/JP5582406B2/en
Publication of JPWO2010061842A1 publication Critical patent/JPWO2010061842A1/en
Application granted granted Critical
Publication of JP5582406B2 publication Critical patent/JP5582406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/008Manufacturing resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Description

本発明は、高周波用誘電体磁器組成物に関するものであり、とくに、比誘電率εが7.5〜12.0であり、かつQ×f。値が十分に大きく、さらに共振周波数f。の温度係数τの絶対値が30ppm/℃以下である高周波用誘電体磁器組成物に関する。また、本発明は、以上のような高周波用誘電体磁器組成物の製造方法に関する。The present invention relates to a dielectric ceramic composition for high frequency use, and in particular, has a relative dielectric constant ε r of 7.5 to 12.0 and Q m × f. The value is sufficiently large, and the resonance frequency f. The absolute value of temperature coefficient (tau) f of this is related with the dielectric ceramic composition for high frequencies whose 30 ppm / degrees C or less. The present invention also relates to a method for producing a high frequency dielectric ceramic composition as described above.

更に、本発明は、マイクロ波及びミリ波等の高周波域で使用される高周波回路素子を構成する部材として好適な高周波用誘電体磁器に関する。このような高周波用誘電体磁器の例としては、例えば、誘電体共振器、誘電体導波路および誘電体アンテナなどの構成部材である誘電体ブロックや誘電体基板、さらには各種高周波回路素子において使用される基板及び支持部材などが挙げられる。高周波回路素子は、例えば、高周波域の通信機器などの電子装置を構成する。   Furthermore, the present invention relates to a high frequency dielectric ceramic suitable as a member constituting a high frequency circuit element used in a high frequency region such as a microwave and a millimeter wave. Examples of such high-frequency dielectric ceramics are used in dielectric blocks, dielectric substrates, and various high-frequency circuit elements, which are components such as dielectric resonators, dielectric waveguides, and dielectric antennas. And a substrate and a supporting member. The high-frequency circuit element constitutes an electronic device such as a communication device in a high-frequency range, for example.

近年、通信網の急激な発展に伴い、通信に使用する周波数は、マイクロ波領域やミリ波領域の高周波領域にまで拡大している。このような高周波回路用の電子部品(高周波用電子部品)を作製するのに使用される誘電体磁器組成物としては、材料の損失係数Q(単にQということもある)の値が大きく、さらに共振周波数f。の温度係数τの絶対値が小さく且つ所望の値に容易に調整できる材料が求められている。In recent years, with the rapid development of communication networks, the frequency used for communication has expanded to the high frequency region of the microwave region and the millimeter wave region. As a dielectric ceramic composition used for producing such an electronic component for a high-frequency circuit (high-frequency electronic component), the material has a large loss factor Q m (sometimes simply referred to as Q), Furthermore, the resonance frequency f. There is a need for a material that has a small absolute value of the temperature coefficient τ f and can be easily adjusted to a desired value.

高周波用誘電体磁器組成物の比誘電率εについては、その値が大きくなるほどマイクロ波回路やミリ波回路等の高周波回路を構成する高周波用電子部品の大きさを小さくできる。しかし、マイクロ波及びミリ波の高周波数領域においては、高周波用電子部品に使用する誘電体磁器組成物の比誘電率εが大きすぎると、高周波用電子部品のサイズが小さくなりすぎ加工精度が厳しくなるために生産性が低下する。このため、高周波用誘電体磁器組成物の比誘電率εは適度な大きさが要求される。また、使用する周波数により高周波用電子部品のサイズが変化するために、加工性の向上と小型化との両方の特長を備えたマイクロ波回路およびミリ波回路等の高周波回路のための高周波用電子部品を実現するためには、高周波用電子部品の材料は、所要の比誘電率εを容易に得ることができる(すなわち調整可能な)ものであることが望まれる。As the relative dielectric constant ε r of the high frequency dielectric ceramic composition increases, the size of the high frequency electronic component constituting the high frequency circuit such as a microwave circuit or a millimeter wave circuit can be reduced. However, in the high frequency region of microwave and millimeter wave, if the dielectric constant ε r of the dielectric ceramic composition used for the high frequency electronic component is too large, the size of the high frequency electronic component becomes too small and the processing accuracy is too high. Productivity decreases because it becomes severe. For this reason, the relative dielectric constant ε r of the high frequency dielectric ceramic composition is required to be moderate. In addition, because the size of high-frequency electronic components varies depending on the frequency used, high-frequency electronics for high-frequency circuits such as microwave circuits and millimeter-wave circuits that have both the features of improved workability and miniaturization. In order to realize the component, it is desirable that the material of the high-frequency electronic component can easily obtain the required relative dielectric constant ε r (that is, can be adjusted).

従来、高周波用誘電体磁器組成物としては、BaO−MgO−WO系材料(特許文献1参照)や、MgTiO−CaTiO系材料(特許文献2参照)などが提案されている。しかし、これらの高周波用誘電体磁器組成物はいずれも比誘電率εが13以上であり、使用周波数の高周波数化にともない、さらに低い比誘電率εを有する高周波用誘電体磁器組成物が要求されている。また、これらの高周波用誘電体磁器組成物には、共振周波数の温度係数τの絶対値が0ppm/℃付近の特性を示す組成領域においては、比誘電率εを比較的狭い範囲でしか調整することができないという問題があった。Conventionally, BaO—MgO—WO 3 -based materials (see Patent Document 1), MgTiO 3 —CaTiO 3 -based materials (see Patent Document 2), and the like have been proposed as high-frequency dielectric ceramic compositions. However, all of these high frequency dielectric ceramic compositions have a relative dielectric constant ε r of 13 or more, and have a lower relative dielectric constant ε r as the operating frequency is increased. Is required. Further, in these high frequency dielectric ceramic compositions, the relative permittivity ε r is limited to a relatively narrow range in the composition region where the absolute value of the temperature coefficient τ f of the resonance frequency exhibits a characteristic around 0 ppm / ° C. There was a problem that it could not be adjusted.

一方、アルミナ(Al)、フォルステライト(MgSiO)、コージェライト(MgAlSi18)などは優れたQ値を有し、電子回路基板などに用いられている。しかし、共振周波数の温度係数τが−30〜−70ppm/℃であるため、用途が制限されている。また、これら材料は不純物が混入すると、生成相及び電気特性に大きな影響を与える等の問題がある。On the other hand, alumina (Al 2 O 3 ), forsterite (Mg 2 SiO 4 ), cordierite (Mg 2 Al 4 Si 5 O 18 ) and the like have excellent Q m values and are used for electronic circuit boards and the like. Yes. However, since the temperature coefficient τ f of the resonance frequency is −30 to −70 ppm / ° C., the application is limited. Moreover, when these materials are mixed with impurities, there are problems such as having a great influence on the generated phase and electrical characteristics.

さらに、フォルステライト(MgSiO)とチタン酸カルシウム(CaTiO)およびスピネルからなる磁器組成物(特許文献3参照)が提案されている。しかしながら、この特許文献3には、磁器組成物の比誘電率εの温度依存性が制御されることが開示されているものの、比誘電率εの値や、その制御または調整の可能性について全く開示されていない。Furthermore, a porcelain composition (see Patent Document 3) composed of forsterite (Mg 2 SiO 4 ), calcium titanate (CaTiO 3 ), and spinel has been proposed. However, although Patent Document 3 discloses that the temperature dependence of the relative permittivity ε r of the porcelain composition is controlled, the value of the relative permittivity ε r and the possibility of control or adjustment thereof. Is not disclosed at all.

また、フォルステライト(MgSiO)に酸化チタン(TiO)を加えた誘電体磁器組成物(非特許文献1参照)が提案されている。しかし、この誘電体磁器組成物では、酸化チタン(TiO)の添加とともに共振周波数の温度係数τが徐々にプラス側へシフトしているものの、酸化チタン30wt%添加でも共振周波数の温度係数τが−62ppm/℃と負で大きい値であるため、実用的ではない。Further, a dielectric ceramic composition (see Non-Patent Document 1) in which titanium oxide (TiO 2 ) is added to forsterite (Mg 2 SiO 4 ) has been proposed. However, in this dielectric ceramic composition, although the temperature coefficient τ f of the resonance frequency is gradually shifted to the positive side with the addition of titanium oxide (TiO 2 ), the temperature coefficient τ of the resonance frequency is added even when 30 wt% of titanium oxide is added. Since f is a negative and large value of −62 ppm / ° C., it is not practical.

ところで、誘電体共振器の最も基本的なものとして、同軸誘電体共振器が挙げられる。この同軸誘電体共振器では、誘電体磁器からなるブロックに貫通孔を設け、該貫通孔が開口するブロックの一面(開放面)だけは誘電体磁器の表面そのままの状態とし、誘電体磁器の他の表面及び貫通孔内面には導体膜を形成している。   By the way, the most basic one of the dielectric resonators is a coaxial dielectric resonator. In this coaxial dielectric resonator, a through-hole is provided in a block made of dielectric ceramic, and only one surface (open surface) of the block in which the through-hole opens is left as it is. A conductor film is formed on the surface and the inner surface of the through hole.

また、平面型高周波回路素子である誘電体導波路の最も基本的なものとして、マイクロストリップ線路が挙げられる。このマイクロストリップ線路では、誘電体磁器基板の表裏両面のうち一方の面にストリップ導体を設け、誘電体磁器基板の他方の面に接地導体膜を設けている。   A microstrip line is the most basic dielectric waveguide that is a planar high-frequency circuit element. In this microstrip line, a strip conductor is provided on one of the front and back surfaces of the dielectric ceramic substrate, and a ground conductor film is provided on the other surface of the dielectric ceramic substrate.

以上の同軸誘電体共振器およびマイクロストリップ線路を用いて誘電体共振器制御型マイクロ波発信器を構成することができる。このマイクロ波発信器では、同軸誘電体共振器を誘電体磁器からなる支持部材を介して誘電体磁器基板に取り付け、同軸誘電体共振器の外部に漏れ出る電磁界を利用して、同軸誘電体共振器と誘電体磁器基板に設けたマイクロストリップ線路との結合をとる。   A dielectric resonator control type microwave transmitter can be configured using the above coaxial dielectric resonator and microstrip line. In this microwave oscillator, a coaxial dielectric resonator is attached to a dielectric ceramic substrate via a support member made of a dielectric ceramic, and an electromagnetic field leaking out of the coaxial dielectric resonator is utilized. The resonator is coupled to the microstrip line provided on the dielectric ceramic substrate.

この種の高周波回路においては、電界が支持部材を介して漏れるのを抑制することによって、無負荷Qの高い共振系が構成される。このため、支持部材の材料としては、比誘電率が低く誘電損失(tanδ)が小さい(すなわちQ×f。が大きい)ものを使用する必要がある。このため、従来、支持部材の材料としては、比誘電率εrが約7で、Q×f。が約150000GHzのフォルステライト(MgSiO)が採用されていた。また、誘電体磁器基板の材料としては、主として比誘電率εrが約10で、Q×f。が200000GHz以上のアルミナ磁器(Al)が採用されていた(例えば、特許文献4参照)。しかし、これらの材料では、共振周波数の温度係数τが−30〜−70ppm/℃となりやすいため、高周波回路の用途が制限されている。また、これら材料は不純物が混入すると、生成相の構成及び電気特性が大きく変動する等の問題がある。In this type of high-frequency circuit, a resonance system with a high unloaded Q is configured by suppressing the electric field from leaking through the support member. Therefore, it is necessary to use a material for the support member that has a low relative dielectric constant and a low dielectric loss (tan δ) (that is, a large Q m × f). For this reason, conventionally, as a material of the support member, the relative dielectric constant εr is about 7, and Q m × f. Was forsterite (Mg 2 SiO 4 ) of about 150,000 GHz. As a material for the dielectric ceramic substrate, the relative dielectric constant εr is mainly about 10 and Q m × f. Has been adopted alumina ceramics (Al 2 O 3 ) of 200000 GHz or more (for example, see Patent Document 4). However, in these materials, the temperature coefficient τ f of the resonance frequency tends to be −30 to −70 ppm / ° C., so that the use of the high frequency circuit is limited. In addition, when these materials are mixed with impurities, there is a problem that the structure of the generated phase and the electrical characteristics greatly vary.

また、上記非特許文献1に記載の誘電体磁器組成物に基づく誘電体磁器は実用的ではない。   Moreover, the dielectric ceramic based on the dielectric ceramic composition described in Non-Patent Document 1 is not practical.

一方、誘電体導波路を構成する誘電体磁器基板の材料としては、一般的にはテフロン(登録商標)、アルミナ磁器(Al)が採用されている。しかし、これらの材料は共振周波数の温度係数τが−30〜−70ppm/℃となりやすいため、高周波回路の用途が制限されている。On the other hand, Teflon (registered trademark) and alumina porcelain (Al 2 O 3 ) are generally used as materials for the dielectric ceramic substrate constituting the dielectric waveguide. However, since these materials tend to have a temperature coefficient τ f of the resonance frequency of −30 to −70 ppm / ° C., the use of the high frequency circuit is limited.

また、比誘電率ε=24、Q×f。=350000GHz、共振周波数の温度係数τ=0ppm/℃の誘電体を平面型フィルタに適用した開発例(非特許文献2)があるが、今後の更なる高周波化の要請に対応するためには、やはり比誘電率εが約12以下で、Q×f。が40000GHz以上好ましくは50000GHz以上で、しかも共振周波数f。の温度係数τの絶対値が30ppm/℃以下であることが必要である。Further, the relative dielectric constant ε r = 24, Q m × f. There is a development example (Non-patent Document 2) in which a dielectric having a temperature coefficient of τ f = 0 ppm / ° C. is applied to a planar filter (Non-patent Document 2), but in order to meet the demand for further higher frequency in the future The relative dielectric constant ε r is about 12 or less and Q m × f. Is 40000 GHz or more, preferably 50000 GHz or more, and the resonance frequency f. It is necessary that the absolute value of the temperature coefficient τ f is 30 ppm / ° C. or less.

また、高周波領域になるほど、表皮効果の影響が大きくなり、例えば、導体としてAgを用いた場合には、1〜3GHzの領域で、表皮深さは1.18〜2.04μmとなる(非特許文献3)。   Further, the higher the frequency region, the greater the influence of the skin effect. For example, when Ag is used as the conductor, the skin depth is 1.18 to 2.04 μm in the region of 1 to 3 GHz (non-patented). Reference 3).

特開平6−236708号公報(第11頁段落番号(0033)、表1〜8参照)Japanese Patent Laid-Open No. 6-236708 (see paragraph number (0033) on page 11, Tables 1 to 8) 特開平6−199568号公報(第5頁段落番号(0018)、表1〜3参照)Japanese Unexamined Patent Publication No. Hei 6-199568 (see paragraph number (0018) on page 5, Tables 1 to 3) 特開2000−344571(第2頁段落番号(0006)参照)JP 2000-344571 (see paragraph number (0006) on the second page) 特開昭62−103904号公報JP-A-62-103904

Journal of the European Ceramic Society(第23巻(2003)第2575頁、表3参照)Journal of the European Ceramic Society (Vol. 23 (2003), page 2575, see Table 3) A Ka−band Diplexer Using Planar TE Mode Dielectric Resonators with Plastic Package(Metamorphosis,No.6,pp.38−39(2001))A Ka-band Diplexer Using Planar TE Mode Dielectric Resonators with Plastic Package (Metamorphosis, No. 6, pp. 38-39 (2001)) 理科年表 平成19年度版Science chronology 2007 edition

以上のような従来の高周波用誘電体磁器組成物が有する技術的課題に鑑みて、本発明の1つの目的は、比誘電率εが7.5〜12.0であり、かつQ×f。値が十分に大きく、さらに共振周波数f。の温度係数τの絶対値が30ppm/℃以下である高周波用誘電体磁器組成物を提供することにある。In view of the technical problems of the conventional high-frequency dielectric ceramic composition as described above, one object of the present invention is that the relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value is sufficiently large, and the resonance frequency f. It is an object to provide a dielectric ceramic composition for high frequency in which the absolute value of the temperature coefficient τ f is 30 ppm / ° C. or less.

本発明の他の目的は、そのような高周波用誘電体磁器組成物の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing such a high frequency dielectric ceramic composition.

また、以上のような従来の高周波用誘電体磁器が有する技術的課題に鑑みて、本発明者らは、誘電体磁器の組成を適切なものにすること、および、誘電体磁器の相対密度を適切なものとすることにより、高周波領域の電気特性が優れたものになり製造が容易になるという知見を得た。そして、本発明はこの知見に基づいてなされたものである。   Further, in view of the technical problems of the conventional high-frequency dielectric ceramics as described above, the present inventors have made the composition of the dielectric ceramics appropriate and the relative density of the dielectric ceramics. It was found that by making it appropriate, the electrical characteristics in the high-frequency region were excellent and the manufacturing was easy. And this invention is made | formed based on this knowledge.

すなわち、本発明の目的は、高周波領域での電気特性に優れ製造が容易な高周波用誘電体磁器およびその製造方法を提供することにある。   That is, an object of the present invention is to provide a high-frequency dielectric ceramic having excellent electrical characteristics in a high-frequency region and easy to manufacture, and a method for manufacturing the same.

本発明の他の目的は、そのような高周波用誘電体磁器を構成部材として用いた高周波回路素子を提供することにある。   Another object of the present invention is to provide a high-frequency circuit element using such a high-frequency dielectric ceramic as a constituent member.

また、以上のような従来の高周波用誘電体磁器が有する技術的課題に鑑みて、本発明者らは、誘電体磁器の組成を適切なものにすること、および、誘電体磁器の表面粗さを適切なものとすることにより、高周波領域の電気特性が優れたものになるという知見を得た。そして、本発明はこの知見に基づいてなされたものである。   Further, in view of the technical problems of the conventional high-frequency dielectric ceramics as described above, the present inventors have made the composition of the dielectric ceramics appropriate, and the surface roughness of the dielectric ceramics. It was found that the electrical characteristics in the high-frequency region would be excellent by making the values appropriate. And this invention is made | formed based on this knowledge.

すなわち、本発明の目的は、高周波領域での電気特性に優れる高周波用誘電体磁器およびその製造方法を提供することにある。   That is, an object of the present invention is to provide a high frequency dielectric ceramic excellent in electrical characteristics in a high frequency region and a method for manufacturing the same.

本発明の他の目的は、そのような高周波用誘電体磁器を構成部材として用いた高周波回路素子を提供することにある。   Another object of the present invention is to provide a high-frequency circuit element using such a high-frequency dielectric ceramic as a constituent member.

(1)第1発明:
本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOで表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である高周波用誘電体磁器組成物、
が提供される。
(1) First invention:
According to the present invention, to achieve any of the above objects,
Represented by the composition formula a (Sn, Ti) O 2 —bMg 2 SiO 4 —cMgTi 2 O 5 —dMgSiO 3 , and a, b, c, and d (where a, b, c, and d in the composition formula) Is in a range of 4 ≦ a ≦ 37, 34 ≦ b ≦ 92, 2 ≦ c ≦ 15, and 2 ≦ d ≦ 15, respectively, where a + b + c + d = 100 Composition,
Is provided.

本発明の一態様においては、前記(Sn,Ti)Oが(Sn0.8Ti0.2)Oである。In one embodiment of the present invention, the (Sn, Ti) O 2 is (Sn 0.8 Ti 0.2 ) O 2 .

また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
上記の高周波用誘電体磁器組成物を製造する方法であって、SnO、TiO及びMgSiOを出発原料として用い、これら出発原料の所定量を混合・解砕して得られた粉末にバインダを添加して成形し、焼成することを特徴とする、高周波用誘電体磁器組成物の製造方法、
が提供される。
In addition, according to the present invention, to achieve any of the above objects,
A method for producing the above-mentioned high frequency dielectric ceramic composition, using SnO 2 , TiO 2 and Mg 2 SiO 4 as starting materials, and mixing and crushing a predetermined amount of these starting materials A method for producing a dielectric ceramic composition for high frequency, characterized in that a binder is added to be molded and fired,
Is provided.

(2)第2発明:
また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
上記高周波用誘電体磁器組成物からなる主成分と、MnOからなる添加成分とを含んでなり、該添加成分は前記主成分100重量部に対して0.1〜5.0重量部添加されており、相対密度が95%以上であることを特徴とする高周波用誘電体磁器、
が提供される。
(2) Second invention:
In addition, according to the present invention, to achieve any of the above objects,
A main component comprising the high frequency dielectric ceramic composition, and an additive component comprising MnO, wherein the additive component is added in an amount of 0.1 to 5.0 parts by weight per 100 parts by weight of the main component. A dielectric ceramic for high frequency, wherein the relative density is 95% or more,
Is provided.

本発明の一態様においては、前記高周波用誘電体磁器は、比誘電率εが7.5〜12.0であり、Q×f。値が40000以上好ましくは50000以上であり、共振周波数f。の温度係数τが−30〜+30ppm/℃である。In one aspect of the present invention, the high frequency dielectric ceramic has a relative dielectric constant ε r of 7.5 to 12.0 and Q m × f. The value is 40000 or more, preferably 50000 or more, and the resonance frequency f. Has a temperature coefficient τ f of −30 to +30 ppm / ° C.

また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
上記の高周波用誘電体磁器を製造する方法であって、SnO、TiO及びMgSiOの所定量を混合し仮焼した後に粉砕したものを出発原料として用い、該出発原料100重量部に対してMnOを焼結助剤として0.1〜5.0重量部添加して得られた粉末に有機バインダを添加して成形し、焼成することを特徴とする、高周波用誘電体磁器の製造方法、
が提供される。
In addition, according to the present invention, to achieve any of the above objects,
A method for producing the above-mentioned dielectric ceramic for high frequency, wherein a predetermined amount of SnO 2 , TiO 2 and Mg 2 SiO 4 is mixed and calcined and then pulverized as a starting material, and 100 parts by weight of the starting material An organic binder is added to a powder obtained by adding 0.1 to 5.0 parts by weight of MnO as a sintering aid to the powder, and the resulting product is fired. Production method,
Is provided.

また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、上記の高周波用誘電体磁器からなる部材を含むことを特徴とする高周波回路素子、が提供される。   In addition, according to the present invention, there is provided a high-frequency circuit element characterized by including a member made of the above-described high-frequency dielectric porcelain, in order to achieve any of the above objects.

(3)第3発明:
また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
上記高周波用誘電体磁器組成物からなるとともに、表面の算術平均粗さRaが2μm以下であることを特徴とする高周波用誘電体磁器、
が提供される。
(3) Third invention:
In addition, according to the present invention, to achieve any of the above objects,
The dielectric ceramic for high frequency, comprising the dielectric ceramic composition for high frequency, and having an arithmetic mean roughness Ra of 2 μm or less on the surface,
Is provided.

本発明の一態様においては、前記高周波用誘電体磁器は、比誘電率εが7.5〜12.0であり、Q×f。値が40000以上好ましくは50000以上であり、共振周波数f。の温度係数τが−30〜+30ppm/℃である。In one aspect of the present invention, the high frequency dielectric ceramic has a relative dielectric constant ε r of 7.5 to 12.0 and Q m × f. The value is 40000 or more, preferably 50000 or more, and the resonance frequency f. Has a temperature coefficient τ f of −30 to +30 ppm / ° C.

また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、
上記の高周波用誘電体磁器を製造する方法であって、SnO、TiO及びMgSiOを出発原料として用い、これら出発原料の所定量を粒度分布のD50が2μm以下になるように混合・解砕して得られた粉末にバインダを添加して成形し、焼成することを特徴とする、高周波用誘電体磁器の製造方法、
が提供される。
In addition, according to the present invention, to achieve any of the above objects,
A method of manufacturing the above dielectric ceramic for high frequency, using SnO 2 , TiO 2 and Mg 2 SiO 4 as starting materials, and mixing a predetermined amount of these starting materials so that the D50 of the particle size distribution is 2 μm or less. A method for producing a dielectric ceramic for high frequency, characterized by adding a binder to the powder obtained by pulverization, shaping, and firing.
Is provided.

また、本発明によれば、以上の如き目的のうちのいずれかを達成するものとして、上記の高周波用誘電体磁器からなる部材を含むことを特徴とする高周波回路素子、が提供される。   In addition, according to the present invention, there is provided a high-frequency circuit element characterized by including a member made of the above-described high-frequency dielectric porcelain, in order to achieve any of the above objects.

本発明によれば、比誘電率εが7.5〜12.0であり、かつQ×f。(Qf。、Qf。、Qf、Qf、Q×f。、Q×f、及びQ×f等と略称されることがある)の値が十分に大きく、さらに共振周波数f。の温度係数τの絶対値が30ppm/℃以下である高周波用誘電体磁器組成物が提供される。この高周波用誘電体磁器組成物を用いることで、特性が良好で加工性の向上と小型化との両方の特長を備えた高周波用誘電体磁器電子部品の提供が容易になる。According to the present invention, the relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value of (Q m f., Qf. , Q m f, Qf, Q × f., Q m × f, and Q × It is to be abbreviated as f or the like) is sufficiently large, further resonance frequency f. High frequency dielectric ceramic composition the absolute value of the temperature coefficient tau f is not more than 30 ppm / ° C. is provided. By using this high-frequency dielectric ceramic composition, it is easy to provide a high-frequency dielectric ceramic electronic component having good characteristics and features of both improved workability and downsizing.

また、本発明によれば、高周波領域での電気特性に優れ製造が容易な高周波用誘電体磁器が提供され、とくに、比誘電率εが7.5〜12.0であり、Q×f。値が十分に大きく、さらに共振周波数f。の温度係数τの絶対値が30ppm/℃以下であり、比較的低い温度で焼成可能な高周波用誘電体磁器が提供される。この高周波用誘電体磁器を構成部材として用いることで、特性が良好で良好な加工性と小型化容易性との両方の特長を備えた高周波回路素子が提供される。In addition, according to the present invention, a high frequency dielectric ceramic having excellent electrical characteristics in a high frequency region and easy to manufacture is provided. In particular, the relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value is sufficiently large, and the resonance frequency f. An absolute value of the temperature coefficient τ f of the high frequency dielectric ceramic is 30 ppm / ° C. or less, and can be fired at a relatively low temperature. By using this high-frequency dielectric ceramic as a constituent member, a high-frequency circuit element having excellent characteristics, both good workability and ease of miniaturization is provided.

また、本発明によれば、高周波領域での電気特性に優れる高周波用誘電体磁器が提供され、とくに、比誘電率εが7.5〜12.0であり、Q×f。値が十分に大きく、さらに共振周波数f。の温度係数τの絶対値が30ppm/℃以下である高周波用誘電体磁器が提供される。この高周波用誘電体磁器を構成部材として用いることで、特性が良好で良好な加工性と小型化容易性との両方の特長を備えた高周波回路素子が提供される。In addition, according to the present invention, a high frequency dielectric ceramic having excellent electrical characteristics in a high frequency region is provided, and in particular, the relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value is sufficiently large, and the resonance frequency f. A high frequency dielectric ceramic having an absolute value of the temperature coefficient τ f of 30 ppm / ° C. or less is provided. By using this high-frequency dielectric ceramic as a constituent member, a high-frequency circuit element having excellent characteristics, both good workability and ease of miniaturization is provided.

本発明の高周波用誘電体磁器組成物のX線回折図である。1 is an X-ray diffraction diagram of a high frequency dielectric ceramic composition of the present invention. 本発明の高周波用誘電体磁器組成物のEDS分析図である。It is an EDS analysis figure of the dielectric ceramic composition for high frequency of the present invention. 本発明の高周波用誘電体磁器組成物を用いて作製した高周波回路素子の一例である同軸型誘電体共振器の模式的斜視図である。1 is a schematic perspective view of a coaxial dielectric resonator that is an example of a high-frequency circuit device manufactured using the high-frequency dielectric ceramic composition of the present invention. 高周波回路素子の一例である誘電体共振器制御型マイクロ波発信器の模式的断面図である。It is a typical sectional view of a dielectric resonator control type microwave transmitter which is an example of a high frequency circuit element. 高周波回路素子の一例であるマイクロストリップ線路の模式的斜視図である。It is a typical perspective view of the microstrip line which is an example of a high frequency circuit element. 平面型高周波回路素子を構成する種々のマイクロストリップ線路のパターンを示す模式的平面図である。It is a typical top view which shows the pattern of the various microstrip line | wires which comprise a planar high frequency circuit element. 本発明の高周波用誘電体磁器のX線回折図である。FIG. 3 is an X-ray diffraction diagram of a high frequency dielectric ceramic according to the present invention. 本発明の高周波用誘電体磁器の製造に用いる原料混合物の粒度分布の一例を示す図である。It is a figure which shows an example of the particle size distribution of the raw material mixture used for manufacture of the dielectric ceramic for high frequencies of this invention. 本発明の高周波用誘電体磁器のX線回折図である。FIG. 3 is an X-ray diffraction diagram of a high frequency dielectric ceramic according to the present invention.

本発明の高周波用誘電体磁器組成物は、組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOで表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である。The high frequency dielectric ceramic composition of the present invention is represented by a composition formula a (Sn, Ti) O 2 -bMg 2 SiO 4 -cMgTi 2 O 5 -dMgSiO 3 , and a, b, c in the composition formula, and d (where a, b, c, and d are mol%) are in the range of 4 ≦ a ≦ 37, 34 ≦ b ≦ 92, 2 ≦ c ≦ 15, and 2 ≦ d ≦ 15, respectively. Here, a + b + c + d = 100.

本発明の高周波用誘電体磁器組成物は、とくに、図1のX線回折図に示されるように、チタン酸スズ((Sn,Ti)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)を主生成相とする。前記(Sn,Ti)Oとしては、(Sn0.8Ti0.2)O及び(Sn0.2Ti0.8)Oが知られている。このうち(Sn0.8Ti0.2)Oは、(Sn0.2Ti0.8)Oよりも、焼結が容易で、且つτも制御しやすい特徴がある。As shown in the X-ray diffraction diagram of FIG. 1, the dielectric ceramic composition for high frequency of the present invention is particularly tin titanate ((Sn, Ti) O 2 ), forsterite (Mg 2 SiO 4 ), magnesium. Titanate (MgTi 2 O 5 ) and steatite (MgSiO 3 ) are the main production phases. As the (Sn, Ti) O 2 , (Sn 0.8 Ti 0.2 ) O 2 and (Sn 0.2 Ti 0.8 ) O 2 are known. Among these, (Sn 0.8 Ti 0.2 ) O 2 has characteristics that it is easier to sinter and more easily controls τ f than (Sn 0.2 Ti 0.8 ) O 2 .

本発明の高周波用誘電体磁器組成物は、Q×f。値が40000(GHz)以上たとえば50000〜80000(GHz)程度の高い値を示すことから、誘電損失が非常に小さい高周波用誘電体磁器及びこれを用いた電子部品の提供が容易になる。また、本発明の高周波用誘電体磁器組成物は、共振周波数の温度係数τの絶対値が30ppm/℃以下であることから、温度による特性への影響の少ない高周波用誘電体磁器及びこれを用いた電子部品の提供が容易になる。しかも、本発明の高周波用誘電体磁器組成物は、比誘電率εが7.5〜12.0であることから、加工性の向上と小型化との両方の特長を備えた高周波用誘電体磁器電子部品の提供が容易になる。The dielectric ceramic composition for high frequency of the present invention is Q m × f. Since the value is as high as 40,000 (GHz) or higher, for example, about 50,000 to 80,000 (GHz), it is easy to provide a high frequency dielectric ceramic having a very low dielectric loss and an electronic component using the same. In addition, since the absolute value of the temperature coefficient τ f of the resonance frequency is 30 ppm / ° C. or less, the high-frequency dielectric ceramic composition of the present invention has a high-frequency dielectric ceramic with little influence on characteristics due to temperature, and the It becomes easy to provide the used electronic components. Moreover, since the dielectric ceramic composition for high frequency of the present invention has a relative dielectric constant ε r of 7.5 to 12.0, the dielectric for high frequency having both features of improved workability and downsizing. The provision of the body porcelain electronic parts is facilitated.

本発明の高周波用誘電体磁器組成物における組成の限定理由を説明する。組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOにおいて、aが4未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。aが37を超えると、比誘電率εが12.0より大きくなり、好ましくない。aのより好ましい範囲は、18≦a≦36である。この範囲内であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。bが34未満では、比誘電率εが12.0より大きくなり、好ましくない。bが92を超えると、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。bのより好ましい範囲は、34≦b≦68である。この範囲であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。cが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。cが15を超えると、比誘電率εが12.0より大きくなり、好ましくない。dが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。dが15を超えると、比誘電率εが12.0より大きくなり好ましくない。The reason for limiting the composition of the high frequency dielectric ceramic composition of the present invention will be described. In the composition formula a (Sn, Ti) O 2 —bMg 2 SiO 4 —cMgTi 2 O 5 —dMgSiO 3 , if a is less than 4, the temperature coefficient τ f of the resonance frequency is smaller than −30 ppm / ° C. (that is, the temperature The absolute value of the coefficient τ f is larger than 30 ppm / ° C.), which is not preferable. When a exceeds 37, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. A more preferable range of a is 18 ≦ a ≦ 36. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If b is less than 34, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If b exceeds 92, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. A more preferable range of b is 34 ≦ b ≦ 68. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If c is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. When c exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If d is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. If d exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable.

後述の実施例で示されるように、本発明の高周波用誘電体磁器組成物における組成範囲内で組成式におけるモル比a、b、c、及びdを適宜変更することで、共振周波数f。の温度係数τの絶対値が30ppm/℃以下すなわちτが零に近い範囲内で十分大きなQ×f。値を実現しつつ、比誘電率εrを7.5〜12.0の範囲の所望値に調整することが可能である。As shown in Examples described later, the resonance frequency f is obtained by appropriately changing the molar ratios a, b, c, and d in the composition formula within the composition range in the high frequency dielectric ceramic composition of the present invention. The absolute value of the temperature coefficient τ f is 30 ppm / ° C. or less, that is, sufficiently large Q m × f within a range where τ f is close to zero. It is possible to adjust the relative dielectric constant εr to a desired value in the range of 7.5 to 12.0 while realizing the value.

次に本発明の高周波用誘電体磁器組成物の製造方法を説明する。本発明の高周波用誘電体磁器組成物の最も好ましい製造方法は、出発原料として酸化スズ(SnO)、酸化チタン(TiO)、及びフォルステライト(MgSiO)を用いる方法である。これらを一緒に焼成することで、目的とする組成物、すなわち、上記組成式で表され、(Sn,Ti)O、MgSiO、MgTi、及びMgSiOを主生成相とする組成物を得ることができる。Next, a method for producing the high frequency dielectric ceramic composition of the present invention will be described. The most preferable method for producing the high frequency dielectric ceramic composition of the present invention is a method using tin oxide (SnO 2 ), titanium oxide (TiO 2 ), and forsterite (Mg 2 SiO 4 ) as starting materials. By firing these together, the target composition, that is, (Sn, Ti) O 2 , Mg 2 SiO 4 , MgTi 2 O 5 , and MgSiO 3 is represented by the above composition formula as the main product phase. Can be obtained.

本発明の高周波用誘電体磁器組成物の製造方法の一実施形態は次の通りである。SnO、TiO、及びMgSiOの出発原料を所定量ずつ、アルコール等の溶媒とともに湿式混合する。続いて溶媒を除去した後、解砕する。このようにして得られた粉末にポリビニルアルコールの如き有機バインダを混合して均質にし、乾燥、解砕、加圧成形(圧力100〜1000kg/cm程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて1200〜1450℃で焼成することにより上記組成式で表される高周波用誘電体磁器組成物を得ることができる。One embodiment of the method for producing a high frequency dielectric ceramic composition of the present invention is as follows. A predetermined amount of starting materials of SnO 2 , TiO 2 , and Mg 2 SiO 4 are wet mixed together with a solvent such as alcohol. Subsequently, the solvent is removed and then pulverized. The powder thus obtained is mixed with an organic binder such as polyvinyl alcohol to make it homogeneous, followed by drying, crushing, and pressure molding (pressure of about 100 to 1000 kg / cm 2 ). By firing the obtained molded product at 1200 to 1450 ° C. in an oxygen-containing gas atmosphere such as air, a high frequency dielectric ceramic composition represented by the above composition formula can be obtained.

後述の実施例で示されるように、SnO及びTiOを当モル量用いることができる。この場合、とくに、前記生成相(Sn,Ti)Oは、(Sn0.8Ti0.2)Oであることが好ましい。As shown in the examples described below, equimolar amounts of SnO 2 and TiO 2 can be used. In this case, in particular, the generated phase (Sn, Ti) O 2 is preferably (Sn 0.8 Ti 0.2 ) O 2 .

このようにして得られた高周波用誘電体磁器組成物(磁器の形態のものを含む)は、必要により適当な形状、およびサイズへ加工することで、誘電体共振器等の高周波用誘電体磁器電子部品として利用できる。とくに、外部に銀や銅等の導体からなる膜または配線などを形成することにより、いわゆる同軸型共振器やこれを利用した同軸型誘電体フィルタ等の高周波用誘電体磁器電子部品として利用することが可能である。さらには、板状に加工し、銀や銅等の導体配線を形成することにより、高周波用誘電体磁器電子部品としての誘電体配線基板として利用することができる。また、粉末状の本発明の高周波用誘電体磁器組成物を、ポリビニルブチラール等のバインダ樹脂、フタル酸ジブチル等の可塑剤、及びトルエン等の有機溶剤と混合し、ドクターブレード法等によるシート成形を行い、得られたシートと導体シートとを積層化し、一体焼成することにより、積層型誘電体フィルタ等の積層型の高周波用誘電体磁器電子部品や積層型の誘電体配線基板としても利用することができる。   The high-frequency dielectric ceramic composition (including those in the form of porcelain) thus obtained is processed into an appropriate shape and size as necessary, so that a high-frequency dielectric ceramic such as a dielectric resonator can be obtained. Can be used as an electronic component. In particular, by forming a film or wiring made of a conductor such as silver or copper on the outside, it can be used as a high frequency dielectric ceramic electronic component such as a so-called coaxial resonator or a coaxial dielectric filter using the same. Is possible. Furthermore, it can be used as a dielectric wiring board as a dielectric ceramic electronic component for high frequency by processing into a plate shape and forming a conductor wiring such as silver or copper. Further, the powdery dielectric ceramic composition for high frequency of the present invention is mixed with a binder resin such as polyvinyl butyral, a plasticizer such as dibutyl phthalate, and an organic solvent such as toluene, and sheet molding by a doctor blade method or the like is performed. By stacking the obtained sheet and the conductor sheet and firing them together, it can be used as a laminated high frequency dielectric ceramic electronic component such as a laminated dielectric filter or a laminated dielectric wiring board. Can do.

なお、本発明の高周波用誘電体磁器組成物を構成する元素であるスズ、マグネシウム、シリコン、及びチタンの原料としては、SnO、MgO、SiO、及びTiO等の他に、焼成時に酸化物となる硝酸塩、炭酸塩、水酸化物、塩化物、有機金属化合物等を使用することもできる。In addition to SnO 2 , MgO, SiO 2 , TiO 2 , and the like as raw materials for tin, magnesium, silicon, and titanium, which are elements constituting the high frequency dielectric ceramic composition of the present invention, oxidation is performed during firing. Nitrate, carbonate, hydroxide, chloride, organometallic compound, and the like can be used.

本発明の高周波用誘電体磁器の主成分は、上記高周波用誘電体磁器組成物からなり、すなわち、組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOで表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である。本発明の高周波用誘電体磁器の添加成分は、MnOからなる。この添加成分は主成分100重量部に対して0.1〜5.0重量部添加されている。The main component of the high frequency dielectric ceramic of the present invention is composed of the above high frequency dielectric ceramic composition, that is, the composition formula a (Sn, Ti) O 2 -bMg 2 SiO 4 -cMgTi 2 O 5 -dMgSiO 3 . A, b, c, and d (where a, b, c, and d are mol%) in the composition formula are 4 ≦ a ≦ 37, 34 ≦ b ≦ 92, and 2 ≦ c ≦, respectively. 15 and 2 ≦ d ≦ 15, where a + b + c + d = 100. The additive component of the high frequency dielectric ceramic of the present invention is made of MnO. This additive component is added in an amount of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the main component.

本発明の高周波用誘電体磁器は、とくに、図7のX線回折図に示されるように、チタン酸スズ((Sn,Ti)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)を主生成相とする。前記(Sn,Ti)Oとしては、(Sn0.8Ti0.2)O及び(Sn0.2Ti0.8)Oが知られている。このうち(Sn0.8Ti0.2)Oは、(Sn0.2Ti0.8)Oよりも、焼結が容易で、且つτも制御しやすい特徴がある。尚、図7は、主生成相のみ表れており、添加成分MnOは微量であるため表れていない。As shown in the X-ray diffraction diagram of FIG. 7, the high-frequency dielectric ceramic according to the present invention has tin titanate ((Sn, Ti) O 2 ), forsterite (Mg 2 SiO 4 ), magnesium titanate ( MgTi 2 O 5 ) and steatite (MgSiO 3 ) are the main production phases. As the (Sn, Ti) O 2 , (Sn 0.8 Ti 0.2 ) O 2 and (Sn 0.2 Ti 0.8 ) O 2 are known. Among these, (Sn 0.8 Ti 0.2 ) O 2 has characteristics that it is easier to sinter and more easily controls τ f than (Sn 0.2 Ti 0.8 ) O 2 . FIG. 7 shows only the main product phase and does not appear because the additive component MnO is very small.

本発明の高周波用誘電体磁器は、Q×f。が40000GHz以上たとえば50000GHz以上と高い値を示すことから、誘電損失が非常に小さい高周波用誘電体磁器及びこれを用いた高周波回路素子の提供が容易になる。また、本発明の高周波用誘電体磁器は、共振周波数の温度係数τの絶対値が30ppm/℃以下であることから、温度による特性への影響の少ない高周波用誘電体磁器及びこれを用いた高周波回路素子の提供が容易になる。しかも、本発明の高周波用誘電体磁器は、比誘電率εが7.5〜12.0であることから、加工性の向上と小型化との両方の特長を備えた高周波回路素子の提供が容易になる。The dielectric ceramic for high frequency of the present invention is Q m × f. Shows a high value of 40,000 GHz or more, for example, 50000 GHz or more, it is easy to provide a high frequency dielectric ceramic having a very low dielectric loss and a high frequency circuit element using the same. In addition, the high frequency dielectric ceramic according to the present invention uses a high frequency dielectric ceramic that has little influence on characteristics due to temperature since the absolute value of the temperature coefficient τ f of the resonance frequency is 30 ppm / ° C. or less. Provision of a high-frequency circuit element is facilitated. In addition, since the dielectric ceramic for high frequency according to the present invention has a relative dielectric constant ε r of 7.5 to 12.0, a high frequency circuit element having both features of improved workability and downsizing is provided. Becomes easier.

さらに、本発明の高周波用誘電体磁器は、添加成分MnOの添加量が主成分100重量部に対して0.1〜5.0重量部であり且つ相対密度が95%以上であるため、上記Q×f。、τ及びεに関する特性が良好であり且つ製造時の焼成に際して接触するジルコニア(ZrO)やアルミナ(Al)などからなる敷き板と反応することなく高い歩留まりで製造される。従って、高周波回路素子の提供が容易になる。このような高周波回路素子の一例として、図3に示されるような同軸誘電体共振器が挙げられる。ここでは、外形寸法10.6mm×10.6mm×12mm(軸長)の誘電体磁器のブロックに、軸長方向に沿って穴径3mmの円筒形貫通孔を設け、該貫通孔が開口するブロックの一面(開放面)だけは誘電体磁器の表面(セラミックス面)そのままの状態とし、誘電体磁器の他の表面及び貫通孔内面にはAg導体からなる導体膜を形成している。Furthermore, in the high frequency dielectric ceramic of the present invention, the additive component MnO is added in an amount of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the main component and the relative density is 95% or more. Q m × f. , Τ f and ε r have good characteristics, and are manufactured at a high yield without reacting with a base plate made of zirconia (ZrO 2 ), alumina (Al 2 O 3 ) or the like that comes into contact during firing during production. Accordingly, it is easy to provide a high-frequency circuit element. An example of such a high frequency circuit element is a coaxial dielectric resonator as shown in FIG. Here, a block in which a cylindrical through hole having a hole diameter of 3 mm is provided along the axial length direction in a block of a dielectric ceramic having an outer dimension of 10.6 mm × 10.6 mm × 12 mm (axial length), and the through hole is opened. Only one surface (open surface) of the dielectric ceramic is left as it is (ceramic surface), and a conductor film made of an Ag conductor is formed on the other surface of the dielectric ceramic and the inner surface of the through hole.

本発明の高周波用誘電体磁器における組成の限定理由を説明する。主成分の組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOにおいて、aが4未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。aが37を超えると、比誘電率εが12.0より大きくなり、好ましくない。aのより好ましい範囲は、18≦a≦36である。この範囲内であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。bが34未満では、比誘電率εが12.0より大きくなり、好ましくない。bが92を超えると、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。bのより好ましい範囲は、34≦b≦68である。この範囲であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。cが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。cが15を超えると、比誘電率εが12.0より大きくなり、好ましくない。dが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。dが15を超えると、比誘電率εが12.0より大きくなり好ましくない。The reason for limiting the composition of the high frequency dielectric ceramic according to the present invention will be described. In the main component composition formula a (Sn, Ti) O 2 -bMg 2 SiO 4 -cMgTi 2 O 5 -dMgSiO 3 , if a is less than 4, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. ( That is, the absolute value of the temperature coefficient τ f is greater than 30 ppm / ° C.), which is not preferable. When a exceeds 37, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. A more preferable range of a is 18 ≦ a ≦ 36. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If b is less than 34, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If b exceeds 92, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. A more preferable range of b is 34 ≦ b ≦ 68. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If c is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. When c exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If d is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. If d exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable.

後述の実施例で示されるように、本発明の高周波用誘電体磁器における組成範囲内で主成分の組成式におけるモル比a、b、c及びdを適宜変更することで、共振周波数f。の温度係数τの絶対値が30ppm/℃以下すなわちτが零に近い範囲内で十分大きなQ値を実現しつつ、比誘電率εrを7.5〜12.0の範囲の所望値に調整することが可能である。As shown in the examples described later, the resonance frequency f is obtained by appropriately changing the molar ratios a, b, c, and d in the composition formula of the main component within the composition range in the high frequency dielectric ceramic of the present invention. The absolute value of the temperature coefficient τ f is 30 ppm / ° C. or less, that is, a desired value in the range of 7.5 to 12.0 is achieved while the dielectric constant ε r is in the range of 7.5 to 12.0 while realizing a sufficiently large Q m value in the range where τ f is close to zero It is possible to adjust to.

また、主成分100重量部に対する添加成分MnOの添加量が0.1重量部未満では、1300℃以下とくに1250℃以下の比較的低温の焼成で相対密度を95%以上とすることが難しく、良好なQ×f。値が得難くなるので、好ましくない。一方、主成分100重量部に対する添加成分MnOの添加量が5.0重量部を超えると、良好なQ×f。値及びεが得難くなり、さらには製造時の焼成に際して接触する敷き板と反応し、製造歩留まりが低下しやすくなるので、好ましくない。In addition, when the amount of the additive component MnO added to 100 parts by weight of the main component is less than 0.1 parts by weight, it is difficult to achieve a relative density of 95% or more by firing at a relatively low temperature of 1300 ° C. or less, particularly 1250 ° C. or less. Q m × f. Since it becomes difficult to obtain a value, it is not preferable. On the other hand, when the addition amount of the additive component MnO with respect to 100 parts by weight of the main component exceeds 5.0 parts by weight, good Q m × f. It is difficult to obtain the value and ε r , and further, it reacts with the base plate that is in contact during firing during production, and the production yield tends to decrease, which is not preferable.

本発明の高周波用誘電体磁器の製造方法の一実施形態は次の通りである。SnO、TiO、及びMgSiOを所定量ずつ、アルコール等の溶媒とともに湿式混合する。続いて溶媒を除去した後、1000〜1150℃で仮焼して粉砕し、出発原料粉末を得る。An embodiment of the method for manufacturing a high frequency dielectric ceramic according to the present invention is as follows. SnO 2 , TiO 2 , and Mg 2 SiO 4 are wet-mixed in predetermined amounts together with a solvent such as alcohol. Subsequently, after removing the solvent, it is calcined at 1000 to 1150 ° C. and pulverized to obtain a starting raw material powder.

この出発原料粉末に、MnOを焼結助剤として所定量添加して、アルコール等の溶媒とともに湿式混合する。続いて溶媒を除去して得られた粉末にポリビニルアルコールの如き有機バインダを添加し、混合して均質にし、乾燥、解砕した後、成形密度が2.0〜2.4g/cm、好ましくは2.2〜2.4g/cmになるように加圧成形する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて1200〜1300℃で焼成することにより上記組成式で表される主成分とMnOからなる添加成分とを含み、該添加成分が前記主成分100重量部に対して0.1〜5.0重量部添加されており、相対密度が95%以上である高周波用誘電体磁器を得ることができる。A predetermined amount of MnO as a sintering aid is added to this starting material powder and wet mixed with a solvent such as alcohol. Subsequently, an organic binder such as polyvinyl alcohol is added to the powder obtained by removing the solvent, and after mixing, homogenizing, drying and crushing, the molding density is preferably 2.0 to 2.4 g / cm 3 , preferably Is pressure-molded so as to be 2.2 to 2.4 g / cm 3 . The obtained molded product is fired at 1200 to 1300 ° C. in an oxygen-containing gas atmosphere such as air, thereby containing a main component represented by the above composition formula and an additive component composed of MnO. 0.1 to 5.0 parts by weight are added to 100 parts by weight of the component, and a high frequency dielectric ceramic having a relative density of 95% or more can be obtained.

後述の実施例で示されるように、SnO及びTiOを当モル量用いることができる。この場合、とくに、前記生成相(Sn,Ti)Oは、(Sn0.8Ti0.2)Oであることが好ましい。As shown in the examples described below, equimolar amounts of SnO 2 and TiO 2 can be used. In this case, in particular, the generated phase (Sn, Ti) O 2 is preferably (Sn 0.8 Ti 0.2 ) O 2 .

このようにして得られた高周波用誘電体磁器は、必要により適当な形状およびサイズに加工することができる。   The high-frequency dielectric ceramic thus obtained can be processed into an appropriate shape and size if necessary.

本発明の高周波用誘電体磁器は、例えば、外部に銀や銅等の導体からなる膜または配線などを形成することにより、図3のような同軸型誘電体共振器やこれを利用した同軸型誘電体フィルタ等の高周波回路素子を構成するのに利用することが可能である。本発明の高周波用誘電体磁器であって板状のものは、銀や銅等の導体配線を形成することにより、各種高周波回路のための誘電体配線基板として利用することができる。   The high frequency dielectric porcelain of the present invention is formed, for example, by forming a film or wiring made of a conductor such as silver or copper on the outside, thereby forming a coaxial dielectric resonator as shown in FIG. 3 or a coaxial type using the same. It can be used to construct a high-frequency circuit element such as a dielectric filter. The plate-shaped high frequency dielectric ceramic of the present invention can be used as a dielectric wiring board for various high frequency circuits by forming a conductor wiring such as silver or copper.

また、出発原料粉末にMnOを焼結助剤として所定量添加し、低融点ガラスを添加し、その後ポリビニルブチラール等のバインダ樹脂、フタル酸ジブチル等の可塑剤、及びトルエン等の有機溶剤と混合し、ドクターブレード法等によるシート成形を行い、得られたシートと導体シートとを積層化し、一体焼成することにより、積層型誘電体フィルタや積層型の誘電体配線基板等の積層型の高周波回路素子を得ることができる。   Also, add a predetermined amount of MnO as a sintering aid to the starting raw material powder, add a low melting glass, and then mix with a binder resin such as polyvinyl butyral, a plasticizer such as dibutyl phthalate, and an organic solvent such as toluene. A laminated high frequency circuit element such as a laminated dielectric filter or a laminated dielectric wiring board is obtained by forming a sheet by a doctor blade method, etc., laminating the obtained sheet and a conductor sheet, and firing them integrally. Can be obtained.

なお、本発明の高周波用誘電体磁器を構成する元素であるSn、Mg、Si、及びTi、並びにMnOの原料としては、SnO、TiO、MgSiO、MnOの他に、MgO、SiO等の酸化物を用いることもでき、さらには焼成時に酸化物となる硝酸塩、炭酸塩、水酸化物、塩化物、有機金属化合物等を使用することもできる。In addition to SnO 2 , TiO 2 , Mg 2 SiO 4 , and MnO, SnO, Mg, Si, and Ti, which are elements constituting the high frequency dielectric ceramic according to the present invention, may be made of MgO, An oxide such as SiO 2 can also be used, and nitrates, carbonates, hydroxides, chlorides, organometallic compounds, and the like that become oxides during firing can also be used.

なお、本発明の高周波用誘電体磁器は、その構成元素がO、Sn、Mg、Si、及びTi、並びにMnOであるが、例えば粉砕ボールや原料粉末の不純物に由来するCa、Ba、Zr、Ni、Fe、Cr、P、Na等が不純物として混入してもよい。   The high-frequency dielectric ceramic of the present invention has O, Sn, Mg, Si, and Ti, and MnO as its constituent elements. For example, Ca, Ba, Zr, Ni, Fe, Cr, P, Na, etc. may be mixed as impurities.

また、本発明の高周波用誘電体磁器は、低誘電率および高Q値が求められるものであれば、種々の高周波回路素子の構成部材として使用できる。そのような例の1つとして、図4に示されるような誘電体共振器制御型マイクロ波発信器における構成部材が挙げられる。このマイクロ波発信器では、同軸誘電体共振器1を誘電体磁器からなる支持部材2を介して誘電体磁器基板3に取り付け、同軸誘電体共振器1の外部に漏れ出る電磁界Hを利用して、同軸誘電体共振器1と誘電体磁器基板3に設けたマイクロストリップ線路のストリップ導体4との結合をとる。符号5は、電磁シールド機能を発揮する金属ケースを示す。このマイクロ波発信器において、本発明の高周波用誘電体磁器は、図3に関し説明したような同軸誘電体共振器1の誘電体ブロックとして、支持部材2として、さらには誘電体磁器基板3として、それぞれ使用することができる。図5に、マイクロストリップ線路の詳細を示す。マイクロストリップ線路では、誘電体磁器基板6(上記誘電体磁器基板3に相当)の表面にストリップ導体7を設け、誘電体磁器基板6の裏面に接地導体膜8を設けている。ストリップ導体7の材料としては、Pd、Cu、Au、Agが例示される。The high frequency dielectric ceramic of the present invention, as long as the low dielectric constant and a high Q m value is determined, can be used as components of various high-frequency circuit device. One example is a component in a dielectric resonator-controlled microwave transmitter as shown in FIG. In this microwave oscillator, a coaxial dielectric resonator 1 is attached to a dielectric ceramic substrate 3 via a support member 2 made of a dielectric ceramic, and an electromagnetic field H leaking out of the coaxial dielectric resonator 1 is used. Thus, the coaxial dielectric resonator 1 and the microstrip line strip conductor 4 provided on the dielectric ceramic substrate 3 are coupled. Reference numeral 5 denotes a metal case that exhibits an electromagnetic shielding function. In this microwave oscillator, the high frequency dielectric ceramic according to the present invention is used as a dielectric block of the coaxial dielectric resonator 1 as described with reference to FIG. 3 as a support member 2 and further as a dielectric ceramic substrate 3. Each can be used. FIG. 5 shows details of the microstrip line. In the microstrip line, the strip conductor 7 is provided on the surface of the dielectric ceramic substrate 6 (corresponding to the dielectric ceramic substrate 3), and the ground conductor film 8 is provided on the back surface of the dielectric ceramic substrate 6. Examples of the material of the strip conductor 7 include Pd, Cu, Au, and Ag.

本発明の高周波用誘電体磁器が構成部材として使用される高周波回路素子の他の例としては、図6の(a)〜(i)にそれぞれ示されるような平面型高周波回路素子が挙げられる。これらの平面型高周波回路素子9は、マイクロストリップ線路と同様に、誘電体磁器基板6の表面にストリップ導体7を設け、誘電体磁器基板6の裏面に接地導体膜を設けている。誘電体磁器基板6の表面には、ストリップ導体7と同一の材料により、各種パターン状の導体膜が形成されており、該導体膜によりそれぞれの素子の機能を発揮する。図6において、(a)の素子はインタディジタルキャパシタであり、(b)の素子はスパイラルインダクタであり、(c)の素子は分岐回路であり、(d)の素子は方向性結合器であり、(e)の素子は電力分配合成器であり、(f)の素子は低域通過フィルタであり、(g)の素子は帯域通過フィルタであり、(h)の素子はリング共振器であり、(i)の素子はパッチアンテナである。   Other examples of the high-frequency circuit element in which the high-frequency dielectric ceramic of the present invention is used as a constituent member include planar high-frequency circuit elements as shown in FIGS. 6A to 6I, respectively. These planar high-frequency circuit elements 9 are provided with a strip conductor 7 on the surface of the dielectric ceramic substrate 6 and a ground conductor film on the back surface of the dielectric ceramic substrate 6 in the same manner as the microstrip line. Various patterns of conductive films are formed on the surface of the dielectric ceramic substrate 6 with the same material as that of the strip conductors 7, and the functions of the respective elements are exhibited by the conductive films. In FIG. 6, the element (a) is an interdigital capacitor, the element (b) is a spiral inductor, the element (c) is a branch circuit, and the element (d) is a directional coupler. The element (e) is a power distribution synthesizer, the element (f) is a low-pass filter, the element (g) is a band-pass filter, and the element (h) is a ring resonator. , (I) is a patch antenna.

本発明の他の高周波用誘電体磁器は、上記高周波用誘電体磁器組成物からなり、すなわち、組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOで表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である。Another high-frequency dielectric ceramic according to the present invention is composed of the above-described high-frequency dielectric ceramic composition, that is, represented by the composition formula a (Sn, Ti) O 2 -bMg 2 SiO 4 -cMgTi 2 O 5 -dMgSiO 3 . A, b, c, and d (wherein a, b, c, and d are mol%) in the composition formula are 4 ≦ a ≦ 37, 34 ≦ b ≦ 92, and 2 ≦ c ≦ 15, respectively. , And 2 ≦ d ≦ 15, where a + b + c + d = 100.

本発明の高周波用誘電体磁器は、とくに、図9のX線回折図に示されるように、チタン酸スズ((Sn,Ti)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)を主生成相とする。前記(Sn,Ti)Oとしては、(Sn0.8Ti0.2)O及び(Sn0.2Ti0.8)Oが知られている。このうち(Sn0.8Ti0.2)Oは、(Sn0.2Ti0.8)Oよりも、焼結が容易で、且つτも制御しやすい特徴がある。As shown in the X-ray diffraction diagram of FIG. 9, the high-frequency dielectric ceramic of the present invention has tin titanate ((Sn, Ti) O 2 ), forsterite (Mg 2 SiO 4 ), magnesium titanate ( MgTi 2 O 5 ) and steatite (MgSiO 3 ) are the main production phases. As the (Sn, Ti) O 2 , (Sn 0.8 Ti 0.2 ) O 2 and (Sn 0.2 Ti 0.8 ) O 2 are known. Among these, (Sn 0.8 Ti 0.2 ) O 2 has characteristics that it is easier to sinter and more easily controls τ f than (Sn 0.2 Ti 0.8 ) O 2 .

本発明の高周波用誘電体磁器は、Q×f。が40000GHz以上たとえば50000GHz以上と高い値を示すことから、誘電損失が非常に小さい高周波用誘電体磁器及びこれを用いた高周波回路素子の提供が容易になる。また、本発明の高周波用誘電体磁器は、共振周波数の温度係数τの絶対値が30ppm/℃以下であることから、温度による特性への影響の少ない高周波用誘電体磁器及びこれを用いた高周波回路素子の提供が容易になる。しかも、本発明の高周波用誘電体磁器は、比誘電率εが7.5〜12.0であることから、加工性の向上と小型化との両方の特長を備えた高周波回路素子の提供が容易になる。The dielectric ceramic for high frequency of the present invention is Q m × f. Shows a high value of 40,000 GHz or more, for example, 50000 GHz or more, it is easy to provide a high frequency dielectric ceramic having a very low dielectric loss and a high frequency circuit element using the same. In addition, the high frequency dielectric ceramic according to the present invention uses a high frequency dielectric ceramic that has little influence on characteristics due to temperature since the absolute value of the temperature coefficient τ f of the resonance frequency is 30 ppm / ° C. or less. Provision of a high-frequency circuit element is facilitated. In addition, since the dielectric ceramic for high frequency according to the present invention has a relative dielectric constant ε r of 7.5 to 12.0, a high frequency circuit element having both features of improved workability and downsizing is provided. Becomes easier.

さらに、本発明の高周波用誘電体磁器は、表面の算術平均粗さRaが2μm以下であるため、表皮効果の影響を受けにくく、高い無負荷Q値をもつ高周波回路素子の提供が容易になる。このような高周波回路素子の一例として、図3に示されるような同軸誘電体共振器が挙げられる。ここでは、外形寸法10.6mm×10.6mm×12mm(軸長)の誘電体磁器のブロックに、軸長方向に沿って穴径3mmの円筒形貫通孔を設け、該貫通孔が開口するブロックの一面(開放面)だけは誘電体磁器の表面(セラミックス面)そのままの状態とし、誘電体磁器の他の表面及び貫通孔内面にはAg導体からなる導体膜を形成している。   Furthermore, since the dielectric ceramic for high frequency according to the present invention has an arithmetic average roughness Ra of 2 μm or less, it is difficult to be affected by the skin effect, and it is easy to provide a high frequency circuit element having a high unloaded Q value. . An example of such a high frequency circuit element is a coaxial dielectric resonator as shown in FIG. Here, a block in which a cylindrical through hole having a hole diameter of 3 mm is provided along the axial length direction in a block of a dielectric ceramic having an outer dimension of 10.6 mm × 10.6 mm × 12 mm (axial length), and the through hole is opened. Only one surface (open surface) of the dielectric ceramic is left as it is (ceramic surface), and a conductor film made of an Ag conductor is formed on the other surface of the dielectric ceramic and the inner surface of the through hole.

本発明の高周波用誘電体磁器における組成の限定理由を説明する。組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOにおいて、aが4未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。aが37を超えると、比誘電率εが12.0より大きくなり、好ましくない。aのより好ましい範囲は、18≦a≦36である。この範囲内であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。bが34未満では、比誘電率εが12.0より大きくなり、好ましくない。bが92を超えると、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。bのより好ましい範囲は、34≦b≦68である。この範囲であれば、共振周波数の温度係数τの絶対値が20ppm/℃以下となる。cが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。cが15を超えると、比誘電率εが12.0より大きくなり、好ましくない。dが2未満では、共振周波数の温度係数τが−30ppm/℃より小さくなり(すなわち、温度係数τの絶対値が30ppm/℃より大きくなり)、好ましくない。dが15を超えると、比誘電率εが12.0より大きくなり好ましくない。The reason for limiting the composition of the high frequency dielectric ceramic according to the present invention will be described. In the composition formula a (Sn, Ti) O 2 —bMg 2 SiO 4 —cMgTi 2 O 5 —dMgSiO 3 , if a is less than 4, the temperature coefficient τ f of the resonance frequency is smaller than −30 ppm / ° C. (that is, the temperature The absolute value of the coefficient τ f is larger than 30 ppm / ° C.), which is not preferable. When a exceeds 37, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. A more preferable range of a is 18 ≦ a ≦ 36. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If b is less than 34, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If b exceeds 92, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. A more preferable range of b is 34 ≦ b ≦ 68. Within this range, the absolute value of the temperature coefficient τ f of the resonance frequency is 20 ppm / ° C. or less. If c is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. When c exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable. If d is less than 2, the temperature coefficient τ f of the resonance frequency becomes smaller than −30 ppm / ° C. (that is, the absolute value of the temperature coefficient τ f becomes larger than 30 ppm / ° C.), which is not preferable. If d exceeds 15, the relative dielectric constant ε r becomes larger than 12.0, which is not preferable.

後述の実施例で示されるように、本発明の高周波用誘電体磁器における組成範囲内で組成式におけるモル比a、b、c及びdを適宜変更することで、共振周波数f。の温度係数τの絶対値が30ppm/℃以下すなわちτが零に近い範囲内で十分大きなQ値を実現しつつ、比誘電率εrを7.5〜12.0の範囲の所望値に調整することが可能である。As shown in the examples described later, the resonance frequency f is obtained by appropriately changing the molar ratios a, b, c and d in the composition formula within the composition range in the high frequency dielectric ceramic of the present invention. The absolute value of the temperature coefficient τ f is 30 ppm / ° C. or less, that is, a desired value in the range of 7.5 to 12.0 is achieved while the dielectric constant ε r is in the range of 7.5 to 12.0 while realizing a sufficiently large Q m value in the range where τ f is close to zero It is possible to adjust to.

また、高周波用誘電体磁器からなる部材を含む高周波回路素子、例えば図3に示した10.6mm□の誘電体磁器ブロックを含む同軸誘電体共振器では、誘電体磁器ブロックの表面の算術平均粗さRaが2μmを超えると、無負荷Q値が大きく低下し例えば1000以下となるため好ましくない。   Further, in a high-frequency circuit element including a member made of a high-frequency dielectric ceramic, for example, a coaxial dielectric resonator including a 10.6 mm □ dielectric ceramic block shown in FIG. 3, the arithmetic average roughness of the surface of the dielectric ceramic block When the thickness Ra exceeds 2 μm, the no-load Q value is greatly reduced, for example, 1000 or less, which is not preferable.

本発明の高周波用誘電体磁器の製造方法の一実施形態は次の通りである。SnO、TiO、及びMgSiOの出発原料を所定量ずつ、アルコール等の溶媒とともに湿式混合する。続いて溶媒を除去した後、粒度分布のD50が2μm以下になるまで解砕する。得られる粉末の粒度分布の一例を図8に示す。このようにして得られた粉末にポリビニルアルコールの如き有機バインダを添加し、混合して均質にし、乾燥、解砕、加圧成形(圧力100〜1000kg/cm程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて1200〜1450℃で焼成することにより、上記組成式で表され且つ表面の算術平均粗さRaが2μm以下である高周波用誘電体磁器を得ることができる。上記出発原料の混合・解砕後の粒度分布のD50が2μmを超えると、焼結体の算術平均粗さRaが2μmを超えやすくなり、そのことにより高周波用誘電体磁器の無負荷Q値が低下しがちである。An embodiment of the method for manufacturing a high frequency dielectric ceramic according to the present invention is as follows. A predetermined amount of starting materials of SnO 2 , TiO 2 , and Mg 2 SiO 4 are wet mixed together with a solvent such as alcohol. Subsequently, after removing the solvent, the mixture is crushed until D50 of the particle size distribution is 2 μm or less. An example of the particle size distribution of the obtained powder is shown in FIG. An organic binder such as polyvinyl alcohol is added to the powder thus obtained, mixed and homogenized, dried, crushed, and pressure-molded (pressure 100 to 1000 kg / cm 2 ). The obtained molded product is fired at 1200 to 1450 ° C. in an oxygen-containing gas atmosphere such as air, so that the arithmetic average roughness Ra of the surface is 2 μm or less and the surface arithmetic mean roughness Ra is 2 μm or less. Can be obtained. When the D50 of the particle size distribution after mixing and crushing of the above starting materials exceeds 2 μm, the arithmetic average roughness Ra of the sintered body tends to exceed 2 μm, which leads to an unloaded Q value of the dielectric ceramic for high frequency. It tends to decline.

後述の実施例で示されるように、SnO及びTiOを当モル量用いることができる。この場合、とくに、前記生成相(Sn,Ti)Oは、(Sn0.8Ti0.2)Oであることが好ましい。As shown in the examples described below, equimolar amounts of SnO 2 and TiO 2 can be used. In this case, in particular, the generated phase (Sn, Ti) O 2 is preferably (Sn 0.8 Ti 0.2 ) O 2 .

このようにして得られた高周波用誘電体磁器は、更なる表面平坦化加工を施すこと無しに、特性良好な高周波回路素子のための構成部材として使用でき、かくして、製造容易性と小型化容易性との両方の特長を備えた高周波回路素子が提供される。但し、必要により適当な形状およびサイズに加工してもよい。   The high-frequency dielectric ceramic thus obtained can be used as a component for a high-frequency circuit element having good characteristics without further surface flattening, thus making it easy to manufacture and miniaturizing. A high-frequency circuit element having both the characteristics of the device is provided. However, it may be processed into an appropriate shape and size if necessary.

本発明の高周波用誘電体磁器は、例えば、外部に銀や銅等の導体からなる膜または配線などを形成することにより、図3のような同軸型誘電体共振器やこれを利用した同軸型誘電体フィルタ等の高周波回路素子を構成するのに利用することが可能である。本発明の高周波用誘電体磁器であって板状のものは、銀や銅等の導体配線を形成することにより、各種高周波回路のための誘電体配線基板として利用することができる。   The high frequency dielectric porcelain of the present invention is formed, for example, by forming a film or wiring made of a conductor such as silver or copper on the outside, thereby forming a coaxial dielectric resonator as shown in FIG. 3 or a coaxial type using the same. It can be used to construct a high-frequency circuit element such as a dielectric filter. The plate-shaped high frequency dielectric ceramic of the present invention can be used as a dielectric wiring board for various high frequency circuits by forming a conductor wiring such as silver or copper.

なお、本発明の高周波用誘電体磁器を構成する元素であるSn、Mg、Si、及びTiの原料としては、SnO、TiO、MgSiOの他に、MgO、SiO等の酸化物を用いることもでき、さらには焼成時に酸化物となる硝酸塩、炭酸塩、水酸化物、塩化物、有機金属化合物等を使用することもできる。In addition to SnO 2 , TiO 2 , and Mg 2 SiO 4 , oxidation materials such as MgO and SiO 2 are used as raw materials for Sn, Mg, Si, and Ti, which are elements constituting the high frequency dielectric ceramic of the present invention. In addition, nitrates, carbonates, hydroxides, chlorides, organometallic compounds, and the like that become oxides upon firing can also be used.

なお、本発明の高周波用誘電体磁器は、その構成元素がO、Sn、Mg、Si、及びTiであるが、例えば粉砕ボールや原料粉末の不純物に由来するCa、Ba、Zr、Ni、Fe、Cr、P、Na等が不純物として混入してもよい。   The high-frequency dielectric ceramic according to the present invention includes O, Sn, Mg, Si, and Ti as constituent elements. For example, Ca, Ba, Zr, Ni, and Fe derived from impurities in pulverized balls and raw material powders. , Cr, P, Na, etc. may be mixed as impurities.

また、本発明の高周波用誘電体磁器は、低誘電率および高Q値が求められるものであれば、種々の高周波回路素子の構成部材として使用できる。そのような例の1つとして、上記の図4に示されるような誘電体共振器制御型マイクロ波発信器における構成部材が挙げられる。本発明の高周波用誘電体磁器が構成部材として使用される高周波回路素子の他の例としては、上記の図6の(a)〜(i)にそれぞれ示されるような平面型高周波回路素子が挙げられる。The high frequency dielectric ceramic of the present invention, as long as the low dielectric constant and a high Q m value is determined, can be used as components of various high-frequency circuit device. One such example is a component member in a dielectric resonator-controlled microwave transmitter as shown in FIG. Other examples of the high-frequency circuit element in which the high-frequency dielectric ceramic of the present invention is used as a constituent member include planar high-frequency circuit elements as shown in FIGS. 6A to 6I, respectively. It is done.

以下、実施例及び比較例により、本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

[実施例1](第1発明)
SnOを4.8mol%、TiOを4.8mol%、MgSiOを90.5mol%となるように所定量を秤量し(表1参照)、これらをエタノール及びZrOボールとともにボールミルに入れ、12時間湿式混合した。その後、溶液を脱媒後、解砕した。引き続き、この解砕物に適量のポリビニルアルコール(PVA)溶液を加えて乾燥した後、直径20mm、厚み10mmのペレットに成形し、空気雰囲気下において、1300℃で2時間焼成した。
[Example 1] (first invention)
Predetermined amounts were weighed so that SnO 2 was 4.8 mol%, TiO 2 was 4.8 mol%, and Mg 2 SiO 4 was 90.5 mol% (see Table 1), and these were mixed with ethanol and ZrO 2 balls in a ball mill. And wet mixed for 12 hours. Then, after removing the solution, it was crushed. Subsequently, an appropriate amount of polyvinyl alcohol (PVA) solution was added to the crushed material and dried, and then the pellets were formed into pellets having a diameter of 20 mm and a thickness of 10 mm, and baked at 1300 ° C. for 2 hours in an air atmosphere.

こうして得られた高周波用誘電体磁器組成物(表1参照)を、直径16mm及び厚み8mmの大きさに加工した後、誘電共振法による測定で、共振周波数5〜12GHzにおけるQ×f。値(すなわちQ×f。値)、比誘電率ε、および共振周波数の温度係数τを求めた。その結果を表1に示す。The high frequency dielectric ceramic composition (see Table 1) thus obtained was processed into a size of 16 mm in diameter and 8 mm in thickness, and then measured by a dielectric resonance method, and Q × f at a resonance frequency of 5 to 12 GHz. A value (ie, Q m × f. Value), a relative dielectric constant ε r , and a temperature coefficient τ f of the resonance frequency were obtained. The results are shown in Table 1.

得られた高周波用誘電体磁器組成物についてX線回折分析を行ったところ、図1に示されるように、チタン酸スズ((Sn0.8Ti0.2)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)の結晶相から構成されていることが確認された。When the obtained high frequency dielectric ceramic composition was subjected to X-ray diffraction analysis, as shown in FIG. 1, tin titanate ((Sn 0.8 Ti 0.2 ) O 2 ), forsterite (Mg 2 SiO 4 ), magnesium titanate (MgTi 2 O 5 ), and steatite (MgSiO 3 ) were confirmed to be composed of crystal phases.

また、得られた高周波用誘電体磁器組成物について、エネルギー分散型X線分光(Energy−Dispersive X−ray Spectroscopy[EDS])による表面の組成分析を行ったところ、チタン酸スズ((Sn0.8Ti0.2)O)、フォルステライト(MgSiO)、及びマグネシウムチタネート(MgTi)の結晶相が確認された。図2にその分析結果を示す。The obtained high-frequency dielectric ceramic composition was subjected to surface composition analysis by energy dispersive X-ray spectroscopy [EDS] . As a result, tin titanate ((Sn 0. 8 Ti 0.2 ) O 2 ), forsterite (Mg 2 SiO 4 ), and magnesium titanate (MgTi 2 O 5 ) were confirmed. FIG. 2 shows the analysis result.

また高周波用誘電体磁器組成物100wt%に対して、PVA2.75wt%、セロゾール1wt%、及び分散剤1wt%を添加してスプレー顆粒を作製した。このスプレー顆粒を用いて、グリーン密度が2.1g/cmになるように成形し、その後1300℃×2時間の空気雰囲気条件下で焼成した。得られた焼結体は、穴(貫通孔)を有し、該穴が開口する一面(開放面)だけはそのままの状態とし、その他の面にはAg膜電極を形成して、図3に示されるような高周波用誘電体磁器電子部品としての誘電体同軸型共振器を作製した。該同軸型共振器の大きさは、軸長12mm、外形(大略矩形状の開放面の一辺の長さ)10.6mm、穴径3mmであった。Also, spray granules were prepared by adding 2.75 wt% PVA, 1 wt% cellosol, and 1 wt% dispersant to 100 wt% of the dielectric ceramic composition for high frequency. Using this spray granule, it was molded so as to have a green density of 2.1 g / cm 3 , and then fired under an air atmosphere condition of 1300 ° C. × 2 hours. The obtained sintered body has a hole (through hole), and only one surface (open surface) where the hole opens is left as it is, and an Ag film electrode is formed on the other surface. A dielectric coaxial resonator as a high frequency dielectric porcelain electronic component as shown was fabricated. The coaxial resonator had a shaft length of 12 mm, an outer shape (a length of one side of a substantially rectangular open surface) of 10.6 mm, and a hole diameter of 3 mm.

得られた同軸型共振器について、共振周波数2GHzで無負荷Q値を評価した。その結果、同軸型共振器としての無負荷Q値は1302であった。このように、本発明に係る高周波用誘電体磁器組成物を使用することにより、優れた高周波特性を有する同軸型共振器が得られた。   With respect to the obtained coaxial resonator, the unloaded Q value was evaluated at a resonance frequency of 2 GHz. As a result, the no-load Q value as a coaxial resonator was 1302. Thus, by using the dielectric ceramic composition for high frequency according to the present invention, a coaxial resonator having excellent high frequency characteristics was obtained.

[実施例2〜12](第1発明)
SnO、TiO、及びMgSiOを表1に示した配合量になるように所定量を秤量し、実施例1と同条件で混合、解砕及び成形などを行い、空気雰囲気下において1200〜1350℃の温度にて2時間焼成して、高周波用誘電体磁器組成物を作製し、実施例1と同様な方法で特性を評価した。その結果を表1に示す。
[Examples 2 to 12] (First invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 is weighed so as to have the blending amounts shown in Table 1, and mixed, crushed and molded under the same conditions as in Example 1, and in an air atmosphere By firing at a temperature of 1200 to 1350 ° C. for 2 hours, a dielectric ceramic composition for high frequency was produced, and the characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

[比較例1〜5](第1発明)
SnO、TiO、及びMgSiOを表2に示した配合量になるように所定量を秤量し、実施例1と同条件で混合、解砕及び成形などを行い、空気雰囲気下において1200〜1350℃の温度にて2時間焼成して、誘電体磁器組成物を作製し、実施例1と同様な方法で特性を評価した。その結果を表2に示す。
[Comparative Examples 1 to 5] (first invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 is weighed so as to have the blending amounts shown in Table 2, and mixed, crushed and molded under the same conditions as in Example 1, and in an air atmosphere A dielectric porcelain composition was prepared by firing at a temperature of 1200 to 1350 ° C. for 2 hours, and the characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 0005582406
Figure 0005582406

Figure 0005582406
Figure 0005582406

[実施例13](第2発明)
SnOを4.8mol%、TiOを4.8mol%、MgSiOを90.5mol%となるように所定量を秤量し(表3参照)、これらをエタノール及びZrOボールとともにボールミルに入れ、12時間湿式混合した。その後、溶液を脱媒後、1100℃で2時間仮焼し、粉砕した。この仮焼粉を出発原料として用い、仮焼粉100重量部に対して0.5重量部のMnOを添加し、これらをエタノール及びZrOボールとともにボールミルに入れ、12時間湿式混合した。その後、溶液を脱媒し、更に適量のポリビニルアルコール(PVA)溶液を加えて乾燥した後、直径20mm、厚み8.2mmのペレットに成形し、空気雰囲気下において、1250℃で2時間焼成した。
[Example 13] (second invention)
A predetermined amount was weighed so that SnO 2 was 4.8 mol%, TiO 2 was 4.8 mol%, and Mg 2 SiO 4 was 90.5 mol% (see Table 3), and these were mixed with ethanol and ZrO 2 balls into a ball mill. And wet mixed for 12 hours. Then, after removing the solution, it was calcined at 1100 ° C. for 2 hours and pulverized. Using this calcined powder as a starting material, 0.5 part by weight of MnO was added to 100 parts by weight of the calcined powder, and these were placed in a ball mill together with ethanol and ZrO 2 balls and wet mixed for 12 hours. Thereafter, the solution was removed, and an appropriate amount of polyvinyl alcohol (PVA) solution was added and dried. Then, the pellet was formed into a pellet having a diameter of 20 mm and a thickness of 8.2 mm, and baked at 1250 ° C. for 2 hours in an air atmosphere.

こうして得られた高周波用誘電体磁器(表3参照)につき、アルキメデス法を用いて相対密度を測定したところ、96%であった。   The relative density of the thus obtained high frequency dielectric ceramic (see Table 3) was measured using the Archimedes method and found to be 96%.

更に、この高周波用誘電体磁器を、直径16.7mm及び厚み7.8mmの大きさに加工した後、誘電共振法による測定で、共振周波数5.9〜6.5GHzにおけるQf値(すなわちQ×f。値)、比誘電率ε、および共振周波数の温度係数τを求めた。その結果を表3に示す。Further, this high frequency dielectric ceramic is processed into a size of 16.7 mm in diameter and 7.8 mm in thickness, and then measured by a dielectric resonance method to determine a Qf value (ie, Q m) at a resonance frequency of 5.9 to 6.5 GHz. Xf, value), relative permittivity ε r , and temperature coefficient τ f of resonance frequency. The results are shown in Table 3.

得られた高周波用誘電体磁器についてX線回折分析を行ったところ、図7に示されるように、主生成相はチタン酸スズ((Sn0.8Ti0.2)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)の結晶相から構成されていることが確認された。また、得られた高周波用誘電体磁器について蛍光X線分析を行ったところ、MnOの存在が確認された。When X-ray diffraction analysis was performed on the obtained dielectric ceramic for high frequency, as shown in FIG. 7, the main production phase was tin titanate ((Sn 0.8 Ti 0.2 ) O 2 ), forsterite. It was confirmed that it was composed of crystal phases of (Mg 2 SiO 4 ), magnesium titanate (MgTi 2 O 5 ), and steatite (MgSiO 3 ). Further, when X-ray fluorescence analysis was performed on the obtained high frequency dielectric ceramic, the presence of MnO was confirmed.

一方、上記の出発原料粉末100重量部に対して、MnOを焼結助剤として0.5重量部添加し、更にPVA2.75重量部、セロゾール1重量部、及び分散剤1重量部を添加してスプレー顆粒を作製した。このスプレー顆粒を用いて、グリーン密度が2.3g/cmになるように成形し、その後1250℃×2時間の空気雰囲気条件下で焼成した。かくして得られた高周波用誘電体磁器を構成部材として用いて、図3に示されるような同軸誘電体共振器を作製した。該同軸誘電体共振器の大きさは、軸長12mm、外形(大略矩形状の開放面の一辺の長さ)10.6mm、穴径3mmであった。On the other hand, with respect to 100 parts by weight of the starting material powder, 0.5 part by weight of MnO is added as a sintering aid, and 2.75 parts by weight of PVA, 1 part by weight of cellosol, and 1 part by weight of a dispersant are added. Spray granules were prepared. Using this spray granule, the green density was molded to 2.3 g / cm 3 , and then fired under an air atmosphere condition of 1250 ° C. × 2 hours. A coaxial dielectric resonator as shown in FIG. 3 was fabricated using the high frequency dielectric ceramic thus obtained as a constituent member. The coaxial dielectric resonator had a shaft length of 12 mm, an outer shape (a length of one side of a substantially rectangular open surface) of 10.6 mm, and a hole diameter of 3 mm.

得られた同軸誘電体共振器について、共振周波数2GHzで無負荷Q値を評価した。その結果、同軸誘電体共振器としての無負荷Q値は1320であった。このように、本発明に係る高周波用誘電体磁器を使用することにより、優れた高周波特性を有する同軸誘電体共振器が得られた。   The obtained coaxial dielectric resonator was evaluated for an unloaded Q value at a resonance frequency of 2 GHz. As a result, the unloaded Q value as a coaxial dielectric resonator was 1320. Thus, the coaxial dielectric resonator which has the outstanding high frequency characteristic was obtained by using the dielectric ceramic for high frequencies which concerns on this invention.

[実施例14〜25](第2発明)
SnO、TiO、及びMgSiOを表3に示した配合比になるように所定量を秤量し、実施例13と同条件で混合し、仮焼し、粉砕した。この仮焼粉を出発原料として用い、表3に示した配合量になるようにMnOを所定量秤量して混合し、実施例13と同様にしてバインダ添加及び成形などを行い、空気雰囲気下において表3に示されるように1225〜1300℃の温度にて2時間焼成して、高周波用誘電体磁器を作製し、実施例13と同様な方法で特性を評価した。その結果を表3に示す。尚、表3及び後述の表4の「状態」欄は、製造時の焼成に際して接触する敷き板と反応した痕跡が視認されたかどうかの状態を示すものであり、「良」の表記は敷き板と反応した痕跡が視認されなかったことを指し、「敷き板と反応」の表記は敷き板と反応した痕跡が視認されたことを指す。
[Examples 14 to 25] (second invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 was weighed so as to have a mixing ratio shown in Table 3, mixed under the same conditions as in Example 13, calcined, and pulverized. Using this calcined powder as a starting material, a predetermined amount of MnO was weighed and mixed so as to have the blending amount shown in Table 3, and the binder was added and molded in the same manner as in Example 13, and in an air atmosphere As shown in Table 3, it was fired at a temperature of 1225 to 1300 ° C. for 2 hours to produce a high frequency dielectric ceramic, and its characteristics were evaluated in the same manner as in Example 13. The results are shown in Table 3. In addition, the “state” column in Table 3 and Table 4 to be described later indicates whether or not traces reacted with the floor plate in contact with firing at the time of manufacturing are visually recognized, and the notation of “good” is the floor plate. The sign “reacted with the floorboard” indicates that the trace that reacted with the floorboard was visually recognized.

[比較例6〜17](第2発明)
SnO、TiO、及びMgSiOを表4に示した配合比になるように所定量を秤量し、実施例13と同条件で混合し、仮焼し、粉砕した。この仮焼粉を出発原料として用い、表4に示した配合量になるようにMnOを所定量秤量して混合し、実施例13と同様にしてバインダ添加及び成形を行い、空気雰囲気下において表4に示されるように1225〜1300℃の温度にて2時間焼成して、高周波用誘電体磁器を作製し、実施例13と同様な方法で特性を評価した。その結果を表4に示す。尚、比較例13は、第1発明の実施例に該当する。
[Comparative Examples 6 to 17] (second invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 was weighed so as to have a blending ratio shown in Table 4, mixed under the same conditions as in Example 13, calcined, and pulverized. Using this calcined powder as a starting material, a predetermined amount of MnO was weighed and mixed so that the blending amount shown in Table 4 was obtained, and the binder was added and molded in the same manner as in Example 13 to obtain a table in an air atmosphere. 4 was baked at a temperature of 1225 to 1300 ° C. for 2 hours to produce a high frequency dielectric ceramic, and its characteristics were evaluated in the same manner as in Example 13. The results are shown in Table 4. Comparative example 13 corresponds to the example of the first invention.

Figure 0005582406
Figure 0005582406

Figure 0005582406
Figure 0005582406

[実施例26](第3発明)
SnOを4.8mol%、TiOを4.8mol%、MgSiOを90.5mol%となるように所定量を秤量し(表5参照)、これらをエタノール及びZrOボールとともにボールミルに入れ、12時間湿式混合した。その後、溶液を脱媒後、解砕した。この解砕で得られた粉末の粒度分布は、図8に示すとおりであった(D50を表5に示す)。この粉末に適量のポリビニルアルコール(PVA)溶液を加えて乾燥した後、直径10mm、厚み3.5mmのペレットに成形し、空気雰囲気下において、1300℃で2時間焼成した。
[Example 26] (Third Invention)
Predetermined amounts were weighed so that SnO 2 was 4.8 mol%, TiO 2 was 4.8 mol%, and Mg 2 SiO 4 was 90.5 mol% (see Table 5), and these were mixed with ethanol and ZrO 2 balls into a ball mill. And wet mixed for 12 hours. Then, after removing the solution, it was crushed. The particle size distribution of the powder obtained by this crushing was as shown in FIG. 8 (D50 is shown in Table 5). An appropriate amount of a polyvinyl alcohol (PVA) solution was added to the powder and dried, and then formed into pellets having a diameter of 10 mm and a thickness of 3.5 mm, and baked at 1300 ° C. for 2 hours in an air atmosphere.

こうして得られた高周波用誘電体磁器(生成相につき表5参照)を、直径9.6mm及び厚み3.3mmの大きさに加工した後、誘電共振法による測定で、共振周波数5.9〜6.5GHzにおけるQ×f。値、比誘電率ε、および共振周波数の温度係数τを求めた。その結果を表5に示す。The high frequency dielectric porcelain thus obtained (see Table 5 for the generated phase) is processed into a size of 9.6 mm in diameter and 3.3 mm in thickness, and then measured by the dielectric resonance method to have a resonance frequency of 5.9-6. Q m × f at 5 GHz. The value, the relative permittivity ε r , and the temperature coefficient τ f of the resonance frequency were obtained. The results are shown in Table 5.

尚、上記焼成により得られた高周波用誘電体磁器の表面の算術平均粗さRaを測定した。その結果を表5に示した。   The arithmetic average roughness Ra of the surface of the high frequency dielectric ceramic obtained by the firing was measured. The results are shown in Table 5.

得られた高周波用誘電体磁器についてX線回折分析を行ったところ、図9に示されるように、チタン酸スズ((Sn0.8Ti0.2)O)、フォルステライト(MgSiO)、マグネシウムチタネート(MgTi)、及びステアタイト(MgSiO)の結晶相から構成されていることが確認された。When X-ray diffraction analysis was performed on the obtained dielectric ceramic for high frequency, as shown in FIG. 9, tin titanate ((Sn 0.8 Ti 0.2 ) O 2 ), forsterite (Mg 2 SiO 4 ), it was confirmed to be composed of crystal phases of magnesium titanate (MgTi 2 O 5 ) and steatite (MgSiO 3 ).

一方、上記の解砕で得られた粉末100wt%に対して、PVA2.75wt%、セロゾール1wt%、及び分散剤1wt%を添加してスプレー顆粒を作製した。このスプレー顆粒を用いて、グリーン密度が2.1g/cmになるように成形し、その後1300℃×2時間の空気雰囲気条件下で焼成した。かくして得られた高周波用誘電体磁器を構成部材として用いて、図3に示されるような同軸誘電体共振器を作製した。該同軸誘電体共振器の大きさは、軸長12mm、外形(大略矩形状の開放面の一辺の長さ)10.6mm、穴径3mmであった。On the other hand, 2.75 wt% PVA, 1 wt% cellosol, and 1 wt% dispersant were added to 100 wt% of the powder obtained by the above-mentioned crushing to produce spray granules. Using this spray granule, it was molded so as to have a green density of 2.1 g / cm 3 , and then fired under an air atmosphere condition of 1300 ° C. × 2 hours. A coaxial dielectric resonator as shown in FIG. 3 was fabricated using the high frequency dielectric ceramic thus obtained as a constituent member. The coaxial dielectric resonator had a shaft length of 12 mm, an outer shape (a length of one side of a substantially rectangular open surface) of 10.6 mm, and a hole diameter of 3 mm.

得られた同軸誘電体共振器について、共振周波数2GHzで無負荷Q値を評価した。その結果、同軸誘電体共振器としての無負荷Q値は1360であった。このように、本発明に係る高周波用誘電体磁器を使用することにより、優れた高周波特性を有する同軸誘電体共振器が得られた。   The obtained coaxial dielectric resonator was evaluated for an unloaded Q value at a resonance frequency of 2 GHz. As a result, the unloaded Q value as a coaxial dielectric resonator was 1360. Thus, the coaxial dielectric resonator which has the outstanding high frequency characteristic was obtained by using the dielectric ceramic for high frequencies which concerns on this invention.

[実施例27〜36](第3発明)
SnO、TiO、及びMgSiOを表5に示した配合比になるように所定量を秤量し、実施例26と同条件で混合、解砕及び成形などを行い、空気雰囲気下において1200〜1350℃の温度にて2時間焼成して、高周波用誘電体磁器を作製し、実施例26と同様な方法で特性を評価した。その結果を表5に示す。
[Examples 27 to 36] (third invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 was weighed so as to have the blending ratio shown in Table 5, and mixed, crushed and molded under the same conditions as in Example 26. A high frequency dielectric ceramic was produced by firing at 1200 to 1350 ° C. for 2 hours, and the characteristics were evaluated in the same manner as in Example 26. The results are shown in Table 5.

[比較例18〜24](第3発明)
SnO、TiO、及びMgSiOを表6に示した配合比になるように所定量を秤量し、実施例26と同条件で混合、解砕及び成形などを行い、空気雰囲気下において1200〜1350℃の温度にて2時間焼成して、高周波用誘電体磁器を作製し、実施例26と同様な方法で特性を評価した。その結果を表6に示す。尚、比較例21及び比較例22は、第1発明の実施例に該当する。
[Comparative Examples 18 to 24] (third invention)
A predetermined amount of SnO 2 , TiO 2 , and Mg 2 SiO 4 was weighed so as to have the blending ratio shown in Table 6, and mixed, crushed and molded under the same conditions as in Example 26. A high frequency dielectric ceramic was produced by firing at 1200 to 1350 ° C. for 2 hours, and the characteristics were evaluated in the same manner as in Example 26. The results are shown in Table 6. Comparative example 21 and comparative example 22 correspond to the examples of the first invention.

Figure 0005582406
Figure 0005582406

Figure 0005582406
Figure 0005582406

以上のように、本発明の高周波用誘電体磁器組成物は、通信用フィルタ等の高周波用誘電体磁器電子部品を作製するのに利用することが可能である。   As described above, the high-frequency dielectric ceramic composition of the present invention can be used to produce a high-frequency dielectric ceramic electronic component such as a communication filter.

以上のように、本発明の高周波用誘電体磁器は、低誘電率且つ高Q値であり温度特性に優れるため、例えば、マイクロ波及びミリ波などの高周波領域で使用される集積回路等の高周波回路素子の構成部材として最適である。As described above, the dielectric ceramic for high frequency according to the present invention has a low dielectric constant and a high Q m value and excellent temperature characteristics. Therefore, for example, an integrated circuit used in a high frequency region such as a microwave and a millimeter wave can be used. It is optimal as a constituent member of a high-frequency circuit element.

1・・・同軸誘電体共振器
2・・・支持部材
3・・・誘電体磁器基板
4・・・ストリップ導体
5・・・金属ケース
H・・・電磁界
6・・・誘電体磁器基板
7・・・ストリップ導体
8・・・接地導体膜
9・・・平面高周波回路
DESCRIPTION OF SYMBOLS 1 ... Coaxial dielectric resonator 2 ... Support member 3 ... Dielectric ceramic substrate 4 ... Strip conductor 5 ... Metal case H ... Electromagnetic field 6 ... Dielectric ceramic substrate 7 ... Strip conductor 8 ... Grounding conductor film 9 ... Plane high-frequency circuit

Claims (8)

主成分と添加成分とを含んでなる高周波用誘電体磁器であって、
前記主成分は、組成式a(Sn,Ti)O −bMg SiO −cMgTi −dMgSiO で表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である高周波用誘電体磁器組成物、からなり、
前記添加成分はMnOからなり、
前記添加成分は前記主成分100重量部に対して0.1〜5.0重量部添加されており、
相対密度が95%以上であり、
比誘電率εが7.5〜12.0であり、Q×f。値が50000以上であり、共振周波数f。の温度係数τが−30〜+30ppm/℃である、
ことを特徴とする高周波用誘電体磁器。
A high frequency dielectric ceramic comprising a main component and an additive component,
The main component is represented by a composition formula a (Sn, Ti) O 2 -bMg 2 SiO 4 -cMgTi 2 O 5 -dMgSiO 3 , and a, b, c, and d (where a, b in the composition formula) , C, and d are in mol%) within the range of 4 ≦ a ≦ 37, 34 ≦ b ≦ 92, 2 ≦ c ≦ 15, and 2 ≦ d ≦ 15, where a + b + c + d = 100 A dielectric ceramic composition for high frequencies,
The additive component comprises MnO,
The additive component is added in an amount of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the main component,
The relative density is 95% or more,
The relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value is 50000 or more and the resonance frequency f. Temperature coefficient tau f of a -30~ + 30ppm / ℃,
A high frequency dielectric ceramic.
前記(Sn,Ti)Oが(Sn0.8Ti0.2)Oであることを特徴とする、請求項1に記載の高周波用誘電体磁器 2. The dielectric ceramic for high frequency according to claim 1, wherein the (Sn, Ti) O 2 is (Sn 0.8 Ti 0.2 ) O 2 . 請求項1又は2に記載の高周波用誘電体磁器を製造する方法であって、SnO、TiO及びMgSiOの所定量を混合し仮焼した後に粉砕したものを出発原料として用い、該出発原料100重量部に対してMnOを焼結助剤として0.1〜5.0重量部添加して得られた粉末に有機バインダを添加して成形し、焼成することを特徴とする、高周波用誘電体磁器の製造方法。 A method for producing a dielectric ceramic for high frequency according to claim 1 or 2 , wherein a predetermined amount of SnO 2 , TiO 2 and Mg 2 SiO 4 is mixed and calcined and then pulverized as a starting material, An organic binder is added to a powder obtained by adding 0.1 to 5.0 parts by weight of MnO as a sintering aid with respect to 100 parts by weight of the starting material, and is fired. Manufacturing method of dielectric ceramic for high frequency. 請求項1又は2に記載の高周波用誘電体磁器からなる部材を含むことを特徴とする高周波回路素子。 A high-frequency circuit element comprising a member comprising the high-frequency dielectric ceramic according to claim 1 . 組成式a(Sn,Ti)O−bMgSiO−cMgTi−dMgSiOで表され、前記組成式におけるa、b、c、及びd(ただし、a、b、c、及びdはモル%である)がそれぞれ4≦a≦37、34≦b≦92、2≦c≦15、及び2≦d≦15の範囲内にあり、ここでa+b+c+d=100である、焼成で得られた高周波用誘電体磁器組成物からなるとともに、
焼成後無加工状態での表面の算術平均粗さRaが2μm以下であり、
比誘電率εが7.5〜12.0であり、Q×f。値が50000以上であり、共振周波数f。の温度係数τが−30〜+30ppm/℃である、
ことを特徴とする高周波用誘電体磁器。
Represented by the composition formula a (Sn, Ti) O 2 —bMg 2 SiO 4 —cMgTi 2 O 5 —dMgSiO 3 , and a, b, c, and d (where a, b, c, and d in the composition formula) in the range is the molar%) of 4 ≦ a ≦ 37,34 ≦ b ≦ 92,2 ≦ c ≦ 15, and 2 ≦ d ≦ 15, respectively, wherein a a + b + c + d = 100, obtained by calcining A high frequency dielectric ceramic composition,
The arithmetic average roughness Ra of the surface in the unprocessed state after firing is 2 μm or less,
The relative dielectric constant ε r is 7.5 to 12.0, and Q m × f. The value is 50000 or more and the resonance frequency f. Has a temperature coefficient τ f of −30 to +30 ppm / ° C.
A high frequency dielectric ceramic.
前記(Sn,Ti)Oが(Sn0.8Ti0.2)Oであることを特徴とする、請求項5に記載の高周波用誘電体磁器The high frequency dielectric ceramic according to claim 5 , wherein the (Sn, Ti) O 2 is (Sn 0.8 Ti 0.2 ) O 2 . 請求項5又は6に記載の高周波用誘電体磁器を製造する方法であって、SnO、TiO及びMgSiOを出発原料として用い、これら出発原料の所定量を粒度分布のD50が2μm以下になるように混合・解砕して得られた粉末にバインダを添加して成形し、焼成することを特徴とする、高周波用誘電体磁器の製造方法。 A method for producing a dielectric ceramic for high frequency according to claim 5 or 6 , wherein SnO 2 , TiO 2 and Mg 2 SiO 4 are used as starting materials, and a predetermined amount of these starting materials is used with a D50 of 2 μm in particle size distribution. A method for producing a dielectric ceramic for high frequency, characterized in that a binder is added to a powder obtained by mixing and pulverizing so as to form as follows, followed by firing. 請求項5又は6に記載の高周波用誘電体磁器からなる部材を含むことを特徴とする高周波回路素子。 A high-frequency circuit element comprising a member comprising the high-frequency dielectric ceramic according to claim 5 .
JP2010540491A 2008-11-25 2009-11-25 High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same Expired - Fee Related JP5582406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540491A JP5582406B2 (en) 2008-11-25 2009-11-25 High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008299533 2008-11-25
JP2008299533 2008-11-25
JP2009081911 2009-03-30
JP2009081912 2009-03-30
JP2009081911 2009-03-30
JP2009081912 2009-03-30
JP2010540491A JP5582406B2 (en) 2008-11-25 2009-11-25 High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same
PCT/JP2009/069844 WO2010061842A1 (en) 2008-11-25 2009-11-25 Dielectric ceramic composition for high-frequency use and method for producing the same, dielectric ceramic for high-frequency use and method for producing the same, and high-frequency circuit element using the same

Publications (2)

Publication Number Publication Date
JPWO2010061842A1 JPWO2010061842A1 (en) 2012-04-26
JP5582406B2 true JP5582406B2 (en) 2014-09-03

Family

ID=42225715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540491A Expired - Fee Related JP5582406B2 (en) 2008-11-25 2009-11-25 High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same

Country Status (5)

Country Link
US (1) US8765621B2 (en)
EP (1) EP2371787B1 (en)
JP (1) JP5582406B2 (en)
CN (1) CN102224118B (en)
WO (1) WO2010061842A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786866B (en) * 2009-12-22 2012-12-05 广东风华高新科技股份有限公司 Anti-reduction dielectric ceramic material matched with copper inner electrode and sintered under high frequency and low temperature
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
EP2657206B1 (en) * 2010-12-22 2016-11-23 Kyocera Corporation Dielectric ceramic and dielectric filter provided with same
DE102016103949B4 (en) * 2016-03-04 2023-06-07 Tdk Electronics Ag Dielectric ceramic composition and its use
CN106549201B (en) * 2016-10-09 2019-07-02 清华大学 A kind of filter by having the H-type micro-strip resonantor for inserting finger tip mouth to form
CN110357607B (en) * 2019-09-03 2022-03-01 广东国华新材料科技股份有限公司 MAS-LT composite microwave dielectric ceramic and preparation method thereof
CN112266238B (en) * 2020-10-23 2022-09-16 厦门松元电子股份有限公司 Low dielectric constant ceramic material for microwave device and preparation method thereof
CN112174653B (en) * 2020-10-23 2022-09-16 厦门松元电子股份有限公司 Microwave dielectric ceramic material with high Qf and low dielectric constant and preparation method thereof
CN112778007A (en) * 2021-01-11 2021-05-11 苏州艾福电子通讯股份有限公司 Temperature-stable microwave dielectric ceramic and preparation method and application thereof
CN113563061B (en) * 2021-09-26 2021-12-21 广东康荣高科新材料股份有限公司 Low dielectric constant dielectric material for single-cavity filter and preparation method thereof
CN115806430B (en) * 2022-12-29 2023-07-07 湖南省新化县建平精细陶瓷有限公司 Low-dielectric-constant microwave ceramic and preparation method thereof
CN116854454B (en) * 2023-07-11 2024-01-26 上海大学 Microwave dielectric ceramic composition, microwave dielectric ceramic material and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325638A (en) * 1992-05-28 1993-12-10 Matsushita Electric Ind Co Ltd High-frequency dielectric porcelain
JPH07201223A (en) * 1993-12-29 1995-08-04 Ngk Spark Plug Co Ltd Microwave dielectric porcelain composite, and its manufacture
JPH08335810A (en) * 1995-06-07 1996-12-17 Tokin Corp Coaxial dielectric resonator and its production
JP2000143336A (en) * 1998-11-05 2000-05-23 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter produced by using the composition
JP2001130952A (en) * 1999-10-29 2001-05-15 Kyocera Corp Dielectric porcelain and laminated body
JP2002104870A (en) * 2000-09-28 2002-04-10 Kyocera Corp Dielectric porcelain and laminate
WO2004106261A1 (en) * 2003-05-30 2004-12-09 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JP2005239446A (en) * 2004-02-24 2005-09-08 Japan Fine Ceramics Center Porcelain composition and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103904A (en) 1985-07-13 1987-05-14 株式会社村田製作所 Dielectric porcelain compound for radio frequency
JP3179916B2 (en) 1992-12-30 2001-06-25 日本特殊陶業株式会社 Microwave dielectric porcelain composition
JP2902923B2 (en) 1992-12-17 1999-06-07 京セラ株式会社 High frequency dielectric ceramic composition
JP3865970B2 (en) 1999-06-03 2007-01-10 財団法人ファインセラミックスセンター Porcelain composition
JP4004046B2 (en) * 2003-03-17 2007-11-07 Tdk株式会社 Dielectric ceramic composition and dielectric resonator using the same
CN1298669C (en) * 2004-04-09 2007-02-07 天津大学 High frequency porcelain with low dielectric constant and preparation method
JP2010024082A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Dielectric ceramic composition for high frequency and method for manufacturing the same
KR20100024082A (en) * 2008-08-25 2010-03-05 타가즈코리아 주식회사 Front-wheel drive manual transmission for car

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325638A (en) * 1992-05-28 1993-12-10 Matsushita Electric Ind Co Ltd High-frequency dielectric porcelain
JPH07201223A (en) * 1993-12-29 1995-08-04 Ngk Spark Plug Co Ltd Microwave dielectric porcelain composite, and its manufacture
JPH08335810A (en) * 1995-06-07 1996-12-17 Tokin Corp Coaxial dielectric resonator and its production
JP2000143336A (en) * 1998-11-05 2000-05-23 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter produced by using the composition
JP2001130952A (en) * 1999-10-29 2001-05-15 Kyocera Corp Dielectric porcelain and laminated body
JP2002104870A (en) * 2000-09-28 2002-04-10 Kyocera Corp Dielectric porcelain and laminate
WO2004106261A1 (en) * 2003-05-30 2004-12-09 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JP2005239446A (en) * 2004-02-24 2005-09-08 Japan Fine Ceramics Center Porcelain composition and its manufacturing method

Also Published As

Publication number Publication date
EP2371787A1 (en) 2011-10-05
JPWO2010061842A1 (en) 2012-04-26
EP2371787A4 (en) 2012-06-06
WO2010061842A1 (en) 2010-06-03
CN102224118B (en) 2013-04-10
US20110236634A1 (en) 2011-09-29
CN102224118A (en) 2011-10-19
US8765621B2 (en) 2014-07-01
EP2371787B1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5582406B2 (en) High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
US8420560B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic
JP2010024082A (en) Dielectric ceramic composition for high frequency and method for manufacturing the same
JP2008069056A (en) Dielectric porcelain composition
JP4412266B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP5527053B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP3940419B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP5458927B2 (en) High frequency dielectric ceramic, method for manufacturing the same, and high frequency circuit element using the same
JP4494881B2 (en) Low temperature fired dielectric ceramic composition and dielectric component
JP3375450B2 (en) Dielectric porcelain composition
JP4409165B2 (en) Microwave dielectric ceramic composition and microwave dielectric ceramic composition for substrate
JP4238554B2 (en) High frequency dielectric ceramic composition
JP2011162417A (en) Dielectric ceramic for high frequency, method for producing the same, and high frequency circuit element using the same
JP2011162418A (en) Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP2011079719A (en) Dielectric ceramic composition
JP2003063857A (en) Porcelain composition which has low dielectric constant and method for manufacturing it
JPH10101416A (en) Dielectric porcelain composition, dielectric porcelain and its production
JP2005089297A (en) High frequency dielectric ceramic and laminate
JP3813918B2 (en) Dielectric porcelain composition and electronic component using the same
JP2004345877A (en) Dielectric porcelain composition, manufacturing method therefor, dielectric porcelain using the same, and laminated ceramic component
JPH08310864A (en) Production of dielectric porcelain and production of laminated dielectric part
JP2004210614A (en) Dielectric ceramic composition for high frequency

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5582406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees